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Fig. 1: Visual Relationship Transformation. Given an observed view image
(a), we aim to predict the relationships between objects (e.g ., the one be-
tween car-1 and car-2) in novel views (b-d) without requiring their corre-
sponding view images. Compared with the relationship observed in (a), the
corresponding ones in novel views (b-d) are typically view-dependent and non-
deterministic, which might be preserved, altered, or even become invisible. The
faded images and relationships denote unseen and invisible, respectively.

Abstract. What will be the relationships between objects in a novel
view? We strive to answer this question by investigating a new visual
cognition task, termed visual relationship transformation or VRT. Unlike
prior visual relationship detection task that works on visible view images,
VRT aims to predict the relationships in unseen novel views from a single
observed source view. Towards solving VRT, we propose an end-to-end
deep approach that, given an observed view image and inter-view trans-
formations, learns to predict the relationships in novel views. Specifically,
we introduce an equivariant graph neural network to predict the relation-
ships between objects in novel views, which is achieved by enforcing the
transformation equivariance of the learned relationship representations.
Simultaneously, a relationship presentness mask is learned for pruning
the invisible ones, thus enabling the visible relationship prediction in
novel views. To this end, VRT provides supplementary cues for accom-
plishing novel-view-related tasks, such as visual grounding (VG), novel
view synthesis (NVS), and pedestrian intention estimation (PIE). In the
experiments, adopting VRT as a plug-in module results in considerable
performance improvements in VG, NVS, and PIE across all datasets.

1 Introduction
Looking at the visual relationship (car-1, behind, car-2) in Fig. 1(a) and
asking to predict its corresponding ones in the novel views shown in Fig. 1(b-d),
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https://orcid.org/0000-0002-9437-7639


2 X. Xu, J. Qiu, B. Yu, Z. Wang

it can be found that the transformation of visual relationships is view-dependent
and non-deterministic. The transformed relationships might be preserved, al-
tered, or even become invisible in novel views. Therefore, given a single observed
view image and the cross-view transformations, can we learn to adaptively pre-
dict the transformed relationships and their presentness in novel views? We term
this task, which has never been explored in prior works, as visual relationship
transformation or VRT. The VRT plays a vital role in scenarios where a multiple-
view understanding of a scene is demanded, particularly when the acquisition
costs are expensive. For instance, when a robot is tasked with locating a referred
object, it is necessary to understand the relationships between objects in the
scene from various perspectives. Nonetheless, observing from every conceivable
angle is expensive or impractical. So predicting the relationships in unseen views
given observed views is a tractable and economical solution.

Comparing with numerous efforts in visual relationship detection or VRD [9,
34,39,40,55,56,70,73,76,89,93,95,97], VRT stands out by explicitly predicting
the corresponding relationships in unseen views. In contrast, a vanilla solution,
which first performs NVS and then conducts VRD, not only requires huge com-
putations but also fails to maintain the correspondence between relationships
from the source and target views. Furthermore, VRT comes with a large amount
of supplementary cues, such as structural understanding, that help novel-view-
related tasks. For example, the visual grounding task [2] shown in Fig. 2(a),
which asks to identify the ‘pillow on the far right’ from the unseen view
of ‘the front of the bed’, requires VRT for predicting the transformed rela-
tionships in the novel view, thus can perform accurate alignment between the
textual and visual semantics. Moreover, the novel-view-synthesis task [90], shown
in Fig. 2(b), requires VRT to accurately predict the relationship transformation
to the novel view, thus ensuring the correct relationship between the potted
plant and the bottle in the synthesized image. Furthermore, the pedestrian
intention estimation task [61], shown in Fig. 2(c), requires VRT to predict the
relationships in the pedestrian view from the given camera view image, thus
being able to estimate the pedestrian intention accurately.

While VRT can provide an informative understanding of novel views, learn-
ing to solve it remains a challenge. Firstly, labeling relationships in multi-view
datasets is expensive, making large-scale training data unavailable. Secondly,
in the novel view, the prediction of relationships and their corresponding pre-
sentness should be learned separately. As depicted in Fig. 1(d), the relationship
should be predicted as left even though it is invisible in the novel view, where
invisibility differs from unrelatedness. Thirdly, the predicted scene graph, con-
structed by the predicted relationships, should be structurally consistent with
the ground-truth scene graph in the novel view, thus allowing the learning of
global structure information.

Towards accomplishing VRT, we devise a novel approach to perform relation-
ship transformation and tackle the aforementioned challenges during training.
Specifically, given a single observed view image, we first detect the objects with
an off-the-shelf detection algorithm. Each detected object is modeled as a node in
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Fig. 2: Illustration of VRT implementations on Visual Grounding, Novel-View Synthe-
sis, and Pedestrian Intention Estimation tasks. For each task, the first image denotes
the given input, the second one denotes the result from the SOTA method, the third
one denotes the result by adopting our VRT as a plug-in module, and the fourth one
denotes the ground-truth.

the scene graph. This scene graph, along with the cross-view transformation, is
then fed into the VRT module for predicting the transformed relationships, e.g .
the edges in the scene graph, and their corresponding presentness. Throughout
this process, the transformation equivariance of the relationship representations
is enforced. To ensure the proper learning of relationship transformation, in the
training stage, we first extract the ground-truth relationship features, present-
ness, and the scene graph from the novel view using a pre-trained visual relation-
ship detection model [86]. Then, a relationship transformation loss is introduced
to supervise each relationship prediction by adopting the ground-truth features
as supervision, thus mitigating the lack of training data. Meanwhile, a present-
ness loss is implemented to learn the visibility of relationships in the novel view.
Finally, a relationship structure loss is introduced to ensure the global struc-
tural information in the novel view can be learned. With these components, the
trained approach is capable of performing visual relationship transformation in
a structurally consistent manner.

Our contribution includes both a new VRT task and a novel approach desig-
nated to address the proposed task. To the best of our knowledge, this represents
the first attempt in this direction. To evaluate the recognition accuracy of our
VRT, we conducted extensive objective and subjective experiments and our VRT
obtained encouraging results. Moreover, by adopting our VRT as a plug-in mod-
ule, state-of-the-art methods in visual grounding [2], novel-view synthesis [83],
few-shot NERF [90], and pedestrian intention estimation [61] have achieved con-
siderable qualitative and quantitative performance improvement on Nr3D [2],
Realestate10K [98], DTU [27], and PIE [61] datasets, respectively.
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2 Related Work
In this section, we briefly review prior works related to ours, including visual
relationship detection, equivariant neural networks, and novel view synthesis.

Visual Relationship Detection. The visual relationship detection meth-
ods can be categorized into three types: object-related [17], property-related [23],
and activity-related [88]. In this work, we focus on object-related relationships,
where early approaches involve the recognition of visual phrases [19,39,41]. With
the significant development of deep learning, recent methods demonstrate en-
couraging performance improvements due to their high representation capabil-
ity [7,15,20,29,33,40,41,43–45,49,54,93,94,99]. More recently, video relationship
detection methods [8,38,46,56,69,70,72,73,76,97] have been proposed to capture
temporal dynamics in relationships. However, none of these works has explored
predicting visual relationships in unseen views.

Equivariant Neural Networks. The equivariant neural networks are pro-
posed to preserve the transformation equivariance, such as translation and ro-
tation, of the learned representations from the images [11]. Recently, steerable
CNNs and 3D-steerable CNNs are proposed for simplifying the equvairant convo-
lutional process [12–14, 81, 82]. Meanwhile, gauge-equivariant networks are pro-
posed to enforce the equivariance with local transformations [10]. More recently,
equivariant graph neural networks are designed to process non-grid data [3–5,31],
which preserves the appearance equivariance of the point clouds and 3D volumet-
ric data. However, all existing methods ignore the equivariant message passing
manner on edge processing of the graph data, thus cannot be directly imple-
mented on VRT task.

Novel View Synthesis. Neural rendering methods can be categorized into
four types: point-based [18,25,42,47,58,60,63,66,67,75,79,87,92], mesh-based [30,
48], surface-based [6, 21, 53, 71], and volumetric-based [24, 26, 36, 57, 96]. During
the rendering process, deterministic rendering kernels [100, 101] and global se-
mantic understandings [32, 35, 59, 83] are adopted to improve performance. Re-
cently, neural radiance field (NeRF) methods [50–52,78] have been proposed to
formulate scenes as learned neural networks, enabling novel view synthesis. More
recently, generalizable NeRF [62, 77, 84] methods for complex scenes have been
introduced. However, none of these approaches attempts to utilize cues from
visual relationships in the synthesis process.

3 Method
In this section, we present the main VRT learning scheme. As illustrated in
Fig. 3, our approach consists of three stages. In Stage 1, we initiate the process
by detecting objects in the source view to construct a scene graph. This graph,
coupled with the cross-view transformation, is then input into the VRT mod-
ule for predicting transformed relationships and determining their presentness
in the target view. In Stage 2, we search for matches between the predicted re-
lationships, presentness, and the scene graph constructed accordingly, and their
corresponding ground truth extracted from the target view. Finally, Stage 3 in-
troduces specific loss components: the relationship transformation loss for single
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Fig. 3: The illustration of the proposed approach. The Tst denotes the transformation
matrix from the observed source view to the target view.

⊗
denotes the re-indexing and

alignment operation. Note that, the relationship values and presentness are predicted
by the VRT module, and the structure information is constructed by the predicted
relationship and presentness.

relationship prediction, the presentness loss for predicting relationship visibility,
and the relationship structure loss to preserve essential structural information.

3.1 Stage 1: VRT

In real-world scenarios, the observation of a scene from different views involves
cross-view transformations, encompassing both rotation and translation, thus
the observed relationships among objects in the scene should adhere to the spa-
tial transformation. For example, in Fig. 1(b) and (c), the relationship between
two cars changes from behind to left when observed from the side to the front.
These two relationships are linked through the view transformation and condi-
tioned on the scene. Therefore, we aim to predict the inter-object relationships in
the target view while also keeping track of the changes in these relationships from
the source to the target view. Motivated by the concept of equivariant neural net-
works, which preserves relationship correspondences over view transformations,
an equivariant graph neural network is designed for learning transformation-
equivariance representations of the relationships between objects.

Scene Graph Construction. Given an image from the original or source
view, we initially employ an off-the-shelf object detector [64] to detect N ob-
jects and extract various pieces of information. This includes visual embed-
dings X = {x1, . . . , xN}, positional information in the form of bounding boxes
B = {b1, . . . , bN}, semantic embeddings W = {w1, . . . , wN} (i.e., word vector
representing categories), and union region representations U = {u1,1, . . . , uN,N}.
Subsequently, we construct a scene graph G = (V, E) in the following manner.
The node feature vi ∈ V and the edge (or relationship) feature ei,j ∈ E are
defined as

vi = ϕv(xi ⊕ PE(bi)⊕ wi),

ei,j = ϕe(ui,j ⊕ vi ⊕ vj),
(1)
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where ⊕ denotes the concatenation operation, PE(·) indicates the positional en-
coding operation [22]. ϕv and ϕe denote the equivariant layers [16], which firstly
lifts the the size of the input from N×1 to N×3, and then perform representation
learning with the equivariance-constraint:

ϕ(T ′
g (x)) = Tg(ϕ(x)), (2)

where Tg : X → X is a set of transformations for the abstract group g.
Equivariant Message Passing. After the scene graph is constructed, we

design an Equivariant Message Passing (EMP) module to model the correla-
tions among nodes and relationships while maintaining the equivariance prop-
erty. Starting with the initial node and relationship features v0i and e0i,j from the
previously constructed scene graph, the node message passing at step l + 1 is
formulated as follows:

vl+1
i = vli + σ(Mv

i· +Mv
·i), (3)

Mv
i· =

∑
j∈ηi

αijϕ1(e
l
ij),M

v
·i =

∑
j∈ηi

αjiϕ1(e
l
ji) (4)

αij =
exp(σ(ϕ2[vi ⊕ vj ]))∑

k∈ηi
exp(σ(ϕ2[vi ⊕ vk]))

,

where σ refers to Vector-Neuron ReLU [16] and ϕ1, ϕ2 represent different Vector-
Neuron MLPs (VN-MLPs) [16]. The term Mi· denotes the weighted averaged
messages from the relationships between the i-th object and its neighbor objects
ηi, while the M·i denotes message from neighbors to the i-th object. Additionally,
the formulation for relationship message passing is as follows:

el+1
i,j = eli,j + σ(Me

i· +Me
j·), (5)

Me
i· =

∑
k∈ηi

βik(ϕ3([vk ⊕ ϕ4(bi − bk)])),

βik =
exp(σ(ϕ5[vi ⊕ vk ⊕ ϕ4(bi − bk)]))∑
l∈ηi

exp(σ(ϕ5[vi ⊕ vl ⊕ ϕ4(bi − bl)]))
,

where the Me
i· and Me

j· denote the aggregated message from the i-th and j-
th objects to the relationship ei,j . βik measures the contribution of message
Mi,k to the relationship ei,j . ϕ3 and ϕ5 denote VN-MLPs, and ϕ4 denots a VN-
MLP with lifting operation [16]. The process of equivariant relationship message
passing integrates relative position information into the relationship embedding
while preserving equivariance, as the relative position is inherently equivariant
to transformations such as rotation and translation.

Relationship Transformation. After the equivariant message passing, we
predict the inter-object relationships in the target view. Let Es = {ei,j} denote
the relationship representations from the source view Vs, for any target view Vt,
we then predict its relationship representations Êt = {êi,j} as follows:

Êt = ϕ(Tst · Es)⊤, (6)
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where ϕ represents an MLP layer, and Tst indicates the transformation matrix
from the source view Vs to the target view Vt. In addition to the predicted
relationship representations Êt, we also predict their presentness as follows:

p̂i,j = sigmoid
(
MLP

([
vli, v

l
j , e

l
i,j

]))
, (7)

where l refers to the last message passing step, p̂i,j indicates the probability of
the relationship between node vi and vj being present in the target view. During
inference, the presentness is determined as 1 {p̂i,j ≥ γ}, where γ is a threshold.
In other words, it signifies that the relationship between the i-th and the j-th
object is visible in the target view.

3.2 Stage 2: Correspondence Search

As described above, the VRT predicts the relationships and their corresponding
presentness in the target view Vt based on the source view Vs and the inter-view
transformation matrix Tst between the source and target views. To facilitate the
training of VRT, it is necessary to align the predicted scene graph Ĝt with the
ground truth scene graph Gt in the target view Vt. To accomplish this alignment,
we initially transform all object bounding boxes from the source view Vs to the
target view Vt using the transformation matrix Tst. For each pixel (x, y) within a
bounding box, we determine the transformed pixel coordinates (x̂, ŷ) as follows:

[x̂, ŷ, 1]⊤ = K · Tst ·D(x, y) ·K−1[x, y, 1]⊤, (8)

where D(x, y) denotes the depth at pixel (x, y), obtained using a pre-trained
depth estimation algorithm [65], and K represents the camera intrinsic matrix
(i.e., both the source and target views use the same camera). With this setup,
we can evaluate the overlap between each transformed bounding box and all
bounding boxes in the target view. Specifically, if the transformed bounding box
b̂i has the maximum overlap with a target bounding box bj among all bounding
boxes in the target view, and b̂i and bj share the same object category label,
we then identify a pair of nodes matched between the transformed scene graph
and the target scene graph. For nodes and edges transformed from the source
view that are invisible in the target view (i.e., fail to match with any others),
we assign their ground truth presentness labels as 0, otherwise as 1.

3.3 Stage 3: Optimization

Through the identification of correspondences between the scene graph trans-
formed from the source view and the ground truth scene graph in the target
view, we train the proposed VRT model by aligning specific components of the
two scene graphs using three different loss functions, as outlined below.

For every pair of the predicted (or transformed) relationship êi,j and its cor-
responding ground truth relationship e∗i,j , we define the relationship trans-
formation loss as:

Lt =
1

Nm

∑
i,j

∥êi,j − e∗i,j∥22, (9)
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where Nm denotes the number of matched relationship pairs, e∗i,j comes from the
pre-trained Graph-RCNN [86] by taking the target view as input. For the pre-
diction of relationship presentness p̂i,j , we define the relationship presentness
loss as:

Lp =
1

Np

∑
i,j

∥p̂i,j − pi,j∥22, (10)

where Np represents the total number of edges (or relationships) in the scene
graph constructed from the source view, and pi,j indicates the ground truth
presentness label derived from the target view. In addition to relationship pre-
diction, it is crucial to appropriately preserve the topology structure constructed
by them. Inspired by [87], we characterize the topology structure of each edge ei,j
through a set of its neighboring edges N (ei,j) that share one of the same nodes.
Specifically, the information about the neighbor structure of edge ei,j is defined
as a normalized distribution vector NSi,j ∈ R|N (ei,j)|. For each em,n ∈ N (ei,j),
its corresponding element in NSi,j can be evaluated as:

NSi,j =
exp {||ei,j − em,n||22}∑

ek,l∈N (ei,j)
exp {||ei,j − ek,l||22}

. (11)

With the above definition of the neighbor structure, we then define the rela-
tionship structure loss as follows:

Ls =
1

Nr

∑
(i,j)

DKL(N̂Si,j ||NSi,j), (12)

where DKL denotes the Kullback-Leibler divergence, and N̂Si,j and NSi,j represent
the predicted and ground truth neighbor structure information, respectively.
Finally, the overall loss function for training the proposed VRT is defined as:

L = λ1Lt + λ2Lp + λ3Ls, (13)

where λ1, λ2, and λ3 denote the weights used to balance different components.

4 Experiments
In this section, we present our experimental setups and results. Since no ex-
isting work performs exactly the same task as we do here, we mainly focus
on showcasing the effectiveness of the proposed approach in two main aspects.
Firstly, we compare the relationship prediction performance of our VRT ap-
proach with scene graph generation methods relying on visible target views.
Additionally, through the adoption of VRT, we demonstrate its enhancements
in various related tasks, such as novel view synthesis (leveraging Synsin [83]
and PixelNeRF [91]), pedestrian intention prediction (based on [61]), and visual
grounding (based on ReferIt3D [2]). It’s important to note that our objective
is to showcase the potential of learning visual relationship transformation to
enhance multi-view understanding, rather than attempting to outperform all
state-of-the-art methods.
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4.1 Datasets and Implementation Details

We present the datasets used in our experiments as follows: For relationship
prediction experiments, we employ the Realestate10K dataset [98] and assess
generalizability using the VidVRD dataset [28]. Novel view synthesis experi-
ments utilize both the Realestate10K dataset [98] and the DTU dataset [1].
Pedestrian intention estimation and trajectory prediction experiments rely on
the PIE dataset [61]. Visual grounding experiments involve the Nr3D dataset [2].
Below, we provide a brief introduction to each dataset.

Realestate10K [98]. It contains 80K video clips from both indoor and
outdoor scenes, comprising more than 10 million frames annotated with camera
intrinsic parameters and camera poses obtained from SfM. Following [83], we
use 57K, 14K, and 7K scenes for training, validation, and testing, respectively.
Notably, all scenes in the test set are unseen. We sample views by first selecting
an original view and then choosing the target view with a maximum of 70 frames
apart. Subsequently, we select frame pairs with an angle change of ≥ 5◦ and a
position change of ≥ 0.15. Finally, we obtained 16K, 4K, and 2K frame pairs
for training, validation, and testing, respectively. In the novel view synthesis
experiment, all selections are the same except for the inter-frame distance. The
target views are chosen with a maximum of 30 frames apart from the original
view, and we report the results on 2K samples from [83].

VidVRD [28]. It contains 1000 videos with 4835 annotated relationship
instances spanning 132 categories. The training and validation sections consist
of 800 and 200 videos, respectively. Due to the limited number of relationship
annotations in VidVRD, we select a total of 500 image pairs from the valida-
tion videos to test the generalizability of VRT. The selected image pairs adhere
to the same criteria for angle and position changes as in Realestate10K. The
transformation matrices are generated using COLMAP [68].

DTU MVS [1].]. For each object, it contains 49 or 65 images, with camera
information, baseline, and structured light ground-truth. The presented objects
pose a challenge as their appearance changes in different viewpoints due to spec-
ularities. We adopt this dataset for novel view synthesis, following the training
settings in [91].

PIE [61]. It consists of over 6 hours of video footage capturing pedestrians
in various types of crosswalks, recorded by an onboard camera. It includes both
ground-truth pedestrian intentions and trajectories, along with bounding boxes
for traffic objects, pedestrian attributes, and camera parameters. There are 1,842
pedestrian samples and 293K annotated frames. Following [61], we use 150K,
30K, and 113K frames for train, validation, and test sets, respectively.

Nr3D [2]. It annotates 707 indoor 3D scenes with 45,503 human utterances.
Follow the setting of ReferIt3D [2], we use 30K, 2K, and 8K image-query pairs for
training, validation, and testing, respectively. Furthermore, during the testing,
we report the results on both view-dependent and view-independent image-query
pairs.

Implementation Details. The proposed approach is implemented with Py-
torch on four NVIDIA V100 GPUs. In the training process, the batch size is set
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to 16. Adam optimizer is adopted with a fixed learning rate of 0.0001. The loss
weights λ1, λ2, and λ3 are set to be 0.5, 0.5, and 0.1. During inference, the
threshold γ is set to be 0.5.

4.2 Visual Relationship Transformation

SGCls PredCls
Method Input View R@50 R@100 R@50 R@100
VRT Original 30.3 34.7 33.6 37.8
Synsin [83]+GRCNN [86] Original 23.7 24.1 25.3 27.7
Synsin [83]+TDE [74] Original 23.8 24.3 25.6 27.8
Synsin [83]+BGNN [37] Original 24.0 24.4 25.2 28.0
GRCNN [86] Target 31.0 34.9 34.0 38.2

Table 1: Results evaluated with Recall@50 and Recall@100 on tasks: relationship
classification (PredCls) and scene graph classification (SGCls).

We conduct both objective and subjective evaluations on hand-labeled Realestate10K
[98] datasets. Then, we conduct the generalizability test on the VidVRD dataset.
Specifically, we classify transformed relationships using a pre-trained classifier
[86]. Only the relationships predicted to be visible in the target view are consid-
ered for evaluation.

Objective Evaluation. Following the relationship categories from the Vi-
sual Genome dataset, on which the VRD is pre-trained, we manually label 500
image pairs from the test set of Realestate10K, encompassing a total of 10K
relationships across 51 categories. These hand-labeled images are used only for
testing purposes. Subsequently, we conduct a comparative analysis with 1) the
VRD test on the synthesized view initially takes the original view image as input,
synthesizes the novel view using Synsin [83], and then detects visual relation-
ships on the synthesized view; 2) Graph-RCNN [86], TDE [74] and BGNN [37]
tests are implemented on the target view, which is unavailable for our VRT
model; and 3) Our VRT predicts the relationship in the target view based on
the original view image. In Table 1, when provided with the same original views
as input, the VRT outperforms the VRD on the synthesized view. Furthermore,
despite making predictions without the target view, our VRT achieves results
comparable to Graph-RCNN [86]. The results also reveal that despite a better
VRD model such as TDE [74] being given, the performance on synthesized novel
views remains constrained. This underscores that the quality of the synthesized
views is a significant bottleneck. Therefore, it proves that directly predicting
transformed relationships from the original view is more effective and efficient.

Generalizability Evaluation. We further validate the generalizability of
the VRT on VidVRD [28] dataset. Since the relationship categories from Vid-
VRD are different from the pre-trained Graph-RCNN [86], we impose a rela-
tionship mapping from the visual-genome [34] annotations to the VidVRD [28]
annotations, details of which can be found in supplementary materials. The
VRDFormer [97] is tested with the target view as input, while our VRT only
takes the original view as input. The results in Tab.2 show the VRT outperforms
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the VRDFormer [97] which demonstrates the VRT successfully learns multi-view
understanding when only the original view is given.

4.3 Ablation Studies

Transformation Sensitivity. Given that the proposed approach is transformation-
related, we conduct experiments here to test the sensitivity of our VRT to trans-
formations. Specifically, we split the testing frame pairs into three sets: 1) T1

with angles ≤ 10◦ & translations ≤ 0.20; 2) T2 with angles ≤ 15◦ & translations
≤ 0.25; and 3) T3 with angles > 15◦ or translations > 0.25. In Tab. 3, we see
that VRT performs well at different transformation levels, demonstrating that
VRT is transformation-insensitive.

Method Input View R@50 R@100
VRDFormer [97] Target 18.59 22.37

VRT Original 21.35 25.41
Table 2: Results compared with VRD-
Former [97].

Recall@50 Recall@100
T1 31.5 35.8
T2 30.6 34.2
T3 29.8 33.6

Table 3: Results of VRT with dif-
ferent transformations.

Recall@50 Recall@100
T in nodes 29.5 32.4
T in edges 29.4 32.2
T in attention 29.2 31.5
T in MP 30.3 34.7

Table 4: Results of involving the transfor-
mation information in different stages of in-
formation aggregation.

Recall@50 Recall@100
VRT 30.3 34.7
VRT w label 22.2 23.6
VRT w/o Lp 27.8 28.7
VRT w/o Ls 25.5 27.0
Table 5: Results of ablation study.

Transformation Awareness. During the information aggregation of VRT,
the equivariant GNN can involve the transformation information in different
stages. In this experiment, we conduct experiments on the hand labeling data
to evaluate the performance of involving a transformation in only the nodes
representation, only the edge representation, only the attention calculation, and
the whole message-passing process. As shown in Tab. 4, the message-passing
one performs the best. This is because the transformation equivariance should
be preserved by the node representations, edge representations, and attention,
which can only be effectively captured by the message-passing process.

Ablation Study. Here, we show the effectiveness of different loss terms.
Specifically, in the first experiment, we replace the predicted and ground-truth
representation with one-hot coding, where the predicted one-hot is obtained from
argmax and the ground-truth one comes from the pre-trained Graph-RCNN [86].
Then, we conduct experiments without either the relationship presentness loss
or the relationship structure loss. As shown in Tab. 5, after replacing the repre-
sentations with one-hot labels, the performance decreases a lot. This is because,
the same visual content can be annotated as different relationships, where the
one-hot label breaks the similarity between different relationships. Furthermore,
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couch left to table couch behind table couch left to table couch behind table

bed behind light bed behind light bed behind light bed behind light

table behind chair table right to chair table behind chair table right to chair

Source View Target View Synsin Synsin+ Target View Synsin Synsin+Source View

Fig. 4: Visual results from Synsin [83] on Realestate10K [98]. The first two columns
show the images from the original view and the target view, the third one shows the
synthesized images from Synsin, and the fourth one shows the images from Synsin+
that adopt VRT as a plug-in module. The right four columns present that the synthe-
sized images get better quality when relationships are predicted correctly. The dashed
boxes denote invisible relationships in the target views.

after removing the relationship structure loss, the performance decreases dra-
matically, which shows the importance of preserving the structural information.

4.4 Novel View Synthesis

We evaluate the effectiveness of VRT on novel view synthesis tasks. Instead
of hard constraining the view synthesis by providing the one-hot relationship
prediction, we utilize the relationship features from the pre-trained VRT model
in the process of synthesizing, which is achieved by adopting the VRT model as a
plug-in module. During which, the relationship features are spatially aligned into
the image space by relationship spatialization operation in [85]. Specifically, two
state-of-the-art novel view synthesis methods, Synsin [83] and PixelNeRF [90],
are used for evaluation.

PSNR ↑ SSIM [80]↑ Perc Sim ↓
Synsin+ 22.78 0.810 1.00
Synsin 22.31 0.740 1.18

Table 6: Results on Realestate10K [98] dataset. Synsin+ denotes enhanced with VRT

Synsin [83]. We evaluate the effectiveness of VRT on Synsin by adopting
VRT as a plug-in module to provide relationship features (denoted as Synsin+),
concatenating them with the global image features extracted by the sub-module
of Synsin. Following [83], the model is retrained on Realestate10K [98]. As shown
in Fig. 4, VRT helps preserve the correct visual relationships in view synthesis.
The quantitative results are shown in Tab. 6, where VRT brings considerable
performance improvement on all metrics.

Upon observation, we note that Synsin may display insensitivity to large
transformations, potentially resulting in structural inconsistencies. For exam-
ple, in the seventh image of the third row in Fig. 4, given large the inter-view
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Source View Target View PixelNeRF PixelNeRF+

Bottle left bag Bottle left bag

Fig. 5: Visual results from PixelNeRF [90] on DTU MVS [1].
transformation, Synsin generates the inadequately transformed image, while the
structural consistency is enhanced by VRT as shown in the third image, pos-
sibly because composing predicted relationships helps preserve the structural
information during transformation, thus enhancing the consistency between the
synthesized image and the target one. In Tab. 7, we follow the same setting
in Sec. 4.3 to evaluate VRT on preserving structural consistency at different
transformation scales, where Synsin+ becomes more robust to transformations.

PixelNeRF [90]. To evaluate VRT on PixelNeRF, we adopt it as a plug-
in module to provide relationship features, which are then concatenated with
the global image features extracted by the sub-module of PixelNeRF. Following
the training setting in [90], the model is retrained on DTU MVS [1] dataset.
The visual results are shown in Fig. 5, where three views are used for train-
ing PixelNeRF and we adopt one of them in VRT to predict the transformed
relationships. As shown in Tab. 6, the model with VRT achieves considerable
performance improvement on all metrics among all training settings.

PSNR SSIM [80] Perc Sim

T1
Synsin+ 19.98 0.712 1.301
Synsin 19.83 0.678 1.431

T2
Synsin+ 19.90 0.685 1.210
Synsin 18.34 0.600 1.285

T3
Synsin+ 19.82 0.732 1.022
Synsin 17.86 0.584 1.130

Table 7: Quantitative results on different
transformation scales.

PSNR SSIM [80] Perc Sim
PixelNeRF(1 v)+ 15.91 0.618 0.465
PixelNeRF(1 v) 15.55 0.537 0.535
PixelNeRF(3 v)+ 20.28 0.713 0.298
PixelNeRF(3 v) 19.333 0.695 0.387

Table 8: Results on DTU MVS [1]. 1v and
3v denote the number of available views in
the training process.

Acc ↑ F1 ↑ MSE ↓ C-MSE ↓
PIE+ 0.8960 0.9446 551.29 513.23
PIE [61] 0.7905 0.8747 559.377 520.53

Table 9: Results on PIE [61].

Overall Videw-dep View-indep
ReferIt3D [2] 0.356 0.325 0.371
ReferIt3D+ 0.455 0.467 0.451

Table 10: Results on Nr3d [2] datasets.

4.5 Pedestrian Intention Estimation

We evaluate the effectiveness of VRT in estimating pedestrian crosswalk inten-
tion by adopting it as a plug-in module for [61]. Specifically, instead of utiliz-
ing car-view relationships, our VRT provides the feature of relationships in the
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Query: Looking toward the wall 

with 2 printers, the right printer

Query: Facing the painting, 

the table left to the couch

Source View ReferIt3D ReferIt3D+ Ground-truth

Fig. 6: Visual results from RerferIt3D [2] and RerferIt3D+.

pedestrian view, which is concatenated with the global image features extracted
by the CNN module, and then fed into the LSTM module for intention estima-
tion. Since it also benefits the prediction of pedestrian trajectory in a similar
way, we thus conduct experiments on both pedestrian intention estimation and
trajectory prediction. As shown in Tab. 9, both two tasks gain significant perfor-
mance improvements. This is because humans perform crosswalks and trajectory
planning according to the inter-object relationships in their view, rather than
the view of the car.

4.6 Visual Grounding

We evaluate VRT for visual grounding by integrating it with ReferIt3D [2]. As
shown in Fig. 6, RerferIt3D+ enhanced by VRT can locate more accurately
than ReferIt3D [2]. Furthermore, we train and test ReferIt3D [2] enhanced by
VRT, and Tab. 10 shows the improvements on location accuracy, where the im-
provement on view-dependent queries is larger than the view-independent. This
demonstrates that VRT endows ReferIt3D [2] with multi-view understanding.

5 Conclusion

In this paper, we introduced visual relationship transformation (VRT), a novel
task aiming to predict the relationships between objects in unseen views, which
has never been explored before. Our proposed approach involves training equiv-
ariant GNNs to learn VRT, and predict relationships and their presentness in
unseen views. To ensure proper prediction and structural consistency of visi-
ble relationships, we introduce a relationship transformation loss, a relationship
presentness loss, and a relationship structure loss. Subjective and objective ex-
periments showcase the effectiveness of our approach. Furthermore, experiments
conducted across a variety of tasks, including novel view synthesis, pedestrian
intention estimation, and visual grounding, demonstrate that VRT indeed pro-
vides supplementary cues for tasks related to novel views.
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