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Abstract
Humans are the best example of agents that can
learn a variety of skills incrementally over the
course of their lives, and imbuing machines with
this skill is the goal of lifelong machine learn-
ing. Ideally, lifelong learning should achieve non-
forgetting, forward and backward transfer, avoid
confusion,support few-shot learning, and so on.
In previous approaches, the focus has been given
to subsets of these properties, often by fitting to-
gether an array of separate mechanisms. In this
work, we propose a simple yet powerful unified
framework that supports almost all of these prop-
erties through one central consolidation mecha-
nism. We then describe a particular instance of
this framework designed to support non-forgetting
and forward transfer. This novel approach works
by efficiently locating sparse neural sub-networks
and controlling their consolidation during lifelong
learning.

1. Introduction
The past decade has seen significant growth in the capabili-
ties of artificial intelligence. Deep learning in particular has
achieved great successes in medical image recognition and
diagnostics (Litjens et al., 2017; Shen et al., 2017), tasks
on natural language processing (Radford et al., 2019; De-
vlin et al., 2019), difficult games (Silver et al., 2017), and
even farming (Kamilaris & Prenafeta-Boldú, 2018). How-
ever, deep learning models almost always need thousands
or millions of training samples to perform well. This is in a
sharp contrast with human learning, which normally learns
a new concept with a small number of samples. Two other
major weaknesses in current deep learning when compared
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to human learning, as conveyed in Figure 1, include diffi-
culty in learning many tasks sequentially without forgetting
previous ones and leveraging previous learned knowledge
to better acquire new knowledge.
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Figure 1. Illustrations of two key lifelong learning properties
of non-forgetting and forward transfer. Humans are gen-
erally able to learn new tasks without forgetting old ones
and use old tasks to better learn new ones. However, ma-
chine learning is susceptible to forgetting previous tasks and
being unable to transfer knowledge to new tasks. Even
more learning properties are discussed in Section 2.2. Im-
age of brain sourced from https://www.injurymap.
com/free-human-anatomy-illustrations under CC
license.

Several lines of research in supervised learning exist to
overcome these weaknesses. Multi-task learning (Caruana,
1997) considers how to learn multiple concepts at the same
time such that they help each other to be learned better.
The related field of transfer learning (Pan & Yang, 2009)
assumes that some concepts have been previously learned
and we would like to transfer their knowledge to assist
learning new concepts. Few-shot learning (Fei-Fei et al.,
2006) aims to learn tasks with a small number of labeled
data. Lifelong learning (Thrun, 1998; Thrun., 1995) (LLL –
also known as continual (Parisi et al., 2019) or sequential
learning (McCloskey & Cohen, 1989)) considers how to
learn and transfer skills across long sequences of tasks.

However, most previous approaches can only demonstrate
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subsets of these human-like properties, often by different
complex mechanisms. For example, existing lifelong learn-
ing (LLL) techniques tend to use one or more of three types
of mechanisms, each of which comes with their own draw-
backs and hurdles (De Lange et al., 2019). These mech-
anisms are based on replay, regularization, and dynamic
architecture respectively. See Section 2.3 for overviews of
these mechanisms. We wish to find a learning framework
with one central mechanism that can seamlessly implement
many desirable properties.

In this paper, we propose a unified approach that brings
lifelong machine learning closer to human learning by sup-
porting many desirable properties. This unified framework,
described in Section 3, places weight consolidation as the
central mechanism to achieve many lifelong learning prop-
erties. A more extensive description of this framework is
provided in (Ling & Bohn, 2019). Starting from this unified
framework, we then describe a specific novel approach to
LLL. This approach works by identifying the sub-networks
critical to performance on each learned class (inspired by
the lottery ticket hypothesis (Frankle & Carbin, 2018)) and
intelligently using this information to inform weight consol-
idation policies.

Our primary contributions are:

• We describe a conceptual unified LLL framework
which is designed to display many desirable learn-
ing properties with a single central mechanism (see
Section 3).

• We describe a particular lifelong learning approach
which works by identifying sub-networks critical to in-
dividual classes in order to intelligently control weight
consolidation (see Section 4).

• We demonstrate that by changing a small number
of hyperparameters, our approach can achieve non-
forgetting and support forward transfer (see Section 5).

2. Background
In this section we will first describe our lifelong learning
(LLL) setting. Second, we will discuss a broad set of impor-
tant LLL properties. Third, we will provide an overview of
common mechanisms employed by LLL approaches.

2.1. Lifelong Learning Setting

In our lifelong setting, we consider the task-incremental clas-
sification tasks, where batches of data for new tasks arrive
sequentially. That is, a sequence of (T1, D1), (T2, D2), ...
are given, where Di is the labeled training data of task Ti
(from the space of tasks T ), and an individual task con-
sists of a set of classes to be learned. Classification models

for (T1, T2, ..., (Tk must be functional before (Tk+1, Dk+1)
arrives. This models the incremental process of human
lifelong learning.

This LLL setting can be easily extended to other learning
settings such as multi-task learning where all Ti and Di are
given at the same time. It can also be extended to meta-
learning where the knowledge learned for Ti only provides
a starting point to learn Tj more effectively. Additionally, it
can be extended to curriculum learning where Ti are able
to be ordered from “simple” to “complex” based on a given
difficulty metric.

2.2. Lifelong Learning Properties

Here we discuss at a high level several properties a LLL
approach would ideally exhibit. In this particular work, we
design an approach with the first three properties in mind.

Continual learning and testing: Before starting to learn
a new task Tj , a LLL approach should be able to perform
well on all Ti<j . While learning the new task Tj , LLL
should only use data Dj . This is a startling contrast with
the standard multi-task (batch) learning where data of all
tasks are used for training at the same time. This ensures
that the model will be consistently useful when continually
learning tasks with high computational and data efficiency.
See Section 3.2 for details.

Non-forgetting: This is the ability to avoid catastrophic
forgetting (McCloskey & Cohen, 1989), where learning Tj
causes a dramatic loss in performance on one or more Ti<j .
Ideally, learning Tj using only the data of Tj would not af-
fect Ti<j . Due to the tendency towards catastrophic forget-
ting, non-lifelong learning approaches would require retrain-
ing on data for all tasks together to avoid forgetting. This
may reduce computational and data efficiency. A property
opposite to non-forgetting is graceful forgetting (Aljundi
et al., 2018), as often seen in humans. Learning new tasks
may require additional model capacity, and when this is
not possible, the model can perform graceful forgetting of
unimportant tasks to free up capacity for new tasks. See
Section 3.3 for details.

Forward transfer: This is the ability to learn new tasks,
T≥i, easier and better following earlier learned tasks T<i,
also known as knowledge transfer (Pan & Yang, 2009). See
Section 3.4 for details.

Few-shot learning: Achieving sufficient forward transfer
opens the door to few-shot learning of later concepts.

Backward transfer: This is knowledge transfer from T≥i

to T<i – the opposite direction as forward transfer. When
learning new tasks Tj they may in turn help to improve
the performance of Ti<j . This is like an “overall review”
before a final exam after materials of all chapters have been
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taught and learned. Later materials can often help better
understand earlier materials.

Adapting to concept update/drift: This is the ability to
continually perform well at a given task Ti by utilizing addi-
tional training data for Ti if it arrives at a later time (concept
updating), or when new data for the changing environment
arrives (concept drift). This process should only use the data
of Ti to update the model while not forgetting other learned
tasks.

Non-confusion: Machine learning algorithms often find the
minimal set of discriminating features necessary for classifi-
cation. Thus, when more tasks emerge for learning in our
LLL setting, earlier learned features may not be sufficient,
leading to confusion between classes. For example, after
learning to distinguish between images of “1” and “0” as T1
and T2, the learned model may identify straight stroke for
class “1” and curved stroke for “0”. But after learning “I”
and “O” as T10 and T11 for example without using data for
“0” and “1”, the model may confuse between T1 and T10
(“1” and “I”) and similarly between T2 and T11 (“0” and
“O”) when the model is tested on all tasks learned so far. In
human lifelong learning, this type of confusion may happen
too. For example, when meeting new people, if the first two
people are visually distinct (such as very tall vs. very short)
we can rely on this feature to tell them apart. However,
if more people arrive and they are similar to the first two
people, we may initially confuse them and must find finer
details to reduce confusion, or to uniquely distinguish them.
In the extreme case where we encounter identical twins, sig-
nificant effort may be required to learn the necessary details
(by re-using their facial image data).

Human-like learning: As a new type of evaluation criteria
for LLL, we can consider how well an approach is predic-
tive of human learning behaviour. If a LLL approach or
framework is also able to provide explanatory power and
match peculiarities of human learning (such as confusion
or knowledge transfer in certain scenarios), it would have
value in fields outside of machine learning.

2.3. Overview of Different LLL Approaches

The mechanisms used to perform LLL tend to fall into
three categories and often only demonstrate subsets of LLL
properties as previously discussed.

The first mechanism, replay, commonly works by storing
previous task data and training on it alongside new task
data (Rebuffi et al., 2017; Isele & Cosgun, 2018; Chaudhry
et al., 2019; Wu et al., 2019). As a result of its data and
computation inefficiency, we consider it generally not to be
very a human-like learning mechanism.

The second mechanism is regularization. This mechanism
works by restricting weight changes (making them less “flex-

ible”) via a loss function so that learning new tasks does not
significantly affect previous task performance (Kirkpatrick
et al., 2016; Zenke et al., 2017b; Chaudhry et al., 2018; Rit-
ter et al., 2018; Li & Hoiem, 2017; Zhang et al., 2020). We
use this mechanism as the basis for our unified framework.
However, instead of simply controlling weight flexibility
to retain previous task performance, we leverage it to also
encourage forward transfer.

The third mechanism, dynamic architecture, commonly
works by adding new weights for each task and only al-
lowing those to be tuned (Rusu et al., 2016; Yoon et al.,
2018; Xu & Zhu, 2018). This is often done without requir-
ing previous task data and completely reduces forgetting
while also allowing previous task knowledge to speed up
learning of the new task. While this mechanism is necessary
for LLL of an arbitrarily long sequence of tasks (any fixed-
size network will eventually reach maximum capacity), it
should be used sparingly to avoid unnecessary computa-
tional costs. Our particular approach, described in Section 4,
can control the rate at which the representational capacity of
the neural network is used up, so that longer task sequences
may be accommodated.

3. A Unified Framework for LLL
In this section we describe how our unified framework
works. We start by introducing the central mechanism and
in the rest of the section, discuss how to use the central
mechanism to support the multiple desirable LLL properties
described in Section 2.2. For a more extensive treatment on
achieving these properties with this unified framework, see
(Ling & Bohn, 2019). In the pseudo-codes provided, the
lines where the central mechanism is applied is marked by
a  . In Section 4 we discuss a particular realization of this
framework to experiment on.

3.1. A Central Consolidation Mechanism

We propose a lifelong learning framework which situates a
consolidation policy as the central mechanism. The consoli-
dation policy works through a single dynamic hyperparame-
ter, bbb, which separately controls the flexibility of all network
weights. In other words, each weight in the network can
have its own consolidation value, representing how easy
(or hard) it is to modify the weight. Depending on the spe-
cific bbb-setting policy used during training, several desirable
learning properties can be achieved. While the individual
weights of the network are learned via back-propagation,
bbb is set by a consolidation policy (which depends on the
specific approach).

The central consolidation mechanism ultimately works
through dynamically modifying the loss function. To de-
scribe more precisely, we will deviate a little from the no-
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tation used in (Kirkpatrick et al., 2016), which introduced
the Elastic Weight Consolidation LLL approach. If each
network weight, θi, is associated with a consolidation value
of bbbi ≥ 0, the loss for the new task by itself, Lt, is combined
with weight consolidation as follows:

L(θ) = Lt(θ) +
∑
i

bbbi(θ
t
i − θ

target
i )2 (1)

Here, θtargeti is the target value for a weight to be changed
to. This can be either its value before training of the new
task, or zero, in the case where we explicitly want to prevent
certain weights from being used. θti is the weight value be-
ing updated during training on task t. The loss now had the
following behaviour: a large bbbi value indicates that changing
weight θi away from θtargeti is strongly penalized during
training. When a set of weights have large corresponding bbb
values, we will often refer to them as “frozen”. In contrast,
value of bbbi = 0 indicates that the weight is free to change.
We refer to these weights as “unfrozen”. If bbbi is arbitrarily
large, we can consider θi to be masked during backpropa-
gation and completely prevented from changing to improve
efficiency.

3.2. Continual Learning of New Classification Tasks

In both lifelong and human learning, we desire to learn
new tasks after learning previous tasks. In humans, this is
enabled by the ability to continually grow new connections
between neurons and remove old connections. When this
ability is compromised, so is our ability to learn new things.
Similarly, in our conceptual framework we consider learning
new tasks with the help of network expansion and pruning.

The pseudo-code in Algorithm 1 describes how to learn
a new task, Tk, in a deep neural network in our concep-
tual framework after previous tasks T1, ...Tk−1 have been
learned. The role of the consolidation policy in this algo-
rithm (and all others in this paper), as marked by  , is to
ensure that newly added weights have the proper flexibility
and that previous task weights will be inflexible, to prevent
forgetting (Section 3.3).

This is a very general, high-level framework, and in subse-
quent sections, several of the steps in Algorithm 1 will be
explained and expanded upon.

3.3. Non-Forgetting

Maintaining performance on previous classification tasks
while learning new concepts is the primary difficulty lifelong
learning approaches aim to combat. In our framework, we
can design consolidation policies to make sure previous
tasks will not be forgotten while the new task is learned with
the data for the new task only. An intuitive way to prevent

Algorithm 1 Continual Learning of New Tasks ( indicates
consolidation policy)
// Given that tasks T1, ..., Tk−1 have been

learned
Recruit free units for Tk // this can be all

available units, or determined
by the task difficulty and
similarity with previous tasks. See
Section 3.4

 Initialize weights from earlier units to newly recruited
units // see green links in Fig. 2 and
relating to forward transfer, see
Section 3.4

 Initialize weights for the new units // see blue
links in Fig. 2

 Set consolidation values for non-forgetting of previous
tasks // see red links in Fig. 2. For
non-forgetting, see Section 3.3

Train the new task Tk to minimize Eq. 1 // only on
the data of new task Tk

 Optionally prune the network for Tk // prune
to free units for future tasks and
graceful forgetting).

forgetting is by using a larger bbb value for weights which
most influence the loss of a trained model (Kirkpatrick et al.,
2016).

Our framework is inspired by the influential Elastic Weight
Consolidation (EWC) (Kirkpatrick et al., 2016), which es-
sentially uses the second derivative of the loss with respect
to each weight as the weight consolidation value. Intuitively,
well-learned previous classification tasks usually have a
sharp local minimum (compared with a randomly-initialized
network for the new task), thus, have relatively large sec-
ond derivatives and bbb values. However, in our framework,
bbb can be set to any large values based on the policy (to be
designed), which controls how much non-forgetting should
occur, based on desired applications. If bbb is set to infinitely
large, then forgetting would not happen at all, and this is
equivalent to training a separate new network for the new
classification task.

Pseudo-code reflecting how a consolidation policy can sim-
ply be used in our framework is given in Algorithm 2. The
role of the consolidation policy here, similar to in Algo-
rithm 1, is to prevent weights for previous tasks from being
changed, but allowing the new task weights to change.

3.4. Forward Transfer

While Section 3.3 ensures previous tasks will not be for-
gotten during learning the new task, the previous tasks do
not “help” learning the new task, a concept prominent in
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Train task 1

previous task weights
(Generally with large consolidation 
values in b for all weights)
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Figure 2. Network expansion and consolidation in our LLL frame-
work. In step (a), task 1 is being trained. In step (b) task 2 is
being learned without forgetting of task 1. In (c), task 3 is learned
without forgetting of the previous tasks. Note that links represent
the weights between groups of nodes and missing links indicate
disconnected nodes (weights frozen with value of zero).

Algorithm 2 Non-forgetting
// We need to learn a new task Tk by

using data for only Tk, without
forgetting T1...Tk−1

 Unfreeze only units for Tk // blue and green
links in Fig. 2 with bbb set to small
values

 Freeze all weights for tasks {T1...Tk−1} // red
links in Fig. 2, with bbb set to large
values

Train the new task Tk to minimize Eq. 1

multi-task and transfer learning (Pan & Yang, 2009; Zhang
& Yang, 2017), and appears in LLL as “forward transfer”.
However, the question of how to utilize the previous task
skills to accelerate new learning is a difficult and ongoing
research question. In this conceptual framework discussion,
we refer to the function estimating how much one task can
be expected to help learn another as simply “similarity”,
sim : T × T −→ [−1, 1]. This function is not necessarily
commutative (i.e. sim(Ti, Tj) 6≡ sim(Tj , Ti)

1). If a new
task is very similar (or identical in the extreme case) ac-
cording to some metric such as visual similarity, (sim ≈ 1)
then the new task can be learned with no or little training
data (few-shot learning). In other cases, previous tasks may
actually impair the new task learning (sim < 0).

As summarized in Algorithm 3, positive forward transfer
in our framework may be achieved through initialization
of the weights for current task based on its similarity with
previous tasks. For example, when initializing the output-
layer weights for a new task, if the new task Tk is identical
to a previous task Tj , then we can initialize the weights of

1For example, consider the case where one task is actually a
subset of another. Here, the more general task will be more helpful
for the smaller task.

Tk to reflect the values of those for Tj , requiring no or few
new units for Tk. This idea is conceptually similar to that
used by GO-MTL (Kumar & Daume III, 2012) and ELLA
(Ruvolo & Eaton, 2013), where knowledge is selectively
shared between related tasks. The role of the consolidation
policy here, is to further allow positive transference and limit
negative transference by controlling flexibility of weights
between tasks (green links in Fig. 2).

Algorithm 3 Forward Transfer
// Assume T1, ..., Tk−1 have been learned,

and we need to transfer their
knowledge while learning the new
task Tk

s = (sim(T1, Tk), ..., sim(Tk−1, Tk))
 Initialize weights for Tk based on s // as weight

initialization, see Fig. 3
 Set values of bbb for Tk’s links based on s Train the new

task to minimize Eq. 1

New task is identical 
to first task

(a) (b)

1 2

New task is similar 
to first task

1 2

(c)

New task is very 
different from first task

1 2

Figure 3. Weight initialization for different forward transfer cases.
Green weights indicate the the weights are initialized to reflect
those of the red weights with large values in bbb. Blue weights are
randomly initialized and have small values in bbb. The width of
the hidden layers reflect the relative number of nodes. In (a) is a
special case where T2 is identical to T1 so no free units are needed,
and weights can be “copied”. In (b) is a case where T2 is similar
to T1 in terms of training data or domain knowledge needed, so
that a smaller number of free nodes are needed and weights of T2

could be partially copied from T1. In (c) is when negative transfer
from T1 to T2 may happen or when tasks are unrelated.

4. LLL with Non-forgetting and Forward
Transfer

In this section we will describe a particular LLL approach
based on our unified framework which is designed to sup-
port non-forgetting and forward transfer with the single
consolidation mechanism. While the framework described
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in Section 3 is not concerned with how exactly to determine
which weights of a neural network “belong” to a given task,
that is the function we discuss first in Section 4.1. In Sec-
tions 4.2 and 4.3 we then describe consolidation strategies
for non-forgetting and forward transfer respectively.

4.1. Identifying Critical Sub-networks (Lottery
Tickets)

Central to our approach is the ability to identify a critical
sub-network associated with each class learned by a neural
network, where each class is associated with a single output
dimension. We refer to these sub-networks as lottery tickets
(LTs), taking inspiration from the lottery ticket hypothesis
(Frankle & Carbin, 2018). The visual intuition behind our
approach to identifying LTs is provided in Figure 4 – where
the final LT weights for class 0 are shown with solid red
edges in (e). Our particular approach is designed so that
even when very sparse sub-networks are chosen, our method
guarantees the presence of a full path (from input to output
nodes) and it is not easy for non-LT weights to influence the
output of the corresponding LT class.

To identify the weights making up a LT, we first obtain the
rescaled magnitudes of all weights such that for each node,
n, the maximum weight magnitude pointing to it is 1:

in(n) :=
|in(n)|

max(|in(n)|)
, (2)

where in(n) is the set of weights pointing into a node. Next,
we recursively identify the LT nodes in a network for class
index c:

Nc(depth) = {c}
Nc(l) = {n ∈ layer(l)|

(∃w| (w ∈ out(n) ∩ in(N(l + 1)) ∧ w > τ))}
(3)

where N(l) is the set of important nodes for layer l, out(·)
and in(·) are correspondingly the set of weights pointing
out of and into of any nodes in the argument, and τ ∈ [0, 1]
is the pruning threshold that defines how sparse the selected
sub-networks are. The base case of Nc(depth) = {c} is
seen in Figure 4 as the highlighted output node for which
the LT is identified. GivenN , the set of LT weights for class
c is finally defined by:

LT (c) = {w ∈ layers|w ∈ in(Nc)} (4)

For the biases of a layer, the same condition is used. After
the LT for a class has been identified, the set of weight
locations responsible are stored in memory.

Given a LT, we define three specific types of weights: cen-
tral LT weights, backward-incidental weights, and forward-
incidental weights. Central LT weights are weights feeding
into LT nodes which have normalized magnitudes > τ ,
backward-incidental weights are those feeding into LT
nodes which have normalized magnitudes< τ , and forward-
incidental weights are those leading out of LT nodes into
non-LT nodes.

4.2. Non-forgetting

By design, LTs are critical for a neural networks perfor-
mance on their respective classes and tasks. It follows that
by preventing the weights of the LTs for a task from chang-
ing, the performance on the task can been maintained. We
can implement this kind of weight-change penalty with b
and Equation 1 as described in Section 3.1. The particular
consolidation policy we use to achieve non-forgetting is:

bi =


bnf if θi ∈ LT (C)
bfw if θi ∈ out(N(C))

0 otherwise

(5)

where C is the set of classes that have already undergone
training. In other words, a consolidation value of bnf ≥ 0
is applied to central and backward-incidental LT weights,
and bfw ≥ 0 is applied to forward-incidental weights.

Given a fixed pruning value, τ , modulating bnf allows us to
control how strongly past skills are maintained. Modulating
bfw however, has a larger effect on forward transfer, which
we discuss next.

4.3. Forward Transfer

The ability to transfer knowledge from previous tasks to new
ones, known as forward transfer, allows for more efficiently
learning tasks later in a sequence. In our approach, for-
ward transfer is supported by proper flexibility of forward-
incidental weights (dashed green edges in Figure 4). In
the consolidation policy described in Equation 5, this cor-
responds to small bfw values. We also suspect that it will
be important to ensure a sufficient amount of free weights
for learning a new task by increasing the sparsity of LTs
(corresponding to larger values for τ ).

5. Experimental Setups and Results
For each of non-forgetting and forward transfer, we discuss
the relevant metric, task, and then examine the experimental
results. For both experiments presented, we evaluate on the
Split-MNIST task sequence (Zenke et al., 2017a), which
consists of five tasks: 0 vs 1, 2 vs 3, etc. Task orders are
shuffled across trials for these experiments to remove any
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Input

Output
0 1 0 10 1 0 1

(a) (b) (c) (d)

0 1

(e)

Figure 4. Lottery ticket sub-network identification. From (a) to (b): take absolute value of weight, normalize input weights per node, and
filter weights by threshold (magnitude displayed with line thickness). Weights below threshold are not shown in (b). From (b) to (c):
N(depth − 1) consists of the red node in the penultimate layer. From (c) to (d): the remaining important LT nodes are identified by
following the weights over the threshold. From (d) to (e), all LT weights are displayed in solid red edges. LT backward-incidental weights
are shown with thin solid edges and LT forward-incidental weights are shown with green dashed edges. Central LT weights are shown
with thick red edges. LT nodes are red.

confounding effects potentially caused by particular task
orders. Additional hyperparameters and settings for the
experiments are provided in Table 1

5.1. Non-forgetting

Metric. Catastrophic forgetting refers to the tendency for a
neural network to forget old skills as new ones are presented.
Given a sequence of tasks to solve, the extent of catastrophic
forgetting (the opposite of non-forgetting) can be measured
with backward transfer interference (BTI) (Riemer et al.,
2018), which is the average difference between the retained
accuracy (RA) of each task and the learned accuracy (LA).
The LA for a task is the test accuracy as measured immedi-
ately after the task is learned, while RA is the test accuracy
as measured after all tasks have been learned. Intuitively,
catastrophic forgetting will cause the retained accuracy for
old tasks to be much smaller than the learned accuracy.
When BTI < 0, we consider forgetting (or negative back-
ward transfer) to have occurred. When BTI > 0 (old
task skills improve as new ones are presented) we consider
positive backward transfer to have occurred. In this work,
we will report a normalized backward transfer interference
score, nBTI:

nBTI =
RA− LA
1− LA

(6)

The nBTI allows us to put models on a more equal footing
when comparing backward transfer/non-forgetting. Con-
sider the following two models whose error rates suffer
proportionally from forgetting: (1) where LA = 0.99 and
RA = 0.98 (BTI = −0.01), and (2) where LA = 0.9 and
RA = 0.8 (BTI = −0.1). For both models, nBTI =
−100%, indicating that the error rate doubles. In our non-

forgetting experiment, nBTI is calculated using multi-head
evaluation, so that at test time, the task index is known to
the model.

Experiment: pruning and LT consolidation. Figure 5
demonstrates how τ and bnf can work together for non-
forgetting. As we expect, there is a clear trend for non-
forgetting to improve as consolidation of LT weights in-
creases in strength. However, once τ is below 0.95, nBTI
does not appear to be sensitive to changes in the hyperpa-
rameter. For experimental setup, refer to non-forgetting in
Table 1.

b_nf

nB
TI

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0 1 10 100 1000

tau = 0.7

tau = 0.8

tau = 0.85

tau = 0.9

tau = 0.95

Figure 5. Non-forgetting experiment. The effect of τ and bnf on
nBTI .

5.2. Forward Transfer

Metric. Forward transfer refers to the ability for a model to
learn new skills more easily by utilizing previously learning
knowledge (and possibly with fewer weights needed) as
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Table 1. Experimental setups for experiments in this section. For all experiments, the following hyperparameters are shared: batch size 64,
10 training epochs, 10-shot learning is used (unless otherwise specified), and training is done with the Adam optimizer (Kingma & Ba,
2014) with default Keras (Chollet et al., 2015) settings. Fully connected feed-forward neural networks with the specified hidden-layer
widths and relu activations are also used.
experiment task task shuffling trials tau b nf b fw architecture

non-forgetting Split-MNIST TRUE 10 [0.95, 0.9, 0.85, 0.8, 0.7] [0, 1, 10, 100, 1000] 0 [256, 256]
forward transfer Split-MNIST TRUE 10 [0.95, 0.9, 0.85, 0.8, 0.7] [0, 1, 10, 100, 1000] [0, 0.1, 1, 10] [256, 256]

more tasks are learned. To measure forward transfer, we
build off of FTI (forward transfer and interference) (Lopez-
Paz & Ranzato, 2017), which is the difference between the
LA for a task in the lifelong setting, and the LA for a task
when learned independently (LAnon LLL). When FTI < 0,
we consider negative forward transfer to occur, and when
FTI > 0 we consider positive forward transfer to occur.
However, to make the metric independent of the overall
performance of the model, we report a normalized forward
transfer metric:

nFTI =
LA− LAnon LLL

1− LAnon LLL
(7)

To provide some intuition behind this augmented forward
transfer metric: when nFTI = −1: using the lifelong
learning approach causes the learned error for each task to
increase by 100% (2X worse), when nFTI = 0, using non-
LLL is the same as LLL with regard to learned accuracy,
and when nFTI = 0.5: learned errors rates are decreased
by half.

Experiment: sparsity and consolidation. In Figure 6, we
can observe the effect of τ and consolidation on nFTI .
Most notably, when bnf = 0, or τ is near 1, nFTI is maxi-
mized. In contrast, this is when nBTI is minimized. Addi-
tionally, nFTI does prove to be sensitive to bfw, especially
when bnf is large, suggesting that when forward-incidental
weights are not free to adapt to the new task, modifying LT
weights suffices.

6. Conclusions
In this work, we presented a unified framework for lifelong
learning that can be used to display may properties with
a single central mechanism. Starting from this conceptual
framework, we then describe a concrete approach designed
to support non-forgetting and forward transfer. In particular,
the approach performs weight consolidation guided by iden-
tified critical sub-networks – which we refer to as LTs. This
approach tackles a difficult problem that captures multiple
important aspects of human learning. Future work includes
improving the sub-network identification algorithm to better
support both non-forgetting and forward transfer at the same
time, and implementing further consolidation-based skills
as outlined in (Ling & Bohn, 2019). Progress in this area

b_nf
b_fw tau 0 1 10 100 1000

0 0.7 -0.04 -0.28 -1.12 -2.63 -2.21
0.8 -0.09 -0.26 -0.67 -1.84 -2.55
0.85 -0.10 -0.22 -0.70 -1.46 -1.55
0.9 -0.13 -0.23 -0.46 -0.83 -0.95
0.95 -0.16 -0.08 -0.22 -0.20 -0.12

1 0.7 0.06 -0.41 -1.20 -2.15 -3.09
0.8 0.00 -0.36 -1.25 -1.99 -2.10
0.85 -0.09 -0.35 -0.87 -1.39 -2.15
0.9 -0.15 -0.32 -0.74 -1.29 -1.41
0.95 -0.09 -0.14 -0.50 -0.21 -0.27

10 0.7 -0.06 -0.32 -2.21 -3.30 -3.00
0.8 -0.07 -0.34 -2.18 -2.92 -3.37
0.85 -0.07 -0.33 -2.02 -2.13 -2.19
0.9 -0.07 -0.46 -1.73 -2.50 -2.49
0.95 -0.14 -0.42 -0.63 -1.04 -0.79

Figure 6. Forward transfer experiment. The effects of τ , bnf , and
bfw on nFTI .

is critical for the development of computationally efficient
and flexible machine learning algorithms.
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