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ABSTRACT

We address the problem of learning ordinary differential equations (ODEs) on
manifolds. Existing machine learning methods, particularly those using neural
networks, often struggle with high computational demands. To overcome this
issue, we introduce a geometrically constrained operator-valued kernel that
allows us to represent vector fields on tangent bundles of smooth manifolds.
The construction of the kernel imposes the geometric constraints that are es-
timated from the data and ensures the computational feasibility for learning
high dimensional systems of ODEs. Once the vector fields are estimated, e.g.,
by the kernel ridge regression, we need an ODE solver that guarantees the solu-
tion to stay on (or close to) the manifold. To overcome this issue, we propose
a geometry-preserving ODE solver that approximates the exponential maps
corresponding to the ODE solutions. We deduce a theoretical error bound for
the proposed solver that guarantees the approximate solutions to lie on the
manifold in the limit of large data. We verify the effectiveness of the proposed
approach on high-dimensional dynamical systems, including the cavity flow
problem, the beating and travelling waves in Kuramoto-Sivashinsky equations,
and the reaction-diffusion dynamics.

1 INTRODUCTION

In this paper, we consider the problem of learning ODE whose solutions lie on a manifold, which
arises from a wide range of applications, from mechanical multibody systems to electrical circuit
simulation and power systems (see the references in Ascher & Petzold (1998); Kunkel (2006)),
where the system of ODEs on manifolds is formulated based on Differential-Algebraic Equations
(Rheinboldt, 1984). One of the main challenges in this problem is that the underlying manifold
(geometric) constraints are not explicitly known and need to be uncovered from the data.

A popular solution to this problem is to employ a nonlinear dimensionality reduction approach,
such as autoencoders, to represent the geometrical constraint of the dynamics, i.e., the manifold.
A typical strategy is to learn a low-dimensional latent space to represent the original data and learn
the dynamics in the latent space; the dynamics are represented using, e.g., a neural-network (NN)
based discrete-time mapping (Linot & Graham, 2020), recurrent neural network (Maulik et al.,
2021; Vlachas et al., 2022), sequence-to-sequence mapping (Wu et al., 2024), Latent Dynamics
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Network (Regazzoni et al., 2024), and SINDy (Fukami et al., 2021; Lin et al., 2024). The main
pitfall of this class of methods is that the latent space only provides a global parametrization of
the manifold, whose dimension is typically larger than the intrinsic dimension of the manifold,
and the dynamics are not guaranteed to learn the exponential maps (for discrete-time model) or
vector fields (for continuous-time model) of the manifold. As a result, the predicted trajectories
may deviate from the manifold, limiting the long-term prediction accuracy, as we shall see in
several numerical examples with NN baselines. Furthermore, the computational cost to train such
NN-based nonlinear estimators is known to be expensive. In our numerical comparison with the
proposed linear method, we found that while their testing times are comparable, the training time
for NN models is over 800 times slower on a simple example with two ambient dimensions.

Contribution. This motivates us to develop a linear estimator of the vector fields on the tan-
gent bundles of smooth manifolds. Motivated by SINDy algorithm (Brunton et al., 2016), we
construct a geometrically constrained dictionary to represent the unknown vector fields where
these constraints will be approximated from the available point cloud data induced by the ob-
served time series of the dynamical systems. Since such a dictionary is subjected to the curse of
dimensionality, we employ the standard “kernel trick” to mitigate this issue. Unlike previous works
in non-manifold setting with scalar-valued kernels (Baddoo et al., 2022; Yang et al., 2024) and krig-
ing/Gaussian process (Glaz et al., 2010), the geometrical constraints give rise to an operator-valued
kernel that leverages the intrinsic dimension of the manifold to enable practical implementation.
To numerically integrate the system of ODEs with the estimated vector fields, we devise an ODE
solver that guarantees the solutions to be on the manifolds in the limit of large data. We will
demonstrate the effectiveness of this approach numerically on several high-dimensional test prob-
lems, including the cavity flow problem, the beating and travelling waves in Kuramoto-Sivashinsky
equations, and reaction-diffusion dynamics.

Paper organization. The remainder of this paper is organized as follows: In Section 2, we discuss
the geometrically constrained dictionary, extending the SINDy approach and generalizing it to
an operator-valued kernel to mitigate high dimensional problems. In Section 3, we introduce a
geometry-preserving time integration scheme, provide an illuminating example that motivate
this integrator, and discuss the convergence properties. In Section 4, we discuss closely related
approaches that will be used as a baseline to quantify the performance of the proposed approaches
documented in Section 5. In Section 6, we give a brief summary. We supplement the paper
with five appendices that report the detailed technical numerical tools needed in the algorithm,
computational complexity, the theoretical proofs, and additional numerical results.

2 GEOMETRICALLY CONSTRAINED DICTIONARY

Consider dynamical systems governed by a system of ODEs,

ẋ = f(x), x ∈Rn , (1)

where the vector field f : Rn → Rn . The Sparse Identification of Nonlinear Dynamics (SINDy)
approach (Wang et al., 2011; Brunton et al., 2016) is to approximate components of f = ( f 1, . . . , f n)
by a sparse regression on a set of appropriate basis functions. Typical choices of basis functions
can be polynomials and/or trigonometric functions. An example of polynomial dictionary is,

θ(x) = (
1 x⊤ (x2)⊤ . . .

) ∈Rm

where x j :=
{

x j1
1 x j2

2 · · ·x jn
n : ∀ j = j1 + j2 + . . .+ jn

}
. Given a set of labeled training data

{xi , ẋi }i=1,...,N , where the subscript index denotes temporal information, xi := x(ti ) and ẋi := ẋ(ti ),
the SINDy approach is to approximate f k (x) ≈ f k

ϵ (x; ξ̂k ) := θ(x)ξ̂k with coefficients ξ̂k ∈ Rm ob-
tained from solving the following sparse regression problem,

Ξ̂= argmin
Ξ

N∑
i=1

∥ẋi − fϵ(xi ;Ξ)∥2 +λ∥Ξ∥1. (2)

where λ> 0 is a sparsity parameter, fϵ = ( f 1
ϵ , . . . , f n

ϵ ), and Ξ̂= ((ξ1)⊤, . . . , (ξn)⊤)⊤ ∈Rnm ; by default
∥ ·∥ means ℓ2 norm. There are two key issues with this approach as it stands. First, the method is
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sensitive to the choice of dictionary. If the space spanned by the dictionary does not encompass
the underlying function, the estimated vector field will not be accurate when evaluated on new
sample data from the same distribution. Second, this method is computationally impractical as n
increases since the size of the dictionary increases (exponentially) as a function of n. Particularly, if
the dictionary consists of monomials of degree up to p, then the size of the dictionary is m ∝ pn−1.

Let us now focus on the first issue for a class of dynamics where the solutions lie on a d-
dimensional Riemannian sub-manifold M ⊂ Rn . In this context, the vector field f ∈ X(M) is
a map f : M → T M that identifies the state x ∈ M to a vector in the tangent space f(x) ∈ TxM .
Denote the bases of the tangent space Txi M ∼=Rd and the normal space as columns of Ti ∈Rn×d

and Ni ∈Rn×(n−d), respectively. We note that these basis vectors can be identified from point cloud
data using the local SVD technique (Donoho & Grimes, 2003; Zhang & Zha, 2004) or higher-order
methods (Jiang et al., 2024). See Appendix A for the details. For the remainder of this paper, we
denote T̂i and N̂i to be the point cloud approximation to Ti and Ni , respectively.

Let the matrix P (x) :Rn → TxM ⊂Rn be an orthogonal projection to the local tangent space at x.
One can show that P (xi ) = Ti T⊤

i , where columns of Ti ∈Rn×d forms a set of orthonormal vectors
that span Txi M . With this background, since f(x) ∈ TxM , it is clear that P (x)f(x) = f(x) under
the n−dimensional Euclidean inner product. Practically, when the manifold is unknown, one
can approximate P (xi ) by P̂ (xi ) = T̂i T̂⊤

i . Based on this information, we propose the following
modification on the SINDy dictionary for modeling the vector field,

f(x) ≈ fϵ(x;Ξ̂) = P̂ (x)Θ(x)Ξ̂, (3)

where Θ(x) ∈Rn×nm is a block diagonal matrix with θ(x) as the diagonal block component, and
the coefficients Ξ̂ ∈ Rnm are obtained by fitting the model to the observed vector field, ẋi . In
practice, when the available data are only the time series X = {xi }N

i=1, one needs to approximate
the derivatives. We consider approximating ẋi with yi = T̂i T̂⊤

i (xi+1 −xi )/∆t .

As we mentioned before, another challenge with this dictionary is that it is subjected to the curse
of dimensionality, that the number of candidate functions grows exponentially and eventually
becomes computationally intractable as the dimension of states increases. To mitigate this
problem, we propose an operator-valued kernel deduced from the dictionary in (3) that allows the
vector field to lie on the tangent bundle in the limit of large data with a compact model having a
rank equal to the intrinsic dimension of the manifold.

In the remainder of this section, we first use the kernel trick to motivate a Geometrically con-
strained Multivariate Kernel Ridge Regression (GMKRR) model in the ambient space. Then we
formalize the GMKRR model rigorously using the Reproducing Kernel Hilbert Space (RKHS) with
a family of operator-valued kernels. Lastly, we manipulate the GMKRR model into the intrinsic
space to enable practical computational implementation.

2.1 KERNELIZATION OF THE GEOMETRICALLY CONSTRAINED DICTIONARY

While kernel regression with ℓq regularization (0 < q ≤ 1) has been studied extensively (see
Shi et al., 2019, and the references therein), it is computationally much simpler to employ ℓ2
regularization, which will be the focus in this paper. Specifically, we focus on the following
problem modifying (2) as the primal form,

Ξ̂= argmin
Ξ

∥∥y−ΨΞ∥∥2 +λ∥Ξ∥2, (4)

where y = [y⊤
1 ,y⊤

2 , · · · ,y⊤
N ]⊤ ∈ RnN with yi = T̂i T̂⊤

i (xi+1 − xi )/∆t , and Ψ = [ψ⊤
1 ,ψ⊤

2 , · · · ,ψ⊤
N ]⊤ ∈

RnN×nm with ψi =ψ(xi ) = P̂ (xi )Θ(xi ) ∈Rn×nm .

Next, introduce the dual variable α ∈RnN so that Ξ=Ψ⊤α, and the dual form of (4) is

α̂= argmin
α

∥∥y−ΨΨ⊤α
∥∥2 +λ∥∥Ψ⊤α

∥∥2 ≡ argmin
α

∥∥y−Kα
∥∥2 +λα⊤Kα (5)

where the gram matrix K =ΨΨ⊤ ∈RnN×nN and its (i , j )th block is Ki j =ψ(xi )ψ(x j )⊤ ≡ k(xi ,x j ) ∈
Rn×n . The solution to the dual form is α∗ = (λI+K)−1y, and the predictive model for a new input
x is given by,

fϵ(x) =ψ(x)Ξ=ψ(x)Ψ⊤α= k(x)(λI+K)−1y (6)
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where k(x) = [k(x,x1),k(x,x2), · · · ,k(x,xN )]. Since ψ(x) = P̂ (x)Θ(x) ∈Rn×nm , we have

k(x,x′) =ψ(x)ψ(x′)⊤ = P̂ (x)Θ(x)Θ(x′)⊤P̂ (x′) = ρ(x,x′)P̂ (x)P̂ (x′) (7)

where ρ(x,x′) = θ(x)θ(x′)⊤ ∈ R, and the last equality is because Θ(x)Θ(x′)⊤ =
diag[ρ(x,x′), · · · ,ρ(x,x′)] = ρ(x,x′)I ∈Rn×n .

Up to this point the regression problem with (3) is converted to a GMKRR problem. The
geometrically-constrained function k in (7) is used as a matrix-valued kernel and constructed
from a finite set of candidate functions defined in the ambient space.

2.2 THE RKHS OF THE INTRINSIC GMKRR MODEL

In the following, we generalize the GMKRR model to a family of matrix kernel functions that may
include infinitely many candidate functions via the construction of a X(M)-valued RKHS H .

Definition 2.1. Let X be a non-empty set, W a separable Hilbert space with inner product 〈·, ·〉, and
L (W ) a Banach space of bounded linear operators on W . A function k : X ×X 7→L (W ) is SPD if
(1) for any pair (x,x′) ∈ X ×X , k(x,x′)∗ = k(x′,x), and (2) for any finite set of points {xi }N

i=1 in X and

{fi }N
i=1 in W ,

∑N
i , j=1

〈
fi ,k(xi ,x j )f j

〉≥ 0. The function k is an operator-valued kernel on X and W .

Definition 2.2. Following the notation from the previous definition, for each x ∈ X and f,g ∈
W , define kxf(x′) = k(x,x′)f for all x′ ∈ X . For f′ = ∑N

i=1 kxi fi and g′ = ∑N
i=1 kx′i

gi , define the inner

product,
〈

f′,g′〉
H =∑N

i , j=1

〈
fi ,k(xi ,x′j )g j

〉
. Then H = span{kxf|x ∈ X , f ∈W } forms an RKHS with

reproducing kernel k. The RKHS has the reproducing property that
〈

f(x),g
〉
W = 〈

f(·),k(·,x)g
〉
H .

Definition 2.3. The inner product 〈·, ·〉H also induces the RKHS norm, ∥f′∥H =√〈f′, f′〉H for all f′ =∑N
i=1 kxi fi . When W is a n-dimensional Euclidean space,

∥∥f′
∥∥

H =
p

f⊤Kf, where f = [f⊤1 , f⊤2 , · · · , f⊤N ]⊤

and K ∈RnN×nN with the (i , j )th block Ki j = k(xi ,x j ).

Lemma 2.1. Consider a function k : M ×M 7→ L (X(M)), defined as k(x,x′) = ρ(x,x′)P̂ (x)P̂ (x′),
where ρ :Rn ×Rn 7→R is a scalar-valued kernel. Then k is an operator-valued kernel.

See Appendix D for the proof of Lemma 2.1. The operator-valued kernel k forms the desired
X(M)-valued RKHS, denoted as HM . In practice, we can use any SPD kernels such as the squared

exponential (SE) kernel ρ(x,x′) = exp
(
−∥∥x−x′

∥∥2/γ
)

or the Matérn kernels (see Appendix E.1).

The function in (7) is a special case of the operator-valued kernel on M and X(M). Subsequently,
the GMKRR model is reformulated via HM . Given a dataset {(xi ,yi )}N

i=1, the unknown vector

field f ∈ HM is parametrized as f(x) = ∑N
i=1 k(xi ,x)αi ≡ k(x)α, where α = [α⊤

1 ,α⊤
2 , · · · ,α⊤

N ]⊤ is
determined by minimizing the following objective function,

J (f) =
N∑

i=1

∥∥yi − f(xi )
∥∥2 +λ∥f∥2

HM
≡ ∥∥y−Kα

∥∥2 +λα⊤Kα,

which is the same optimization problem solved in the previous section, and the solution is given
by (6). However, now the new formulation admits a family of operator-valued kernels, that may
involve an infinite set of candidate functions.

2.3 CONVERSION TO INTRINSIC SPACE

Subsequently, we formulate the GMKRR model (6) so that the predictive model is effectively
defined in the intrinsic space and becomes computationally tractable to train and evaluate. Note
that P̂ (x) = T̂xT̂⊤

x , the operator-valued kernel k in ambient space can be rewritten as

k(x,x′) = ρ(x,x′)P̂ (x)P̂ (x′) = ρ(x,x′)T̂xOxx′ T̂
⊤
x′ ≡ T̂xr (x,x′)T̂⊤

x′ ,

where Oxx′ = T̂⊤
x T̂x′ ∈Rd×d , and

r (x,x′) = ρ(x,x′)T̂⊤
x T̂x′ = ρ(x,x′)Oxx′ ∈Rd×d . (8)
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Using (8), the gram matrix K in ambient space is decomposed as K =T RT ⊤, where T ∈RnN×d N

is a block diagonal matrix with diagonal block entries T̂1, T̂2, . . . , T̂N , and R ∈ Rd N×d N is a N ×N
block matrix with the (i , j )th block Ri j = r (xi ,x j ) = ρ(xi ,x j )Oxi x j . Similarly,

k(x) = T̂x[r (x,x1),r (x,x2), · · · ,r (x,xN )]T ⊤ ≡ T̂xr(x)T ⊤. (9)

Using the above decompositions, the GMKRR formulation (6) in ambient space is converted to,

fϵ(x) = k(x)(λI+K)−1y = T̂xr(x)T ⊤ (
λI+T RT ⊤)−1

y = T̂xr(x) (λI+R)−1 T ⊤y (10)

where the Woodbury identity is used in the last equality.

In the intrinsic GMKRR formulation (10), the matrix (λI+R) is of dimension d N ×d N and com-
putationally tractable to invert, especially if d is small; this is regardless of the ambient dimension
n. Furthermore, the term T̂x guarantees that the vector fields lie on the local tangent space of the
underlying manifold at x in the limit of large data.

Lastly, we briefly discuss the intrinsic GMKRR model from an RKHS point of view. First, it can
be proved that the function r in (8) is an operator-valued kernel on M and L (Rd ) (the proof is
similar to that of Lemma 2.1); r is referred to as the intrinsic operator-valued kernel. Then, r
induces an RKHS and the corresponding GMKRR model in the intrinsic space. The GMKRR is
effectively applied to a modified dataset {(xi , ỹi = T̂⊤

xi
yi )}N

i=1, where the modified label ỹi is the
vector field expressed in the local tangent space at xi . In the kernel r (x,x′), if (1) ρ is chosen to
be the Diffusion Map kernel and (2) the pairs of data points (x,x′) are sufficiently close so that
Oxx′ = T̂⊤

x T̂x′ is always orthogonal, then the RKHS induced by r is a subset of L2(X(M)) that is
spanned by smooth eigenvector-fields of the Connection Laplacians (Singer & Wu, 2012).

3 GEOMETRY-PRESERVING TIME INTEGRATOR

(a) Parameterized manifolds.

(b) Predictions at a long time period.

Figure 1: Dynamics on a series of 1D
manifolds.

While standard ODE solvers such as Runge-Kutta methods
often empirically produce solutions that are close enough
to the manifold (i.e., a manifold invariant scheme) for suf-
ficiently small time step, it is well known that the invariant
manifold property is only valid when the solvers are em-
ployed on a special class of manifolds (Calvo et al., 1996).
Various ODE solvers on manifolds have been proposed in
literature, see Hairer (2011); Crouch & Grossman (1993)
for general vector fields and Leimkuhler & Patrick (1996)
for Hamiltonian systems. In this section, we will illustrate
this issue on a simple example, propose a normal correc-
tion (NC) to the classical explicit Euler scheme which we
call Euler+NC in the remainder of this paper, and provide
a convergence study. This approach can be viewed as a
realization of the local coordinate approach (see Section
III.2 in Hairer, 2011) with local parameterization being
estimated by GMLS. The proposed normal correction ap-
proximates all of the higher-order terms in an exponential
map, expxi

(f(xi )∆t), including the second fundamental
form, and is computationally more attractive than the clas-
sical Taylor’s method that requires the derivatives of the
estimated vector fields.

3.1 A MOTIVATING EXAMPLE

Consider a scalar ODE: θ̇ = 3
2 −cos(θ), θ(0) = 0, whose solution has a period of 2π, and embed the

solution in a 2D ambient space by (x1, x2) = (r (θ)cos(θ),r (θ)sin(θ)), where r (θ) = 1+D cos(Kθ).
The 2D embedding is illustrated in Fig. 1a for K = 3 and a series of D values, where the neighboring
points separate apart by one step size ∆t = 0.04. When D = 0, the 1D manifold is a “simple” unit
circle. As D increases, the manifold becomes more distorted, which may pose a challenge in
solving the dynamics.
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For each value of D , a GMKRR model is trained using the trajectory data obtained in the ambient
space (details in Appendix E.1). Subsequently, the GMKRR model is solved using standard RK2
and the proposed Euler+NC method. Meanwhile, a neural ODE (NODE) model (Chen et al., 2018)
and a Latent Dynamics Networks (LDNet) model (Regazzoni et al., 2024) are trained as baselines.
In Fig. 1b, we show the prediction quality for x1 at time interval [96,128] for D = 0.1 and 0.5. From
Fig. 1b, we note that the proposed Euler+NC consistently preserves the geometrical constraint;
yet, RK2 solutions deviate from the truth. The trajectories of both NODE and LDNet are off the
manifold for D = 0.1. For D = 0.5, the NODE achieves a similar accuracy as GMKRR with Euler+NC,
while LDNet is very accurate (see Table 3 for the RMSE comparison). Both NODE and Euler+NC
develop phase shifts where the former is less accurate relative to the latter. This result suggests
the robustness of the proposed solver over the nonlinear methods, that are much more expensive
to train. Specifically, for LDNets, the results above are obtained using twice the size of training
data compared to others (we fail to train competitive LDNet using the same data size) and we
also found that LDNet with 1D latent variable (which is the intrinsic dimension for this problem)
does not work. See the complete results in Appendix E.1, where we also reported simulations for
other values of D , their root-mean-square-errors, comparisons of training and prediction times,
comparisons of results with Gaussian and Matérn kernels for ρ, and the numerical verification of
the theoretical convergence rate reported in Theorem 3.1.

3.2 EULER METHOD WITH NORMAL CORRECTION

Figure 2: Dynamics decomposed on the
manifold.

To solve ODEs on manifold, we consider an integra-
tor based on the following identity:

xi+1 = expxi
(f(xi )∆t )

= xi +Ti T⊤
i (xi+1 −xi )︸ ︷︷ ︸

f(xi )∆t

+Ni N⊤
i (xi+1 −xi )︸ ︷︷ ︸
O((∆t )2)

, (11)

where the exponential map expxi
: Txi (M) → M is

defined as a map of the vector field f along the lo-
cal tangent space Txi M plus a second-order correc-
tion in the normal direction, which can be approxi-
mated as a function of f (see Figure 2).

Based on the identity in (11), once fϵ is trained (e.g, by the GMKRR model in (10)), the solution
xϵ(ti+1) to the following approximate differential system,

ẋϵ(t ) = fϵ(xϵ(t )), t > t0, xϵ(t0) = x̂ϵ,i

is approximated by x̂ϵ,i+1 through the following steps:

1. Use the algorithm in Appendix A to approximate bases of the local tangent and normal
spaces of x̂ϵ,i . We denote the estimates as T̂ϵ,i and N̂ϵ,i .

2. Let {xi ,1, . . . ,xi ,k } ⊂ X be the kth nearest neighbors of x̂ϵ,i . We model the normal compo-
nent of (11) by solving the following local regression problem,

ĝ := argmin
g

k∑
j=1

∥N̂⊤
ϵ,i (xi , j − x̂ϵ,i )− (∆t )2g (T̂⊤

ϵ,i (xi , j − x̂ϵ,i )/∆t )∥2. (12)

Notice that ĝ :Rd →Rn−d takes input from the local coordinates basis T̂ϵ,i . To solve this re-
gression problem, we will employ the Generalized Moving Least Squares (GMLS) method
that is documented in Appendix A. In Appendix D.2, one can see that ĝ approximates the
second fundamental form of M up to order-∆t .

3. We predict the state at time ti+1 = ti +∆t with the following model that approximates
(11),

x̂ϵ,i+1 = x̂ϵ,i +∆t fϵ(x̂ϵ,i )+ (∆t )2N̂ϵ,i ĝ (T̂⊤
ϵ,i fϵ(x̂ϵ,i ))). (13)

Here, we simply evaluate ĝ as illustrated in Figure 2.

We should point out that the proposed Euler+NC method has approximately the same complexity
as RK2, as RK2 involves two function evaluations and each requires one local least-squares fitting
to approximate T̂. In Euler+NC, we also employ two least-squares fittings, one in Step 1 and the
other in Step 2. See Appendix C for the complexity of the three steps above.
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3.3 CONVERGENCE THEORY

In the following result, we state the error bounds predicting the state xn = x(n∆t ) = x(T ) for some
fixed T > 0 with a general approximate vector field fϵ under the numerical integrator (13). In this
derivation, we assume that the local tangent and normal spaces are approximated with the GMLS
method discussed in Appendix A.3 with a polynomial of degree-ℓ, provided that the manifold
M is sufficiently smooth, Cℓ+1, with ℓ≥ 2. Simultaneously, ĝ , attained by solving (12), is also a
polynomial of order-ℓ.

Theorem 3.1. Let the solution of (1) lie on a smooth (or at least Cℓ+1) manifold M, with ℓ≥ 2. Let
fϵ be a Lipschitz function that approximates f, such that ∥f− fϵ∥L2(µ) =O(ϵ) as ϵ→ 0. Here, µ denotes
an invariant measure of (22). Let X = {x1, . . . ,xN } be independent and identically distributed (i.i.d.)
samples of µ that is absolutely continuous with respect to the volume measure, dµ= qdVol, with
0 < qmi n ≤ q ≤ qmax . Then with probability higher than 1− 3

N ,

√
Eµ

[∥xn − x̂ϵ,n∥2
]≤C

(
ϵ+∆t

(
log(N )

N

) ℓ
d

)
,

where T = n∆t . Here the constant C > 0 is independent of N and ∆t . See Proposition D.2 for the
detailed expression of this constant.

See Appendix D.2 for the proof. We should point out that ϵ is the bias, which can be specified
further in terms of N ,ℓ,d , depending on the class of models being used to approximate f. For
example, error bounds for KRR with i.i.d. data are reported in (Caponnetto & De Vito, 2007;
Steinwart et al., 2009). The last term in the error bound highlights that the error induced by the
proposed solver in (13) is an order-one scheme with an additional factor contributed by errors in
the estimation of the tangent space. More work needs to be done for non-i.i.d. data, especially
when the training data consists of time series of solutions.

4 RELATED WORK

Learning dynamics with geometrical constraints has been an active research field for decades.
Early studies considered constraining the high-dimensional dynamics in a linear subspace to
obtain a low-dimensional model (Benner et al., 2015). However, such a linear subspace approach is
not adequate to represent even simple manifolds such as the sphere and torus. Recent approaches
in approximating vector fields on the tangent bundles can be categorized into two classes.

The first class either assumes the knowledge of the manifolds (Elamvazhuthi et al., 2023; Jeong
et al., 2023) or employs an empirical procedure that relies on the domain knowledge to globally
parameterize the manifolds (Loiseau et al., 2021; Callaham et al., 2022). In the latter approach, the
dynamics are identified using SINDy with a special set of polynomials that are only appropriate
for describing simple manifolds, such as the torus. Since our method shares a similar vein to
this approach, which they called Manifold-SINDy, we provide a numerical comparison of their
example, the cavity flow problem, in Section 5. We shall see that our method yields significantly
more accurate short and long-term predictions of the dynamics.

The second class of methods addresses arbitrary manifold structure. In Crosskey & Maggioni
(2017); Floryan & Graham (2022); Zeng et al. (2024), an atlas of charts of a manifold is learned from
the data, and the dynamics are learned within each chart so that the dynamics are guaranteed to
evolve on the manifold. Specifically, CANDyMan uses k-means algorithm to cluster the data, and
employs an autoencoder to represent data clusters as an atlas of the charts and feed-forward neural
networks to model the dynamics in the latent variable induced by the local chart. Lou et al. (2020)
employed a similar strategy but learned the atlas and dynamics simultaneously through a neural
ODE framework. The main drawback of this class of methods is the complicated model form,
which involves not only the charts and local dynamics but also the transition maps among the
charts. In Section 5, we will compare GMKRR with one of the methods in this class, the CANDyMan
proposed in Floryan & Graham (2022), on several examples in their paper, including the beating
and travelling waves in Kuramoto-Sivashinsky equations, and reaction-diffusion dynamics. We
shall see how GMKRR outperforms CANDyMan in training efficiency and prediction accuracy.
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5 NUMERICAL EXPERIMENTS

In this section, we numerically test the proposed approach on several high-dimensional problems.

5.1 A 2D CAVITY FLOW PROBLEM

The GMKRR algorithm is demonstrated on a cavity flow problem (Callaham et al., 2022) that
have high ambient dimensions and admit quasi-periodic dynamics on a 2D torus. Through this
example, the predictive accuracy and long-term numerical stability of GMKRR are benchmarked
against conventional SINDy methods. Two SINDy-type methods are considered for comparison:
(1) Vanilla SINDy, denoted simply “SINDy” below, and (2) “Manifold SINDy” (M-SINDy) that is
proposed in Callaham et al. (2022) to account for the manifold constraint. A trajectory of 30000
steps is available, and all models are trained using the first 4000 steps. The details of the dataset
and hyperparameters of the three models are provided in Appendix E.2.

(a) Comparison of error growth. (b) Comparison of kinetic energy in long-term prediction.

Figure 3: Results of 2D cavity flow.

The prediction errors of the three models are compared in Fig. 3a, where the solid lines and the
shades show the evolution of the mean and range of RMSE over the test trajectories, respectively.
The error in SINDy is large, and maintain at a similar level of error through the examined time
horizon. The error in M-SINDy grows rapidly; this is attributed to the phase shift in the predicted
dynamics. In addition, the M-SINDy predictions start with a non-negligible error at the beginning,
this is due to the error of the manifold representation learned from data. As for GMKRR, the error
maintains as low as 1/6 of the M-SINDy errors, with also a smaller standard deviation; such small
error is granted from the enforcement of manifold constraint at every time step.

Next, the long-term numerical stability of the three methods is compared. In the cavity flow
problem, the kinetic energy, computed as E = ∥x∥2, fluctuates and maintains a constant amplitude
and range, which indicates that the flow states stay on a low-dimensional manifold. Here, all the
models are solved from the first data point for the entire 30000 time steps. The time evolution of E
is shown in Fig. 3b. The SINDy prediction gives completely wrong trend, which also indicates that
it does not satisfy the manifold constraints. Both M-SINDy and GMKRR capture the fluctuation
amplitudes well; particularly GMKRR follows the truth accurately up to t = 150 when M-SINDy
already shows significant deviations. Furthermore, M-SINDy shows spurious high-frequency
fluctuations throughout the simulation, that appears to be non-physical. Admittedly, GMKRR
ends up with phase shift over long-term prediction, and this is arguably numerically unavoidable.
However, the comparison above highlights the capability of GMKRR to produce accurate long-term
predictions using a limited amount of data, outperforming SINDy and M-SINDy.

5.2 MORE HIGH-DIMENSIONAL PROBLEMS

Next, we benchmark GMKRR against the high-dimensional examples developed in CANDyMan
(Floryan & Graham, 2022), that have well-defined manifold structures. These examples include
the beating and travelling dynamics of the 1D Kuramoto-Sivashinsky (KS) equation and the 2D
reaction-diffusion (RD) dynamics (Fig. 4(a-d)). For the KS travelling case, we also consider two
additional baselines, NODE and LDNet, that admit low-dimensional (latent) structures but do not
exactly account for intrinsic dimensions. The Isomap algorithm (Balasubramanian & Schwartz,
2002) is employed to visualize the intrinsic coordinates of these dynamics (Fig. 4(e-h)); note that
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Isomap is only for visualization purposes and its results are not used in the subsequent model
training and prediction. Furthermore, the comparison of prediction errors over time between
GMKRR and the baselines is shown in Fig. 4(i-l). Finally, the computational costs and the error
metrics of the models are provided in Table 1, where “RMSE” and “Max Error” refer to the average
and maximum of RMSE along the trajectory. Throughout this section, the GMKRR model uses
simple local SVD to estimate the tangent space, unless otherwise specified. More details on model
hyperparameters, training, and result comparison are provided in Appendices E.3 and E.4.

KS beating dynamics. The dynamic oscillates at a single frequency and lie on a 1D submanifold
in a 64-dimensional ambient space (Fig. 4(e)). This is a relatively easy case for both GMKRR and
CANDyMan, but the error of GMKRR is one order of magnitude smaller than that of CANDyMan
throughout the prediction horizon (Fig. 4(i)). Furthermore, the cost for training GMKRR is over
3000 times lower than CANDyMan.

KS travelling dynamics. The dynamic has two timescales that differ by a factor of approximately
200. The fast timescale corresponds to the oscillation of the spatial wave shape (Fig. 4(b)), while
the slow timescale corresponds to the translation of the wave in space (Fig. 4(c)). The combination
of the two timescales results in a 3D manifold (Fig. 4(f-g)). Learning the travelling dynamics is
more challenging than in the previous case because the complete manifold cannot be covered
without including at least a full period of the long timescale that spans a large number of data
samples (approximately 5000 steps). Here, five models are considered: (1) CANDyMan: The
model involves a special data preprocessing step based on prior knowledge (see Appendix E.3) so
that the fast and slow timescale dynamics are learned separately, and only the first 100 steps are
needed for training. (2) NODE: The modeling strategy and preprocessing procedure are identical
to CANDyMan, except that the fast dynamic is represented by a generic NN without assuming any
low-dimensional structure. (3) LDNet: The same setup as NODE, except that the fast dynamic is
learned in a 2D latent space. (4) GMKRR-Full: The model does not consider any prior knowledge
as in the CANDyMan, since such knowledge is not always available. (5) GMKRR-FFT: As an
apple-to-apple comparison against CANDyMan, this model is trained using exactly the same data
preprocessing strategy and dataset as CANDyMan.

In the initial period, which covers a few short timescales, the GMKRR models clearly outperform
CANDyMan and LDNet and are comparable with NODE (Fig. 4(j)). Notice that LDNet also admits
an encoding-decoding error with large RMSE at initial time. In the long term, the baselines NODE
and LDNet, that do not account for intrinsic dimensions, perform the worst; this is not surprising
as the geometrical constraints are not enforced during prediction. The error of GMKRR-Full is
similar to CANDyMan, although the former does not leverage the prior knowledge like the latter.
Lastly, the error of GMKRR-FFT is consistently 1-2 orders of magnitude smaller than all the other
baselines (Fig. 4(k)). Furthermore, while GMKRR-FFT and the baselines are trained using the
identical dataset, the former is 2-3 orders of magnitude faster than the latter. Clearly, GMKRR
beats most baselines even without any prior knowledge, and considering the prior knowledge
only expands the advantage of GMKRR over all the baselines.

Reaction-diffusion dynamics. The dynamics oscillates at a single frequency (Fig. 4(d)), and lives
on a 1D submanifold (Fig. 4(h)). However, the data is 20402-dimensional and hence may pose a
computational challenge to both GMKRR and CANDyMan. First we consider CANDyMan and
“GMKRR-Full”, which are directly trained using the original 20402-dimensional data. When com-
pared to CANDyMan, GMKRR-Full achieves two-orders-of-magnitude lower error in prediction
(Fig. 4(l)). While the training cost of GMKRR-Full is 1/72 of CANDyMan, the former does take
longer time in prediction, due to the need for GMLS in normal correction in all 20402 dimensions.
Next, we devise the “GMKRR-PCA” models to reduce the computational cost. The model first
reduces the data by PCA into 6 dimensions, and then learn a GMKRR model in the PCA coordinates.
In the prediction phase, the GMKRR first predicts the dynamics in the 6 PCA coordinates and then
maps back to the original space by the PCA modes. The “GMKRR-PCA-T0” model uses the local
SVD technique to estimate the tangent space, while the “GMKRR-PCA-T4” model uses a 4th-order
estimation by GMLS. When compared to GMKRR-Full, the computational costs are significantly
reduced in GMKRR-PCA-T0 while maintaining nearly identical predictions, hence in Fig. 4(l),
the curves of GMKRR-Full and GMKRR-PCA-T0 overlap with each other. Lastly, GMKRR-PCA-T4
shows improvement over the other GMKRR models, with a mild trade-off between cost and error.
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Figure 4: Comparison of GMKRR and CANDyMan: (a-d) data; (e-h) visualizations of low-
dimensional manifold structure; (i-l) Prediction errors.

Table 1: Model performance for the CANDyMan cases

CASE MODEL Training
Time (s)

Prediction
Time (s)

RMSE Max Error

KS
Beating

CANDyMan 48.04 0.6703 0.2744 2.130
GMKRR 0.01367 0.5133 0.02549 0.1972

KS
Travelling

CANDyMan 70.10 19.44 2.391 15.22
NODE 395.6 4.166 6.690 22.14
LDNet 77.87 13.53 7.600 22.46
GMKRR-Full 11.68 20.82 1.604 12.45
GMKRR-FFT 0.04550 24.41 0.3671 3.088

Reaction-
Diffusion

CANDyMan 265.8 14.59 0.1797 0.5517
GMKRR-Full 3.723 175.4 7.394E-4 2.959E-3
GMKRR-PCA-T0 0.01953 4.786 7.399E-4 2.961E-3
GMKRR-PCA-T4 0.1187 8.5855 1.216E-4 1.339E-3

6 CONCLUSIONS

We have developed GMKRR, in tandem with a geometry-preserving time integrator, for learning
dynamics on manifolds; it overcomes the limitations of existing approaches in terms of computa-
tional efficiency and prediction accuracy. The GMKRR involves an intrinsic kernel formulation, so
that its training and prediction are highly scalable for data in high-dimensional ambient spaces.
The empirical results show that our models outperform the classical SINDy-based and neural-
network-based methods significantly, especially in the long-term prediction accuracy of dynamics
on manifolds. We also contribute theoretically by providing the error bound of the prediction by
the proposed methods. Future work may focus on improving the scalability to large datasets using,
e.g., pseudo-input strategies, extending to dynamics with parameters and inputs, and extending
the framework to combat noisy data, leveraging ideas from Candès et al. (2011); Messenger &
Bortz (2021); Fasel et al. (2022).
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REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. The code used to generate all the
figures (except Fig. 2) and the results in Table 1 is available. At the stage of double-blind review,
the code is provided as a ZIP file in Supplementary Material on OpenReview. Detailed instructions
for running the experiments, including the configuration of hyperparameters and execution of the
analysis, are provided in the README. The datasets used in our work are either publicly available
or described with clear instructions for downloading and preprocessing in the repository. All
steps required to replicate our experiments and analyses are documented to enable seamless
reproduction by the reviewers and future researchers.
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A A LOCAL PARAMETERIZATION OF SMOOTH MANIFOLDS BY GENERALIZED

MOVING LEAST-SQUARES METHODS

In this appendix, we discuss a local SVD method to approximate local tangent space, review the
Generalized Moving Least Squares (GMLS) method, and its application to approximate a local
parameterization of smooth manifolds which in turn gives us a higher-order approximation of
the local tangent space, and discuss an algorithm for the normal correction for high-dimensional
ambient space.

Let X = {xi }N
i=1 ⊂ M ⊂ Rn be a set of point cloud data that is available for training. For any

base point x0 ∈ M (x0 can be either in the training data set X or any new points), we denote its
K−nearest neighbors in X by Sx0 = {x0,k }K

k=1 ⊂ X . By definition, we have x0,1 = x0 to be the base
point.

A.1 LOCAL SVD APPROXIMATION TO THE LOCAL TANGENT SPACE AND ITS DIMENSION

The classical local SVD method Donoho & Grimes (2003); Zhang & Zha (2004) approximate T0 as
follows:

1. Construct the distance matrix D := [D1, . . . ,DK ] ∈Rn×K , where K > d and Di := x0,i −x0.

2. Take a singular value decomposition of D =UΣV⊤. Let T̃0 be the leading d−columns of
U, which approximates an orthonormal basis of Tx0 M .

We should point out that this approximation has a convergence of order N−1/d for K =
d 4n logn|Kmax |, where Kmax denotes the maximum principal curvature and for uniformly sam-
pled data set X of size N denotes the size of training data (See Remark 9 in Harlim et al. (2023)).

A.2 GENERALIZED MOVING LEAST SQUARES

To attain a higher-order approximation, we consider the generalized moving least square
method. Generally, consider the regression for a smooth function f ∈ C∞(M). Denote fx0 =
( f (x0,1), ..., f (x0,K ))⊤. We consider using the intrinsic polynomials to approximate smooth func-
tions over a neighborhood of x0. By intrinsic, we refer to the polynomial defines on a local chart
with base point x0.

First, let Pl ,d
x0

be the space of intrinsic polynomials with degree up to l in d-dimensions at the

point x0, i.e., Pl ,d
x0

= span({px0,α}|α|≤l ), where α = (α1, ..,αd ) is the multi-index notation with
|α| =α1 + . . .+αd and px0,α is the basis polynomial functions defined as

px0,α(x) =
d∏

i=1

[
t̃ i (x0) · (x−x0)

]αi , |α| ≤ l .

Here,
{

t̃ i (x0)
}d

i=1 are the d tangent vectors at the base point x0 that are estimated by the local SVD

scheme, T̃0 = (t̃ 1(x0), . . . , t̃ d (x0))). By definition, the dimension of the space Pl ,d
x0

is m =
(
l +d

d

)
.

For K > m, we can define an operator IP : fx0 ∈RK →IPfx0 ∈Pl ,d
x0

such that IPfx0 is the optimal
solution of the following least-squares problem:

min
f̂ ∈Pl ,d

x0

K∑
k=1

(
f (x0,k )− f̂ (x0,k )

)2
. (14)

The solution to the least-squares problem (14) can be represented as

IPfx0 =
∑

|α|≤l
bαpx0,α,

where the concatenated coefficients b = (bα(1), ...,bα(m))⊤ satisfy the normal equation,

(Φ⊤Φ)b =Φ⊤fx0 . (15)
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Notice that here is m number of coefficientsα such that |α| ≤ l and thereafter we used the notation{
α( j )

}
j=1,...,m to denote all possible m multi-indices. The above normal equation can be uniquely

identified ifΦ ∈RK×m , with components

Φk j = px0,α( j )(x0,k ), 1 ≤ k ≤ K , 1 ≤ j ≤ m, (16)

is a full rank matrix.

For uniformly sampled data set X of size N , it was shown that the convergence rate of the GMLS

approximation with a polynomial of order-l to theαth derivative of f is of order-N− l+1−|α|
d (see Jiang

et al., 2024). For the tangent space approximation, the function f will be the local parameterization
of the manifold (as discussed in the next section), and the tangent space will be its Jacobian such
that α= 1. Therefore, if we consider GMLS approximation with a polynomial of order l > 1, we
effectively have a higher-order approximation to the local SVD method.

A.3 GMLS APPROXIMATION TO THE LOCAL PARAMETERIZATION AND LOCAL TANGENT SPACE

In this section, we now describe the GMLS approximation to a local parameterization of the
manifold ι : Tx0 M ≡Rd → M ⊂Rn such that ι(0) = x0.

Given the global tangent vectors at the base point x0, {t̃ i (x0)}i=1,...,d , one can use the QR decom-
position to approximate the normal basis vectors {ñ j (x0)} j=1,...,n−d . Then one can define a local
coordinate chart for the manifold near the base point using the embedding map ι,

ιx0 (θ1,θ2, . . . ,θd ) = x0 +θ1 t̃ 1(x0)+θ2 t̃ 2(x0)+ . . .+θd t̃ d (x0)+
n−d∑
j=1

z j (θ1,θ2, . . . ,θd ) ñ j (x0), (17)

where (θ1,θ2, . . . ,θd ) ∈Rd with θ j = t j (x0) · (x−x0) denote the local coordinates and z j = n j (x0) ·
(x−x0) is a smooth function over the (θ1,θ2, . . . ,θd )-plane. This local parametrization is known as
the Monge-Gauge parametrization of the manifolds.

We will simply approximate z j : Rd → R with the GMLS method as a function that maps the local
coordinates (θ1,θ2, . . . ,θd ) to a point on the manifold M by solving the local least squares problem:

min
ẑ j ∈Pl ,d

x0

K∑
k=1

(
z j ,k − ẑ j (x0,k )

)2 , (18)

where the available data are,

z j ,k = ñ j (x0) · (x0,k −x0).

In this notation, we are fitting a model of the following form (intrinsic polynomials),

ẑ j (θ1, . . . ,θd ) = ∑
|α|≤l

b j ,αθ
α1
1 θ

α2
2 · · ·θαd

2 ,

where ẑ j (x0,k ) is a shorthand notation for ẑ j (θk
1 , . . . ,θk

d ) evaluated at the local coordinates of x0,k ,

i.e., θk
ℓ
= t̃ℓ(x0) · (x0,k −x0) for ℓ= 1, . . . ,d .

With this GMLS approximation, we also inherit the approximate tangent space from the columns
of the Jacobian of ι̂x0 defined as in (17) with z j replaced by its estimate ẑ j ,

D ι̂x0 (θ1,θ2, . . . ,θd ) = (
t̂ 1(x0) · · · t̂ d (x0)

)
, (19)

where

t̂ i (x0) = t̃ i (x0)+
n−d∑
j=1

∂

∂θi
ẑ j (θ1,θ2, . . . ,θd ) ñ j (x0). (20)

Effectively, the GMLS approximation improves the approximation (as discussed at the end of the
previous subsection) by adding additional terms in the normal components in (20).

15



Published as a conference paper at ICLR 2025

A.4 GMLS FOR NORMAL CORRECTION IN HIGH AMBIENT DIMENSIONS

For problems of high ambient dimensions, when the above procedure is applied to the normal
correction in the Euler+NC method, a computational bottleneck will emerge. That is, at every
time step, all the (n −d) normal vectors Ñ = [ñ1, ñ2, · · · , ñn−d ] ∈Rn×(n−d) need to be computed to
form the (n −d) local least squares problems (18). The normal vectors may be obtained by, e.g.,
QR decomposition of T̃ = [t̃ 1, t̃ 2, · · · , t̃ d ] ∈Rn×d , which would cost O(n(n −d)2) and is intractable
when n is large. The same issue occurs in the regression problem (12), where one needs N̂ once T̂
is attained from the GMLS regression in (20).

To circumvent the explicit computation of the Ñ , we employ the following projection-based

approach. First we define the projection matrix Q = Ñ Ñ⊤
, which maps a point x ∈ Rn to the

subspace spanned by Ñ . Equivalently Q = I − T̃ T̃ ⊤
, so that the formation of Ñ is avoided, and the

matrix-vector product Qx = x− T̃ (T̃ ⊤x) has a low cost of O(dn). Next, the following modified least
squares problem is defined:

min
x̂ j ∈Ql ,d

x0

K∑
k=1

∥∥yk − x̂(x0,k )
∥∥2, (21)

where the data
yk =Q(x0,k −x0) ∈Rn ,

and the model x̂ = [x̂1, x̂2, · · · , x̂n]

x̂(θ1, . . . ,θd ) = ∑
|α|≤l

bαθ
α1
1 θ

α2
2 · · ·θαd

2 .

Problem (21) is essentially n local least squares problems; once it is solved, the normal components
in (17) are computed collectively as

n−d∑
j=1

z j (θ1,θ2, . . . ,θd ) ñ j (x0) =Q x̂(θ1, . . . ,θd ).

In the case where the ambient dimension n is extremely high, the solution of (21) can be paral-
lelized to further accelerate the computation.

The same approach is used to avoid an explicit computation of N̂ by replacing T̃ with T̂ in the
formulation above.

B ESTIMATION OF THE INTRINSIC DIMENSION OF A MANIFOLD

A critical parameter in GMKRR is the intrinsic dimension d of the manifold. Here two algorithms
for estimating d from data are provided.

B.1 LOCAL SVD

Following notation in Appendix A, let the diagonal components of Σ, the singular values of D, be
denoted by σ1 ≥σ2 ≥ ·· · ≥σK . To determine d , we normalize the singular values by defining,

ξ2
i =

σ2
i∑k

i=1σ
2
i

.

We choose d0 = d0(δ) as an approximation to the local tangent space Tx0 M that depends on a
fixed threshold δ ∈ (0,1) chosen such that,

d0(δ) = argmax
d≥1

{
d :

∑
i≤d

ξ2
i ≤ δ

}
.

This threshold must be tuned to the data, noting that higher thresholds will yield higher dimen-
sional tangent spaces and lower thresholds will yield lower dimensional tangent spaces with all
the trade-offs that this implies.
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B.2 KERNEL-BASED METHOD

An alternative method for dimension estimation that avoids tuning is provided in Coifman et al.
(2008). The method relies on an ad hoc choice of scalar-valued kernel ρ(x,x′;η) with a bandwidth
parameter η.

Given a dataset of point {xi }i=1,2,··· ,N , define the sum

S(η) = 1

N 2

N∑
i , j=1

ρ(xi ,x j ;η)

One can verify that limη→0 S(η) = 1/N and limη→∞ S(η) = 1. Coifman et al. (2008) shows that
S(η) ∝ ηd/2 in a range of η, and proposed the following estimation of intrinsic dimension. First
define

d̃(η) = 2dlog(S(η))

dlog(η)
,

then the estimated intrinsic dimension is d∗ = d̃(η∗), where

η∗ = argmax
η

d̃(η)

In the numerical implementation of the above intrinsic dimension estimation method, the deriva-
tive d̃(η) can be estimated analytically, since d̃(η) = η

S

/ dS
dη , or simply by finite difference. Further-

more, we suggest using a modified SE kernel ρ(x,x′;η) = exp
(
−∥∥x−x′

∥∥2/(L2η)
)
, where L is the

maximum of pair-wise L2 distances of the dataset; this modification normalizes the distances and
makes the search for maximum d̃ more robust.

Finally, as a side note, while the above bandwidth parameter η is developed for intrinsic dimension
estimation, we found empirically that a good initial guess for the bandwidth parameter γ in the SE
kernel of GMKRR can be computed based on η∗,

γ∗ = 10(L2η∗)1/d∗
.

In the KS and reaction-diffusion cases presented in this paper, to perform the cross-validation
in GMKRR, we empirically set a grid search of, e.g., 0.8γ∗, 1.0γ∗, 1.2γ∗, etc. Yet, it was found that
choosing γ= γ∗ for the SE kernel is sufficient for accurate GMKRR predictions in some cases.

C COMPLEXITY OF EACH PREDICTION STEP

To attain T̂ and N̂ in Step 1, we employ K−nearest neighbors (knn). A generic knn algorithm time
complexity is O(N (d +K )), where K denotes the number of nearest neighbors. Subsequently,
we solve an SVD of a matrix of size n ×K , where n denotes the dimension of ambient space,
the time complexity of local SVD is O(nK max{n,K }+min{n,K }3) to obtain T̃ and Ñ. Since we
use the higher-order approximation in (20), GMLS regression is employed in parallel for each
co-dimensional coordinate. In each coordinate, we solve a linear problem of size m ×m, where
m < K denotes the number of monomials in GMLS fitting, so the cost in constructing Φ⊤Φ in
(15) is O(K m2) and inverting is O(m3), which is cheaper than the SVD. So, the total cost is still
dominated by local SVD. For problems with n ≫ K , see Appendix A.4 for an efficient numerical
implementation to avoid forming the normal vectors Ñ in the SVD step and the improved normal
vector estimates N̂ after we obtained T̂ from the GMLS step. The complexity of these operations is
far less than the computations above as reported in Appendix A.4.

In Step 2 of the algorithm, we employ the GMLS again to attain each component of ĝ in parallel.
Each component takes O(m2K +m3) operations.

The cost of evaluating fϵ(x) = T̂xr(x)α includes the total computational costs of the first step above
to attain T̂x, the matrix-matrix-vector multiplication, O(N d 2 +nd), the evaluation of r(x) in (9),
which is O(d 2nN ), and the cost of evaluating exponentiation in the SE and Matérn kernels.

The total cost of evaluating (13) consists of the total cost of evaluating fϵ(x), the time complexity
in multiplying N̂ĝ , which is n(n −d), the O(m2K +m3) operations in GMLS fitting from Step 2 to
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attain ĝ , and the complexity in evaluating n −d component of ĝ , which is (n −d)dm, since we fit
the GMLS d-dimensional model with a total of m parameters in each coordinate. If we use the
implicit approach in Appendix A.4, then the multiplication N̂ĝ is implicitly done, and the total
computation cost reduce from n(n −d)+ (n −d)dm to ndm.

D PROOFS

D.1 PROOF OF LEMMA 2.1

Proof. First, for any pair (x,x′) ∈ M × M , k(x,x′)∗ = ρ(x,x′)∗(P̂ (x)P̂ (x′))⊤ = ρ(x′,x)P̂ (x′)P̂ (x) =
k(x′,x). Second, for every finite set of points {xi }N

i=1 in M and {fi }N
i=1 in X(M),

N∑
i , j=1

〈
fi ,k(xi ,x j )f j

〉= N∑
i , j=1

f⊤i ρ(xi ,x j )P̂ (xi )P̂ (x j )f j

=
N∑

i , j=1
ρ(xi ,x j )u⊤

i u j =
N∑

i , j=1
ρ(xi ,x j )

n∑
k=1

ui k u j k

=
n∑

k=1

N∑
i , j=1

ρ(xi ,x j )ui k u j k ≥ 0

where ui = P̂ (xi )fi ≡ [ui 1,ui 2, · · · ,ui n]⊤, and the last row is because that ρ is positive semi-definite
so each term in the summation over k is non-negative. Hence k is an operator-valued kernel.

D.2 PROOF OF THEOREM 3.1

Consider the following initial value problem involving a system of ODEs,

ẋ(t ) = f(x(t )), t > t0, x(t0) = x0, (22)

where t , t0 ∈ I ⊂R, x ∈C 1(I ) and f : M ⊂Rn → T M ⊂Rn is Lipschitz continuous. For the discussion
below, we assume that (22) has an invariant measure µ.

Assumption D.1. Let fϵ be an approximation of f, such that ∥f− fϵ∥L2(µ) =O(ϵ) as ϵ→ 0. We also
denote xϵ that solves the approximate dynamics,

ẋϵ(t ) = fϵ(xϵ(t )), t > t0, xϵ(t0) = x0. (23)

Here, fϵ is assumed to be Lipschitz continuous.

To facilitate the analysis below, we review the following basic result:

Lemma D.1 (Gronwall). Let p ∈ L1([0,T ]), that is,
∫ T

0 p(t )d t <∞. Also let p ≥ 0 and g ,ϕ ∈C ([0,T ])
with g nondecreasing. If

ϕ(t ) ≤ g (t )+
∫ t

0
p(s)ϕ(s)d s,

then

ϕ(t ) ≤ g (t )exp

(∫ t

0
p(s)d s

)
, ∀t ∈ [0,T ].

Let’s first state the error induced by the approximate vector field fϵ. In the following, the expectation
is defined with respect to the distribution of the initial conditions, x0 ∼ µ. Particularly, the
expectation of the random variable x(t) is understood as integration over the distribution of
x(t ) that solves (22) with initial distribution x0 ∼µ.

Proposition D.1. Let the Assumption D.1 be valid. For any T > 0,

Eµ
[∥x(T )−xϵ(T )∥2]≤C (T )ϵ2,

where C (T ) = ce2LT T 2 > 0, for some constant c > 0 independent of T .
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Proof. For any fixed t > 0, Then,

∥x(t )−xϵ(t )∥ ≤
∫ t

0
∥f(x(s))− fϵ(xϵ(s))∥d s

≤
∫ t

0
∥f(x(s))− fϵ(x(s))∥d s +

∫ t

0
∥fϵ(x(s))− fϵ(xϵ(s))∥d s

≤
∫ t

0
∥f(x(s))− fϵ(x(s))∥d s +L

∫ t

0
∥x(s)−xϵ(s)∥d s.

where L > 0 is the Lipschitz constant for fϵ. By Gronwall, we have,

∥x(t )−xϵ(t )∥ ≤ eLt
∫ t

0
∥f(x(s))− fϵ(x(s))∥d s.

By the Jensen’s inequality,

∥x(t )−xϵ(t )∥2 ≤ e2Lt t 2
(

1

t

∫ t

0
∥f(x(s))− fϵ(x(s))∥d s

)2

≤ e2Lt t
∫ t

0
∥f(x(s))− fϵ(x(s))∥2 d s.

Taking expectation, applying Fubini’s theorem and the assumption,

Eµ
[∥x(t )−xϵ(t )∥2]≤ e2Lt t

∫ t

0
Eµ

[∥f(x(s))− fϵ(x(s))∥2] d s ≤ ce2Lt t 2ϵ2,

for some c > 0.

For convenience of the discussion, let us state the GMLS error bound in terms of the fill distance
Mirzaei et al. (2012),

hX ,M = sup
x∈M

min
xi∈X

dg (x,xi ),

where dg : M ×M →R+ denotes the geodesic distance.

Lemma D.2. Let X = {x1, . . . ,xN } ⊂ M be a quasi-uniformly distributed data with hX ,M ≤ h0. Define
M∗ =⋃

x∈M B(x,C2h0), a union of geodesic ball over the length C2h0, for some constant C2 > 0. Then
for any real-valued function f ∈Cℓ+1(M∗) and α that satisfies |α| ≤ ℓ, with probability higher than
1− 1

N , ∣∣Dα f (x)− �Dα f (x)
∣∣≤ chℓ+1−|α|

X ,M

∣∣ f
∣∣
Cℓ+1(M∗), (24)

for all x ∈ M and some c > 0. Here the semi-norm

| f |Cℓ+1(M∗) := max
|β|=ℓ+1

∥Dβ f ∥L∞(M∗),

is defined over M∗. In the error bound above, we used the notation �Dα f as the GMLS approximation
to Dα f using local polynomials up to degree ℓ, where Dα denotes a general multi-dimensional
derivative with multiindex α.

Assumption D.2. Let the training data set X be sampled i.i.d. with sampling distributionµ, which is
absolutely continuous with respect to the volume measure, dµ= qdVol, with 0 < qmi n ≤ q ≤ qmax .

Then we can show that:

Lemma D.3. Let the Assumption D.2 be valid, then the filled distance

PX∼µ(hX ,M > δ) ≤ exp
(
−C Nδd

)
,

where C =C (d)/V ol (M) is some constant that depends on the intrinsic dimension of the manifold
M.

Proof. Suppose hX ,M > δ, so there is x ∈ M such that minxi∈X dg (x,xi ) ≥ δ. So Bδ(x)∩ X =;. In

other words, each xi ∈ X is in M \Bδ(x). This has measure 1− µ(Bδ(x))
µ(M) ≤ 1−Cδd , where the inequality

is based on the lower bound estimate for the Volume of geodesic ball (Proposition 14 in Croke
(1980)). Hence, minxi∈X dg (x,xi ) ≥ δ occurs with probability less than (1−Cδd )N ≤ exp(−C Nδd ).
This completes the proof.
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With this estimate, we conclude that with probability higher than 1− 1
N , the fill distance is bounded

from above,

hX ,M ≤
(

Vol(M)

C (d)

log(N )

N

) 1
d

. (25)

The result above requires the sample data to be independent and identically distributed (i.i.d.).
While in general the data may not be i.i.d. as they are time series, the training data for the 1D
example are drawn i.i.d. from the sampling distribution µ (see Appendix E.1).

Using the same argument and repeating the proof of Lemma A.2 in Yan et al. (2023), one can show
that with probability higher than 1− 2

N , the separation distance,

c1(d)
qmi n

qmax
N−2/d ≤ qX ,M := 1

2
min
i ̸= j

dg (xi ,x j ) ≤C2(d)

(
log N

N 2

)1/d

,

for some c1(d),C2(d)0), so the quasi-uniformity assumption in Lemma (D.2) for a fixed X of size
N ,

qX ,M ≤ hX ,M ≤ cq qX ,M ,

remains valid although with constant cq that grow on the order of N 1/d . So, we conclude that
under the Assumption D.2, the GMLS error estimate for any f ∈Cℓ+1(M∗) is given by,

∥∥∥Dαf(x)− D̂αf(x)
∥∥∥

C∞ ≤ Ĉ

(
log(N )

N

) ℓ+1−|α|
d ∣∣f∣∣Cℓ+1(M∗), (26)

for |α| ≤ l and a constant Ĉ = c
(

Vol(M)
C (d)

)1/d
that depends on d and Vol(M) with probability higher

than 1− 1
N .

We now solve the ODE in (23) with the following approximation (which is exactly (13)),

x̂ϵ,i+1 = x̂ϵ,i +∆t fϵ(x̂ϵ,i )+ (∆t )2N̂ϵ,i ĝ (T̂⊤
ϵ,i fϵ(x̂ϵ,i )), (27)

where we have defined x̂ϵ,i := x̂ϵ(ti ).

Let γi : [0,1] → M ⊂Rn denotes the geodesic that satisfies γi (0) = xϵ,i := xϵ(ti ) and γ′i (0) = fϵ(xϵ,i ).
In the discussion below, we denote the true tangent and normal vectors at xϵ,i by Tϵ,i and Nϵ,i ,
respectively. Since expxϵ,i

(fϵ(xϵ,i )∆t ) = γi (∆t ), we can employ the following Taylor’s expansion on
the exponential map,

xϵ,i+1 = expx0
(fϵ(xϵ,i )∆t ) = γi (∆t )

= γi (0)+γ′i (0)∆t + 1

2
γ′′i (0)(∆t )2 +O((∆t )3)

= xϵ,i + fϵ(xϵ,i )∆t + 1

2
α

(
fϵ(xϵ,i ), fϵ(xϵ,i )

)
(∆t )2 +O((∆t )3), (28)

where α is the second fundamental form of M , which is a quadratic function of fϵ(xϵ,i ), that is,

α
(
fϵ(xϵ,i ), fϵ(xϵ,i )

)= Nϵ,i N⊤
ϵ,i∇fϵ(xϵ,i )fϵ(xϵ,i ), (29)

where ∇u v denotes the Euclidean Rn directional derivative of v in the direction of u, and fϵ(xϵ,i ) is
an extension of fϵ(xϵ,i ), such that fϵ(xϵ,i )|M = fϵ(xϵ,i ).

On the other hand, it is clear that,

xϵ,i+1 −xϵ,i = Tϵ,i T⊤
ϵ,i (xϵ,i+1 −xϵ,i )+Nϵ,i N⊤

ϵ,i (xϵ,i+1 −xϵ,i ) = fϵ(xϵ,i )∆t +Nϵ,i N⊤
ϵ,i (xϵ,i+1 −xϵ,i ). (30)

Subtracting (30) from (28) and using (29), and taking N⊤
ϵ,i , replacing t with ∆t , we have,

g (T⊤
ϵ,i fϵ(xϵ,i ))(∆t )2 := N⊤

ϵ,i (xϵ,i+1 −xϵ,i ) = (∆t )2

2
N⊤
ϵ,i∇fϵ(xϵ,i )fϵ(xϵ,i )+O

(
(∆t )3) , (31)

which motivates the GMLS estimation with polynomial of degree ℓ≥ 2.
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In general, however, we do not have the underlying Tϵ,i and Nϵ,i . If we numerically employ the
GMLS to approximate the local parameterization ι : Rd → M with polynomial of degree-s as
prescribed in Appendix A.3, we have the error bound in (26) with |α| = 1. That is, with probability
higher than 1− 1

N ∥∥Tϵ,i − T̂ϵ,i
∥∥∞ ≤ Ĉ

(
log(N )

N

) s
d |ι|C s+1(M∗) := δ,

where we have defined δ to simplify the notation. Using the Gram-Schmidt formula and basic
norm triangle inequalities, one can deduce that the normal vector estimation has the same error
bound,

∥∥Nϵ,i − N̂ϵ,i
∥∥∞ ≤ δ. This means that,

α
(
fϵ(xϵ,i ), fϵ(xϵ,i )

)= Nϵ,i N⊤
ϵ,i∇fϵ(xϵ,i )fϵ(xϵ,i ) = N̂ϵ,i N̂⊤

ϵ,i∇fϵ(xϵ,i )fϵ(xϵ,i )+O(δ), (32)

in the uniform sense. Also,

xϵ,i+1 −xϵ,i = T̂ϵ,i T̂⊤
ϵ,i (xϵ,i+1 −xϵ,i )+ N̂ϵ,i N̂⊤

ϵ,i (xϵ,i+1 −xϵ,i )

= fϵ(xϵ,i )∆t + N̂ϵ,i N̂⊤
ϵ,i (xϵ,i+1 −xϵ,i )+

(
T̂ϵ,i T̂⊤

ϵ,i −Tϵ,i T⊤
ϵ,i

)
(xϵ,i+1 −xϵ,i )︸ ︷︷ ︸

O(δ)∆t∥fϵ(xi )∥∞

. (33)

Subtracting (33) from (28), using (32), and taking N̂⊤
ϵ,i , replacing t with ∆t , we will numerically

estimate the following quantity,

g (T̂⊤
ϵ,i fϵ(xϵ,i ))(∆t )2 := N̂⊤

ϵ,i (xϵ,i+1 −xϵ,i ) = (∆t )2

2
N̂⊤
ϵ,i∇fϵ(xϵ,i )fϵ(xϵ,i )+O

(
(∆t )3 +δ∆t

)
. (34)

Based on the GMLS error bound in (26), we immediately have the following result.

Lemma D.4. Let the Assumption D.2 be valid. Suppose that the solution generated by the system of
ODEs in (22) lie on a smooth manifold, of at least C 3 such that (28) is valid. Let ι be at least C s+1(M∗),
where s ≥ 2. Furthermore, let ĝ be the GMLS polynomial of order ℓ estimate for g ∈Cℓ+1(M∗) in
(34) with ℓ≥ 2. Then, with probability higher than 1− 2

N ,∥∥∥g (T⊤
ϵ,i fϵ(xϵ,i ))− ĝ (T̂⊤

ϵ,i fϵ(xϵ,i ))
∥∥∥

C∞(Rn−d )
≤ Ĉg

(
log(N )

N

) ℓ+1
d ∣∣g ∣∣

Cℓ+1(M∗)

+Ĉι∆t

(
log(N )

N

) s
d |ι|C s+1(M∗)∥fϵ(xϵ,i )∥∞,

where Ĉg and Ĉι are the two constants of the error bounds of the GMLS estimates for, respectively, g
and ι, as defined in (26).

Proof. By GMLS error estimate, it is clear that, by probability greater than 1− 1
N ,∥∥∥g (T̂⊤

ϵ,i fϵ(xϵ,i ))− ĝ (T̂⊤
ϵ,i fϵ(xϵ,i ))

∥∥∥
C∞(Rn−d )

≤ Ĉg

(
log(N )

N

) ℓ+1
d ∣∣g ∣∣

Cℓ+1(M∗)

On the other hand, with probability greater then 1− 1
N ,∥∥∥g (T⊤

ϵ,i fϵ(xϵ,i ))− g (T̂⊤
ϵ,i fϵ(xϵ,i ))

∥∥∥
C∞(Rn−d )

= ∥∥(Nϵ,i − N̂ϵ,i )⊤(xϵ,i+1 −xϵ,i )
∥∥∞

≤ ∥∥Nϵ,i − N̂ϵ,i
∥∥∞∥∥xϵ,i+1 −xϵ,i

∥∥∞
≤ Ĉι

(
log(N )

N

) s
d ∣∣ι∣∣C s+1(M∗)∆t∥fϵ(xϵ,i )∥∞, (35)

where we have used the bound in (26) and the first order Taylor expansion in (28). Combining
these two bounds, the proof is complete.

Proposition D.2. Let xϵ be the solution of (23) with Lipschitz fϵ. We approximate xϵ numerically
through the solver defined in (27) with ĝ in (34) to be the GMLS approximant of g as defined in (31).
Let the assumption in Lemma D.4 be valid. Then, with probability higher than 1− 3

N ,

Eµ
[∥xϵ,i − x̂ϵ,i∥2]≤ C̆∆t 2

(
log(N )

N

) 2min
{
ℓ+1,s

}
d

,
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as N →∞ and ∆t → 0, where C̆ depends on qmax ,Vol(M),T,L, |g ∣∣
Cℓ+1(M∗), |ι|C s+1(M∗),∥fϵ(xϵ,i )∥∞,

∥ĝ∥C (M∗).

Proof. To establish the convergence, let us state the local truncation error by inserting the true
solution of (23) to the discrete solver in (27),

τi := xϵ,i+1 −xϵ,i

∆t
− fϵ(xϵ,i )−∆tN̂ϵ,i ĝ (T̂⊤

ϵ,i fϵ(xϵ,i )),

= ∆t
(
Nϵ,i g (T⊤

ϵ,i fϵ(xϵ,i ))− N̂ϵ,i ĝ (T̂⊤
ϵ,i fϵ(xϵ,i ))

)
, (36)

where we have used (28) with quadratic and higher order terms expressed in terms of g using (29)
and (34). We first note that this scheme is indeed consistent, that is, with probability higher than
1− 3

N

∥τi∥∞ ≤ ∆t
(∥∥∥Nϵ,i g (T⊤

ϵ,i fϵ(xϵ,i ))−Nϵ,i ĝ (T̂⊤
ϵ,i fϵ(xϵ,i ))

∥∥∥+∥∥∥Nϵ,i ĝ (T̂⊤
ϵ,i fϵ(xϵ,i ))− N̂ϵ,i ĝ (T̂⊤

ϵ,i fϵ(xϵ,i ))
∥∥∥)

≤ ∆t

(
Ĉg

(
log(N )

N

) ℓ+1
d ∣∣g ∣∣

Cℓ+1(M∗)

+Ĉι

(
log(N )

N

) s
d |ι|C s+1(M∗)

(∥fϵ(xϵ,i )∥∞∆t +∥ĝ∥C (M∗)
))

,

where we have used the bound in (D.4) and the fact that
∥∥Nϵ,i − N̂ϵ,i

∥∥∞ ≤ δ with probability 1− 1
N .

This bound effectively means that ∥τi∥∞ =O(∆t ) as ∆t → 0, with constant stated as above.

Following the standard convergence analysis by subtracting (27) from (36), and denoting the
difference as Ei := xϵ,i − x̂ϵ,i , we obtain

Ei+1 = Ei +∆t
(
fϵ(xϵ,i )− fϵ(x̂ϵ,i )

)+ (∆t )2
(
N̂ϵ,i

(
ĝ (T̂⊤

ϵ,i fϵ(xϵ,i ))− ĝ (T̂⊤
ϵ,i fϵ(x̂ϵ,i )

))
+τi∆t . (37)

and using the fact that fϵ and ĝ are Lipschitz continuous and denoting L as the largest Lipschitz
constant among these two functions, we have

∥Ei+1∥∞ ≤ (1+L∆t +L2(∆t )2)∥Ei∥∞+∥τi∥∞∆t ,

where C̃ = Ĉ
∣∣g ∣∣

Cℓ+1(M∗). Solving this discrete equation, we have,

∥Ei∥∞ ≤ (1+L∆t +L2(∆t )2)i∥E0∥∞+∆t
i∑

j=1
(1+L∆t +L2(∆t )2)i− j ∥τ j−1∥∞.

For time interval [0,T ] where n∆t = T , we have,

(1+L∆t +L2(∆t )2)i− j ≤ eL(i− j )∆t ≤ eLn∆t = eLT .

With this identity, it is clear that, with probability higher than 1− 1
N ,

∥Ei∥ ≤ eLT

∥E0∥+ C̃ T∆t

(
log(N )

N

) min
{
ℓ+1,s

}
d


Since no error is committed at the initial condition, E0 = 0 and we conclude that,

∥Ei∥∞ ≤ C̃ TeLT∆t

(
log(N )

N

) min
{
ℓ+1,s

}
d

 ,

as ∆t → 0 and N →∞. Taking the expectation of square under µ and using the upper bound of
the density in the Assumption D.2, the proof is complete.

With these results, the proof of Theorem 3.1 is rather straightforward, owing to the fact that,√
Eµ

[∥xn − x̂ϵ,n∥2
] ≤

√
Eµ

[∥xn −xϵ,n∥2
]+Eµ [∥xϵ,n − x̂ϵ,n∥2

]
≤

√
Eµ

[∥xn −xϵ,n∥2
]+√

Eµ
[∥xϵ,n − x̂ϵ,n∥2

]
, (38)

and the upper bounds in Propositions D.1 and D.2 with ℓ = s. When using the result from
Proposition D.1, we note the notations xn := x(tn) = x(T ) and xϵ,n := xϵ(tn) = xϵ(T ) where tn =
n∆t = T .
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Table 2: Model parameters of GMKRR for the 1D cases

CASE SE Kernel
Band-
width, γ

Order of
GMLS for
NC, ℓ

Tangent
Space Es-
timation,
s

D = 0 1.0 6 3
D = 0.1 1.0 7 5
D = 0.3 1.0 6 5
D = 0.5 1.0 5 4

E ADDITIONAL EXPERIMENTAL DETAILS

All the reported results, including computational costs, are generated on a MacBook Pro Intel Core
i7. All the training and prediction are run on CPU.

E.1 A 1D DYNAMICS EXAMPLE

Dataset. The solution to the scalar ODE,

θ̇ = 3

2
−cos(θ), θ(0) = 0

has a closed-form solution
θ(t ) = 2tan−1

(
tan(

p
5t/4)/

p
5
)

and using the given embedding

(x1, x2) = (r (θ)cos(θ),r (θ)sin(θ))

one can evaluate the exact trajectory (x1, x2) at any t > 0, that lies on the manifold.

For a given (K ,D) combination, the trajectory is sampled over [0,128] with a step size of ∆t = 0.04,
which ends up with 3201 steps. The first 200 steps, which covers approximately 1.5 periods, are
used for training; the test starts from t = 0 and covers all the 3201 steps.

Hyperparameters of the models. In Fig. 1, the GMKRR model uses the SE kernel. The hyperpa-
rameters include the kernel bandwidth γ, order of GMLS for normal correction ℓ, and order of
GMLS for estimation of tangent space s; ℓ is only used for Euler+NC. A validation procedure is used
to identify the best hyperparameters for the GMKRR model combined with a particular ODE solver
as follows. A grid search is performed over (γ,ℓ, s) ∈ {0.1,0.5,1.0,5.0,10.0}×{3,4,5,6,7}×{3,4,5,6,7},
and for each combination (γ,ℓ, s), the dynamics is solved using the chosen solver for 50 steps
starting from t = 0 and the RMSE is recorded. When an initial value of γ were selected, more
rounds of refined grid search over (γ,ℓ, s) would be performed until no further improvement
in prediction is observed. For example, if γ = 1.0 is selected from {0.1,0.5,1.0,5.0,10.0}, then a
narrower range (γ,ℓ, s) ∈ {0.8,0.9,1.0,1.1,1.2}× {3,4,5,6,7}× {3,4,5,6,7} would be considered next.
The hyperparameters associated with the lowest RMSE are used for the GMKRR model. In practice,
GMKRR model prediction is found to be insensitive to the hyperparameters when Euler+NC is
used. Hence, for a (K ,D) combination, the GMKRR model is trained using the optimal γ and s for
RK2 and the optimal ℓ for Euler+NC. The detailed choices are provided in Table 2. This choice of
hyperparameters gives a slight disadvantage on Euler+NC. However, as one has seen in Fig. 1b
and Fig. 5 for a more complete prediction horizon, RK2 still fails miserably for longer prediction
time in all cases, while Euler+NC consistently predicts the periods and amplitudes even though it
is only first-order time accurate.

Comparison with other baselines. In Fig. 1b (and Fig. 5 for the entire prediction time and
other values of D), the NODE method (Chen et al., 2018) and the LDNet method (Regazzoni
et al., 2024) are included as the baselines. The codes for these methods are publicly available
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Figure 5: Predictions time for various values of D (A more complete depiction of Figure 1b).

online (NODE1 and LDNet2). For NODE, the network architecture consists of two inputs and two
outputs, with two hidden layers of 32 neurons each and PReLU activation function. The NODE is
time-integrated by RK4. The model is trained using Adam optimizer with a learning rate of 1×10−4

over 1000 iterations, using a batch size of 20 trajectory segments; in each batch, the segments are
randomly selected from the same training dataset used by GMKRR (one trajectory of 200 steps).
For LDNet, the network architecture consists of a dynamics network and a reconstruction network.
The former has two inputs (number of states, i.e., ambient dimensions) and two outputs (latent
variables), with a hidden layer of 20 neurons and tanh activation function; the latter has three
inputs (latent variables and index of ambient dimensions) and one output (the value of one state),
with a hidden layer of 20 neurons and tanh activation function. The LDNet is designed to be time-
integrated by the forward Euler method. The model is trained using first Adam optimizer with
a learning rate of 1×10−2 over 200 iterations, and then BFGS optimizer for 1300-4000 iterations,
until the loss drops to below 5×10−9. However, it is worth noting that we failed to train LDNet
using the same size of training dataset used by GMKRR, and the reported prediction results are
based on the training of twice the size of the dataset used in training GMKRR.

Besides the predictions of the last 6 periods in Fig. 1 and the entire time in Fig. 5, the test RMSEs
are provided in Table 3. While the RMSEs of Euler+NC and NODE are comparable for the most of
D’s, the performance of the Euler+NC method is clearly better than the NODE when D = 0.1. For
this latter case, NODE fails to maintain the geometrical constraint over long time prediction. The
LDNet behaves in an irregular manner too: it achieves the best accuracy for D = 0,0.3,0.5, but fails
to predict the true trajectory after about 50 model time unit for D = 0.1. Furthermore, we note
that when only one latent variable is used (i.e., the same as the intrinsic dimension) LDNet could
not produce any useful predictions. Furthermore, the average training and prediction costs for all
the methods are given in Table 4. While the prediction costs of the methods are comparable, the
training costs of NODE and LDNet are 3-4 orders of magnitude higher than the GMKRR methods.

Effect of kernels. Besides the results in Fig. 1, the effect of kernels on the GMKRR model is also
examined. We consider the most challenging case of D = 0.5, and four kernels:

1. SE kernel: ρ(x,x′) = exp(−∥∥x−x′
∥∥2/γ).

2. Matérn 5/2 (M52): ρ(x,x′) = (1+p
5d +5/3d 2)exp(−p5d).

1https://github.com/rtqichen/torchdiffeq
2https://github.com/FrancescoRegazzoni/LDNets
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Table 3: RMSE values for different cases

Case (D) Euler+NC RK2 NeuralODE LDNet
Case 1 (D = 0.0) 0.0184 1.5178 0.4372 0.0001
Case 2 (D = 0.1) 0.0333 1.9530 1.5649 2.8000
Case 3 (D = 0.3) 0.0224 1.6325 0.2349 0.0002
Case 4 (D = 0.5) 0.3842 2.0433 0.4450 0.0157

Table 4: Average training and prediction times for the 1D example.

Method Training Time (s) Prediction Time (s)
Euler+NC

0.1077
5.159

RK2 3.363
Neural ODE 580.9 1.003

LDNet 84.81 2.574

3. Matérn 3/2 (M32): ρ(x,x′) = (1+p
3d)exp(−p3d).

4. Matérn 1/2 (M12): ρ(x,x′) = exp(−d)

where d = ∥∥x−x′
∥∥/γ.

After a cross-validation similar to the one outlined at the beginning of this section, the hyper-
parameters for different kernels are listed in Table 5. Unlike the case in Fig. 1, the bandwidth
parameter γ for each kernel is also obtained by cross-validation, to ensure fair comparison among
the kernels. The prediction is shown in Fig. 6, and the RMSE’s are listed in Table 5. Clearly, there are
no significant differences in terms of prediction skills among the different kernels; this confirms
that the framework is not restrictive to only the SE kernel. This is as expected since this problem
has smooth vector fields. However, we do note that it is very likely that there are some examples of
certain regularity where it is advantageous to employ the Matérn kernels.

Table 5: Hyperparameters and RMSE’s for models with different kernels.

Kernel SE Kernel
Band-
width, γ

Order of
GMLS for
NC, ℓ

Tangent
Space Es-
timation,
s

RMSE

SE 1.90 5 4 0.4068
M52 0.28 3 4 0.5861
M32 0.56 3 4 0.7860
M12 0.65 3 5 0.5559

Effect of accuracy of tangent space. Among the examples considered in this study, the 1D
example is the only one where all the information is known exactly; this includes the manifold
parameterization and tangent space as well as the dynamics. Hence, this example serves as a
good case for the numerical verification of the convergence bound for the Euler+NC method in
Theorem 3.1, which is repeated below,√

Eµ
[∥xn − x̂ϵ,n∥2

]≤C

(
ϵ+∆t

(
log(N )

N

) ℓ
d

)
,

where C ∝ eLT .

The verification is designed as follows. First, to avoid the effect of ϵ, i.e., the error in estimated
dynamics, the true dynamics in ambient space for the 1D example is used. In this case, the error
bound should be O((log(N )/N )ℓ) where the constant depends on ∆t . Next, we choose a small
time step size ∆t = 10−6 and a short prediction horizon T = 10−4; this is to avoid the dominance of
errors due to time discretization and constant C in the bound. Subsequently, a series of datasets
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Figure 6: Model predictions using different kernels.

of size Ni = 160×2i , i = 1,2,3,4,5 are generated. For each i , Ni data points are sampled from the
manifold, and the dataset is used for the tangent space estimation and the normal correction in
the Euler+NC method. Lastly, 100 test trajectories are considered, whose initial conditions are
randomly sampled on the manifold. The RMSE of prediction errors at the last step is recorded for
each Ni . The convergence plot is shown in Fig. 7, which shows the cases of ℓ= 2,3. The two cases
closely follow the theoretical convergence rates.

Figure 7: Convergence of Euler+NC method given true dynamics.

E.2 A 2D CAVITY FLOW PROBLEM

Dataset. The 2D cavity flow dataset is publicly available from PySINDy (2024) and is generated
from one Direct Numerical Simulation (DNS) solution of a 2D laminar cavity flow problem.
According to Callaham et al. (2022), the original DNS solution has 30000 steps, with a step size
of ∆t = 0.01s. The first 4000 steps are used to perform a linear dimension reduction by Proper
Orthogonal Decomposition (POD). The leading 64 POD modes are retained and all the 30000 steps
of solutions are projected onto the 64 POD coordinates. Hence, the available dataset consists of
one single trajectory of 30000 steps, and the ambient dimension is n = 64.
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For fairness in comparison, the SINDy, M-SINDy, and GMKRR models are trained using the first
4000 data points. For testing, the remaining 26000 data points are split into 13 trajectories of 2000
steps.

Hyperparameters of the models. First, the setup of the GMKRR algorithm is discussed. The
intrinsic dimension of the dataset is estimated to be 2.38 using a kernel-based algorithm (see
Appendix B); this indicates that the dataset approximately lives on a two-dimensional manifold,
and hence d = 2 is chosen. The rest of the hyperparameters in GMKRR are chosen via a validation
procedure similar to that of the 1D example. The SE kernel bandwidth γ= 10, polynomial order of
GMLS for NC ℓ= 3, and the tangent space estimation is done by local SVD and denoted s = 0.

The SINDy algorithm is used as a baseline case. Due to the limitation on the curse of dimension-
ality, the SINDy model is only trained to predict the first 6 POD coordinates, using third-order
polynomial features.

The M-SINDy algorithm is an existing approach proposed in Callaham et al. (2022) to learn
dynamics on manifold. This algorithm first applied Dynamic Mode Decomposition (DMD) to
represent the original 64-dimensional dynamics by temporally-coherent modes U and DMD
coordinates z(t), x(t) = Uz(t). Then 4 DMD coordinates, denoted ẑ, are manually selected by
physical intuition to represent the manifold on which the data points reside. Subsequently,
standard SINDy with third-order polynomial feature is applied to learn the dynamics ˙̂z = f(ẑ),
while another fifth-order polynomial model z = g(ẑ) is trained to estimate the full DMD coordinates
using ẑ. In the prediction stage, the ODE ˙̂z = f(ẑ) is solved to generate the dynamics in ẑ, then
the POD coordinates are recovered by DMD modes x = Ug(ẑ). In this paper, the open-source
implementation PySINDy (2024) of M-SINDy for the cavity flow problem is used to generate the
results for comparison.

Figure 8: Comparison of predictions for a representative trajectory.

Additional results. The predicted dynamics from SINDy, M-SINDy, and GMKRR are compared
for one typical trajectory in Fig. 8, which shows the 1st and 3rd POD coordinates at the first second
and the last second of a test trajectory. The Mode 1 results show typical characteristics of the three
methods. The SINDy starts to deviate from the truth from the beginning, as it does not satisfy the
manifold constraints. Both M-SINDy and GMKRR predict the trajectory of the solutions accurately
in the beginning, but over time a discernible phase shift is observed in the M-SINDy predictions.
The Mode 3 results show that, using the same amount of training data (4000 points), GMKRR
captures the oscillation amplitudes much better than M-SINDy.

The convergence study of GMKRR is performed on the number of samples, N . The correct
functioning of GMKRR algorithm requires the training dataset to capture the entire manifold, yet
for the quasi-steady cavity dynamics, the complete coverage of the manifold requires over 3000
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Figure 9: Convergence study of GMKRR: Max RMSE as a function of the number of training
samples N .

steps. Hence in the convergence study the following strategy is employed. The original training
dataset of 4000 data points are split into 100 shorter trajectories of 40 steps. A dataset of N = 100K
data points is formed by choosing the first K steps of each shorter trajectory. For convergence
study, a series of datasets are generated with K = 5,10,15,20,25,30,35,40, and for each model
the average error of the test trajectories is recorded. The results are shown in Fig. 9, indicating
RMSE∼O(N−1); this convergence rate aligns with standard kernel regression methods.

E.3 KURAMOTO-SIVASHINSKY DYNAMICS

Datasets. The KS dynamics is governed by the following partial differential equation (PDE),

ut +uux +uxx +νuxxxx = 0, x ∈ [0,L], t ≥ 0.

Here we consider a periodic boundary condition u(t ,0) = u(t ,L) and a tunable parameter ν. When
L = 2π and given an appropriate initial condition u(0, x), on a discretized grid of 64 points, one
obtains beating dynamics for ν= 16

337 and travelling dynamics for ν= 4
87 (Rowley & Marsden, 2000).

In Floryan & Graham (2022), both the beating and travelling dynamics are considered; the models
are trained using short time intervals of training data (e.g., 1-2 periods of oscillation) and predicted
the dynamics over long time intervals (e.g., over 10 periods of oscillation). However, in their open-
source repository, only the training datasets are provided. To quantitatively assess the long-term
prediction errors, we have to regenerate the complete long-term datasets. Furthermore, since the
numerical methods employed by Floryan & Graham (2022) and us differ, we take the following
procedure to ensure the consistency of datasets.

Our numerical solution of the KS equation is obtained using the standard Exponential Time
Differencing method. Next,

1. Beating dynamics: We choose a step size of 0.0001, and the initial condition to be the
last step in CANDyMan’s training dataset of beating dynamics. The simulation is run for
75000 steps, and the initial 25000 steps of transients are discarded. The remaining 50000
steps are subsampled with a step size of 0.01, so that eventually 500 steps are saved as the
dataset. The period of beating dynamics is approximately 45 steps.

2. Travelling dynamics: We choose a step size of 0.001, and take the same strategy as above
for the initial condition. The simulation is run for 180000 steps, and the initial 40000
steps of transients are discarded. With a sampling step size of 0.01, 14000 steps are saved
as the dataset. The long period of travelling dynamics is approximately 5000 steps.

Both the GMKRR and CANDyMan algorithms are tested on these newly-generated datasets. For
CANDyMan, since the physical behaviors of the new datasets are the same as the original ones,
we employed the identical model architectures and all hyperparameters (e.g., number of neurons
and training epochs) from the original paper. The hyperparameters of GMKRR models are found
through a cross-validation procedure and listed in Table 6. Note that here the initial guess of the
bandwidth parameter is determined using γ∗ defined in App. B.2.
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Beating dynamics. The GMKRR and CANDyMan models are trained using the first 100 steps of
dataset, which correspond to approximately 2 periods of oscillations. The prediction is computed
by taking the first step of the dataset as the initial condition and performing time stepping for 500
steps, i.e., approximately 11 periods.

The predicted spatiotemporal dynamics are shown in Fig. 10. While both models seem to produce
visually similar results, as shown in Fig. 10a, GMKRR does show one order of magnitude lower
error than CANDyMan. The sources of error in CANDyMan are explained via the comparison of
the time histories of u at two spatial locations; in Fig. 10b, the last two periods of time history are
shown. Clearly, CANDyMan shows some phase error after 11 periods of prediction. Furthermore,
in the second panel, while the amplitude of oscillation is low, CANDyMan shows non-physical
highly-oscillatory response; this is attributed to the errors in the autoencoder of CANDyMan.

Travelling dynamics. As explained in Sec. 5.2, five models are considered for this case: CANDy-
Man, NODE, LDNet, GMKRR-Full, and GMKRR-FFT. The GMKRR-Full model is trained using every
other step in the first 6000 steps of data (so a total of 3000 steps) without assuming any structure in
the model. The subsampling of every other step is to reduce the computational cost of the kernel
regression. The CANDyMan, NODE, LDNet, and GMKRR-FFT employ the following special data
preprocessing step. Denote the data sample at time t as u(t ) ∈R64. The preprocessing starts with a
discrete Fourier transform to decompose the data u(t ) = Re(û(t )exp(iφ(t ))) into a standing wave
û(t) and its phase shift φ(t). The standing wave and phase dynamics capture the fast and slow
timescales, respectively, and both have an intrinsic dimension of 1. After the preprocessing step,
the four models only needed the first 100 steps to train for the standing wave dynamics ˙̂u = fN N (û)
as well as the change in phase per time step ∆φ= gN N (û).

The hyperparameters for CANDyMan are the same as the original paper, where its atlas-of-charts
approach is applied to fN N and gN N is a vanilla fully-connected NN (for each chart). For the
NODE, fN N consists of 64 inputs and 64 outputs, with two hidden layers of 128 neurons each and
tanh activation function, and the rest is the same as the 1D case, except that 2000 iterations were
used in training; gN N consists of one hidden layer of 32 neurons and tanh activation function, and
is trained by Adam optimizer with learning rate 10−3. The LDNet is the same as NODE, except the
fN N is replaced by the latent dynamics. The dynamics network has 64 inputs and two outputs
(latent variables), with two hidden layers of 8 neurons each and tanh activation function; the
reconstruction network three inputs (latent variables and x-coordinate) and one output (the value
of one state), with two hidden layers of 8 neurons each and tanh activation function. The rest is
the same as the 1D case, except that 6000 iterations were used in training. In this case LDNet use
the same dataset as other models. Note that LDNet would fail to produce reasonable predictions if
only one latent variable (i.e., the intrinsic dimension) is used.

Figure 11a shows the initial short period of dynamics. All models perform reasonably well, and
all captures the short time-scale with low errors. Yet, the GMKRR models either outperform or
are on par with other baselines in terms of prediction accuracy. Figure 11b shows the long-term
dynamics. There is a clear difference in the error level across the three models, that is attributed to
the mismatch in the long time-scale. GMKRR-FFT almost captures exactly the long time-scale;
this results in the lowest error, that is almost one order of magnitude lower than all other baselines,
even though these models leverage the same prior knowledge. The comparison highlights that,
while the models that do not account for geometrical constraints (i.e., NODE and LDNet) can
capture short-term dynamics well, their accuracy quickly deteriorate over time. The GMKRR
outperforms other models, which is attributed to its capability to model the dynamics using
exactly the intrinsic dimension.

E.4 REACTION-DIFFUSION DYNAMICS

The reaction-diffusion dynamics is governed by the following coupled 2D PDEs,

ut = [1− (u2 + v2)]u +β(u2 + v2)v +d1(uxx +uy y )

vt =−β(u2 + v2)u + [1− (u2 + v2)]v +d2(vxx + vy y )

on a square domain (x, y) ∈ [−10,10]×[−10,10] with homogeneous Neumann boundary conditions
and parameters d1 = d2 = 0.1, β = 1. We follow the same numerical solution method as in
CANDyMan by directly transcribing the MATLAB-based solver in its public repository into Python
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(a) Full spatiotemporal dynamics.

(b) Dynamics at select spatial coordinates.

Figure 10: The KS beating dynamics.
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(a) Initial spatiotemporal dynamics showing the short time-scale.

(b) Full spatiotemporal dynamics showing the long time-scale.

Figure 11: The KS travelling dynamics.
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Table 6: Model parameters of GMKRR for the CANDyMan cases

CASE MODEL Intrinsic
Dimen-
sion, d

SE Kernel
Band-
width, γ

Order of
GMLS for
NC, ℓ

Tangent
Space Es-
timation,
s

KS Beating GMKRR 1 440.163 4 0
KS
Travelling

GMKRR-Full 3 98.0816 3 0
GMKRR-FFT 1 61.47 4 0

Reaction-
Diffusion

GMKRR-Full 1 31000.6 4 0
GMKRR-PCA-T0 1 31319.5 4 0
GMKRR-PCA-T4 1 31319.5 4 4

using NumPy/SciPy. The domain is discretized into a uniform 101×101 grid, so the solution at
one time step is of dimension 20402. A step size of 0.05 is used, and 10200 steps are simulated; the
first 5200 steps are discarded to avoid transients. A period of response is approximately 72 steps,
and hence the full dataset contains nearly 70 periods. All the models are trained using the first 200
steps and tested on the full 5000 steps of data.

Figures 12a and 12b show results at the last time step. While visually all spirals seem similar,
CANDyMan does have errors that are two orders of magnitude larger than GMKRR methods. In
addition, the high-order tangent space estimation shows further and dramatic improvement over
the other GMKRR models. The large error in CANDyMan is explained by Fig. 12c. The CANDyMan
model does not accurately capture the period, and hence results in accumulation of error over
time.
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(a) Solution at t = 250, component u.

(b) Solution at t = 250, component v .

(c) The u dynamics at (x, y) = (10,−10); all GMKRR models overlap.

Figure 12: Reaction-diffusion dynamics.
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