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Abstract

In structure-based drug discovery, virtual screening using conventional molecular
docking methods can be performed rapidly but suffers from limitations in predic-
tion accuracy. Recently, Boltz-2 was proposed, achieving extremely high accuracy
in binding affinity prediction, but requiring approximately 20 seconds per com-
pound per GPU, making it difficult to apply to large-scale screening of hundreds
of thousands to millions of compounds. This study proposes Boltzina, a novel
framework that leverages Boltz-2’s high accuracy while significantly improving
computational efficiency. Boltzina achieves both accuracy and speed by omitting
the rate-limiting structure prediction from Boltz-2’s architecture and directly pre-
dicting affinity from AutoDock Vina docking poses. We evaluate on eight assays
from the MF-PCBA dataset and show that while Boltzina performs below Boltz-2,
it provides significantly higher screening performance compared to AutoDock
Vina and GNINA. Additionally, Boltzina achieved up to 11.8× faster through
reduced recycling iterations and batch processing. Furthermore, we investigated
multi-pose selection strategies and two-stage screening combining Boltzina and
Boltz-2, presenting optimization methods for accuracy and efficiency according to
application requirements. This study represents the first attempt to apply Boltz-2’s
high-accuracy predictions to practical-scale screening, offering a pipeline that
combines both accuracy and efficiency in computational biology. The Boltzina is
available on github; https://github.com/ohuelab/boltzina.

1 Introduction

In drug discovery research, structure-based drug design (SBDD) is a method that utilizes three-
dimensional structural information of target proteins to design and evaluate novel compounds [1].
Among these approaches, virtual screening (VS) [2] has been widely used to select promising
candidate molecules from vast compound libraries. In conventional VS, pose generation by molecular
docking and binding affinity prediction using scoring functions have been standard methods [3, 4],
but scoring functions based on physical models or empirical rules have limitations in accuracy [5, 6].

To address this challenge, machine learning-based scoring functions (MLSFs) have been proposed [7,
8, 9]. Diverse MLSF approaches range from classical Random Forests using interaction features [10]
to neural network methods such as convolutional networks based on contact information [11] and
graph neural networks operating on atomic and interaction graphs [12]. While MLSFs sometimes
show higher accuracy than conventional methods, they still face issues such as data dependency and
insufficient generalization to unknown targets, leaving reliability challenges in actual drug discovery
applications [9, 13].
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Figure 1: Overview of the Boltzina pipeline. The dashed blue box represents the original Boltz-2
affinity prediction pipeline, and the red × mark on the structure module indicates that it is omitted in
Boltzina.

The recently proposed Boltz-2 [14] integrates structure prediction and binding affinity prediction
using an AlphaFold3-like [15] diffusion model, achieving performance that significantly exceeds
conventional docking-based methods and MLSFs. Boltz-2 demonstrates performance approaching
molecular simulation-based free energy calculations [16, 17] by incorporating an affinity module for
protein–ligand complexes in addition to Boltz-1’s [18] structure prediction capabilities. Furthermore,
evaluation using MF-PCBA [19] reported screening performance that significantly surpasses existing
compound-protein interaction (CPI) prediction models [20] and empirical scoring methods [21].

However, Boltz-2 requires approximately 20 seconds per ligand for prediction, making direct ap-
plication to large-scale libraries exceeding one million compounds impractical [22, 23]. This is
because Boltz-2 requires a diffusion process for structure prediction, which causes the computational
time bottleneck in affinity prediction. To solve this challenge, methods that maintain Boltz-2’s high
accuracy while improving computational efficiency are required.

This study proposes Boltzina, a framework that achieves rapid compound screening by directly
predicting Boltz-2’s affinity and binding from poses generated by the existing docking method
AutoDock Vina [4]. We compare these methods on the MF-PCBA dataset and examine their
applicability to large-scale screening. Furthermore, we decompose Boltzina’s components to clarify
the accuracy–speed trade-off, and evaluate multi-pose selection strategies and two-stage screening
with Boltz-2 to discuss applicability in actual large-scale screening.

2 Materials and Methods

2.1 Boltzina Pipeline

Boltzina is based on Boltz-2’s architecture as shown in Figure 1. In the original Boltz-2, binding
affinity is predicted through staged information processing using the trunk module, structure module,
and affinity module. First, the trunk module extracts latent structural features from input protein
sequences and ligands. The trunk module primarily consists of PairFormer and MSA modules,
generating pairwise representations that capture intermolecular interactions. This latent representation
implicitly contains structural information. Next, the structure module predicts 3D structures based on
the latent representation from the trunk module, determining atomic coordinates and the geometric
arrangement of protein–ligand complexes. Finally, the affinity module predicts binding affinity using
intermolecular interaction information obtained from the trunk module and explicit 3D coordinate
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Table 1: Information on the 8 MF-PCBA test set assays used for evaluation and their corresponding
ligands. PDB IDs were used as references for grid positions when available. Active and Inactive
indicate the number of active and inactive compounds in each assay, with failed ligands excluded.

PubChem AID PDB ID/CID Active Inactive Failed Ligand

743445 6UE6 144 49851 5
485317 3MBG 976 49004 20

2097 1J1B 522 49393 8
493091 3PGL 782 49203 15

2650 7SXF 612 49270 11
504329 CID1474141 466 49516 18
588689 3EVG 486 49499 15
588549 CID2277079 159 49828 11

information predicted by the structure module. The affinity module performs processing specialized
for protein–ligand interface interactions through a dedicated PairFormer architecture, outputting two
predicted values: binding likelihood and affinity value. In Boltzina, instead of using the 3D coordinate
information from the structure module, poses generated by rigid docking with the external docking
software AutoDock Vina are directly input to the affinity module, thereby omitting the structure
module. This allows Boltzina to retain Boltz-2’s high-accuracy intermolecular interaction analysis
capabilities while avoiding the computational cost required for structure prediction.

In our implementation, PDB files of docking structures generated by AutoDock Vina were converted
to appropriate MMCIF-format complex structures using PDB-tools [24] and the MAXIT suite [25].
These converted structures were then processed into the model’s input format by reusing Boltz-2’s
template structure processing implementation. Furthermore, we constructed a batch processing
pipeline for efficiently handling multiple complexes and improved processing efficiency by making
the batch size variable, whereas it was fixed at 1 in Boltz-2.

2.2 Dataset

For evaluation, we used a test set independently constructed from the MF-PCBA dataset [19],
following [14]. This dataset is a virtual screening benchmark for developing and evaluating machine
learning methods in drug discovery, containing multiple targets collected from PubChem, and was also
used in Boltz-2 to evaluate model screening performance. In this study, we conducted experiments on
8 out of 10 MF-PCBA assays evaluated in Boltz-2, as listed in Table 1. Protein sequences similar to
these test data were appropriately filtered in Boltz-2’s training for affinity prediction tasks [14]. Here,
AID489030 was excluded because the clear binding pocket was unknown and the grid could not be
determined, and AID485273 was excluded because the active ligands included a high proportion
of large molecules with more than 60 heavy atoms, which would compromise pose estimation
by AutoDock Vina. For large molecules with more than 60 heavy atoms, AutoDock Vina’s pose
estimation often requires more than 5 minutes, which is outside the scope of fast screening intended
by Boltzina, and was therefore excluded from evaluation in this study.

In preprocessing, after applying PAINS (Pan-Assay Interference Compounds) filtering [26], all
binders and non-binders were randomly sampled to total 50,000 cases, then duplicates were removed.
Furthermore, molecules for which AutoDock Vina failed (e.g., those containing arsenic or boron
atoms) were excluded. Additionally, in docking calculations, cases that required more than 5 minutes
of computation time were also treated as timeouts and considered failures. As mentioned above, most
molecules that failed due to timeouts were large molecules with 60 or more heavy atoms. Screening
performance was finally evaluated with the numbers shown in Table 1. To evaluate execution time
and the effects of using multiple docking poses, 1,000 ligands were randomly sampled from the
MF-PCBA test set.

2.3 Docking Settings

AutoDock Vina [27] v1.2.7 was used for docking pose generation. The grid box size for AutoDock
Vina docking was set to 20 Å, a size widely adopted in general molecular docking studies [28], and
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exhaustiveness was set to the default value of 8. For the main screening performance evaluation,
only the best pose predicted by AutoDock Vina was evaluated with Boltz-2. The effects of varying
AutoDock Vina parameters are shown in Supplementary Figure 7. Docking was performed using
one protein–ligand complex structure predicted by Boltz-2 as a reference structure for each target.
For the six assays where clear known complex structures existed in the PDB database, those ligands
were used; for the remaining two assays, the most potent ligand among MF-PCBA binders was used
as input to predict holo structures (Table 1). Because Vina requires explicit specification of binding
pockets, the centroid of the holo ligand was used as the grid center. We confirmed that most binders
in Boltz-2’s complex prediction structures bound to the same region as the aforementioned predicted
holo structures, validating the appropriateness of the grid position.

For the experiments, we used computational nodes from the TSUBAME4 supercomputer at the
Institute of Science Tokyo. The operating system was Red Hat Enterprise Linux Server 9.3. For each
computation, one H100 GPU and 48 of the 96 cores from AMD EPYC 9654 2.4GHz processors
were used, with 192GiB of memory available. Docking calculations were executed in 48 parallel
processes, assuming actual screening scenarios. Execution time measurements were performed under
these parallelization conditions.

2.4 Comparison Methods

For screening performance evaluation, we compared Boltzina’s performance with the following
methods:

Boltz-2 Predictions using the original Boltz-2 with default settings.

AutoDock Vina Conventional molecular docking using the above settings.

GNINA Open-source software GNINA v1.3.2 [7, 29], which incorporates CNN-based scoring
functions on top of AutoDock Vina and Smina [30]. GNINA ranked nine poses generated
by AutoDock Vina using CNN VSScore (the product of CNN affinity and CNN score) [31],
and selected the highest-scoring pose.

We also evaluated two parameters to examine each component’s contribution to performance and
effects on execution speed:

Boltzina (Cycle=1) Recycling in the trunk module reduced from the default five iterations to one
(see Figure 1).

Boltzina (No Pose) Docking pose information masked by setting all ligand atom coordinates to the
origin, eliminating initial pose dependency. Since docking pose information is not used,
docking time is excluded from execution time.

For performance evaluation, we used Average Precision (AP) and Enrichment Factor at top percentiles,
metrics specialized for hit discovery, similar to the Boltz-2 paper. Average Precision (AP) is a metric
that increases when more true active compounds appear at the top, defined as the area under the
precision-recall curve. Enrichment Factor (EF) is a metric that divides the proportion of active
compounds contained in the top K% of candidates by the expected value from random selection,
showing how efficiently actives can be found compared to random search.

2.5 Pose Selection Strategies

To evaluate the impact of using multiple docking poses, we tested the following strategies:

Best Pose Only Evaluating only the best (minimum-energy) pose from AutoDock Vina.

Top-N Best Score Selecting the highest Boltzina binding likelihood among the top N poses gener-
ated by AutoDock Vina.

Top-N Average Ranking by the average of the Boltzina predicted affinity scores over the top N
poses.

Pose selection strategies were evaluated by randomly sampling 1,000 molecules per assay.
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Figure 2: Comparison with existing methods on the MF-PCBA test set. a) Mean Average Precision
across assays. b) Average Enrichment Factor at top K% (K = 0.5%, 1%, 2%, 5%).

2.6 Two-Stage Screening Experiment

To achieve an optimal balance between computational efficiency and prediction accuracy, we consid-
ered a hierarchical screening strategy [32] combining Boltzina and Boltz-2. In this strategy, methods
with different computational costs are combined in stages. In the first stage, all compounds are
rapidly screened using Boltzina; in the second stage, only promising compounds ranked highly are
re-evaluated in detail with the more accurate Boltz-2. Specifically, the top p% of compounds were
selected based on Boltzina’s binding likelihood, these were rescored with Boltz-2, and final rankings
were determined. Evaluation was performed under four conditions with p values of 50%, 20%, 10%,
and 5%. At this time, estimated execution time was calculated as TBoltzina +

p
100TBoltz2.

3 Results and Discussion

3.1 Comparison with Existing Methods

We evaluated the proposed method’s screening performance using eight assays from the MF-PCBA
dataset. As shown in Figure 2a, for Average Precision (AP), Boltz-2 showed the highest performance
(mean AP 0.084), followed by Boltzina (mean AP 0.056). In contrast, the mean AP of existing
GNINA and Vina methods was extremely low. Therefore, Boltzina achieved significant performance
improvement compared to AutoDock Vina and GNINA.

The Enrichment Factor (EF) results shown in Figure 2b also exhibited similar trends. While GNINA
showed slight improvement over AutoDock Vina through reranking, it was inferior to Boltzina’s
performance increase. Additionally, at the top 5%, the performance difference between Boltz-2 and
Boltzina was relatively small, whereas at the top 0.5% there was a substantial difference between
the two methods. This suggests that Boltz-2’s precise calculations are essential for accurate ranking
of a very small number of top compounds, while Boltzina is particularly effective for screening
scenarios requiring medium-scale enrichment. Figure 3 shows ROC curves for each assay. While
AutoDock Vina showed near-random performance for many targets, it improved significantly with
Boltz-2 rescoring. Additionally, for some assays, the performance difference between Boltz-2 and
Boltzina was small, indicating cases where Boltzina approached Boltz-2’s performance.
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Figure 3: ROC curves for each assay in the MF-PCBA test set.

Next, Figure 4 shows comparisons of different parameters for Boltzina. For Boltzina (Cycle=1), the
mean AP decreased from 0.056 to 0.048, but the decrease was limited, confirming that reducing the
number of recycling iterations is effective for cutting computational cost without significantly com-
promising accuracy. On the other hand, for Boltzina (No Pose), even when ligand pose information
was not provided, the mean AP was 0.043; while there was a negative impact on performance, it
was more limited than expected. This result suggests that intermolecular interaction information
obtained from the trunk module plays an important role in binding prediction. That is, the reason
performance improves without depending on AutoDock Vina’s pose accuracy is suggested to be the
latent representations of intermolecular interactions learned by the trunk module.

Next, as shown in Figure 5a, Boltzina achieved a significant reduction in execution time. The
average processing time per ligand was approximately 16.5 seconds for Boltz-2, compared to
2.3 seconds for Boltzina, which is 7.3× faster, and 1.4 seconds for Boltzina (Cycle=1), which is
11.8× faster. The main factors for this speedup are omission of structure prediction steps, improved
parallel processing efficiency through increased batch size, and reduced recycling iterations. Notably,
AutoDock Vina docking required approximately 0.8 seconds and became rate-limiting for Boltzina
(Cycle=1). Therefore, the main bottlenecks for Boltzina are docking pose generation and trunk
module processing. By adjusting these parameters according to compound library scale and usage, the
balance between accuracy and speed could be further optimized. Overall, Boltzina combines practical
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a) b)

Figure 4: Comparison of Boltzina variants on the MF-PCBA test set. a) Mean Average Precision
across assays. b) Average Enrichment Factor at top K%.

computational efficiency with screening performance, making it a promising method especially for
large-scale screening where time efficiency matters more than the need for high accuracy.

3.2 Pose Selection Strategies

Figure 5b shows the average ROC-AUC for each pose selection strategy. Top-5 Average strategy
showed the highest ROC-AUC (0.778), improving performance compared to Top-3 Average and
Best Pose Only strategies (0.746). Additionally, Top-5 Best Score strategy did not outperform the
averaging strategy. If Boltz-2’s binding likelihood could accurately identify the quality of individual
poses, selecting the highest score should be superior; in practice, averaging was advantageous. This
suggests that Boltz-2’s binding likelihood may not sufficiently discriminate individual pose quality,
and the improvement from averaging likely stems from reduced randomness. Such behavior is likely
attributed to the fact that Boltz-2’s binding likelihood is not trained to discriminate the quality of
individual poses.

3.3 Two-Stage Screening Experiment

Finally, we conducted two-stage screening experiments combining rapid pre-screening with Boltzina
and accurate binding prediction with Boltz-2. Figure 6 shows the relationship between estimated
execution time and Average Precision for each method. Comparing Boltzina variants, Boltzina
provided Pareto-optimal solutions in most cases. In particular, combining Boltzina (Cycle=1) with
rescoring the top 5% by Boltz-2 outperformed Boltzina alone in accuracy per unit cost. Moreover,
using the top ∼20% from Boltzina for two-stage screening achieved a mean AP exceeding 0.08
while being about three times faster than Boltz-2. These results show that two-stage strategies enable
finer control of the trade-off between Boltzina and Boltz-2 according to application requirements.
However, the optimal ratio depends on the prevalence of potential binders in the target library and
thus should be chosen accordingly in practice.

4 Conclusion

We developed Boltzina, a pipeline for rapid and accurate virtual screening that predicts affinity using
Boltz-2 with AutoDock Vina docking poses as input. Boltzina achieved a mean AP of 0.056, which
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a) b)

Figure 5: a) Execution time per ligand, computed from 1,000 ligands in the MF-PCBA test set
using one GPU and 48 CPU cores. b) Average ROC-AUC for pose selection strategies using 1,000
ligands from the MF-PCBA test set. ∗∗ indicates a significant difference (p < 0.01) by the Wilcoxon
signed-rank test.
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Figure 6: Two-stage screening: estimated execution time vs. mean Average Precision at different
selection ratios. Estimated time was computed from the per-ligand measurements in Figure 5a.
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was somewhat lower than Boltz-2’s 0.084, but substantially outperformed conventional molecular
docking methods Vina (mean AP 0.016) and GNINA (mean AP 0.012). Execution time achieved a
7.3× speedup over Boltz-2 in the standard setting, and up to 11.8× when recycling was reduced to a
single iteration, enabling screening within realistic timeframes for library sizes that are difficult for
Boltz-2 alone.

Experimental results indicate that intermolecular interaction representations generated by the trunk
module largely govern binding prediction accuracy, allowing reasonable performance even without
pose information; providing appropriate poses from AutoDock Vina further improves accuracy.
Averaging multiple poses improved ROC-AUC and effectively reduced randomness associated with
pose selection. Furthermore, two-stage screening that combines rapid screening with Boltzina and
precise re-evaluation with Boltz-2 yielded Pareto-optimal solutions in both computational efficiency
and accuracy.

Several limitations remain. We did not evaluate absolute affinity prediction or the physical validity of
poses, and it remains unverified whether Boltzina can match Boltz-2 on these tasks. In addition, rigid
docking with AutoDock Vina cannot account for protein flexibility, and pocket selection requires
prior knowledge. Moreover, for molecules with a large number of heavy atoms that were excluded
from this study, docking computational time increases dramatically [4]; for these corner cases,
this represents a significant limitation as the proposed method cannot achieve computational speed
improvements. Finally, applying the proposed method to ultra-large screening [22, 33] exceeding one
billion compounds still presents challenges.

Overall, the proposed method bridges the gap between Boltz-2’s high accuracy and the speed of
conventional docking, substantially improving cost-effectiveness in virtual screening and contributing
to more efficient drug discovery.
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Appendix
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Figure 7: Average ROC-AUC for each AutoDock Vina parameter using 1,000 ligands from the MF-
PCBA test set. Results for two parameters: grid size and exhaustiveness. No significant differences
were found among all results by pairwise comparisons using the Wilcoxon signed-rank test.
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