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ABSTRACT

Certified robustness provides a theoretical lower bound for adversarial robustness
and arouses widespread interest and discussions from the research community.
With theoretical support to improve the certified robustness on the training set,
practitioners endeavor to train a more certified robust model during inference on
the test set. However, the experimental neglect on the training set and the the-
oretical ignorance during inference on the test set induce a gap between train-
ing and testing for certified robustness. By establishing an equivalence between
the convergence of training loss and the improvement of certified robustness, we
recognize there is a trade-off between expressive power and generalization (as-
suming a well-conditioned optimization) for certified robustness, which is similar
to the underfitting and overfitting discussed in machine learning. To investigate
this trade-off, we design a new orthogonal convolution-Controllable Orthogonal
Convolution Kernel (COCK), which provides a broader range of expressive power
than existing orthogonal convolutions. Empirically, there is a power-driven shift
from vanilla classification accuracy to certified robustness in the sense of the op-
timal trade-off between expressive power and generalization. The experimental
results suggest that by carefully improving the expressive power from the optimal
trade-off for vanilla classification performance, the model will be more certified
robust.

1 INTRODUCTION

The adversarial robustness (Szegedy et al., 2013) of Deep Neural Networks (DNNs) has attracted
extensive attention from the research community. Theoretically, certified robustness serves as a
lower bound for adversarial robustness against any adversary under certain constraints (Tsuzuku
et al., 2018). Currently, though Multi-Layer Perception (MLP) trained on MNIST (LeCun, 1998)
has achieved great success in certified robustness, neither MLP nor even Convolution Neural Net-
works (CNNs) perform satisfactorily on real-world datasets such as CIFAR (Krizhevsky, 2009) and
ImageNet (Russakovsky et al., 2015). In particular, the certified robustness degrades dramatically
during inference on the test set.

At present, practitioners are devoted to improving the certified robustness of different network archi-
tectures during inference on real-world datasets while most of the studies are establishing theoreti-
cal guarantees on the training set. The experimental neglect on the training set and the theoretical
ignorance during inference on the test set induce a gap between training and testing for certified
robustness. Our paper aims to understand this gap and explore what actually affects the certified
robustness during inference rather than during training.

Revisiting the fundamental problem in machine learning that there is a trade-off between expressive
power and generalization (overfitting and underfitting) when assuming a well-conditioned optimiza-
tion,1 we realize there is a similar trade-off for certified robustness as well by establishing an equiva-
lence between the convergence of classification loss and the improvement of certified robustness for
Lipschitz-constrained models. Upon understanding the trade-off for certified robustness, we define
the risk and accuracy for certified robustness following the corresponding descriptions in machine
learning.

1For simplicity, we omit this assumption in the following when describing this trade-off.
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To explore this trade-off further, we focus on designing a tool capable of altering the expressive
power. At present, orthogonal constraints on convolutions (Singla & Feizi (2021); Li et al. (2019);
Trockman & Kolter (2021)) for the 1-Lipschitz property have achieved relatively competitive per-
formance in both vanilla classification accuracy and certified robustness on real-world datasets.
Nevertheless, owing to the strict orthogonal constraint on the parameter space, orthogonal con-
volutions lack enough expressive power to cover the training set2 and the flexibility to alter the
expressive power. Motivated by the Orthogonal Newton Iteration (ONI) algorithm (Huang et al.,
2020) that trades expressive power and orthogonality off, we design a new orthogonalization con-
volution kernel-Controllable Orthogonal Convolution Kernel (COCK) to provide a broader range of
expressive power by altering the restriction to the parameter space.

Theoretically, COCK is proven to be more certified robust than other general orthogonal convolu-
tions owing to the improvement of expressive power. Empirically, the improvement of expressive
power enables COCK to cover the training set better and hence improves the certified robustness
on the training set. Both theoretical and empirical results align well with our understanding of the
equivalence between classification loss convergence and certified robustness improvement.

By altering the expressive power of COCK, we experimentally observe that the optimal trade-off
between expressive power and generalization for certified robustness is more powerful than the
optimal trade-off for vanilla classification accuracy during inference. Namely, there is a power-
driven shift from vanilla classification accuracy to certified robustness. By carefully improving the
expressive power from the optimal trade-off for vanilla classification accuracy, we can obtain a more
certified robust model.

We summarize our contributions as follows:

• We recognize there is a gap between training and testing for certified robustness. Further,
we identify that there is a trade-off between expressive power and generalization for certi-
fied robustness by establishing an equivalence between enough power to cover the training
set and the improvement of certified robustness. Similar to the fundamental framework in
machine learning, we formulate the risk and accuracy in the setting of certified robustness.

• We design a new orthogonal convolution-Controllable Orthogonal Convolution Kernel
(COCK), serving as a tool to investigate the trade-off between expressive power and gen-
eralization for certified robustness. COCK alleviates the weakness of orthogonal convolu-
tions in expressive power and provides a broader range of expressive power.

• We empirically observe that the optimal trade-off between expressive power and gener-
alization for certified robustness is more powerful than the optimal trade-off for vanilla
classification accuracy. By carefully improving the expressive power from the optimal
trade-off for vanilla classification accuracy, we can obtain a more certified robust model.

2 RELATED WORK

Certified Robustness for Lipschitz-constrained Models. Several studies have been conducted to
understand and improve the certified robustness of Lipschitz-constrained models. Tsuzuku et al.
(2018) established certified robustness for Lipschitz-constrained neural networks against l2 attack
and suggested that the Lipschitz norm and the output margin jointly determine the certified robust-
ness on the training set. Upon this framework, on the one hand, multiple studies (Cisse et al. (2017);
Gouk et al. (2020); Miyato et al. (2018); Qian & Wegman (2019)) intend to control the Lipschitz
norm of neural networks. On the other hand, optimization techniques (Lee et al. (2020); Ono et al.
(2018)) are developed to modify the training process by enlarging the output margin. All these
works are devoted to theoretically improving the certified robustness on the training set and empiri-
cally improving the certified robustness on the test set, leaving a gap between training and testing to
be explored.

Orthogonal Convolution. Orthogonalization methods regularizing for the 1-Lipschitz property re-
markably improve certified robustness. Generally, it is categorized into soft orthogonal constraint

2In this paper, we use ”cover the training set” to describe the training loss a model can achieve, which
considers both expressive power and optimization.
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and hard orthogonal constraint. The soft orthogonal constraint (Xie et al. (2017); Balestriero & Bara-
niuk (2018); Balestriero & richard baraniuk (2018); Lu et al. (2018); Miyato et al. (2018); Yoshida
& Miyato (2017)) restricts the parameter space by directly adding an orthogonalization penalty to
the loss function during training. The hard orthogonal constraint (Huang et al. (2017); Singla &
Feizi (2021); Li et al. (2019); Trockman & Kolter (2021)) usually utilizes reparameterization tricks
to restrict the orthogonality directly. However, the former cannot guarantee the degree of orthogo-
nality, while the latter limits the expressive power of neural networks and leaves the orthogonality
(expressive power) unchangeable. Our method COCK overcomes these weakness by adjusting the
restriction to the parameter space. The work most similar to ours is layer-wise orthogonal training
(LOT) (Xu et al., 2022). Both of us utilize the ONI method to reparameterize convolution kernels.
However, the learnable parameters of ours are in the frequency domain, while LOT learns parameters
in the spatial domain. More importantly, COCK is able to adjust the expressive power by altering its
two hyperparameters. The hyperparameters provide a broader range of expressive power and enable
COCK to be a tool to investigate the trade-off between expressive power and generalization.

Relation Between Vanilla Classification Accuracy and Adversarial Robustness. Adversarial
training (Madry, 2017) and its certified variants (Wong & Kolter (2018); Huang et al. (2021);
Zhang et al. (2021); Gowal et al. (2018)) which involved minimizing a worst-case loss (or its ap-
proximation) using uniformly-bounded perturbations to the training data are the most well-known
approaches in adversarial defenses. These approaches imply the existence of a discrepancy be-
tween vanilla classification accuracy and adversarial robustness. Upon this discrepancy, several
regularization-based methods (Raghunathan et al. (2020); Leino et al. (2021); Zhang et al. (2019);
Hoffman et al. (2019); Gouk et al. (2020); Zhang et al. (2019)) have been proposed to make a
trade-off between vanilla classification accuracy and adversarial robustness. Typically, Zhang et al.
(2019) decomposed robust error as the sum of classification error and boundary error and further
undertook the trade-off by introducing a weight factor. Our paper explores the discrepancy between
vanilla classification accuracy and certified robustness standing on the trade-off between expressive
power and generalization. We find an empirical relation between the discrepancy (between vanilla
classification accuracy and certified robustness) and the trade-off (between expressive power and
generalization).

3 PRELIMINARIES

We begin by introducing the basic notations and common practice of the fundamental problem
framework in machine learning, certified robustness in Lipschitz-constrained neural networks, and
orthogonal convolutions.

3.1 CHARACTERIZATIONS OF RISK AND ACCURACY

Consider a true data distribution p(x,y) and the sampled training sets D ∼ p(x,y) of size N .
Represent the neural network as Fθ(·) and the training set as {(x(i),y(i))}Ni=1. Training the model
can be viewed as tuning the parameters to minimize the discrepancy between the desired output y
and the predicted output Fθ(x). The empirical risk averaged over the sample loss l(y, Fθ(x)) is
defined as:

Lθ =
1

N

N∑
i=1

l(y(i), Fθ(x
(i))). (1)

The expected risk under the true data distribution is defined as:

L∗
θ = E(x,y)∼p(x,y)[l(y, Fθ(x)]. (2)

Consider a classification problem with one-hot encoding. Let tx be the ground-truth class of x. The
vanilla classification accuracy on the training set is defined as

Acc =
1

N

N∑
i=1

I{tx(i) = argmaxjFθ(x
(i))j}, (3)

where I{·} is the indicator function. The vanilla classification accuracy on the test set is defined as:

Acc∗ = Pr{I{tx = argmaxjFθ(x)j}}. (4)
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It is long believed that weight regularization helps alleviate overfitting and improve generalization.
A general idea of weight regularization is to provide layer-wise constraints on the weights during
optimization, which can be formulated as

θ∗ = argminθ Lθ

s.t. γ(θ)
(5)

where γ(θ) are the layer-wise constraints imposed on the weight parameters.

3.2 DESCRIPTIONS OF CERTIFIED ROBUSTNESS IN LIPSCHITZ-CONSTRAINED MODELS

Definition 3.2.1. (Vershynin, 2018) Let (X, dX) and (Y, dY) be metric spaces. A function f : X→
Y is called Lipschitz if there exists L ∈ R such that

dY(f(u), f(v)) ≤ LdX(u, v) for every u, v ∈ X. (6)

The infimum of all L in this definition is called the Lipschitz norm of f and is denoted ||f ||Lip.

For Lipschitz-constrained neural networks, Tsuzuku et al. (2018) provided the certified robustness
when both dX and dY are defined by l2 norm. Let LF be the Lipschitz norm of network F when
dX and dY are both in l2 norm. Denote the minimum output margin

MF,x = F (x)tx −maxi ̸=tx{F (x)i}. (7)

The following theorem holds.

Theorem 3.2.2. (Tsuzuku et al., 2018) If
√
2LF ||ϵ||2 ≤ MF,x, then MF,x+ϵ ≥ 0. That is, the

network F is certified robust in x.

By imposing layer-wise weight regularization to regularize the spectrum, we can achieve a Lipschitz-
constrained neural network. We consider a linear layer with input x ∈ Rdin×1, weight W ∈
Rdout×din and output y ∈ Rdout×1

y = Wx. (8)
Typically, by leveraging layer-wise orthogonal constraints3, the Lipschitz norm of the linear layer is
1. Note that most of the activations are contractive (Szegedy et al., 2013), the Lipschitz norm of the
whole network with layer-wise orthogonal constraints is strictly restricted to 1.

3.3 EXPRESSIONS OF ORTHOGONAL CONVOLUTION

We can easily extend the layer-wise orthogonal weight regularization to convolutions. A convolu-
tion layer is parameterized by weights W ∈ Rdin×dout×Fh×Fw , where Fh and Fw are the height
and width of the filter. Take feature maps (activations) X ∈ Rdin×h×w as input and denote the
convolution operation as Y = Conv(W,X).
Definition 3.3.1. Represent the convolution operation Y = Conv(W,X) as linear transform
vec(Y) = Mvec(X), where vec(·) flattens the height h and width w into hw. The convolution
kernel is orthogonal if and only if the singular values of the corresponding Jacobian matrix M are
all 1. Further, Convolution Neural Networks are called Orthogonal Convolution Neural Networks if
all the convolution kernels are orthogonal.
Remark 3.3.1.1. When the Jacobian matrix M is not a square matrix, we generalize the defini-
tion of orthogonal convolution kernel from all singular values to d singular values due to the rank
constraint, where d is the minimum of the two dimensions of M .

4 CAPTURE THE TRADE-OFF FOR CERTIFIED ROBUSTNESS

We firstly establish an equivalence between the convergence of training loss and the improvement
of certified robustness in Section 4.1. This proposition suggests that there is a trade-off between
expressive power and generalization for certified robustness. Based on this equivalence, we define
the risk and accuracy for certified robustness in Section 4.2.

3If din ≥ dout, we regularize weights as WW T = Idout . Otherwise, we regularize weights as W TW =
Idin . Id is the identity with dimension d.
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4.1 EQUIVALENCE BETWEEN LOSS CONVERGENCE AND CERTIFIED ROBUSTNESS

Under the setting in Section 3.1, the empirical risk averaged over the sample loss defined by Cross-
Entropy (CE) loss is defined as:

Lθ =
1

N

N∑
i=1

lCE(y
(i), Fθ(x

(i))). (9)

For simplicity, we consider a d-class classification problem with one-hot encoding:

Lθ =
1

N

d∑
i=1

ci∑
j=1

−log eFθ(x
(ij))i∑d

k=1 e
Fθ(x

(ij))k
, (10)

where x(ij) is the j-th sample of class i and ci is the amount of samples of class i. As usual, we add
a softmax(·) after the output of the neural network. The following theorem holds.
Theorem 4.1.1. For a Lipschitz-constrained neural network adopting classification loss (10) during
training, the decrease of training loss is equivalent to the improvement of certified robustness when
Theorem 3.2.2 holds.

Proof. For a sample point x(ij) of the i-th class, define m
(ij)
k = Fθ(x

(ij))i − Fθ(x
(ij))k as the

output margin of k for i-th class. Hence,

Lθ =
1

N

d∑
i=1

ci∑
j=1

log(1 +
∑
k!=i

e−m
(ij)
k ). (11)

Trivially, minimizing training loss is equivalent to maximizing the output margin m
(ij)
k .

Note that LF holds during training because the network is Lipschitz-constrained, by Theorem 3.2.2
we therefore know that certified robustness improves when training loss decreases.

If a Lipschitz-constrained network is powerful enough to cover the training set well, it will be ex-
tremely certified robust on the training set. However, excessive expressive power brings high gener-
alization error to classification performance during inference (overfitting) and is certain to degrade
the certified robustness on the test set. Therefore, there is a trade-off between expressive power and
generalization for certified robustness, similar to the vanilla classification accuracy.

4.2 DEFINITION OF RISK AND ACCURACY FOR CERTIFIED ROBUSTNESS

According to the trade-off between expressive power and generalization, we can define the risk and
accuracy for certified robustness for Lipschitz-constrained models corresponding to descriptions in
machine learning. To begin with, we define the margin loss4.
Definition 4.2.1. (Margin Loss) Utilizing the definition of output margin in (7), the margin loss is
any loss whose reduction leads to the enlargement of output margin.
Remark 4.2.1.1. The CE loss is a special kind of margin loss, which plays a crucial role in the
equivalence above.

Typically, we can define the margin loss for the perturbation ||ϵ||2 within l2 norm.
Definition 4.2.2. (ϵ2-Margin Loss) Utilizing the definition of output margin in (7), the ϵ2-margin
loss is any loss whose reduction leads to the enlargement of those output margins that less than ϵ in
the sense of l2 norm.

The definition of empirical (ϵ2-)certified robust risk and expected (ϵ2-)certified robust risk can be
generalized from the traditional empirical risk and expected risk by simply replacing loss l with
(ϵ2-)margin loss.

Next, by transforming the definition in (3;4) using the output margin, we define the certified robust
accuracy under the setting in Section 3.1.

4For Lipschitz-constrained models, the output margin becomes the only factor affecting the certified robust-
ness.
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Definition 4.2.3. (Empirical Certified Robust Accuracy)

ECR =
1

N

N∑
i=1

(I{MFθ,x(i) ≥
√
2LF ||ϵ||2}). (12)

Definition 4.2.4. (Expected Certified Robust Accuracy)

ECR∗ = Pr{MFθ,x ≥
√
2LF ||ϵ||2}. (13)

5 PROPOSE OF COCK: CONTROLLABLE ORTHOGONAL CONVOLUTION
KERNEL

To investigate the trade-off discussed in Section 4.1, we consider the setting of CNNs trained on real-
world datasets such as CIFAR and ImageNet, for the reason that the certified robustness on MNIST
is satisfactory enough. Though the orthogonal convolution regularizes the parameter space for the
1-Lipschitz property, it still suffers from the lack of strength and flexibility in expressive power. To
overcome its weakness in expressive power while still exploiting its advantages in Lipschitz norm,
we design a more powerful orthogonal convolution-Controllable Orthogonal Convolution Kernel
(COCK). We first present the details of COCK in Section 5.1 and then prove that COCK is guar-
anteed to be more certified robust than other general orthogonal convolutions in Section 5.2. The
improvement of certified robustness owing to the enhancement of expressive power aligns well with
our understanding in Section 4.1.

5.1 DESIGN OF COCK

As usual, we take h = w = n and Fh = Fw = s as the kernel size. We characterize the singular
values of the Jacobian matrix leveraging the conclusion in Sedghi et al. (2018). Let σ(·) represent
the singular values.

Proposition 5.1.1. (Sedghi et al., 2018) For any given convolution W ∈ Rdl×dl−1×Fh×Fw , ∀u, v ∈
[Fh]× [Fw], undertake Fourier Transform P (u,v)[c, d] = (F T W[c, d, :, :]F )[u, v], (c, d) ∈ [dl−1]×
[dl], where F ∈ Rs×s is the corresponding DFT matrix, it holds σ(M) =

⋃
(u,v)∈[s]×[s] σ(P

(u,v)).

The proposition 5.1.1 suggests that the singular values of Jacobian matrix M are the union of the
singular values of s2 kernel matrices P (u,v). We intend to orthogonalize the convolution layer via
orthogonalizing each kernel, leveraging ONI algorithm (Huang et al., 2020) for reparameterization.
We present the Algorithm of COCK in Appendix A.1. We can directly plug the COCK in CNNs,
where the proxy parameter in Algorithm 1 is the learnable parameter which is in the Fourier fre-
quency domain.

Generally, the Newton Iteration steps t controls the orthogonality of the convolution layer. As t
increases, the orthogonality will be more strict. To further control the expressive power of COCK,
we share the parameters of some convolution kernels by handcrafting the amount of distinct con-
volution kernel k. To be specific, given k, the s2 kernels are formed by k different kernels and the
remaining s2 − k kernels reuse the parameters of the k kernels. In this sense, the effective parame-
ters of the convolution layer are actually W ∈ Rdl×dl−1×k. Intuitively, the increase of k represents
the improvement of expressive power. Intrinsically, this trick can be viewed as the regularization
on parameter space as well, by sharing parameters. Overall, we can adjust the expressive power of
COCK by altering these two parameters.

5.1.1 ON THE EXPRESSIVE POWER OF COCK

The trade-off between expressive power and orthogonality intuitively makes COCK more powerful
than general orthogonal convolutions. To illustrate this property, we consider the case k = s2.
Intuitively, from the perspective of parameter space, by adjusting proxy parameters, we can obtain
countless kinds of singular values distribution, restricting all singular values ∈ [0, 1]. In particular,
when t → ∞, all singular values converge to 1. However, for general orthogonal convolutions, all
singular values are strictly restricted to 1. From the perspective of data transformation, orthogonal

6
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convolution is geometrically equivalent to a rotation or symmetry, while COCK also provides data
scaling.

We undertake a toy example in two-dimension space. Consider the linearly inseparable 2-class
classification problem and adopt a simple neural network with a linear layer and an activation as the
classifier. We compare the orthogonal neural network whose linear layer is orthogonal with another
network whose linear layer is a diagonal matrix with eigenvalues ∈ [0, 1]5. Both the two neural
networks adopt the same activation r-ReLU defined as follows.
Definition 5.1.1.1. (r-ReLU Activations)

r-ReLU(x) = ReLU(||x||2 − r). (14)

𝑹𝒓

Class1:

Class2:

Figure 1: A toy example—the XOR bi-
nary classification problem. The problem
is to classify the four points lie around the
biggest circle (black). For standard orthog-
onal convolutions, the four points still lie
around the biggest circle while COCK is
able to transform the four points to the red
ellipse and solve the XOR problem.

We visualize the classification result in Figure 1. The
linearly inseparable problem is to classify the four
data points in two classes. The four points initially lie
around the biggest circle (black) with radius R > r.
For the first neural network equipped with the or-
thogonal linear layer, after passing through the lin-
ear layer, all points still lie around the black circle.
Then, after passing through the activation, the outputs
of all points are the same, which fails to classify the
problem. For the second neural network on the con-
trary, by carefully learning (updating) the eigenvalues
of the linear layer, the points can distribute around an
ellipse (red) whose long axis is greater than r, while
its minor axis is shorter than r. At last, after passing
through the activation, the outputs of the four points
differ according to their class.

5.2 ON THE CERTIFIED ROBUSTNESS OF COCK

According to our understanding in Section 4.1 that
enough power to cover the dataset is equivalent to the
improvement of certified robustness, we in this sec-
tion present the proposition that COCK is more certi-
fied robust than general orthogonal convolutions ow-
ing to its improvement of expressive power.
Theorem 5.2.1. Assuming a well-conditioned optimization, the certified robustness of COCK is not
inferior to general orthogonal convolutions.

The proof is shown in Appendix A.2. Under the assumption of the well-conditioned optimization,
we undertake the proof from the view of parameter existence. The theoretical result aligns well with
our understanding of the equivalence between the convergence of training loss and the improvement
of certified robustness.
Remark 5.2.1.1. Up to now, our formulation of certified robustness merely considers perturbations
and Lipschitz norm with respect to l2 norm. We generalize to the case that dX is in lp norm and dY
is in lq norm. Correspondingly, the perturbation ||ϵ|| is within lp norm ||ϵ||p. Details are discussed
in Appendix A.3.

6 EXPERIMENT

In this section, we intend to answer and verify the following questions empirically:

• Does the improvement of expressive power enable COCK to cover the training set better
and further improve the certified robustness on the training set? Will this improvement
make the model more certified robust during inference?

5COCK provides the eigenvalues of linear layer ∈ [0, 1]. Hence, our design of the diagonal matrix is a
special case of COCK.
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• By altering the power of the whole neural network via COCK, where is the optimal trade-
off between expressive power and generalization? To be specific, will the optimal trade-off
for certified robustness keep pace with the optimal one for vanilla classification accuracy
during inference?

6.1 SETUP

Datasets and Models. We try out different amounts of layers (blocks) of LipConvNet (Anil et al.
(2019), Behrmann et al. (2019)) including LipConvNet-5, LipConvNet-15 and LipConvNet-35 on
CIFAR-10 (Krizhevsky, 2009), CIFAF-100 (Krizhevsky, 2009) and TinyImageNet (Russakovsky
et al., 2015). The activation function we use is max-min activation.

Baseline Methods. To answer the first question, we compare COCK with existing orthogonal con-
volutions including SOC(Singla & Feizi, 2021), BCOP(Li et al., 2019) and Cayley(Trockman &
Kolter, 2021). All of those methods are adopted in LipConvNets.

Hyperparameters. To investigate the second question, we alter the expressive power of COCK by
two hyperparameters in COCK, the amount of distinct convolution kernel k and the ONI steps t.
Generally, the increase of k corresponds to the improvement of expressive power and t controls the
trade-off between expressive power and orthogonality, or generalization.

Training Loss and Certified Robust Accuracy. Based on Theorem 4.1.1, we adopt vanilla CE
loss during training rather than CE loss with any regularization on output margin. We utilize the
Definition 4.2.4 to evaluate certified robust accuracy within l2 norm perturbation ϵ = 36

255 , ϵ =
72
255

and ϵ = 108
255 .

Our experiment is organized into two parts and each for one question above. In Section 6.2, we
mainly verify if COCK is empowered to cover the training set better than baseline methods. In
Section 6.3, we empirically investigate the trade-off between expressive power and generalization
for certified robustness. We undertake an ablation study on ONI steps t6 in Appendix A.4.1.

6.2 ENOUGH POWER TO COVER THE TRAINING SET IMPROVES CERTIFIED ROBUSTNESS

Results on CIFAR-10 are shown in Table 1 and results on CIFAR-100 and TinyImageNet are listed
respectively in Appendix A.4.4 and Appendix A.4.5. We additionally present the training loss cor-
respondingly in Appendix A.4.2 to visualize the convergence on the training set.

Remarkably, owing to the improvement of expressive power, COCK covers the training set much
better than other orthogonal convolutions, resulting in the improvement both in vanilla classification
accuracy and certified robustness. Additionally, the improvement of certified robustness on the
training set generalizes to the test set to some extent, in particular when attack perturbation is large.

It is worth mentioning that results in Table 1, 4, 5 are tuned for a better test certified robust accuracy
by altering the hyperparameters of COCK, resulting from the trade-off between expressive power
and generalization for certified robustness. Similarly, by controlling the trade-off via adjusting the
hyperparameters, we can also acquire a better vanilla test accuracy comparable to the best perfor-
mance of the baseline orthogonal convolutions. Results are shown in Appendix A.4.6-A.4.8. The
discrepancy between vanilla classification accuracy and certified robustness in the optimal trade-off
between expressive power and generalization will be further discussed in Section 6.3.

Likewise, controlling the trade-off by the hyperparameters, COCK nearly fully covers the train-
ing set. We take LipConvNet-15 as an example and show the results when the amount of distinct
convolution kernel k = 5 in Appendix A.4.3.

6.3 POWER-DRIVEN SHIFT FROM VANILLA CLASSIFICATION ACCURACY TO CERTIFIED
ROBUSTNESS

To better understand the impact of the trade-off between expressive power and generalization for
certified robustness, we empirically investigate the optimal trade-off for certified robustness in this

6The impact of the amount of distinct convolution kernel k is trivial and can be seen in Section 6.3.
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Table 1: Vanilla Classification Accuracy and Certified Robust Accuracy on CIFAR-10

Stage Model Method Accuracy(%) ϵ = 36
255 ϵ = 72

255 ϵ = 108
255

Training

LipConvNet-5

SOC 78.11 60.41 41.11 24.34
BCOP 84.51 67.02 45.51 26.19
Cayley 72.17 52.92 33.65 18.50
COCK 85.85 69.25 48.63 29.70

LipConvNet-15

SOC 80.19 63.30 44.06 27.45
BCOP 81.63 63.92 43.24 25.27
Cayley 77.25 59.54 40.06 23.77
COCK 90.09 85.90 80.13 73.35

LipConvNet-35

SOC 77.61 60.00 40.97 24.90
BCOP 63.52 43.76 25.59 12.33
Cayley 69.11 49.87 31.46 17.21
COCK 88.36 79.26 67.47 54.21

Test

LipConvNet-5

SOC 75.60 59.61 42.28 27.09
BCOP 75.24 58.49 40.71 25.41
Cayley 71.62 54.37 36.55 21.66
COCK 75.12 59.82 43.98 30.03

LipConvNet-15

SOC 76.65 62.51 45.32 30.54
BCOP 74.31 58.12 40.21 25.70
Cayley 74.37 55.40 35.89 20.33
COCK 75.56 71.03 65.83 60.79

LipConvNet-35

SOC 73.85 58.55 42.14 27.36
BCOP 63.52 43.76 25.59 12.33
Cayley 68.04 50.82 33.67 19.96
COCK 67.56 57.97 47.35 37.48

section. We record the trend of test vanilla classification accuracy and test certified robust accuracy
in Figure 2. Implementation details can be seen in Appendix A.4.9.

We notice that though overfitting and underfitting still exist for certified robustness, the optimal
trade-off between expressive power and generalization for certified robustness is more powerful
than the vanilla classification accuracy during inference on the test set and this phenomenon is
more remarkable for larger attack perturbations. We call this phenomenon a power-driven shift.
Intuitively, this can be partly attributed to the fact that models need to be more powerful to enlarge
the output margin since certified robustness can be viewed as a more difficult problem than vanilla
classification. This experimental result implies that by carefully improving the expressive power
from the optimal trade-off for vanilla classification performance, the model can be more certified
robust. We leave the theoretical establishment to explain this interesting phenomenon in future
work.

7 CONCLUSION

Our paper mainly connects certified robustness with the fundamental machine learning framework
for Lipschitz-constrained models. The equivalence between enough power to cover the training set
and the improvement of certified robustness for Lipschitz-constrained models exposes that there is
a trade-off between expressive power and generalization (assuming a well-conditioned optimiza-
tion) for certified robustness. We provide key insight into understanding the gap between training
and testing for certified robustness. Empirically, we observe that there is a power-driven shift from
vanilla classification accuracy to certified robust accuracy in the sense of the optimal trade-off be-
tween expressive power and generalization. This phenomenon suggests that expressive power is
crucial for certified robustness both on the training set and on the test set. By carefully improving
the expressive power from the optimal trade-off for vanilla classification performance, we can obtain
higher certified robustness.
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Figure 2: The Trade-off Between Expressive Power and Generalization. The optimal trade-off for
vanilla classification accuracy and certified robustness is highlighted. The index k̂ = (k1, k2, ..., kL)

indicates the combination of k in a L-layer network. Typically, the larger k̂ is, the more powerful the
model will be. Note that the value of k̂ in figures merely represents the strength rather than practical
values and the same index in different figures does not represent the same combination.

7.1 LIMITATIONS AND FUTURE WORK

The lack in consideration of optimization. Empirically, though we have attempted plenty of opti-
mization settings by adjusting the optimizer such as Adam and SGD and learning rate schedules to
alleviate the impacts of optimization, there always a gap between training loss and expressive power
induced by optimization. Theoretically, we always assumed a well-conditioned optimization and
did not consider training dynamics in this paper.

The insufficient precision in expressive power. To empirically investigate the optimal trade-off
between expressive power and generalization, we qualitatively adjusted the expressive power by al-
tering the hyperparameters of COCK while we did not quantitatively describe the expressive power.

In the future, to close the gap between training and testing for certified robustness, we will provide
some theoretical evidence on the power-driven shift, or to be general, the generalization behavior of
certified robustness.
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A APPENDIX

A.1 OVERALL ALGORITHM

We first recapture the ONI algorithm (Huang et al., 2020). To be specific, let W = (V V T )−
1
2V , it

holds
WW T = (V V T )−

1
2V V T (V V T )−

1
2 = I. (15)

We utilize Newton Iteration to compute (V V T )−
1
2 .

Theorem A.1.1. (Huang et al., 2020) Given matrix V , let S = V V T . Undertake recurrence

B0 = I, Bt =
3

2
Bt−1 −

1

2
B3

t−1S. (16)

If spectral norm ||V || < 1 then Bt → S− 1
2 , t→∞.

The ONI algorithm reparameterizes orthogonal weight W by the recurrence above. Leveraging the
ONI algorithm, we present the overall algorithm of COCK in Algorithm 1. In Algorithm 1, the
operation Z

||Z||F
is to satisfy the convergence condition:

||V || < 1. (17)

Algorithm 1 COCK

Require: Input X ∈ Rdl−1×n×n, Proxy parameter P ∈ Rdl×dl−1×s×s

Ensure: Output of convolution layer Y
for u← 1 to s do

for v ← 1 to s do
Z ← P[:, :, u, v] ∈ Rdl×dl−1

V ← Z

||Z||F
S ← V V T

B0 ← I
for τ ← 1 to t do
Bτ ←

3

2
Bτ−1 −

1

2
B3

τ−1S ▷ Undertake ONI for each kernel
end for
W[:, :, u, v]← BtV

end for
end for
for i← 1 to dl do

for j ← 1 to dl−1 do
W [i, j, :, :]← IFFT2D(W [i, j, :, :]) ▷ Transform to the spatial domain

end for
end for
Y← Conv(W,X)
return Y

A.2 OMITTED PROOFS

A.2.1 USEFUL LEMMAS

We begin by a basic lemma for ONI:

Lemma A.2.1.1. (Guo & Higham, 2006) For Newton Iteration:

X0 = I, Xt+1 =
1

2
[3Xt −X3

t S]. (18)
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The residual term Rt = I −X2
t S satisfies

Rt+1 =
3

4
R2

t +
1

4
R3

t . (19)

If ||R0|| < 1, then {||Rt||} monotonically decreases to zero.

Lemma A.2.1.2. If A,B,AB ∈ Sn++, that is, they are symmetric positive matrices, then AB =
BA.

Proof.
(AB)T = BTAT = BA. (20)

Note that
(AB)T = AB, (21)

It holds
AB = BA. (22)

Lemma A.2.1.3. If A,B,AB ∈ Sn++, then A
1
2B

1
2 = B

1
2A

1
2 .

Proof. Take one of the eigenvectors of A
1
2 as x and denote λ as the corresponding eigenvalue. It

holds
A

1
2x = λx. (23)

Further
Ax = A

1
2A

1
2x = A

1
2λx = λA

1
2x = λ2x. (24)

That means x is one of the eigenvectors of A. In turn, for any eigenvalue λ of A, the corresponding
eigenvalue of A

1
2 is λ

1
2 . Note that

Ax = λx,

A
1
2y = λ

1
2y,

A
1
2A

1
2y = λy,

Ay = λy.

(25)

Hence, x and y belong to the same eigen-subspace. Further, the eigenvectors of A and A
1
2 are

same. Likewise, the eigenvectors of B and B
1
2 are same too.

Utilizing lemma A.2.1.2 we obtain that A,B are commutative. Hence,

A,B are commutative ⇐⇒ A,B have same eigenvectors

⇐⇒ A
1
2 ,B

1
2 have same eigenvectors

⇐⇒ A
1
2 ,B

1
2 are commutative.

(26)

A.2.2 COCK IS 1-LIPSCHITZ

We utilize Theorem 3.2.2 to characterize the certified robustness. The following theorem suggests
that COCK is Lipschitz-constrained with Lipschitz norm less than one. Note that the convergence
condition requires ||I − S|| < 1. Therefore, in convolution, we assume that all the singular values
of S are positive. Actually, the zero singular values of S do not contribute expressive power which
do not affect the training of the network.

Theorem A.2.2.1. Assuming that the Newton Iteration steps is t, then the singular values of the
output matrix from ONI algorithm are restricted to [

√
1− λmax(Rt),

√
1− λmin(Rt)].
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Proof. Firstly, we are going to prove that

S−1, I −Rk, (I −Rk)S
−1 ∈ Sn++. (27)

On one hand, by V =
Z

||Z||F
, the singular values of S ∈ [0, 1]. On the other hand, by our

assumption all singular values of S are positive, then S,S−1 ∈ Sn++.

On one hand, from R0 = I − S we know that singular values of R0 ∈ [0, 1). On the other hand,
utilizing lemma A.2.1.1 we obtain

Rk+1 =
3

4
R2

k +
1

4
R3

k, σ(Rk) ∈ [0, 1). (28)

Hence, I −Rk ∈ Sn++ and 0 < σ(I −Rk) ≤ 1.

Note that

X0 = I, Xk+1 =
1

2
[3Xk −X3

kS], (29)

where Xk = polynomial(S), therefore, Xk is symmetric owing to S is symmetric. Further, X2
k is

symmetric. Hence, (I −Rk)S
−1 ∈ Sn++. Here we finish the proof of (27).

Finally, leverage lemma A.2.1.3 we have

(I −Rk)
1
2S− 1

2 = S− 1
2 (I −Rk)

1
2 . (30)

Hence,
WW T = [(I −Rk)S

−1]
1
2V V T [(S−1)T (I −Rk)

T ]
1
2

= I −Rk.
(31)

Therefore, we conclude that
σmax(W ) =

√
1− λmin(Rk).

σmin(W ) =
√
1− λmax(Rk).

(32)

For COCK whose convolution layer is concatenated by several outputs of ONI, the singular values
of convolution layer is the union of those singular values. Hence, COCK is a Lipschitz-constrained
with Lipschitz norm less than one.

A.2.3 PROOF OF THEOREM 5.2.1

Proof. For a network represented as F , its certified robust accuracy can be expressed as

Pr{
√
2LF ||ϵ||2 ≤MF,x} = Pr{

√
2LF ||ϵ||2 ≤ F (x)tx −maxi ̸=tx{F (x)i}}. (33)

For proxy parameter Z ∈ Rdl×dl−1 in Algorithm 1, without loss of generality, we assume dl ≥
dl−1 ≜ d. Further, let all singular values of Z be the same. Hence, by operation V =

Z

||Z||F
, the

singular values of S = V V T are all 1
d . For simplicity, we can directly neglect the zero singular

values of S and let S =
1

d
I 7. Further, by

R0 = I − S = (1− 1

d
)I, Rt+1 =

3

4
R2

t +
1

4
R3

t , (34)

all singular values of Rt keep the same, denote σ. For a L-layer neural network, the Lipschitz
norm LCOCK

F ≤ σL. While the Lipschitz norm of general orthogonal convolutions is LORTH
F = 1.

7For one thing, the zero singular values will not affect the compuatation of residual term Rk and the Lip-
schitz norm of the network depends on the maximum singular value. For another, the zero singular values do
not contribute expressive power.
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Consider a single convolution layer, for a standard orthogonal convolution layer equipped with any
parameters, there exists certain parameters for COCK such that

FCOCK
conv (x)tx −maxi̸=tx{FCOCK

conv (x)i} = σ(FORTH
conv (x)tx −maxi ̸=tx{FORTH

conv (x)i}). (35)

For simplicity, adopt ReLU as activation, hence for a single layer:

FCOCK
l (x)tx −maxi̸=tx{FCOCK

l (x)i} = σ(FORTH
l (x)tx −maxi ̸=tx{FORTH

l (x)i}). (36)

Then for the L-layer neural network,

FCOCK(x)tx −maxi ̸=tx{FCOCK(x)i} = σL(FORTH(x)tx −maxi ̸=tx{FORTH(x)i}). (37)

It holds

Pr{
√
2LCOCK

F ||ϵ||2 ≤MFCOCK ,x} ≥ Pr{
√
2LORTH

F σL||ϵ||2 ≤MFCOCK ,x}
= Pr{

√
2LORTH

F ||ϵ||2 ≤MFORTH ,x}.
(38)

A.3 GENERALIZATION IN NORM

A.3.1 GENERALIZATION FOR RISK AND ACCURACY

We first generalize Theorem 3.2.2 under the same setting in Theorem 3.2.2. Consider the case where
dX is defined by lp norm and dY is defined by lq norm.

Theorem A.3.1.1. If 21−
1
q LF ||ϵ||p ≤ MF,x, then MF,x+ϵ ≥ 0. That is, network F is certified

robust in x.

Proof.

⇐ 0 ≤ F (x+ ϵ)tx −maxi ̸=tx{F (x+ ϵ)i}

⇐ F (x+ ϵ)tx −maxi ̸=tx{F (x+ ϵ)i} ≥ F (x)tx −maxi ̸=tx{F (x)i} − 21−
1
q LF ||ϵ||p

LHS = F (x+ ϵ)tx + F (x)tx − F (x)tx −maxi ̸=txF (x)i +maxi̸=txF (x)i −maxi ̸=tx{F (x+ ϵ)i}
= F (x)tx −maxi ̸=txF (x)i + F (x+ ϵ)tx − F (x)tx − [maxi ̸=tx{F (x+ ϵ)i} −maxi ̸=txF (x)i]

≥ F (x)tx −maxi ̸=txF (x)i − |F (x+ ϵ)tx − F (x)tx | −maxi̸=tx |F (x+ ϵ)i − F (x)i|

≥ F (x)tx −maxi ̸=txF (x)i −maxa1,a2∈R{|a1|+ |a2|
∣∣∣∣(aq1 + aq2)

1
q ⩽ LF ∥ϵ∥p}

= F (x)tx −maxi ̸=txF (x)i − 21−
1
q LF ∥ϵ∥p.

(39)

Next, we generalize our definition of certified robust risk and accuracy.
Theorem A.3.1.2. (ϵp-Margin Loss) Utilizing the definition of output margin in (7), the ϵp-margin
loss is any loss whose reduction leads to the enlargement of those output margins that less than ϵ in
the sense of lp norm.

The definition of empirical (ϵp-)certified robust risk and expected (ϵp-)certified robust risk can be
simply generalized from traditional empirical risk and expected risk by replacing loss l with (ϵp-
)margin loss.

Then, we will define the certified robust accuracy under the setting in Section 3.1 while dX is defined
by lp norm and dY is defined by lq norm.
Theorem A.3.1.3. (Empirical Certified Robust Accuracy)

ECR =
1

N

N∑
i=1

(I{MFθ,x(i) ≥ 21−
1
q LF ||ϵ||p}). (40)

Theorem A.3.1.4. (Expected Certified Robust Accuracy)

ECR∗ = Pr{MFθ,x ≥ 21−
1
q LF ||ϵ||p}. (41)
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A.3.2 GENERALIZATION FOR COCK’S CERTIFIED ROBUSTNESS

The proof for Theorem 5.2.1 also holds for the case where dX is defined by lp norm and dY is
defined by lq norm, by simply generalizing the expected certified robust accuracy.

A.4 OMITTED EXPERIMENTAL RESULTS

A.4.1 ABLATION STUDY ON ONI STEPS

We investigate the effect of ONI steps t using LipConvNet-15 on CIFAR-100 in Table 2. All the
results are taken when the amount of distinct convolution kernel k = 2. In Table 2, the loss is the
training loss and the certified robust accuracy is the performance during inference on the test set.

Table 2: Ablation On ONI Steps Using LipConvNet-15 On CIFAR-100

t Loss Training Accuracy(%) Test Accuracy(%) ϵ = 36
255 ϵ = 72

255 ϵ = 108
255

2 3.1825 24.16 24.21 13.91 7.24 3.33
3 2.6284 36.40 34.97 22.88 14.24 8.10
4 2.2366 45.87 41.21 29.27 18.79 11.70
5 2.0542 51.22 44.07 31.29 20.37 13.11
6 1.9926 53.08 44.63 32.03 21.14 13.31
7 1.9931 53.04 44.38 32.04 21.09 13.44
8 1.7111 57.92 46.24 35.19 25.47 17.58
9 2.1259 43.11 35.19 25.66 18.13 12.43

As ONI steps t increases, the expressive power of convolution layers will be weakened, while the
orthogonality of convolution layers will be strengthened which further improves the optimization
condition. A carefully handcrafted ONI steps t trades expressive power and optimization off to
cover the training set better.

A.4.2 TRAINING LOSS

We present the training loss in Figure 3. COCK covers the training set better than baseline orthogo-
nal convolutions.
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Figure 3: Training loss of different models in different datasets. The lower loss indicates that the
model covers the training set better. The training loss of COCK (the red triangles) is lower than
other orthogonalization methods consistently for datasets and models.

A.4.3 COCK COVERS THE TRAINING SET

Results that suggest COCK covers the training set are shown in Table 3. The loss, accuracy and
certified robustness in the table are all evaluated on the training set.
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Table 3: COCK covers the training set in the case k = 5

Model Dataset Loss Accuracy(%) ϵ = 36
255 ϵ = 72

255 ϵ = 108
255

LipConvNet-15
CIFAR-10 0.1434 97.05 92.86 84.92 72.82
CIFAR-100 0.1337 98.41 96.32 92.06 83.89
TinyImageNet 0.1515 99.41 97.77 92.96 81.27

A.4.4 VANILLA CLASSIFICATION ACCURACY AND CERTIFIED ROBUST ACCURACY ON
CIFAR-100

The results of vanilla classification accuracy and certified robust accuracy on CIFAR-100 are shown
in Table 4.

Table 4: Vanilla Classification Accuracy and Certified Robust Accuracy on CIFAR-100

Stage Model Method Accuracy(%) ϵ = 36
255 ϵ = 72

255 ϵ = 108
255

Training

LipConvNet-5

SOC 50.95 36.34 23.76 14.79
BCOP 60.50 44.13 28.95 17.46
Cayley 44.05 30.49 19.53 11.87
COCK 61.36 45.20 30.07 18.54

LipConvNet-15

SOC 53.57 38.69 25.92 16.25
BCOP 56.57 40.48 26.56 16.19
Cayley 50.34 35.74 23.88 14.95
COCK 64.08 50.04 36.62 24.94

LipConvNet-35

SOC 51.09 37.17 24.40 15.16
BCOP 30.81 19.04 11.09 6.18
Cayley 40.10 27.22 17.13 10.30
COCK 73.72 61.80 47.96 34.50

Test

LipConvNet-5

SOC 46.35 32.39 21.04 13.18
BCOP 46.00 31.71 20.33 12.26
Cayley 42.66 29.48 19.06 11.55
COCK 44.32 32.15 22.20 14.62

LipConvNet-15

SOC 47.31 33.85 22.41 14.15
BCOP 43.90 30.16 20.12 12.37
Cayley 45.57 30.30 18.48 10.58
COCK 45.18 34.75 25.52 18.15

LipConvNet-35

SOC 45.41 32.74 21.23 13.48
BCOP 30.37 19.25 11.02 6.22
Cayley 38.41 25.83 15.76 9.30
COCK 38.56 30.68 23.32 17.27

A.4.5 VANILLA CLASSIFICATION ACCURACY AND CERTIFIED ROBUST ACCURACY ON
TINYIMAGENET

The results of vanilla classification accuracy and certified robust accuracy on TinyImageNet are
shown in Table 5.

A.4.6 VANILLA CLASSIFICATION ACCURACY (BETTER) AND CERTIFIED ROBUST
ACCURACY ON CIFAR-10

The results of vanilla classification accuracy and certified robust accuracy resulting from the trade-
off for a better vanilla classification accuracy on CIFAR-10 are shown in Table 6.
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Table 5: Vanilla Classification Accuracy and Certified Robust Accuracy on TinyImageNet

Stage Model Method Accuracy(%) ϵ = 36
255 ϵ = 72

255 ϵ = 108
255

Training

LipConvNet-5

SOC 51.09 35.30 21.37 11.44
BCOP 65.39 46.87 28.16 14.00
Cayley 45.46 29.92 17.31 9.07
COCK 66.87 52.67 37.90 25.15

LipConvNet-15

SOC 52.69 36.92 22.91 12.70
BCOP 64.19 44.19 26.32 12.48
Cayley 65.20 45.18 27.16 13.75
COCK 82.50 73.75 63.21 51.47

LipConvNet-35

SOC 52.27 36.47 22.26 12.25
BCOP 14.03 5.22 1.71 0.56
Cayley 49.78 32.16 18.16 8.86
COCK 69.55 53.39 36.12 21.05

Test

LipConvNet-5

SOC 36.10 23.90 14.76 8.77
BCOP 33.89 21.96 12.89 7.46
Cayley 33.26 21.55 12.63 7.41
COCK 35.61 26.15 18.14 12.34

LipConvNet-15

SOC 36.65 24.49 15.29 9.41
BCOP 32.37 21.27 12.67 7.38
Cayley 33.36 22.06 12.76 7.33
COCK 35.90 30.19 24.31 19.61

LipConvNet-35

SOC 34.91 23.13 14.26 8.24
BCOP 12.35 4.83 2.02 0.75
Cayley 28.12 18.09 10.85 6.20
COCK 29.26 19.92 12.83 8.41

Table 6: Vanilla Classification Accuracy (Better) and Certified Robust Accuracy on CIFAR-10

Stage Model Method Accuracy(%) ϵ = 36
255 ϵ = 72

255 ϵ = 108
255

Training
LipConvNet-5 COCK 81.58 62.89 40.89 22.95
LipConvNet-15 COCK 83.60 71.54 57.39 43.36
LipConvNet-35 COCK 76.96 58.22 38.30 21.62

Test
LipConvNet-5 COCK 76.05 58.86 40.93 25.51
LipConvNet-15 COCK 76.97 66.19 54.15 42.45
LipConvNet-35 COCK 72.17 54.91 37.07 22.62

A.4.7 VANILLA CLASSIFICATION ACCURACY (BETTER) AND CERTIFIED ROBUST
ACCURACY ON CIFAR-100

The results of vanilla classification accuracy and certified robust accuracy resulting from the trade-
off for a better vanilla classification accuracy on CIFAR-100 are shown in Table 7.

Table 7: Vanilla Classification Accuracy (Better) and Certified Robust Accuracy on CIFAR-100

Stage Model Method Accuracy(%) ϵ = 36
255 ϵ = 72

255 ϵ = 108
255

Training
LipConvNet-5 COCK 54.87 38.14 24.39 14.47
LipConvNet-15 COCK 59.45 45.49 32.36 21.29
LipConvNet-35 COCK 53.17 38.00 25.31 15.59

Test
LipConvNet-5 COCK 45.19 32.27 21.20 13.22
LipConvNet-15 COCK 46.24 35.19 25.47 17.58
LipConvNet-35 COCK 43.75 31.42 21.60 14.10
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A.4.8 VANILLA CLASSIFICATION ACCURACY (BETTER) AND CERTIFIED ROBUST
ACCURACY ON TINYIMAGENET

The results of vanilla classification accuracy and certified robust accuracy resulting from the trade-
off for a better vanilla classification accuracy on TinyImageNet are shown in Table 8.

Table 8: Vanilla Classification Accuracy (Better) and Certified Robust Accuracy on TinyImageNet

Stage Model Method Accuracy(%) ϵ = 36
255 ϵ = 72

255 ϵ = 108
255

Training
LipConvNet-5 COCK 62.49 49.12 35.94 24.32
LipConvNet-15 COCK 67.52 54.23 40.32 27.60
LipConvNet-35 COCK 54.69 37.40 22.02 11.46

Test
LipConvNet-5 COCK 35.89 26.20 18.08 12.01
LipConvNet-15 COCK 36.18 27.24 19.89 14.28
LipConvNet-35 COCK 34.22 22.11 13.54 7.43

A.4.9 EVALUATION ON THE TRADE-OFF BETWEEN POWER AND GENERALIZATION

To alter the expressive power of COCK, we adjust the combination k̂ = (k1, ..., kL). For a certain
combination of dataset and architecture, the larger k̂ represents a powerful model. By handcrafting
different k̂, we evaluate the performance with respect to different expressive power. Given k for a
single layer under a certain combination of dataset and architecture, we also need to set t corresponds
to k. For simplicity, all layers under a certain combination of dataset and architecture follow the
same rule to map t with k. The mapping rule is shown in Table 9.

Table 9: Implementation Details

Dataset Model t k

CIFAR-10

LipConvNet-5 7 1,2,...,9
LipConvNet-15 9 1,2,...,9

LipConvNet-35 7 1
5 2,3,...,9

CIFAR-100

LipConvNet-5 6 1,2,...,9
LipConvNet-15 8 1,2,...,9

LipConvNet-35 6 1
5 2,3,...,9

TinyImageNet
LipConvNet-5 9 1,2,...,9
LipConvNet-15 9 1,2,...,9
LipConvNet-35 6 1,2,...,9

For the mapping from k distinct kernels to s2 convolution kernels, our strategy is rather simple. For
each distinct kernel, we simply map it to an arbitrary kernel and some of its neighbours.

20


	Introduction
	Related Work
	Preliminaries
	Characterizations of Risk and Accuracy
	Descriptions of Certified Robustness in Lipschitz-constrained Models
	Expressions of Orthogonal Convolution

	Capture The Trade-off for Certified Robustness
	Equivalence Between Loss Convergence and Certified Robustness
	Definition of Risk and Accuracy for Certified Robustness

	Propose of COCK: Controllable Orthogonal Convolution Kernel
	Design of COCK
	On the Expressive Power of COCK

	On the Certified Robustness of COCK

	Experiment
	Setup
	Enough Power to Cover the Training Set Improves Certified Robustness
	Power-Driven Shift from Vanilla Classification Accuracy to Certified Robustness

	Conclusion
	Limitations and Future Work

	Appendix
	Overall Algorithm
	Omitted Proofs
	Useful Lemmas
	COCK Is 1-Lipschitz
	Proof of Theorem 5.2.1

	Generalization in Norm
	Generalization for Risk and Accuracy
	Generalization for COCK's Certified Robustness

	Omitted Experimental Results
	Ablation Study on ONI Steps
	Training Loss
	COCK Covers The Training Set
	Vanilla Classification Accuracy and Certified Robust Accuracy on CIFAR-100
	Vanilla Classification Accuracy and Certified Robust Accuracy on TinyImageNet
	Vanilla Classification Accuracy (Better) and Certified Robust Accuracy on CIFAR-10
	Vanilla Classification Accuracy (Better) and Certified Robust Accuracy on CIFAR-100
	Vanilla Classification Accuracy (Better) and Certified Robust Accuracy on TinyImageNet 
	Evaluation on the Trade-off Between Power and Generalization



