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Abstract

Signal Temporal Logic (STL) is a powerful specification language for describing
complex temporal behaviors of continuous signals, making it well-suited for high-
level robotic task descriptions. However, generating executable plans for STL
tasks is challenging, as it requires consideration of the coupling between the task
specification and the system dynamics. Existing approaches either follow a model-
based setting that explicitly requires knowledge of the system dynamics or adopt a
task-oriented data-driven approach to learn plans for specific tasks. In this work, we
address the problem of generating executable STL plans for systems with unknown
dynamics. We propose a hierarchical planning framework that enables zero-shot
generalization to new STL tasks by leveraging only task-agnostic trajectory data
during offline training. The framework consists of three key components: (i)
decomposing the STL specification into several progresses and time constraints,
(ii) searching for timed waypoints that satisfy all progresses under time constraints,
and (iii) generating trajectory segments using a pre-trained diffusion model and
stitching them into complete trajectories. We formally prove that our method
guarantees STL satisfaction, and simulation results demonstrate its effectiveness in
generating dynamically feasible trajectories across diverse long-horizon STL tasks.
Project Page: https://cps—-sjtu.github.io/Zero-Shot-STL/

1 Introduction

Signal Temporal Logic (STL) is a formal specification language used to describe the temporal
behavior of continuous signals. It has become widely adopted for specifying high-level robotic
behaviors due to its expressiveness and the availability of both Boolean and quantitative evaluation
measures. Controlling robots under STL task constraints, however, is a challenging problem, as it
requires balancing both the satisfaction of the task and the feasibility of the system dynamics. In cases
where the environment and system dynamics are fully known, several representative methods have
been developed, including optimization-based approaches [1, 2, 3], gradient-based techniques [4, 5],
and sampling-based methods [6]. However, these methods are often difficult to apply in practical
scenarios, where the system dynamics and environment are either unknown or difficult to model.

To address the challenge of unknown dynamics, several learning-based approaches have been pro-
posed. One typical method is reinforcement learning (RL) [7, 8, 9, 10, 11, 12], where an appropriate
reward function is designed to approximate the satisfaction of the STL task. However, these methods
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often struggle with long-horizon STL tasks and lack generalization capabilities across different tasks.
Another approach involves first learning a system model and then integrating it with model-based
planning methods. For example, in [13], the authors trained a neural network to approximate the
system dynamics and combined it with an optimization-based approach. However, this method is
limited to simple short-horizon STL tasks due to its high computational cost. In [14], the authors used
goal-conditioned RL to train multiple goal-conditioned policies, referred to as “skills," to accomplish
specific objectives. They then applied a search algorithm to determine the optimal sequence of
“skills" needed to satisfy the given STL tasks. While this approach enables a certain degree of task
generalizations, these tasks must be based on pre-defined objectives associated with the skills.

More recently, generative models, such as diffusion models [15], have emerged as a new approach for
generating trajectories for systems with unknown dynamics [16, 17, 18, 19, 20], gaining popularity
across various applications. Compared to traditional model-based reinforcement learning methods,
these generative approaches are better suited for long-horizon decision-making and offer greater
test-time flexibility [16], making them particularly effective for complex tasks. For example, for finite
Linear Temporal Logic (LTL) tasks, [21] introduced a classifier-based guidance approach to steer
the sampling of diffusion models, ensuring that generated trajectories satisfy LTL ; requirements.
Similarly, [22] proposed a hierarchical framework that decomposes co-safe LTL tasks into sub-
tasks using hierarchical reinforcement learning. This framework employs a diffusion model with
a determinant-based sampling strategy to generate diverse low-level trajectories, improving both
planning success rates and task generalization.

In the context of STL trajectory planning, the use of generative models has also been explored
recently. For example, [23] proposed a classifier-based guidance approach that leverages robustness
gradients to guide diffusion model sampling, enabling the generation of vehicle trajectories that
adhere to traffic rules specified by STL. Building on this, [24] introduced a data augmentation method
to enhance trajectory diversity and improve rule satisfaction rates. However, these approaches are
still limited to simpler STL tasks, primarily due to the complexity of optimizing robustness values
and the inherent trade-off between maximizing reward objectives and maintaining the feasibility of
the generated trajectories [25].

In this paper, considering that trajectories satisfying complex STL specifications are typically difficult
to collect in real-world scenarios, we focus on composing such trajectories by stitching together short
trajectory chunks. The main challenge lies in determining appropriate ways to combine these chunks
such that the resulting trajectory satisfies the global STL specification while maintaining dynamic
consistency and feasibility. Inspired by recent advances in decomposition-based STL planning[26],
we propose a novel hierarchical framework that integrates task decomposition, search algorithms, and
generative models. First, complex STL tasks are decomposed into a set of time-aware reach-avoid
progresses. Next, a search algorithm, heuristically guided by the trajectory data, is employed to
allocate these progresses and generate a sequence of waypoints with corresponding timestamps.
Finally, a pre-trained diffusion model, trained on task-agnostic data, is used to sequentially generate
trajectory chunks that connect adjacent timed waypoints. All trajectory chunks are then stitched
together to form the complete trajectory.

To the best of our knowledge, our algorithm is the first data-driven approach with zero-shot gen-
eralization capability for complex STL tasks. We have formally proven the soundness of our STL
decomposition and planning algorithm, which guarantees that the generated trajectories satisfy any
given STL specification. Furthermore, we empirically evaluate the dynamic consistency and feasibil-
ity of the planned trajectories through simulation experiments. Simulation results demonstrate that
our method achieves a high execution success rate across diverse long-horizon STL tasks, where
the diffusion-based baseline fails. Moreover, it outperforms both the diffusion-based baseline and a
standard non-data-driven method in planning efficiency.

2 Preliminaries
2.1 System Model
We consider a discrete time system with unknown dynamics
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where x; € R™ and a; € R™ are the state and the action at time instant ¢, respectively. Given an
initial state xg and a sequence of actions apa; . ..ar—1, the resulting trajectory of the system is
T = X0a9X1a7 ...ar_1Xp, where T is the horizon. The signal of the trajectory is referred to as the
state sequence s = XX; ...x7 and we denote by s; = X;X;41 . . . X7 the sub-signal starting from
time step t.

2.2 Signal Temporal Logic

We use signal temporal logic (STL) to describe the formal task imposed on the generated state
sequence [27]. Specifically, we consider STL formula in the Positive Normal Form (PNF) [28] whose
syntax is as follows:

pu=T | p|eings | p1Vee | Flaye | Glaye | ¢1Uas 92, 2

where T is the true predicate and u is an atomic predicate associated with an evaluation function
h, : R" — R, i.e., predicate y is true at state x; iff hu(xt) > 0. Furthermore, A and V are
logic operators “conjunction” and “disjunction”, respectively; Uy 4], F[q,5] and Gy ) are temporal
operators “until", “eventually" and “always", respectively; [a, b] is a time interval such that a, b €
7,0 < a < b < oco. Note that, negation is not used in the PNF. However, as shown in [28], this
does not result in any loss of generality as one can always redefine atomic predicates to account for
the presence of negations, allowing any general STL formula to be expressed in PNF. In our work,
we impose an additional restriction on the Prenex Normal Form of formulas. Specifically, for any
formula of the form ¢1 Uy, 3)2, ¢1 can only involve temporal operator “always”. This restriction is
introduced for technical reasons, as it facilitates the decomposition of the overall formula into a set
of progresses. For any signal s = x¢X; ...x7, we denote by s; F ¢ if s satisfies STL formula ¢ at
time ¢, and we denote by s F ¢ if sg E . This is formally defined by the Boolean semantics of STL
formulae as shown in Appendix C.1.

2.3 Planning with Unknown Dynamics

In the context of STL planning, the objective is to determine an action sequence such that the
resulting signal satisfies the specified STL formula. When the system dynamics are perfectly known,
this problem can be solved using model-based optimization approaches (e.g., see [1, 2, 3]). In
contrast, our work addresses a setting with unknown dynamics. Specifically, we assume the mapping
f:R™ x R™ — R™ is unknown,but a dataset of historical operational trajectories, consistent with
the underlying unknown system dynamics, is available. Note that each trajectory in the dataset is
collected from the previous task-agnostic operations and may vary in length. Our goal is to leverage
these task-agnostic trajectories to generate new trajectories that satisfy any given STL formula,
thereby achieving zero-shot task generalization at test time.

Problem 1. Given a set of trajectories from the unknown system (1) and a STL formula ¢ in the
desired form, find a sequence of actions apa; . ..ar such that the resulting signal s satisfies the STL
formula, i.e., s F .

3 Our Method

3.1 Overall Framework

First, we provide an overview of our proposed planning framework, whose overall structure is
illustrated in Figure 1. Our method consists of three key components. The first is semantics-
based task decomposition, in which the given STL formula is decomposed into a set of spatial-
temporal progresses P = PRUPZ, where PR denotes the set of reachability progresses and P
the set of invariance progresses. These progresses must be satisfied under a set of time con-
straints T defined over time variables A. The second component is dynamics-aware progress
allocation. While the above decomposition is task-centric, ensuring that the progresses can be
satisfied in the correct temporal order requires considering the system’s underlying dynamics. To
this end, we use a pre-trained Time Predictor, learned from task-agnostic trajectory data, to esti-
mate the time required to transition between waypoints. A search-based algorithm then determines
a sequence of timed waypoints (Xo,%o), (X1,%1),.-., (Xn,tn) such that each waypoint satisfies
a corresponding reachability progress in P and complies with all invariance progresses in PZ.
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. Figure 1: The Overall Framework of Our Pro-
3.2 Decompositions of STL Formulae posed Method.

Eliminating Disjunctions. For the given STL

task ¢, our first step is to covert it into the dis-

junctive normal form (DNF) ¢ = ¢1 V 3 V -+ V ¢,, where each subformula ¢; involves no
“disjunction”. Formally, for any STL formula, one can obtain its disjunctive normal form (DNF) by
recursively applying the following replacements: (i) replace F, p)(¢1 V @2) with Fg 5101 V Fq 51 02;
(ii) replace Gq ) (01 V 02) With Gy, 5101 V Giq,592; and (iii) replace (¢1 V ¢2)Ujq,p (91 V 02) with
V., ije{1,2} ®;U[q,p)pj- Note that the last two replacements are not equivalent, makmg the resulting

DNF ¢ stronger than the original formula ¢; i.e., » = ¢ but not conversely, adding conservativeness
while preserving soundness. Furthermore, to achieve the task defined by ¢, it suffices to satisfy one of
the subformulas ;. Without loss of generality, we will assume henceforth that the DNF contains only
a single subformula, as the STL planning problem can be addressed for each subformula individually.
In other words, moving forward, we will focus on STL formulae, denoted directly by ¢, without
negations (due to the PNF) and without disjunctions (due to the DNF). Similar simplifications and
assumptions are common in STL planning or control synthesis literature [30].

Progresses. We encode the STL task ¢ by a finite set of progresses together with a set of time-
variable constraints. For a signal fragment s; = X;X;11 ... X7y, We use two canonical progress

types:
* Reachability progress R(ap + t,ba + t, 11): there exists t' € [ap + t,ba + ¢] such that x4 E p.
* Invariance progress Z(ap + t,by +t, pu): forall ¢’ € [ap + t,bp + t] it holds that xy/ E p.

Unless stated otherwise we take ¢ = 0 and write simply R(an, ba, 1) and Z(ap, ba, p).

Time Variables and Constraints. The subscript “A” indicates that the interval endpoints may
depend on a finite set of time variables A, = {\{,..., AlA| }. A concrete assignment is a vector

A=[A1,..., a) € Z|A| Throughout our decomposition (see Appendix D), each endpoint is an
affine 0-1 combination of these variables (plus constants), hence we view ay, by : Zl N Zy. Al

time constraints are unary interval bounds of the form \; € [q,, bl], we collect them in a set T',.
Feasible Assignment Set. The feasible set induced by T, is

Form{rezl | vie T, s Art},
where A F (\; € [a;, b;]) iff the i-th component of X lies in the specified interval. Because constraints
are unary, F, factorizes coordinatewise.

Satisfaction of Progresses under an Assignment. Given A € F,,, we abbreviate sg F P () for the
satisfaction of P(aa (), ba(A), p), where P € {R,Z}:
S0 E R(ap(N),baA(N), 1) < Tt € [apn(A),ba(N)] : x¢ F p, 3)
S0 F Z(an(A),ba(A), ) < YVt € [an(N),ba(N)] = x¢ F p. 4)
The full recursive decomposition procedure is detailed in Appendix D. To establish the soundness of

the decomposition process with respect to the original STL specification, we propose the following
lemma and the proof is provided in Appendix G.



Lemma 1 (Soundness of Semantics-based STL Decomposition). Let @ be an STL formula in positive
normal form (PNF) without disjunctions, and let (P, T,) along with the time-variable set A, be the
result of the recursive decomposition. Let F, denote the set of feasible assignments that satisfy all
time constraints. Then, for any signal s,

soF @ <= IXNEF,st. VPP, : 5o P(A).

In particular, if A, = @, i.e., no time variables appear in the decomposition procedure, the condition
reducestosg F ¢ <= VP € P,: so FP.

3.3 Progress Allocation

Basic Idea. By Lemma 1, when system dynamics are ignored, STL planning reduces to a constraint-
satisfaction problem over the decomposed progresses and time constraints (P, T,,). Concretely,
so F  holds iff there exists a feasible time-variable assignment A € F, such that every progress
in P, is satisfied. This reformulation is advantageous for signal construction: instead of reasoning
directly with temporal quantifiers in the original formula, it suffices to (i) ensure the existence of a
feasible A, and (ii) construct a signal that satisfies all progresses under that assignment. We refer to
this process as progress allocation.

However, unknown system dynamics pose additional challenges, as arbitrary allocation may result in
dynamically infeasible plans. To address this, we adopt a search-based allocation algorithm, where
the feasibility of each assignment is evaluated using a model (Time Predictor) learned from trajectory
data, which implicitly captures the system dynamics.

Preprocessing. To perform the search-based allocation process, we further split the progresses IP,,
as follows. For each invariance progress Z(aa,ba,u) € Py, we decompose it into a reachability
progress R(aa, aa, ) and an invariance progress Z(aa + 1, by, ). For simplicity, we will denote
the further decomposed progresses as (P, T) without subscripts, where P = PRUPZ. Due to this
further decomposition, each invariance progress follows a unique reachability progress.

Main Allocation Algorithm. The main algorithm for progress allocation is presented
in Algorithm 1. Note that the pseudo-code presents the search with an explicit stack
for readability, whereas our reference implementation executes the same logic recursively.
The algorithm employs a depth-first search
(DFS) to sequentially assign satisfaction
times and waypoints for each reachabil-
ity progress in PR. When the algorithm Input: Initial state xo, reachability progresses PR, invariance
terminates, it returns a sequence of way- progresses P, time variable constraints T
points with associated timestamps of form Outp.ut:. A valid waypoints sequence s or None if no solu-
(X0,t0)(X1,t1) ... (Xp,t,) such that each ~ HonIS .fou.nd
waypoint corresponds to the satisfaction - Initialize: i .
.. . R . current state X <— Xo; current time ¢ <— 0

of a reachability progress in IP’. . During sequence § « [(x, )]
the search process, we mamtam the cur- stack « [(x,t, PR, T, )|
rent statt.e X, the curreqt .tlme step t, the set while stack is not empty do
of remaining reachability progresses P%, (x,t,PR,T,8) < pop(stack)
the set of all time constraints T, and the if PR = () then
searched sequence of waypoints with asso- return 5, T  // All reachability progresses satisfied
ciated timestamps 8. for each progress R(an,ba, i) € P* do

t',x' « SampleState(R(aa,ba,p),x,t, T, PT)

Algorithm 1 Main-Allocation

VRN E LR

—_

At each step, we select a remained
reachability progress R(aa,ba,p) from .

if ' # None then
PR as the next target progress from 12: 7

& s.(x,t)

the current state (x,t). Specifically, to 13: PR’ pR \ {R(an,ba, 1)}

achieve progress R(an,ba, 1), function . T <—UpdateCons’tra{int(ambA,'JI',x’,t’)
SampleState is used to determine a sat- 5. // Push new state onto the stack

isfaction time ¢’ and a corresponding new 1¢: push (x',t, PR T, §') onto stack

state x" such that x’ | u. Then the 17: end for
searched waypoint (x’,') is appended to  18: end while
§ and we remove progress R(ap,bp,p) 19: returnNone // No valid sequence found
from PR. Furthermore, the time con-
straints T are updated based on the assigned state x’ and time t according to function




UpdateConstraint. Finally, the algorithm proceeds to the next iteration. If P® becomes
empty, it indicates that all reachability progresses have been successfully assigned a satisfaction time.
If no feasible assignment can be made, the algorithm backtracks to explore alternative assignments.

Dynamic Maintenance of Time Variable Constraints. During allocation, we dynamically
maintain the set of time variable constraints T. Once the satisfaction time of a reachability progress
is determined, additional constraints are added accordingly. This enables the planner to query T at
any point to determine potential ranges of ax and by (we denote by [a}'F, a 5], [T, b)) in
a progress P(aa, ba, 1) by solving integer linear programs (ILP), while ensuring consistency with
previously assigned progresses. For example, to obtain aﬁi{f, we minimize aa () subject to all

constraints in T.

Note that only the constraints are updated during planning; the time variable set A remains fixed.
As new constraints are introduced, the feasible assignment set F becomes increasingly restricted.
If 7 becomes empty-i.e., no assignment A satisfies all constraints-the current allocation is deemed
infeasible, and backtracking is triggered to revise earlier decisions.

Heuristic Order. In the DFS of Algorithm 1, reachability progresses from P7 are selected based

min

on a heuristic order: progresses with earlier potential deadlines b{"'; are prioritized; if multiple
candidates share the same deadline, the one with the earlier potential start time a’ is preferred.

Constraint Update. Let R(an,ba, 1) be the selected progress and (x',t) the assigned waypoint
with time. We then add the following time constraints to T:

an <t and by >t. 5)

These constraints ensure that the progress can be satisfied at time ¢’. Recall that in our decomposition,
each original invariance progress Z(ax, b, ) is split into a reachability progress R(an, a, i) and
a residual invariance progress Z(aa + 1,ba, pt). Thus, if constraints (5) are added for a reachability
progress of the form R (ax, an, i), the value of ay is fixed to ¢'. Let IP’dIet denote the set of invariance
progresses whose starting times have been determined. For any Z(c, da, p) € PL, if x' ¥ p, we add
an additional constraint dy < t’ to ensure that the invariance progress terminates before ¢, thereby
avoiding conflicts with the assigned waypoint.

Sample Timed Waypoints. When a reachability progress R(aa,ba,p) is se-
lected, we use function SampleState to determine a valid satisfaction time and
waypoint state for this progress while ensuring compliance with invariance progresses.
The pseudocode of this function is shown
in Algorithm 2. The process starts by com-
puting the largest possible time interval — :
[tmin7 tmax] for the reachability progress. Input: reachability progress R(a, b, u), current state x, time
Then~ the algorithm attempts to sarpple a [Spfgp t, time variable constraints T, invariance progresses
candidate state x” with the satisfication re- . . . . .

. . Output: Assigned satisfaction time tnew Of constraint
gion of p up to Ny ax times. For each at- / ) L

.. R(a,b, u) and new state x" or None if no solution is

tempt, we first calculate the minimum pos- found
sible conflict time interval, denoted by O, min max

. . ’ . . . . tmin < aA;]l‘ytmax — bA,’]I
during which x’ conflicts with the invari- for up to Nmayx attempts do
ance progresses.

Sample state x” such that x' = p
Initialize: conflict time interval O < ()
for all Z(c,da, ') € P%,, with determined starting

Algorithm 2 SampleState

A

Once the conflict time interval O is
computed, we furthe;r use .funct.ion time do
TimePredict to predict the arrival time . if x' ¥ ;i then
t' from the current state x to the sample 7 O« OU|c,diz
state x’. Particularly, if (i) #’ > tyax; or (i) 8: end if '
the feasible interval [max (', tmin), tmax] 9: endfor
is fully occupied by conflicting intervals 10: ¢’ <t + TimePredict(x,x’)
in O, then it means that the sample state 111 ift’ > tmax or [max{t’, tmin}, tmax] \ O = 0 then
x’ is not feasible and we proceed to the }g gf}“ti““e to next sampling attempt
. . : endi
neXF attempt. Ot.h CIWISC, Fhe e arliest 14:  tpew <—earliest time in [max{t’, tmin }, tmax] \ O
available time t,.,, in the feasible interval 15 return f X
is assigned as the satisfaction time, and (¢! o qfor
the algorithm returns ?,¢,, along with the
sampled state x'.

17: return None // No valid time found




Remark 1. When calculating the conflict time interval O, we only consider invariance progresses
whose starting times are determined. This is because, in the preprocessing process, we make each
invariance progress follows a “preceding" reachability progress. If the starting time of an invariance
progress is not determined, then it implies that its “preceding"” reachability progress has not yet been
satisfied and will only be satisfied strictly later than the current reachability progress. Consequently,
this invariance progress will also start strictly later.

Prediction of Reachability Time. In Algorithm 2, model TimePredict is used to estimates the
time step (trajectory length) needed to transition from the current state x to the new state x’. This
model is trained on the same trajectory data, that will be used to train the Diffusion model. It assumes
that the trajectory length between two states follows a Gaussian distribution. A simple multilayer
perceptron (MLP) is used as the backbone of TimePredict model, and it is trained to predict the
mean and variance of the trajectory length using a negative log-likelihood loss function. To account
for tasks with avoidance requirements, which may require longer trajectories, a scaling factor v
is applied to the predicted mean trajectory length. This factor allows control over the algorithm’s
conservativeness by adjusting the predicted trajectory length as needed.

Soundness of the Progress Allocation Algorithm. We establish the soundness of the progress
allocation algorithm in Lemma 2, with proof provided in Appendix G.

Lemma 2 (Soundness of Progress Allocation Algorithm). Let (xo, P, PZ,T) be the input to
Algorithm 1. Assume the depth-first allocation terminates with a waypoint sequence s =
(Xo,t0) (X1,t1) .. (Xnytn), O0=to <ty <--- <ty,,andlet T be the final set of time-variable
constraints with feasible assignment space F.

Then Fy # @, and for any signal sg = XoX1 ...xp withT > t,, and x;, = X; for 0 < i < n, there
exists X € Fy such that

{VR(@A,bA,u) ePR: sy = R(aa(N), by
VZ(an,ba, ) € PE, Yt € [an(N),ba(N)]

(A), 1),
ﬁ{t}zo Xt’:ﬂ"

In other words, by interpreting the returned waypoints as key states within the signal sg, the algorithm
guarantees that, under some feasible assignment of time variables, all reachability progresses are
satisfied and no invariance progress is violated at any selected waypoint.

3.4 Trajectory Generation

Lemma 2 ensures that the signal constructed from the waypoints returned by the Progress Allocation
algorithm satisfies all reachability progresses and does not violate any invariance progress at the
selected time steps. We now address the problem of completing the full system trajectory so that
the entire signal satisfies all progress conditions. Suppose the Progress Allocation algorithm returns
a waypoint sequence § = (Xo,to) (X1,%1) ... Xnytn), 0 =1tg < t; < --- < t,. Our goal
is to generate a system trajectory T = XpapX1aj . ..ar_1Xy under system dynamics (1), whose
corresponding signal sy = XX ...x7 satisfies:

T >ty,
xi; =X; forallie{0,...,n}, 6)
VI ePt sy =1

Note that the time intervals of all invariance progresses are now fixed by selecting a specific feasible
assignment \* € F. A special case arises when certain invariance progresses have not yet terminated
at time ¢,,. In this situation, we simply wait at X,, until all invariance progresses end, since according
to Lemma 2, x,, satisfies all predicates corresponding to the active invariance progresses at that time.

To solve this conditional trajectory generation problem, we employ a diffusion model trained on task-
agnostic trajectory data, which enables the generation of dynamically feasible trajectories. Moreover,
by incorporating constraints into the sampling process, the generated trajectories can be aligned
with additional task requirements. However, directly generating long trajectories is challenging, as
they often deviate from the training distribution. To mitigate this, we adopt a trajectory stitching
strategy, generating individual segments 7; between each pair of adjacent waypoints (x;,¢;) and
(Xi+1,ti+1), and concatenating them to form the final trajectory 7. Specially, each segment must



satisfy the following conditions: (i) the length is ¢;1 — ¢; + 1, (ii) it starts at state x; and ends at
state x;41, and (iii) it satisfies all invariance progresses active within the time interval [t;, ¢;11].

The diffusion model implementation is detailed in Appendix E. Briefly, the trajectory length is con-
trolled via the length of initial noise, leveraging architectural properties of the backbone network [16].
Endpoint conditions are handled as an inpainting problem [16], by fixing the start and end states at
every denoising step. To enforce invariance progresses, each Z(a, b, 11;) is translated into a set of
pointwise state constraints ,,, (x;) > 0 fort = q, ..., b, commonly referred to as safety constraints.
These constraints can be handled using various existing constrained sampling methods for diffusion
models [31, 29, 32, 33, 34, 35]. We employ SafeDiffuser [29], which integrates control barrier
functions (CBFs) [36] to enforce these constraints within the sampling process, providing formal
guarantees under mild conditions.

Soundness Analysis. We establish the soundness of the overall framework in the following theorem.
The proof is provided in Appendix G.

Theorem 1 (Soundness of the Overall Planner). Let ¢ be an STL formula satisfying all assumptions
in Sections 2.2 and 3.2. Assume that the Semantics-based Decomposition terminates with a finite
set of progresses and constraints, the Progress Allocation algorithm returns a sequence of timed
waypoints and a non-empty feasible assignment set, and the Trajectory Generation module produces
a trajectory T whose signal s visits all timed waypoints and satisfies all active invariance progresses.
Then the resulting signal satisfies the STL specification: sg F .

3.5 Action Sequence and Control Protocol

Following mainstream diffusion-planner practice, we use the diffusion model solely to generate the
state sequence; since action sequences are high-frequency and less smooth [17], we recover them via
an learned inverse dynamics model [37] or with controllers that track the generated state sequence
during execution. To guarantee strict adherence to the temporal windows imposed by STL tasks, we
adopt a time-synchronous control protocol: each planning step is aligned with a fixed number k of
control steps, where k is specified at task definition time to relate the planning horizon to the control
frequency. At each planning step, the controller or inverse dynamics model therefore outputs exactly
k actions and executes k£ control updates, ensuring that the temporal structure of the trajectory is
preserved at runtime; unless otherwise stated, we set k = 1, so each planning step corresponds to
precisely one control step.

4 Case Study

To illustrate the workflow of our algorithm, we con-  Table 1: STL Task Decomposition Results.

sider a sequential visit and region avoidance task
in the Maze2D (Large) environment [38]. In this Type Details

scenario, the agent starts at the yellow point shown PR RO, AL i) ROM A+ Aay A + Mg, p12),
in Figure 2 and aims to complete the following R(A1 + Az + As, A+ A2 + As, p3),
STL task: Fjo 35] (11 A (F35,45) (12 A Flio,30113))) A R(0,0, =p14), R(0, 0, ~pas)

Gio,110](—a A —ps), where the predicate y; repre- PT  Z(1,110, —ps), Z(1,110, ~pus)

sents “reach region p;,” and —y; denotes “avoid re- T M€ [0,35], %2 € [35,45], s € [10,30]

gion p;”. Intuitively, this STL task requires the agent
to sequentially visit circular regions i1, 12, and pg within specific time intervals while avoiding
regions p14 and ps throughout the entire episode.

The environment layout and target regions are depicted in Figure 2. Our method leverages only an
STL task-agnostic trajectory dataset to train the diffusion model, without prior knowledge of the map
or system dynamics. The decomposed progresses and time constraints are summarized in Table 1.
The planning algorithm then assigns completion times to each reachability progress, as indicated
by the numbers next to start point and regions 1, p2, and pg3 in Figure 2, resulting in a sequence
of waypoints with corresponding times. The diffusion model is then used to sequentially generate
trajectories between adjacent waypoints while ensuring all invariance progresses are satisfied. The
final generated trajectory is shown in the left subfigure of Figure 2. To evaluate the feasibility of the
planned trajectory, we employ a simple PD controller to track it as described in Section 3.5.



The resulting execution trajectory is shown
in the right subfigure of Figure 2. Using the
open-source library st 1py [2], we calculate
the robustness values for both the planned
and actual execution trajectories as 0.180 and
0.115, respectively. Since both values are
positive, the trajectories satisfy the STL task
requirements.

Figure 2: Planned Trajectory (left) and Actual Execu-
tion Trajectory (right) in Case Study.

S Experiments

Although Theorem 1 guarantees the STL satisfaction of the trajectory, the use of a diffusion model
to generate trajectories for systems with unknown dynamics means we cannot guarantee dynamic
feasibility. Furthermore, our algorithm is not complete and exhibits some conservatism. Therefore, in
our experiments, we primarily focus on evaluating the dynamic feasibility of the trajectories and the
conservatism of the planning algorithm. To this end, we design several experiments to test these two
aspects. All experiments were run on a PC with an Intel i7-13700K CPU and Nvidia 4090 GPU.

5.1 Experiment in Maze2D Environment

Experimental Settings. We evaluate our algorithm in three Maze2D environments (U-Maze,
Medium, and Large) to assess its zero-shot generalization capability on randomly generated STL
tasks. The agent, starting from a random position, must complete the STL task by reaching the target
regions within specified time intervals. To generate random STL tasks, we design nine templates
(Table F.1) and randomly generate time intervals and atomic predicate regions for each template,
resulting in 150 randomized tasks per environment. We compare our method with the Robustness
Guided Diffuser (RGD) [23], which uses a diffusion model with robustness value gradient guidance
to optimize the robustness value of trajectory. Both algorithms use diffusion models trained on the
DA4RL dataset [38] to generate trajectories and a PD controller for trajectory execution.

Table 2: Partial Result of Experiment in Maze2D. U:U-Maze; M:Medium; L:Large.
Env Type Success Rate(%) T Robustness Valuet Total Planning Time(s)]
RGD ours RGD ours RGD ours

80.00 97.33 0.1084+0.1132  0.1938+0.0715  13.43£1.51 0.86+0.13 0.86
36.67 92.00 -0.2208+0.2826 0.1504+0.0814  16.65+2.06 0.64+£0.17 0.64
32.00 91.33 -0.1695+0.2521 0.13544+0.0745 19.68+£11.76 1.31£0.15 1.21

70.00 94.67 0.0885+0.2768 0.3205+0.0957 53.90£5.78 3.74+0.34 3.74
34.67 89.33 -0.2277+0.3089 0.2013+0.1950  70.69+8.27  2.72+0.67 2.72
35.33 83.33 -0.2393+0.3130 0.17614+0.2060 129.87+27.25 5.53+0.33 543

34.67 92.00 -0.1927+0.3198 0.3180+0.1228  55.48+5.31 3.62+0.33  3.62
16.67 81.33 -0.3926+0.2284 0.1672+0.2411  68.70+7.65 2.88+£0.63 2.87
26.67 79.33 -0.2886+0.2934 0.1639+0.2286 136.35+38.12 5.59+0.34 5.49

T1(s)

W= W= W —

Evaluation Metrics. We evaluate both methods using Execution Success Rate (SR), Average
Robustness Value (RV), and Total Planning Time (TO0) to assess the task satisfaction of the actually
executed trajectories and the overall planning efficiency. Additionally, we record the Trajectory
Generation Time (T1) to analyze the computational efficiency of the trajectory generation module
of our algorithm. More details about these evaluation metrics and experiment settings are provided in
Appendix F.3.

Results and Analysis. Due to page limitations, we present a subset of the experimental results
in Table 2, with the full results available in Table F.2. The results indicate that RGD works only
on simple tasks (Types 1-3) and struggles with more complex tasks, as it cannot guarantee STL
satisfaction and faces challenges balancing robustness optimization with dynamic feasibility for the
entire long trajectories. In contrast, our method guarantees STL satisfaction and focuses the challenge
on ensuring dynamic feasibility of short trajectory segments. In simpler environments, such as



U-Maze, our method achieves over 80% execution success rate across all task types, and maintains at
least 69 % success in the more complex Large environment. Moreover, the average robustness values
of the actually executed trajectories using our method are consistently higher, further demonstrating
its advantage in task satisfaction performance. Our approach is also more efficient, outperforming
RGD by over 10x in planning time. By comparing Trajectory Generation Time (T1) and Total
Planning Time (T0), we identify trajectory generation as the primary bottleneck in our algorithm.
This is primarily due to the additional runtime introduced by SafeDif fuser, which uses complex
quadratic programming for safety constraints enforcement. We plan to accelerate the trajectory
generation module in future work by incorporating advanced sampling acceleration techniques for
diffusion models [39, 40, 41].

5.2 [Experiments under More Complex Dynamics

We further evaluate the generality of our framework on two dynamics-rich domains from OG-
Bench [42]: Cube (6-DoF URS5e manipulator) and AntMaze (8-DoF Ant). Training uses only
task-agnostic trajectory datasets provided by OGBench; at evaluation time we replace the original
goal-conditioned objectives with STL specifications. In Cube we plan and track end-effector tra-
jectories in Cartesian space, and in AntMaze we plan in the workspace and execute with a learned
inverse-dynamics controller. Across nine STL templates per environment, the framework attains high
execution success rate in Cube (over 84 %) and robust performance in AntMaze (over 60% ), with
planning times that remain practical despite the increased dynamical complexity (Table F.3). These
results indicate that the proposed decomposition-allocation-generation pipeline transfers beyond
simple scenarios to higher-dimensional settings. Full experimental settings, metrics, and analyses are
provided in Appendix F.4.

5.3 Comparative Experiment with Optimization-based Method

In the previous experiments, due to the lack of access to precise system dynamics in the simulation
environment, we could not use sound-and-complete methods to verify the feasibility of randomly
generated STL tasks. Instead, task feasibility was determined by our progress allocation module,
which may lead to a slightly optimistic estimation of the overall success rate, as it overlooks the
conservativeness of our approach. To more accurately assess this conservativeness, we conduct
additional experiments in a custom-built environment with full access to both the environment and
system dynamics. In this setting, we adopt a sound and complete optimization-based method [4],
which utilizes full model information to rigorously verify the feasibility of STL formulas. Our
algorithm is then evaluated on those verified feasible cases. Results show that the progress allocation
module achieves a success rate exceeding 80% across various task scenarios, highlighting its strong
capability to identify feasible solutions. Full experimental details are provided in Appendix F.5.

6 Conclusion

We presented a data-driven hierarchical framework for planning trajectories that satisfy complex
Signal Temporal Logic (STL) tasks under unknown dynamics using only task-agnostic offline
trajectories. The approach semantically decomposes an STL formula into time-aware progresses,
allocates timed waypoints via a dynamics-aware search guided by a learned reachability heuristic, and
synthesizes short constrained trajectory segments with a diffusion-based generator; these segments
are then stitched into complete trajectories. We established formal soundness of the planning pipeline
for STL satisfaction, and validated the method extensively. On Maze2D, the framework attains
high execution success rate on long-horizon tasks while delivering over 10x speedups relative to
a robustness-guided diffusion baseline and higher robustness values with smaller variance. On
dynamics-rich domains (Cube and AntMaze), it maintains strong success rates with practical planning
times, and in a custom environment with known dynamics the progress-allocation module achieves
> 80% feasibility on rigorously certified instances, underscoring completeness in practice. Overall,
the results indicate that unifying logic-level task decomposition with data-driven trajectory synthesis
yields a scalable and general solution for zero-shot STL planning; future work will pursue stronger
time-prediction and control modules, verification enhancements, and accelerated diffusion sampling
for even longer horizons.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction sections clearly state the main contributions and
scope of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss main limitations of our work in Appendix B.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
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is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed implementation descriptions and key experimental settings
in both the main text and the appendix. In addition, we have included the experimental code
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to make their results reproducible or verifiable.
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dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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nature of the contribution. For example
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to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Full details will be provided with the code.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The results are accompanied by error bars.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We describe our computer resources in Section 5.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research in the paper conform with the Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work focuses primarily on the theoretical aspects of task planning and
does not pose any foreseeable societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: the paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: we cite the original paper that produced the code package or dataset.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

18


paperswithcode.com/datasets

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We will provide a document alongside our code.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
1.1.M) for what should or should not be described.
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A Related Works

A.1 STL Decomposition

To address the high complexity of STL control synthesis problems, several decomposition-based
methods have been proposed [43, 44, 26]. In [43], the authors proposed a formula transformation-
based method for multi-agent STL planning. This approach jointly decomposes an STL specification
and team of agents. In [44], the authors decompose STL tasks into several subtasks with non-
overlapping time intervals using time interval decomposition and sequentially apply the shrinking
horizon Model Predictive Control (MPC) algorithm to each short-time-interval subtask. However,
this method is limited to handling STL fragments that do not include nested temporal logic operators.

The work most similar to our STL decomposition framework is [26]. This work first decomposes
STL tasks into several spatio-temporal subtasks with time variable constraints. Then, through time
variable simplification, partial ordering, and slicing, the subtasks are segmented into several time
intervals. Finally, a planning algorithm is subsequently used to sequentially solve the atomic tasks
within each time interval. Our algorithm similarly begins by decomposing the STL task into several
spatio-temporal progresses and time variable constraints. However, we adopt a search-based approach
to determine the completion times and corresponding states to achieve each progress. During the
search process, our method dynamically maintains the time variable constraints on-the-fly according
to the completion of progresses. By incorporating the search mechanism, our algorithm achieves
greater completeness compared to the incremental planning approach used in [26]. Additionally, the
dynamic maintenance of time variable constraints enables a more natural handling of relationships
between subtasks and extends the applicability of our approach to more complex STL task fragments
that allows “until” operator.

A.2 Planning with Diffusion Model

Recent advancements in diffusion-based planning methods highlight their remarkable flexibility, as
they rely exclusively on offline trajectory datasets and do not require direct interaction with or access
to the environment. By leveraging guided sampling, these methods can address a wide range of
objectives without the need for retraining. This approach has been widely applied to long-horizon
task planning and decision-making, facilitating the generation of states or actions for control purposes
[16,17, 18].

In the domain of diffusion-based planning for temporal logic tasks, several significant studies have
been conducted [23, 24, 21, 22]. For instance, [21] proposed a classifier-based guidance approach to
direct the sampling process of the diffusion model, enabling the generation of trajectories that fulfill
finite Linear Temporal Logic (LTL;) tasks. Similarly, [22] introduced a data-driven hierarchical
framework that decomposes co-safe LTL tasks into sub-tasks using hierarchical reinforcement
learning. This framework integrates a diffusion model with a determinant-based sampling technique
to efficiently produce diverse low-level trajectories, enhancing both planning success rates and task
generalization capabilities.

For diffusion-based Signal Temporal Logic (STL) planning, [23] employed a classifier-based guidance
method that leverages the gradient of robustness values to guide the sampling process of a diffusion
model. This method enabled the generation of vehicle trajectories compliant with STL-specified
traffic rules. Expanding on this work, [24] introduced a data augmentation process to further improve
trajectory diversity and increase the satisfaction rate of specified rules. However, these approaches
remain constrained to relatively simple STL tasks due to the inherent complexity of optimizing
robustness values, as well as the trade-off between maximizing reward objectives and preserving the
feasibility of generated trajectories [25].

We compare our algorithm with the method proposed in [23] in the experiments. The results
demonstrate that our algorithm can handle complex and long-horizon STL tasks that the method in
[23] cannot address, while also exhibiting significant advantages in runtime efficiency.

A.3 Trajectory Stitching

In practical applications of diffusion-based trajectory planning, the training data for diffusion models
typically consist of short and simple trajectories. As a result, the learned models struggle to capture the
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distribution of more complex behaviors, making it difficult to generate trajectories that satisfy intricate
task specifications through guided sampling. To address this limitation, recent studies [45, 46, 47, 48]
leverage trajectory stitching methods. The core idea is to construct long-horizon trajectories by
stitching together shorter trajectory segments, thereby enabling the satisfaction of more challenging
tasks. Current research on trajectory stitching mainly focuses on data augmentation [45, 48] or
enabling diffusion models, trained on simple sub-optimal trajectories, to perform relatively complex
long-horizon goal-reaching tasks [46, 47].

In contrast to these works, we focus on using trajectory stitching to generate trajectories that satisfy
complex, long-horizon STL tasks by leveraging a diffusion model trained on task-agnostic, sim-
ple trajectory data. We address the challenge of generating trajectories that satisfy complex STL
specifications by decomposing the global task into simpler local sub-tasks using an hierarchical
STL-decomposition and planning framework. For each sub-task, a diffusion model is employed to
generate a locally feasible trajectory segment, and the final trajectory is obtained by stitching these
segments together. The key difficulty lies in ensuring that the decomposition and stitching process
preserves satisfaction of the original global STL specification.

B Limitations

B.1 Algorithmic Incompleteness

The main limitation of the proposed framework lies in its incompleteness-the planner may fail to find
a solution even when one exists-due to three inherent sources of conservativeness:

(i) Specification strengthening. Eliminating disjunctions transforms the original formula ¢ into a
logically stronger formula ¢. While this may exclude some feasible solutions, such transformation is
typical in STL planning [30].

(ii) Heuristic allocation. The depth-first, heuristic-based progress allocation (Algorithm 1) relies on
approximate time-to-reach estimations and greedy ordering, which may prematurely prune feasible
branches. This can be partially mitigated by treating the first feasible solution as a candidate rather
than terminating immediately. Exploring more candidates improves solution quality but increases
planning time.

(iii) Data-driven synthesis. The diffusion model can only generate trajectories that resemble its
training distribution. When the task requires behaviors beyond this distribution, the model may fail to
synthesize valid segments.

In fact, the incompleteness is inevitable in any sound, data-driven planner under this scenario.
Achieving completeness would require full knowledge of the true system dynamics f, contradicting
the core assumption of the problem. Therefore, pursuing absolute completeness is neither meaningful
nor practical. Instead, a sound yet statistically conservative framework offers greater value in
real-world applications.

We outline some directions that can reduce (though never eliminate) the conservativeness:

» Adaptive progress allocation. Replacing the greedy allocation with a beam search or widening
strategy, and integrating uncertainty-aware arrival-time predictors (e.g., conformal prediction
bounds), can diminish the risk of pruning viable branches.

* Hybrid model refinement. When limited model knowledge is available (e.g., a coarse dynamics
model or learned residual), incorporating it as a constraint inside trajectory generator may shrink
the realism gap and enhance synthesis coverage.

* Data Augmentation for Synthesis Coverage. Enhance the diffusion prior and Time Predictor
using stitching-based data augmentation [45], which increases the coverage of rare transitions and

long detours. This augmentation mitigates the sensitivity of data-driven synthesis to dataset sparsity
and distribution shift.

We leave these possible improvements for future work.
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B.2 Optimality

Our current objective prioritizes task correctness and dynamic feasibility under unknown dynamics.
The optimization of secondary criteria such as makespan, temporal slack, energy, or risk remains
outside our present scope and is particularly challenging in our setting.

Nevertheless, incorporating optimality represents a promising research direction. A practical approach
is to replace the current “first-feasible” strategy with an anytime allocator that continues to explore
the search space after finding an initial solution, thereby trading additional computation for improved
objectives such as reduced makespan or increased slack within invariance windows. This approach
can be combined with (i) multi-objective scoring that integrates feasibility and soft cost terms, (ii)
admissible pruning based on uncertainty-aware time-to-reach bounds, and (iii) post-allocation local
refinements such as waypoint re-timing under STL windows while maintaining soundness.

It is important to emphasize that any extension toward optimality must still preserve dynamic feasi-
bility. Overemphasizing cost minimization may increase dynamic infeasibility during downstream
synthesis or execution. Systematically balancing these trade-offs through anytime search, Pareto-front
maintenance, or constrained optimization over progress schedules is an important direction for future
work.

B.3 Scenario Limitations

As a planning framework, our method currently performs planning in a relatively low-dimensional
task space rather than directly in the high-dimensional configuration space. During execution, control
is still handled by a low-level controller or an learned inverse dynamics model, as described in
Section 3.5. This design choice may limit the planner’s ability to fully account for low-level dynamic
feasibility when generating trajectories, resulting in a potential gap between the planned and the
executed trajectories. Nevertheless, our experiments evaluate the success rate based on the actually
executed trajectories, and the results show that even in challenging environments with complex
low-level dynamics, such as AntMaze, our method still achieves satisfactory performance.

In addition, our current experiments primarily focus on navigation-style STL tasks, in which the
atomic predicates typically specify reaching certain regions, and the overall task requires sequentially
visiting designated goals within specified time windows. This follows the mainstream setting adopted
in most studies on temporal logic task planning and control synthesis [12, 21, 22, 30, 49, 26].
However, temporal logic can also describe other types of behaviors, such as safety constraints and
maintenance conditions [24, 50]. These scenarios usually involve relatively simple temporal logic
specifications, whereas our focus is on planning under long-horizon and complex temporal logic
tasks. Therefore, we restrict our experiments to navigation-style tasks and leave other types of STL
scenarios for future exploration.

B.4 Time Predictor Limitations

The Time Predictor (TP) uses offline trajectories to estimate time-to-reach between states, thereby
injecting a notion of dynamical feasibility into allocation. This data-driven design has inherent
limitations. When datasets are sparse or misaligned with the evaluation distribution, the TP can
overfit local transition patterns or extrapolate poorly to pairs of states that do not appear in the data.
This issue becomes more pronounced when avoidance constraints require long detours. Coverage
requirements also increase with the dimensionality of the planning space, and without sufficient
cross-episode transitions the predictions can become biased or insufficiently dispersed, which may
lead to unreachable schedules.

Effectiveness within our regime. In the data regimes considered here, where abundant task-
agnostic trajectories are available, the TP works in concert with the generator and the controller. The
TP proposes a horizon, the diffusion-based generator synthesizes a segment of the corresponding
length, and the time-synchronous controller executes it. The predictor-generator-controller pipeline
achieves high execution reliability in practice (as shown in Section F.6). These results indicate
that moderate TP accuracy is often sufficient when combined with segment-level generation and
closed-loop tracking in our framework.
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Mitigations and modular improvements. Within our modular framework, several upgrades can
reduce TP-induced failures while preserving soundness:

* Stronger time-prediction models. Replace the lightweight TP with more expressive predictors
that can better capture long detours and heterogeneous dynamics. Options include models with
calibrated uncertainty as well as recent approaches that learn temporal-distance or hitting-time style
quantities [51, 52, 53]. These predictors can be paired with slack-aware scheduling to translate
predictions into more robust waypoint times.

» Data augmentation for coverage. Increase support for rare transitions through stitching-based
augmentation [45], which composes cross-episode segments to create longer feasible paths and
improves coverage in sparsely sampled regions.

We leave these possible improvements for future work.

C Semantics of Signal Temporal Logic

C.1 Boolean Semantics

The Boolean semantics of a STL formula ¢ with respect to a signal s; starting at time ¢ are defined
inductively as follows [54]:

st F e hu(xe) >0, (C.1)
St F o1 Ao < s F o1 Asy E g, (C2)
st F o1V & s F e Vs F g, (C3)
st EFayee 3t elt+a,t+0b]st sy Eop, (C.4)
st Gppp eVt €ft+a,t+b]st sy F o, (C.5)
st F iU e < 3t € [t+a,t+b] st sy F oo

AVE" € [t,t'],ser E 1. (C.6)

For simplicity, we slightly abuse the notation x; = p to denote h;,(x;) > 0, and thus, we have
st Fp e hy(x) >06 x Fp. (C.7

C.2 Quantitative Semantics

Besides the Boolean semantics, STL also incorporates a concept of robustness value [54], which
refers to its quantitative semantics used to measure the degree to which a signal satisfies or violates a
formula. Positive robustness values signify satisfaction, while negative values indicate violation. The
quantitative semantics of a STL formula ¢ with respect to a signal s, starting at time ¢ are defined as
follows:

1Y (St7 T) = Pmax> where Pmax > 0;

p (st 1) = hyu(xe),

p(st, ) = —hu(x),
p(st; 1 Ap2) =min (p (s, 01), p (St;92)) s
p(st;¢1 V p2) = max (p (s, 1), p (St, p2))
p (st,Flapep) = peiax (s, ), (C.8)
p (s, Gap9) = fﬂﬂm p(se, ),
p (st 01U p02) = max min{p (sy, p2),

€[t+a,t+b)

Trerhntl,] p(sr,e1)}-

D Semantic-Based STL Decomposition

The decomposition procedure is defined recursively as follows:
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¢ If o = Fq 511, then we have P, = {R(A\s, Ai, p) } and Ty, = {A; € [a,b]}, A, = {\;}, where \;
1S a new time variable.

* If o = Giq 41t then we have P, ={Z(a, b, 1)} and T, =2, A, = @.

o If p = ,ulU[a’b],ug, then we have ]P)ga = {I(O, iy ,LL1), R(/\Z, iy uz)} and Tga = {/\z €
la,b]}, Ay, = {\;}, where \; is a new time variable.

* If ¢ = 1 A g, then we merge the progresses and time constraints, i.e., P, = P, &P, and
T, =T, WT,,,A, = Ay, WA,,. Weuse “&” to emphasize that the two merged sets contain no
duplicate elements.

* If ¢' = F[, ), then we (i) introduce a new time variable \;, i.e., A,s = A, W {\;} ; (i) add a
new time constraint T, = T, W {\; € [a, b]}; (iii) increase each time indices in each progress by
Aisie, Py = {P(ea + Aisda + Aiyp) | Plea,da, 1) EP, )

Specifically, if ¢’ = F|q,q)%, then we do not introduce a new time variable. In this case, we set
Ay =AMy, Ty =Ty, Py = {Plea +a,da +a, ) | Plea, da, 1) EP,}

o If ¢ = G )¢, We treat it as ' = /\ke[a b ¥,k Each subformula Fy, )¢ corresponds to a

separate copy of progresses }P’(k), time variables Afak) and the associated constraints Tfok). Therefore,
k k

Asa’ = Uke[a,b] Ac(p )7 Ty = er[a,b] Ts(a )a Py = Uke[a,b]{P(cA +k,da+k, ) | P(CAv da, M) €
P(k)}

e }-
Specifically, for an invariance progress in P, of the form Z(c, d, 1¢) that does not contain any time
variables, applying the operation F;, 1) on its copy in IP’EO]C) yields Z(¢ + k,d + k, p1). We then
merge all such copies Z(c + k,d + k, u) for k € [a, b] into a single progress Z(c + a,d + b, ).

e If ' = ¢U[a7b]<p, then (i) introduce a new time variable A;ie., Ay = A, W {Ai}; and (ii) add a
new time constraint, i.e., T,r = Ty, W {\; € [a,b]}; and (iii) increase each time indices in each
progress in P, by \; and modify each invariance progress Z(c, d, j1) € Py to Z(c, d + A;, p1), i.e.,
]P)AP’ = {P(CA + >‘ia dp + )‘17/‘) | P(CAa d/\v:u) € ]P)sp} U {I(Cv d+ )‘Zvﬂ) ‘ I(C, dv M) € ]P)d?}

Remark 2. Since we require that, for any subformula of the form ©1U |, p)p2, the subformula o,

does not contain the operators F or U, it follows that in the case of ¢' = ¢Uj, p)0, no time variables

or reachability progresses are introduced by the operations within ¢. Therefore, we have Ay = &,
Ty =, and Py = {Z(c,d,n)}.

R(A1+ A2, AL+ Ao, 1

R(As + 18,3 + 18, u3)
P |R(A; + 19, A + 19, u3)

R()\E, + 20, A5 + 20, ,113)
Z(2+ A2, 10 + g, p2)

T A€ [7,16] Ay € [5,12]
A3, A4, As € [4,10]

L)
[ 1

R(A1+ Az, A1+ Az, 1) R(A3+ 18, A3 + 18, u3)
P [R(As +19, A4 + 19, p13)
)

Z(24 A2, 10 + Ao, p2)
R(As + 20, A5 + 20, 13

LT [x e m 60 e 5,12 LT )\3/\4/\56[410])

N R(A1, A1, 1) ]
P Z(2,10, u3) P [ R(A3, A3, p13)
T| A elr,16] T Asel410

[ 1
(B[RO | [(P] 2010,m)
L] xerag | [T o |

Figure D.1: Decomposition Process of STL Formula (D.1).

Example 1. 7o illustrate the above progress decomposition process, we consider the following STL
formula

¢ = F5,12/(Fi7,1601 A Gp2,10112) A Gpas,20)F 4,101 43 (D.1)
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The decomposition process is shown in Figure D.l, where the progress and time constraints are
constructed incrementally from the bottom to the top. The top node represents the overall decomposed
(Py, Ty) for the STL formula .

E Trajectory Generation

E.1 Diffusion Models for Trajectory Planning

The core concept of diffusion-model-based trajectory planning[16, 17] is to employ the diffusion
model to learn the distribution of pre-collected trajectories q (TO) in the current environment under
the system dynamics, thereby transforming planning or control synthesis problems into conditional
trajectory generation.

Diffusion models consist of two processes: the diffusion process and the denoising process.

The diffusion process gradually adds Gaussian noise to a trajectory 79, transforming it into noise.
At each timestep ¢, the noisy trajectory is given by:

g(r" | ) = N (7P /1= B BiT), (E.1)

where 3; controls the noise scale, and N is the total number of diffusion steps. The noisy trajectory
T' at any step can be directly computed as:

7=Vt + V1 —ae, e~N(0,I), (E.2)

with a; = [T;_; (1 - 8)).

The denoising process reverses the diffusion by iteratively recovering the trajectory from Gaussian
noise. The reverse distribution is approximated as:

po(T' T = N (T T g (77,4), B, (E.3)

where p,(7%,1) is parameterized by the model, and Ei‘ is typically fixed. Instead of learning
wp directly, the model typically predicts the noise e4(7*,4) and gets py(7°,4) according to the
relationship[15]:

. 1 . 1—ay ;.
po(T", 1) = \/7671 (TZ - %E@(Thl)) : (E4)

The model is trained by minimizing a simplified loss function:

£(8) = Eqerro [||e = o, 0)[}] - ()

In this paper, superscripts denote the diffusion time step, while subscripts indicate the trajectory time
step. For example, T represents the state at trajectory time step ¢ during diffusion time step ¢. For
noise-free trajectories, 7, we omit the superscript when there is no ambiguity.

E.2 Trajectory Stitching

Directly generating an entire long-horizon trajectory that meets all STL constraints is challenging,
since the resulting trajectories may fall far outside the training distribution, which typically consists
of shorter demonstrations. Inspired by recent work on trajectory stitching [45, 47], we decompose
the problem into segment-wise generation. Specifically, between two adjacent way-points (x;, t;)
and (X;41,t;+1), we generate a segment 7; that:

1. haslength ¢;11 —t; + 1;
2. starts at x; and ends at x;41;
3. satisfies all invariance progresses active in [t;, t;4+1]-

The complete trajectory 7 is then formed by concatenating all segments 7;. This design balances

tractability with expressiveness, ensuring that long-horizon STL tasks can be addressed while
maintaining consistency with the learned trajectory distribution.
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E.3 Constrained Generation Mechanisms
To enforce the above conditions, we incorporate several mechanisms into the generation process:

* Length control. As noted in [16], the planning horizon of a diffusion model is not fixed by its
architecture but dynamically adapts based on the input noise size. This allows for variable-length
plans during the denoising process at test time. In this work, we leverage this adaptability by directly
adjusting the input noise size to generate trajectories of the desired length. During experiments, we
observe that models trained with longer planning horizons generalize better to different trajectory
lengths during testing. In contrast, models trained with shorter planning horizons exhibit weaker
generalization. To address this, one can employ multiple models trained with different horizons,
each responsible for generating trajectories whose lengths are close to their respective training
horizons. Alternatively, one can train one diffusion model using trajectory segments of varying
lengths, which has been shown to improve the generalization ability of diffusion models for
generating trajectories of different lengths [53].

* Waypoint inpainting. To respect waypoint constraints, we treat generation as an inpainting
problem as [16], where the start and end states of each segment are replaced with (x;,x;11) after
every denoising step.

* Safety constraints. Each invariance progress Z(a, b, 1) is decomposed into constraints of the
form h,,, (x¢) > 0fort =a,a+1,...,b, which can be handled by many existing methods [29, 32,
33, 34, 35]. We adopt SafeDiffuser [29], which integrates control barrier functions (CBFs)
[36] into the denoising dynamics. At each diffusion step, a quadratic program (QP) is solved to
minimally adjust the update direction while ensuring all CBF constraints are satisfied, thereby
providing finite-time invariance guarantees during trajectory generation.

F Details of Experiments

F.1 Environments

We evaluate our proposed framework across a diverse set of environments that encompass both
navigation and robotic manipulation domains, as well as a custom-built environment designed for
controlled comparisons. These environments differ significantly in their underlying dynamics and
control dimensionality, thereby providing a comprehensive test of the generality and robustness of
our approach. Importantly, in all experiments we only utilize the environments and their associated
STL task-agnostic trajectory datasets provided by the original benchmarks. We explicitly discard the
original task definitions and evaluation protocols, and instead redefine all tasks as Signal Temporal
Logic (STL) specifications, allowing us to unify the evaluation across domains. Visualizations of all
environments are shown in Figure F.1.

* D4RL Maze2D [38] (U-Maze, Medium, Large). This environment features a point-mass agent
navigating within two-dimensional maze layouts of increasing complexity. The original benchmark
tasks are goal-reaching problems defined by start and goal locations. In our experiments, these
tasks are reformulated as STL specifications that require the agent to sequentially reach multiple
target regions in the maze, enforcing both temporal ordering and spatial reachability constraints.

* OGBench AntMaze [42]. In this environment, an 8-DoF quadruped “ant” robot must traverse a
large two-dimensional maze. Compared to Maze2D, the AntMaze environment introduces substan-
tially more complex locomotion dynamics. While the original benchmark evaluates performance
by whether the ant reaches a single goal region, we instead define STL tasks that require visiting
multiple spatial regions in a prescribed temporal order.

* OGBench Cube [42]. This environment involves a 6-DoF URS5e robotic arm performing cube
manipulation on a tabletop. The original benchmark tasks assess goal-conditioned manipulation
success using predefined demonstrations. For our evaluation, we abstract away from the physical
cubes and focus on the Cartesian-space motion of the robot’s end-effector. We define STL tasks
that constrain the end-effector to visit a sequence of spatial waypoints within specified temporal
windows, thereby converting the manipulation process into a structured STL-constrained trajectory
planning problem. This abstraction allows large-scale and systematic testing of our framework.

* Custom-built Environment. To further evaluate the reliability of the Progress Allocation module
in our framework, we construct a custom simulation environment consisting of a bounded two-
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Figure F.1: Visualization of the environments used in our experiments. From left to right and top to
bottom: the three Maze2D environments (U-Maze, Medium, Large), the AntMaze environment, the
Cube environment and the custom-built environment.

dimensional square arena with a circular obstacle. The agent follows double-integrator dynamics
and is required to accomplish randomly generated STL tasks by reaching designated regions within
specified time intervals. Unlike the benchmark environments, this setting provides full access to the
system model and environment information, which are relatively simple, thereby enabling direct
comparison with sound and complete optimization-based baselines that require full knowledge of
system dynamics and environment layout.

F.2 STL Task Generation

To generate random STL tasks, we design nine STL task templates, as illustrated in Table F.1. For
each template, we randomly sample time intervals as well as the positions and sizes of the regions
corresponding to the atomic predicates, thereby producing diverse randomized STL tasks. The
feasibility of each generated STL task is verified using the Progress Allocation module of our method
in all experiments, except for the custom-built environment experiment, where feasibility is instead
verified using the sound-and-complete baseline algorithm.

Table F.1: STL Task Templates for Experiments
Type STL Templates
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F.3 Details of Experiment in Maze2d Environment

Baseline Algorithm. We compare our algorithm with the method proposed in [23], which adopts
classifier-based guidance and directly leverages the gradient of the trajectory’s robustness value to
guide the sampling process of the diffusion model, thereby optimizing the robustness of the generated
trajectory. The gradient of robustness is calculated by the STLCG method proposed in [55]. In the
following text, we refer to this algorithm as the Robustness Guided Diffuser (RGD).

Experimental Settings. The diffusion models used in both RGD and our algorithm are trained
following the procedure in [16] using the D4RL dataset [38]. A simple multilayer perceptron (MLP)
with four fully connected layers is used as the TimePredict model in our algorithm and it is also
trained using the same dataset. In our experiments, we employ diffusion model to generate only the
state sequence of the trajectory and use a simple PD controller to follow the state sequence during
running to get the actual execution trajectory as described in Section 3.5.

Evaluation Metrics. For each pair of Maze2D environment (U-Maze, Medium, Large) and task
template listed in Table F.1, we generate 150 feasible random STL formulae as testing cases and test
RGD and our algorithm on them and record the following metrics:

» Execution Success Rate (SR): The proportion of cases where the actual execution trajectory
achieve non-negative robustness values.

* Average Robustness Value (RV): The average robustness value of the executed trajectories, after
discarding the top and bottom 5% to mitigate the effect of outliers.

* Total Planning Time (T0): The average total running time (in seconds) to plan a trajectory per
case.

In addition, we also record the average Trajectory Generation Time (T1), which is the average time
spent by the Trajectory Generation module of our algorithm per case. By recording this metric, we
analyze the proportion of runtime contributed by each module in our algorithm.

For total planning time, we report both the mean and standard deviation in our results. For success
rate, we compute the proportion of successful cases over the total number of test cases.

Full Results. The full experimental results are presented in Table F.2.

More Cases. We visualized some of the experimental results. The actual execution trajectories for
some successful cases (where the STL tasks were satisfied by the execution trajectories) are shown
in Figure F.2 to Figure F.4. For some failed cases (where the STL tasks were not satisfied), the
trajectories planned by our algorithm are shown in Figure F.5.

Failure-case Analysis. Notably, by analyzing the failure-cases, we identified that the primary
reason for execution failure is that the trajectories generated by the diffusion model significantly
violated system dynamics, such as colliding with obstacles in the environment or having excessively
large distances between consecutive states. To further enhance the actual execution success rate, our
method can be integrated with some receding horizon control methods [56] or online replanning
strategies [57]. This extension will be explored in our future work.

F.4 Details of Experiments under More Complex Dynamics

To further evaluate the generality and robustness of our framework, we conduct experiments on two
dynamics-rich domains from the offline goal-conditioned RL benchmark OGBench [42]: cube-single-
play (“Cube”) and antmaze-medium-navigate (“AntMaze”).

Experimental Settings. The Cube environment involves a 6-DoF URS5e robotic arm manipulating
a cube, while AntMaze features an 8-DoF quadruped ant navigating through a complex maze. In
both environments, training relies solely on STL task-agnostic trajectory datasets provided by the
benchmark; during evaluation, we replace the original goal-conditioned objectives with randomly
generated STL tasks that encode multi-stage temporal and spatial constraints.

For AntMaze, we adopt the STL formulation described in Section 5.1: the agent must visit designated
regions in a specific temporal order to satisfy the task specification. Planning is performed in the
two-dimensional z-y workspace, while execution uses an inverse dynamics controller that maps a
29-dimensional observation and the next x-y target to an 8-dimensional action at each control step as
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Table F.2: Full Result of Experiment in Maze2D Environment. U:U-Maze; M:Medium; L:Large;
RGD: Robustness Guided Diffuser; T1:Trajectory Generation Time. “-” means that RGD fails to
generate feasible trajectory.

Env  Type Success Rate(%) 7T Robustness Value?t Total Planning Time(s), T1(s)
RGD ours RGD ours RGD ours

1 80.00 97.33 0.108440.1132 0.1938+0.0715 13.434+1.51 0.86+0.13  0.86

2 36.67 92.00 -0.2208+0.2826 0.1504+0.0814 16.65+2.06  0.64+0.17  0.64

3 32.00 91.33 -0.16954+0.2521 0.135440.0745 19.68+11.76  1.314+0.15 1.21

4 - 90.00 - 0.112040.1424 - 1.64+0.20 1.38

0] 5 - 84.67 - 0.09214-0.0984 - 2.594+0.45 2.46
6 - 86.67 - 0.100340.0806 - 2.35+042 235

7 - 89.33 - 0.12934-0.0766 - 1.86£0.33  1.86

8 - 97.33 - 0.196540.0435 - 0.98+0.15  0.81

9 - 88.67 - 0.104740.1081 - 1.53+0.27 1.52

1 70.00 94.67 0.088540.2768 0.3205+£0.0957 53.90£5.78  3.74+£0.34 3.74

2 34.67 89.33 -0.227740.3089 0.20134+0.1950  70.69£8.27  2.724+0.67  2.72

3 35.33 83.33 -0.2393+0.3130 0.176140.2060 129.874+27.25 5.53+0.33  5.43

4 - 83.33 - 0.153440.2615 - 7.09+0.54  6.80

M 5 - 82.00 - 0.14574+0.2182 - 11.36£1.32 11.22
6 - 84.67 - 0.147740.1977 - 11.76£1.36 11.76

7 - 90.00 - 0.214840.1599 - 8.01+1.21  8.00

8 - 91.33 - 0.271240.1772 - 3.87+0.38  3.71

9 - 82.67 - 0.132040.2454 - 6.53+0.74  6.52

1 34.67 92.00 -0.1927+0.3198 0.3180+0.1228 55.48+5.31  3.62+0.33  3.62

2 16.67 81.33 -0.3926+0.2284 0.1672+0.2411  68.70+7.65  2.884+0.63  2.87

3 26.67 79.33 -0.2886+0.2934 0.1639+0.2286 136.35+38.12 5.594+0.34  5.49

4 - 69.33 - 0.058940.3133 - 7.46+£0.52  7.13

L 5 - 79.33 - 0.132440.2663 - 12.624+0.75 12.45
6 - 73.33 - 0.110440.2673 - 12.3741.35 12.37

7 - 84.00 - 0.177040.2360 - 8.18+0.68  8.18

8 - 85.33 - 0.24244-0.2502 - 3.93+0.33 375

9 - 76.67 - 0.082340.2703 - 6.93+0.60 6.92

Figure F.2: Successful Execution Trajectories in Maze2D-large Environment under STL Template 3:

Fp, p1 A (—p1Up, o). The task requires the agent to eventually reach region 14 within a given time
interval, but before reaching p7, it must first visit region po.



Figure F.3: Successful Execution Trajectories in Maze2D-medium Environment under STL Template
4: Fr, (p1 A (Fr, (pe AF1, (us AF1, (pa))))). The task requires the agent to sequentially visit regions
11, b2, p3, t4 Within the given time intervals.

Figure F.4: Successful Execution Trajectories in Maze2D-umaze Environment under STL Template
5:Fr (A (Fr, (2 AF1,(13)))) A G(—pea). The task requires the agent to sequentially visit regions
141, b2, 3 within the given time intervals and always avoid the region 4.

-

Figure F.5: Planned Trajectories in Some Failure Cases.
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in [47]. Given the higher dynamic complexity of this domain, we set k& = 2, such that each planning
timestep corresponds to two control steps, as described in Section 3.5.

For the Cube environment, we focus on the end-effector’s Cartesian motion rather than the physical
manipulation of objects. Trajectories are generated in x-y-z space and tracked via a PD controller, as
in Section 3.5. This abstraction ensures methodological consistency with other experiments while
still capturing the essential planning characteristics of high-dimensional robotic control.

Evaluation Metrics. For each environment and STL task template (as defined in Table F.1), we
randomly generate 100 feasible STL formulae as test cases. We report two quantitative metrics:
Execution Success Rate (SR) and Total Planning Time (T0).

Results. The complete results are summarized in Table F.3. Our framework achieves high success
rates across both environments, with moderate computational cost despite the distinct dynamic
structures of the two systems.

Table F.3: Results in Cube and AntMaze. SR: Execution Success Rate; TO: Total Planning Time;

Env Type SR(%) TO(s)
1 100.0  0.69+0.12

2 95.0 0.6940.26

3 95.0 1.20£0.20

4 84.0 1.434+0.17

Cube 5 89.0  2.12+0.32
6 88.0 1.83+0.18

7 91.0 1.2240.16

8 91.0 0.76+0.13

9 85.0 1.2740.14

92.0  7.9542.87

94.0  4.53+0.60

81.0  9.95+2.81

83.0 9.724+1.01

AntMaze 62.0 32.4245.89

64.0 24.631+5.57
82.0 15.80+4.78
91.0  4.58%+0.57
60.0  8.98+0.94

OO0 JANWN P WN—

Analysis. In the Cube environment, our method achieves consistently strong performance, with exe-
cution success rates exceeding 90% on most task templates. The low planning time (typically below
2 seconds) indicates that the framework efficiently handles the dynamics of the 6-DoF manipulator.
Performance degradation is observed only in more complex templates (Types 4 and 9), which involve
long-horizon temporal dependencies and nested STL tasks. These cases require more extensive search
and multiple calls to the trajectory generator, slightly increasing the planning time while reducing the
success rate due to accumulated modeling uncertainty. Nevertheless, the overall high success rate
demonstrates that our framework generalizes well to this manipulation-like domains.

In contrast, the AntMaze environment presents a substantially greater challenge due to its high-
dimensional locomotion dynamics and strong coupling between joint configurations and global
motion. Here, the average success rate remains around 80-90% for moderate templates but drops to
around 60% for the most complex ones (Types 5, 6, and 9). A closer examination reveals that these
harder tasks often involve stringent temporal nesting and “avoid” constraints, which are more sensitive
to execution noise and controller-induced deviation. The higher planning times-especially for long-
horizon templates (e.g., Type 5 and 6)-reflect the reduced efficiency of the trajectory generation
module in scenarios requiring longer trajectories due to more complex dynamics. Nevertheless, our
method is still able to produce feasible trajectories in most cases within an acceptable time frame.

Overall, these results confirm that the proposed framework scales effectively from smooth, fully
actuated manipulation systems to complex locomotion environments. The modular combination of
decomposition, allocation, and diffusion-based trajectory generation allows efficient reasoning over

32



STL objectives, maintaining both computational efficiency and high task success rates across diverse
dynamical regimes.

F.5 Details of Comparative Experiment with Optimization-based Method

To further evaluate the success rate of the progress allocation module in our algorithm, we compare it
against a widely-used optimization-based algorithm [4] in a custom-built simulation environment. The
baseline algorithm is employed as a sound and complete solution to accurately assess the feasibility
of randomly generated test cases.

Experimental Settings. The experiment is conducted within a bounded 10 x 10 square 2D plane
containing a circular obstacle. The underlying system dynamics are modeled using a double integrator.
The agent starts from a randomly generated position and must complete the randomly generated STL
tasks by reaching the target region within the specified time interval.

In this experiment, the baseline algorithm is implemented using the open-source library st 1py [2]
and has full knowledge of the environmental information and system dynamics, while our algorithm
only has access to the trajectory dataset.

To generate the trajectory dataset, we randomly sample start and end points in the environment and
use the baseline algorithm to solve reach-avoid tasks. This process produces 200,000 collision-free
trajectories that satisfy the system dynamics, which are then used to train the diffusion model and the
Time Predictor.

To further enhance the trajectory generator’s ability to produce trajectories of varying lengths, we
train two diffusion models with different horizons: one dedicated to generating shorter trajectories
and the other specialized for longer trajectories. The first model is trained on trajectory segments
of length 16 for shorter trajectories, while the second model uses segments of length 32 to improve
generalization to longer trajectories.

We generate 200 feasible STL tasks for each template, as described in Section F.2. The deterministic
baseline algorithm is used to ensure the feasibility of these tasks. However, for templates 4 and 5,
which involve multi-layer nesting of temporal operators, the baseline algorithm fails to find solutions
within an acceptable time. In these cases, we still employ our algorithm’s progress allocation module
to verify feasibility.

Evaluation Metrics. In addition to the Execution Success Rate (SR) and Total Planning Time
(T0) metrics described in Section 5, we introduce an additional evaluation metric:

* Progress Allocation Success Rate (SR0): The proportion of cases where the progress allocation
module successfully identifies a sequence of waypoints. This metric specifically measures the
reliability of the progress allocation module in our algorithm.

Table F.4: Result of Experiment in Custom-built Environment. SR0: Progress Allocation Success
Rate; SR: Execution Success Rate;

Type SRO(%) SR(%) Total Planning Time(s)]

ours baseline
1 96.0 93.5 0.9940.08 3.82+1.44
2 98.0 96.5 0.81£0.03 6.30+1.36
3 96.0 89.0 1.2640.05 31.60+10.46
4 - 785 2.104+0.26 Timeout
5 - 83.0 2.5740.10 Timeout
6 97.5 69.5 2.8740.12 24.23+6.39
7 80.0 73.5 1.8040.08 7.71+£3.50
8 89.5 89.0 0.824+0.03 106.58+82.19
9 81.0 720 1.61+£0.06 151.19+78.82

Analysis. The experimental results are summarized in Table F.4. Since the optimization-based
baseline is used as an expert solver to certify the feasibility of randomly generated STL tasks, its
execution success rate (SR) is naturally 100% and thus omitted from Table F.4. Our algorithm achieves
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consistently high success rates across test cases generated from diverse task templates. Notably, the
Execution Success Rate (SR) exceeds 69% in all scenarios, demonstrating the algorithm’s strong
generalization capability for STL tasks.

For all templates except 4 and 5, the Progress Allocation Success Rate (SR0) exceeds 80%,
indicating that the progress allocation module is generally reliable, albeit slightly conservative.

Finally, by comparing the Total Planning Time, our algorithm significantly outperforms the
optimization-based baseline algorithm, highlighting the efficiency of the task decomposition and
planning framework employed in our approach. Notably, for templates 4 and 5, which involve multi-
layered nested STL tasks, the baseline algorithm fails to find feasible solutions within a reasonable
time. In contrast, our algorithm demonstrates both high success rates and high efficiency, even in
these complex scenarios.

F.6 Analysis of the Predictor-Generator-Controller Framework

In our framework, the Time Predictor serves as a crucial component that provides heuristic guidance
on system reachability during progress allocation. By estimating the time required for transitions
between states, it allows the allocation process to consider not only the logical satisfaction of STL
constraints but also the underlying dynamical feasibility between consecutive waypoints, thereby
creating favorable conditions for subsequent trajectory generation. The Time Predictor operates in
close collaboration with the diffusion-based trajectory generator. Specifically, the predictor estimates
the expected travel time between two states, and the generator then produces a trajectory of the
corresponding length. Although the true time-to-reach can vary considerably due to stochasticity and
unmodeled dynamics, a generator trained on trajectory segments of diverse lengths demonstrates
strong generalization. In practice, even a moderately accurate statistical estimate from the predictor
typically suffices to produce a dynamically feasible trajectory. Moreover, the feedback control
layer further compensates for residual prediction errors, ensuring consistent execution despite model
approximation. To empirically validate the effectiveness of this collaboration, we conducted an
additional experiment in both Maze2D and AntMaze environments.

Experimental Settings. For each environment, we randomly sampled 1000 start-goal pairs (with
goal region radii ranging from 3% to 6% of the arena size). For each case, the Time Predictor
estimated the required trajectory length from the start position to the center of the goal region; the
trajectory generator then produced a trajectory of that length, which was subsequently executed
using a PD controller (in Maze2D) or an inverse dynamics model (in AntMaze) under the strict
time-synchronous control protocol described in Section 3.5 (with £ = 1 in Maze2D and k = 2 in
AntMaze). All modules were employed exactly as implemented in our main framework, without
additional tuning.

Results and Analysis. The resulting execution success rates, summarized in Table F.5, demonstrate
that even in the more challenging AntMaze setting, the current predictor-generator-controller pipeline
achieves high overall reliability. These results underscore the effectiveness of modular integration
among prediction, generation, and control within our framework. Given this modular design, each
component can be further improved independently-for example, by incorporating more accurate
time prediction models [51, 52, 58] or more expressive trajectory generators-to handle increasingly
complex dynamical systems. We leave such extensions as promising directions for future work.

Table F.5: Execution Success Rate (%) of the Predictor-Generator-Controller Pipeline in Different
Environments. Each result is computed over 1000 randomly sampled start-goal pairs.

Environment Umaze Medium Large AntMaze
Execution Success Rate (%) 93.9 89.0 83.7 84.8

F.7 Implementation Details of Experiments
F.7.1 Calculation of the Robustness Value
In our experiments, we compute the robustness values of execution trajectories using the open-

source library st 1py [2], which implements quantitative semantics for Signal Temporal Logic
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(STL). However, in environments such as Maze2D, AntMaze, and Cube, transitions between states
often require relatively long trajectories. As a result, the corresponding STL task intervals become
lengthy, leading to a substantial computational burden when evaluating robustness directly on the
full-resolution trajectories—often exceeding the available computational resources.

To mitigate this issue, we introduce a temporal sampling factor n, which defines the mapping
between the time scale of the STL task and the resolution of the system trajectory used for evaluation.
Specifically, one discrete time step in the STL task corresponds to 7 time steps in the system trajectory.
When computing robustness, we sample one state every 7 steps to obtain a down-sampled trajectory,
and then evaluate robustness on this sampled sequence. Importantly, the STL formula used for
evaluation is also temporally rescaled, with all time intervals divided by 7, so that the robustness
value is computed with respect to a temporally consistent but shorter-horizon STL specification. This
procedure effectively reduces computational overhead while preserving the temporal and logical
structure of the original task.

It is worth emphasizing that the parameter 7 is conceptually distinct from the parameter k introduced
in the control protocol (Section 3.5). While £ determines the number of low-level control updates
executed per planning step during runtime—thus linking planning and control frequencies—n only
affects the post-hoc evaluation of robustness by defining how densely the executed trajectory is
sampled for STL computation.

F.7.2 Experimental Parameter Settings

Some of the parameters involved in the experiments are listed below, and their specific values are
shown in Table F.6:

Table F.6: Parameters Used in the Experiments
Env N, max H N Y n

Maze2D-Umaze 1 128 64 08 8
Maze2D-Medium 1 256 256 0.9
Maze2D-Large 1 384 256 1.1
AntMaze 1 512 512 1.0 12
Cube 1 128 64 12 4
Custom-Built 1 16&32 64 1 1

[EEGEN R S I

e Maximum Number of Attempts (/Vy,.,): The maximum number of attempts for new state
sampling in Algorithm 2.

* Horizon (H): The planning horizon used during the training of the diffusion model.
* Total Denoise Steps (/V): The total number of steps in the denoising process.

* Scaling Factor (v): Applied to the predicted mean trajectory length, used to control the conserva-
tiveness of the Progress Allocation Module, as described in Section 3.3.

» Sampling Factor (7): Used when computing the robustness value of trajectories, as described in
Section F.7.1.

* Control Frequency (k): The number of low-level control updates executed per planning step
during runtime, as described in Section 3.5.

G Proofs

G.1 Proof of Lemma 1

Proof. We prove the statement by structural induction on ¢. Throughout, we assume discrete time
t € Z>¢ and use the shorthand sg F R(a,b, ) < 3t € [a,b] : x¢ F pand sg F Z(a,b, ) < Vi €

[a,b] : x¢ F p(cf. (3)-(4)).

Base cases.

35



(i) ¢ = F[q p)pt. The decomposition yields P, = {R(A, A, p)}, Ty = {X € [a,b]}, A, = {A\}. By
the Boolean semantics of F' (Eq. (C.4)),

so FFapu < 3X€[a,b]st. xyFp < INe[a,b]st.sg F RN A, 1),
which is exactly the desired form with A = [A] € F.
(it) ¢ = Giq p)pt- The decomposition yields P, = {Z(a, b, )} and A, = T, = @. By Eq. (C.5),
so F Gapp & V€ la,b:x; Fpu < soFZ(a,b,p),
which matches the target equivalence (no time variables).
(iii) o = p11U[q p) 2. The decomposition yields P, = {Z(0, A, 1), R(A\, A, p2)}, Ty = {A € [a, b]},
A, = {\}. By Eq. (C.6),
so F U ppz < 3N € fa,b]: xaFpux A VEE[0, N x4 F g
<IN E [a,b]: so FER(A N pu2) A so EZ(0, A, p),
again yielding the target form with A = [\] € F,.
Indlu(ct)ive steps. For each constructor below we assume the lemma holds for the immediate subfor-
mula(e).

(1) Conjunction ¢ = 1 N 2. By semantics, so F ¢ < (sg F 1 A so F ¢2). The decomposition
uses disjoint unions P, =P, WP ,, T, =T, &WT,,, A, = A, WA,,, implicitly a-renaming
to avoid clashes. Since each constraint in T, involves a single variable, the feasible set factors:
Fo = F, X F,,. By the IH on @1, 2 and the fact that every progress in P, depends only on its
own component of A = [A1, Az], we obtain

s)E @ & INEF,st. VP P, : 5o F P(A).

(2) Outer finally ¢ = F[, 0. By Eq. (C.4), 8o F ¢' < 3\ € [a,b] : s\ F o. Time-shift identity.
For any progress P(c, d, 1) and any k € Z>o,
sy FP(e,d,p) < so EP(c+k,d+k,u). (G.1D)

This is immediate from the definitions of R and Z. The decomposition introduces a fresh A € [a, b]
and shifts every progress of ¢ by +X; hence Ay = A, W {A}and Fy = {[A\A] | A € Fy,, A €
[a,b]}. Applying the IH to ¢ on the shifted signal s, and then using (G.1) yields

sg F Lp/ <IN € ]:90/ s.t. VP € P@/ : s F 'P/(A,)
(The special case F, o) is the same with a constant shift +a and no new variable.)

(3) Outer always ¢" = Giq ). In discrete time,

b
Gl = )\ Frene, (G.2)
k=a

since sg F G, )¢ iff sp F o for every integer £ € [a, b]. The decomposition makes an independent
copy (Pfak), ']I‘Eok), Agf)) for each k and shifts every progress by +£k, then merges all copies:

b b b
Py = | J{Plea + k,da +k,p) | Plea,da,p) € PP}, Ay = [ AP, Fo =[] Fo
k=a k=a k=a
Applying item (2) to each F[;, ;) factor and using (G.1) yields the target form. Merging constant
invariances. If Z(c, d, i) € P, has constant endpoints, then its shifted copies {Z(c+k, d+k, 1) }o_,
are equivalent to the single Z(c+ a, d + b, 1) because UZ:a[C +k,d+ k] =[c+a,d+b] in discrete
time; hence merging preserves truth.

(4) Outer until ' = ¢U|, y1¢. By assumption, ¢ contains no F or U, thus its decomposition consists
solely of invariance progresses with constant endpoints and Ay = T, = &. The decomposition
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of ¢': introduce X € [a, b], shift each progress of ¢ by 4+, and prolong every Z(c,d, ) € Py to
Z(e,d + A, ). Formally,

Py = {Plca + \da + M\ p) | P €PL} U {Z(c,d+ A\, p) | Z(e,d,p) € Py},
For = {IMA | X € Fy, A€ [a,b]}.
By Eq. (C.0),

so F Upp < INE [a,b] s.t. (sA Fp AVrel0N: s E ¢). (G.3)

The first conjunct is handled by item (2) with the shift identity (G.1). For the second conjunct, note
the following sliding-invariance identity: for any constant ¢ < d,

(VT €[0,N]: s; EZ(c,d,p)) < so EZ(c,d+ A, p), (G.4)

because s, F Z(c,d, u) means Vt € [c+ 7,d + 7] : x4 F p, and Ui‘zo[c +7,d+ 7] =[c,d+ N in
discrete time. Since Py is a conjunction of such invariances, applying (G.4) to each member yields
the prolonged invariances in P,». Combining these observations with (G.3) gives

soF ¢ © AN € Fup st VP €Py i so EP(XN).

Conclusion. All constructors preserve the claimed equivalence. By structural induction, for any PNF
STL formula without disjunctions,

SoF @ <= AN F,st. VP € Py so EP(A).
If A, = @, then F, = {0} and the statement reduces to sg F p <= VP € P,: sqgFP. O

G.2 Proof of Lemma 2

Proof. We argue by maintaining inductive invariants along the DFS. At each node of the search tree
we keep a tuple (x,¢, PR T, 3), where s is the waypoint list accumulated so far and P%_ are the

rem?’ rem

remaining reachability progresses.

Inductive invariants. After initialization and after every successful extension by Algorithm 2 and
UpdateConstraint, the following hold:

(I1) Feasibility is preserved: the current constraint set T admits at least one assignment of time
variables (i.e., the feasible set is nonempty).

(12) Committed reachabilities are honored: for every reachability progress R(ax, ba, 1) that
has been assigned a waypoint (x’, ') and removed from PR . T contains the inequalities

ap <t and by > t'. Hence any A feasible for T satisfies ¢’ € [ap (), ba(N)].

(I3) Waypoint-level invariance consistency: let Z(c,d, ') be any invariance progress whose
start time has been determined (by preprocessing every Z has a preceding R(c, ¢, 1');
once that R is assigned at time ¢ = t*, the start is fixed). Whenever a new way-
point (x’,t’) is appended with x" ¥ p/, Algorithm 2 computes a conflict interval O and
UpdateConstraint adds dy < t’; consequently, no feasible A can make the interval
[e,da(N)] cover t/, so Z cannot be active at ¢'.

Initialization. At the start, § = [(x(,0)] and T is the given constraint set; by assumption it is
feasible, so (I1) holds. No progress has been assigned, so (I12) and (I3) are vacuous.

Preservation under one extension. Suppose the algorithm chooses a remaining reachability
R(aa,ba, p) at (x,t) and calls Algorithm 2. By construction, the routine computes the largest
currently feasible time window [tin, tmax| consistent with T, and samples a candidate X' = u
together with a predicted arrival time ¢'. If ¢ > t,,.x or the residual feasible window is covered
by conflicts, the attempt is discarded; otherwise the routine returns the earliest nonconflicting time
thew € [Max{t, tmin},tmax] \ O. Therefore, with t* := t,ey, the augmented constraints ay <
t*, by > t* are consistent with the current T, establishing (I1) and (I2) at the child node. Moreover,
for every invariance with determined start time that is violated by x’, UpdateConstraint inserts
dp < t*; since Algorithm 2 avoided O and t* lies strictly to the right of the current lower bound for
d, the new inequality is compatible with T. Hence (I3) holds as well.
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Termination case and witness construction. When the algorithm returns, P%X = & and
the final constraints are T; with feasible set 7y # @ by (I1). Pick any A € F;. By (I12),
for every assigned reachability with waypoint time ¢;, we have t; € [aa(A),ba(A)], hence
so = R(aa(A),ba(A), ). For any invariance Z(aa,ba, p') and any waypoint time ¢; that lies
in its active window [aa (), ba(A)], there are two possibilities: (i) X; = 4/, in which case the
waypoint trivially satisfies the invariance; or (ii) X; ¥ 1/, in which case the start of this invariance has
already been determined by its preceding reachability, and (I3) guarantees that ¢; cannot lie in the
interval (because dy < t; was added). Either way, the stated waypoint-level invariance condition
holds. This proves the lemma. O

Remark 3 (Scope of the guarantee). The lemma certifies that, under some feasible time-variable
assignment, all reachability progresses are satisfied and no invariance progress is violated at the
returned waypoint times. It does not claim invariance satisfaction at every intermediate time step
between waypoints.

G.3 Proof of Theorem 1

Proof. Let (P, T,) be the progress/constraint pair returned by the Semantics-based Decomposition,
and let § = (Xo,t0) (X1,t1) ... (Xn,t,) With 0 = ¢9 < --- < ¢, and final constraint set T s be the
output of the Progress Allocation algorithm. By assumption, F¢ # @&. Fix any feasible assignment
A* € Fyandletsy = xoxy ...x7 (I' > t,,) be the signal induced by the trajectory T returned by
the Trajectory Generation module, which (by assumption) satisfies: (i) x;, = X; for all 7, and (ii) for
every invariance Z(aa, ba, p), Vt € [an(X*), ba(X*)] we have x; |= p.

Reachability progresses. By construction of the allocation phase and by Lemma 2, for every
R(an,ba, ) € Py, there exists an index ¢ such that (a) X; = p and (b) t; € [ap(N¥), ba(A")],
because T contains the constraints ap < ¢; and by > t;, which are satisfied by A*. Since the
generated signal visits all waypoints, x;, = X;, hence 9 = R(aa(A*), ba(X¥), i).

Invariance progresses. By property (ii) of the generated trajectory, for every Z(as,ba, i) € Py,
we have Vt € [ap(X¥), ba(A)]: x¢ | p, i€, 80 E Z(aa(A"), ba (X)), w).

Conclusion via decomposition soundness. We have shown that for the same feasible assignment
A%,

VP eP,: sokE=PA).
Therefore, by Lemma 1, sg F . This proves the theorem. ]

38



	Introduction
	Preliminaries
	System Model
	Signal Temporal Logic
	Planning with Unknown Dynamics

	Our Method
	Overall Framework
	Decompositions of STL Formulae
	Progress Allocation
	Trajectory Generation
	Action Sequence and Control Protocol

	Case Study
	Experiments
	Experiment in Maze2D Environment
	Experiments under More Complex Dynamics
	Comparative Experiment with Optimization-based Method

	Conclusion
	Related Works
	STL Decomposition
	Planning with Diffusion Model
	Trajectory Stitching

	Limitations
	Algorithmic Incompleteness
	Optimality
	Scenario Limitations
	Time Predictor Limitations

	Semantics of Signal Temporal Logic
	Boolean Semantics
	Quantitative Semantics

	Semantic-Based STL Decomposition
	Trajectory Generation
	Diffusion Models for Trajectory Planning
	Trajectory Stitching
	Constrained Generation Mechanisms

	Details of Experiments
	Environments
	STL Task Generation
	Details of Experiment in Maze2d Environment
	Details of Experiments under More Complex Dynamics
	Details of Comparative Experiment with Optimization-based Method
	Analysis of the Predictor-Generator-Controller Framework
	Implementation Details of Experiments
	Calculation of the Robustness Value
	Experimental Parameter Settings


	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1


