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Abstract

Real world tasks are often safety-critical, requiring policies that respect safety con-
straints while also being able to safely adapt to novel situations. Typical safe re-
inforcement learning methods focus on adapting to shifts in the transition function
but assume a fixed state space, limiting their ability to generalize to novel states.
We consider the problem of safe reinforcement learning that must adapt to novel,
potentially unsafe states. Our proposed approach for context aware policy adap-
tation leverages foundation models as a contextual representation that enables the
agent to align novel observations with similar experience. We demonstrate empir-
ically that our approach is able to generalize across different types of novelty that
may include dangerous as well as safe states. We also show performance and safety
are robust even when multiple types of novelty are introduced.

1 Introduction

Reinforcement learning (RL) has achieved broad success across a variety of tasks from complex
games (OpenAI, 2018; Vinyals et al., 2019) to robotics (Tang et al., 2022). However, this is realized
through extensive exploration in the environment, which may not be possible in safety-critical tasks
where actions may lead to dangerous or costly outcomes. Furthermore, real-world tasks are complex,
requiring agents to adapt to novel situations. Consider search and rescue where an agent is trained
to navigate pre-disaster buildings. When deployed post-disaster, the agent may fail to adapt to
hazards caused by novel objects or existing objects shifted within the environment. We consider
the challenge of safely adapting to a distribution shift in the environment where novel situations are
encountered.

Safe RL introduces constraints on the policy, requiring the agent to trade-off between higher reward
and improved safety. Safety constraints are commonly satisfied by directly modeling the set of unsafe
states (Thananjeyan et al., 2020) or through a safety critic that estimates the risk of unsafe behavior
in the future (Srinivasan et al., 2020; Thananjeyan et al., 2021). These explicit models of safety
are typically pre-trained on offline demonstrations of unsafe behavior. While demonstrations may
come from the training task itself, there has been recent work that has explored leveraging related
tasks to safely adapt to the training task (Zhang et al., 2020; Luo et al., 2021). However, previous
work primarily consider related tasks with different dynamics but sharing the same set of states. In
contrast, we consider how to safely adapt the policy in the presence of novel states.

Recent work has demonstrated the generalizability of foundation models for many applications in-
cluding natural language processing, classification (Radford et al., 2021) and decision-making (Parisi
et al., 2022; Khandelwal et al., 2022; Tam et al., 2022; Mu1 et al., 2022). These large pre-trained
models incorporate natural context across data modalities and have been shown to improve explo-
ration in RL (Tam et al., 2022; Mu1 et al., 2022; Gupta et al., 2022) and enable policy transfer (Xu
et al., 2022). We aim to leverage the generalizability of foundation models and extend their use to
safe RL for improving robustness to novel states.
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In order to safely adapt to novel states, our approach for Context Aware Policy Adaptation (CAPA)
aims to leverage foundation models to generalize an agent’s policy across similar contexts by clus-
tering over the states. The key intuition is that these clusters will align novel states with the agent’s
previous experience (i.e., novel states map to clusters of similar states) enabling the policy to execute
similar behavior. We make the following key contributions: (1) We consider the problem of gener-
alization in safe RL to novel states that may include unsafe as well as safe states. (2) We propose
an approach for context-based safe RL that leverages foundation models to enable safe adaptation
to this distribution shift. (3) Finally, our initial results demonstrate our approach can adapt to
different types of novelty and even multiple types of novelty simultaneously.

2 Context Aware Policy Adaptation

RL is formulated as a Markov Decision Process (Sutton & Barto, 2018) that consist of a set of states
S, a set of actions A, a reward function R : S×A→ R, a state transition function P : S×A×S →
[0, 1], a discount factor γ ∈ [0, 1] and a distribution of initial states s0 ∼ µ. RL seeks to find a policy
that maximizes the expected discounted reward, Rπ = Eµ,π,P [

∑∞
t=0 γ

tR(st+1, at)]. Safe RL extends
this formulation to a constrained MDP (CMDP)(Altman, 1999), M = (S,A,R, P, γ, µ, C, γC), by
including a cost function C : S → {0, 1} that indicates if a state violates the safety constraints, and
a discount γC ∈ [0, 1] associated with that cost. Similar to the reward, the expected discounted cost
is Cπ = Eµ,π,P [

∑∞
t=0 γ

t
CC(st+1)]. Thus, the goal of safe RL is to find policy that maximizes the

reward subject to the cost being less than ε, π∗ = argmaxπ{Rπ : Cπ ≤ ε}.

We consider the problem of generalization in reinforcement learning where an agent is trained
in one environment, but must adapt to another environment where it may experience novel, po-
tentially unsafe states. Specifically, consider a policy π trained on CMDP M but deployed in
M2 = (S2, A2, R2, P2, ...) that extends M by introducing a novel set of states (S2 = S ∪ Snov2 )1.
Novel states include new objects that did not appear in M (e.g., external debris from disaster) or
existing objects shifted to abnormal locations. While previous work typically focuses on changing
dynamics but keeping the set of states fixed (i.e., P2 6= P and S2 = S), we learn a policy that
effectively adapts to novel states, Snov2 .

In order to generalize the notion of safety across unseen states, our approach for Context Aware Policy
Adaptation (CAPA) leverages foundation models to enable efficient adaptation to distribution shift
in the environment by incorporating contextual features into π. These features are generated by
projecting observations onto a set of clusters learned from the training states, aligning novel states
with the agent’s previous experience and improving policy generalization. Our framework consists
of two parts: the reaction module, which learns a set of clusters offline and the policy network,
which leverages those clusters to make decisions.

Reaction Module: Motivated by the notion that the agent should react similarly to contextually
similar states, the reaction module projects the current state into the space of clusters that are
learned offline from the set of training states. Note that not all states encountered in the environment
are unsafe so our approach does not limit the context library to safety-oriented features. The reaction
module provides a contextual feature space that captures the relationship between states, enabling
the policy to generalize behavior to novel states.

First, we build the context library (Figure 1a) by clustering over the set of states available during
training. We generate a dataset {ψ(s)}s∈S where ψ is a contextual representation. The context
library, L, consists of a set of m clusters. While any clustering algorithm could be used to construct
the context library, we learn a clustering function via meta classification learning (MCL) (Hsu et al.,
2019). MCL naturally yields a distribution over the clusters given pairwise information about the
similarity of two observations. MCL is capable of discovering unseen classes (i.e., unknown m).
However, we specify m in the experiments. Intuitively, we assume that the set of clusters will be
significantly smaller than the number of states (i.e., m� |S|).

1Note that novel states also imply differences in P2, R2, and C2
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(a) Initialization of reaction module (b) Policy adaptation

Figure 1: The reaction module is initialized by pre-training over a set of states from M . Leveraging
the contextual representation, we cluster over the set of states and store these clusters in the context
library (1a). CAPA leverages the reaction module to safely adapt to novel states by projecting the
current state into space of clusters that represents the agent’s experience. These clusters are used
as features in the policy to generalize to novel states (1b).

During RL, the context library is fixed, enabling the agent to leverage this contextual information
for decision-making. As shown in Figure 1b, the context engine takes in the current state st and
produces a set of features ψ(st) using a pre-trained foundation model. These contextual features
are aligned with the context library by computing a distribution over the clusters via MCL.

Policy Network: The policy network, shown in Figure 1b, is a standard RL policy that takes
in the state and produces an action. In addition to the inputs from the state, we incorporate a
distribution over the clusters (Kt) from the reaction module as features, aligning it with previous
context from the training environment and enabling the policy to generalize over novel states. We
show empirically that the reaction module enables safe adaptation that is robust to novelty. This
policy network and reaction module can be used with any safe RL framework.

3 Experiments

Our experiments aim to answer the following questions: Q1: Does the reaction module enable safe
adaptation to novel, dangerous states? Q2: Can CAPA generalize to different types of novelty?
Q3: Is CAPA robust as the amount of novelty increases? In order to evaluate our approach, we
implement CAPA within PPO-Lagrangian (Achiam & Amodei, 2019) on RLlib (Liang et al., 2018),
which solves the CMDP through an adaptive penalty. The policy network consist of a convolutional
layer followed by fully connected layers. We use CLIP (Radford et al., 2021) as the contextual
representation. The baseline (PPO-Lagr) uses the same network architecture except that it does
not incorporate the features from the reaction module. We train PPO-Lagr for 25 million timesteps
and CAPA, which converges more quickly, for 7.5 million timesteps. The resulting policies are then
evaluated on 500 episodes across several settings. Each method is averaged over 10 runs. In order
to demonstrate that our approach is able to adapt to different types of novelty, we design a scenario
with multiple types of objects that require different actions.

Domain: We evaluate our approach on a modified MiniGrid (Chevalier-Boisvert et al., 2023) task,
inspired by (Tsung-Yen Yang et al., 2021), with each cell in the grid represented by an image. The
task objective is to navigate the grid to collect the fruit while avoiding the other vehicles. Grid cells
may also be empty or contain an outdoor background scene that have no affect on the agent’s reward.
The agent has 4 actions: turn left, turn right, move forward, pick up. The agent’s observation space
includes a 7 × 7 view in front of the agent. Since the observation can be decomposed into a set of
images, each image is passed through context engine and context library, producing an output for
each grid cell. The input to the policy for each cell is a predicted image category.

The object types are each represented by superclasses from cifar100 (Krizhevsky, 2009): fruits and
vegetables represent goals, vehicles_1 represent dangerous objects, large natural outdoor scenes
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Novelty Reward (↑) Cost (↓)

PPO-Lagr CAPA PPO-Lagr CAPA

No Novelty 5.29 ± 0.16 5.75 ± 0.08 2.28 ± 0.37 1.99 ± 0.25

Q1 Novel Danger 5.44 ± 0.10 5.80 ± 0.08 8.10 ± 2.28 3.04 ± 0.29

Q2 Novel Goals 3.22 ± 0.16 5.70 ± 0.13 3.17 ± 0.51 2.10 ± 0.24

Q2 Novel Background 5.32 ± 0.17 5.85 ± 0.10 3.67 ± 0.92 2.19 ± 0.37

Comparing all settings with increasing amounts of novelty (Difference from No Novelty)

Q3 1 type of novelty 4.66 (-0.63) 5.79 (0.04) 4.98 (2.70) 2.44 (0.46)

Q3 2 types of novelty 4.02 (-1.27) 5.84 (0.09) 10.73 (8.45) 2.81 (0.82)

Q3 3 types of novelty 3.26 (-2.03) 5.89 (0.14) 21.62 (19.35) 3.16 (1.18)

Table 1: We compare the reward and cost across settings with different types of novelty: novel
danger, novel goals, and novel background. We also show average performance as the amount of
novelty increases and compare it to the no novelty setting. The best performance is shown in bold.

represent background. In order to evaluate novelty, we split the categories for each superclass into
those that appear during training or evaluation (4500 images of 9 categories) and those introduced
only during evaluation (3000 images of 6 categories). Each episode consists of 3 goals. Dangerous
and background objects are placed randomly throughout the environment ( 1

6 chance for each type).
Note that within a single episode, the objects are sampled from one unique category for dangerous
objects and two for background. The agent receives a reward of 2 for collecting each fruit and a cost
of 1 for overlapping with another vehicle. Constraint violations do not terminate the episode.

Results - Adapting to Novelty: We compare CAPA to the baseline (PPO-Lagr) across different
novelty settings in Table 1. Each setting may include multiple types of novelty: novel danger, novel
goals and novel background. We evaluate the approaches based on their accumulated reward and
cost. Note that higher reward and lower cost is better.

The first setting in Table 1 represents adaptation to dangerous obstacles. While the baseline main-
tains high reward, it has a significantly higher cost, resulting in a less safe policy. Alternatively,
CAPA maintains high reward with a relatively lower increase in cost, indicating that CAPA enables
safe adaptation to dangerous objects (Q1). Similarly, for novel goals, PPO-Lagr has a significant
lower reward, while CAPA is able to effectively adapt and maintain high reward. For novel back-
ground, both approaches maintain their high reward, but our approach is also able to maintain lower
cost. Collectively, these settings show that CAPA is able to capture different types of novelty (Q2).

We also explore settings where multiple types of novelty are introduced simultaneously. The lower
block of Table 1 shows the average performance as you increase the amount of simultaneous novelty.
Note the significant decrease in performance of PPO-Lagr in both reward and cost as the amount
of novelty increases. CAPA is able to maintain its reward even as the amount of novelty increases
and displays only minor degradation in terms of cost (Q3). Ultimately, CAPA is more robust across
multiple types of novelty, achieving higher reward and lower cost.

4 Conclusion

We focus on the challenge of safe reinforcement learning in the presence of distribution shift where
the agent must adapt to novel states. Our approach for context-aware policy adaptation leverages
foundation models to cluster over the state space, representing the agent’s experience. These clusters
enable the policy to generalize to novel states. Our initial results suggest that our approach is able
to adapt to multiple types and increasing levels of novelty even when introduced simultaneously.
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