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ABSTRACT

The large number of ReLU non-linearity operations in existing deep neural net-
works makes them ill-suited for latency-efficient private inference (PI). Exist-
ing techniques to reduce ReLU operations often involve manual effort and sac-
rifice significant accuracy. In this paper, we first present a novel measure of
non-linearity layers’ ReLU sensitivity, enabling mitigation of the time-consuming
manual efforts in identifying the same. Based on this sensitivity, we then present
SENet, a three-stage training method that for a given ReLU budget, automatically
assigns per-layer ReLU counts, decides the ReLU locations for each layer’s activa-
tion map, and trains a model with significantly fewer ReLUs to potentially yield
latency and communication efficient PI. Experimental evaluations with multiple
models on various datasets show SENet’s superior performance both in terms of
reduced ReLUs and improved classification accuracy compared to existing alter-
natives. In particular, SENet can yield models that require up to ∼2× fewer Re-
LUs while yielding similar accuracy. For a similar ReLU budget SENet can yield
models with ∼2.32% improved classification accuracy, evaluated on CIFAR-100.

1 INTRODUCTION

With the recent proliferation of several AI-driven client-server applications including image anal-
ysis (Litjens et al., 2017), object detection, speech recognition (Hinton et al., 2012), and voice
assistance services, the demand for machine learning inference as a service (MLaaS) has grown.

Figure 1: Comparison of various meth-
ods in accuracy vs. #ReLU trade-off
plot. SENet outperforms the existing ap-
proaches with an accuracy improvement
of up to∼4.5% for similar ReLU budget.

Simultaneously, the emergence of privacy concerns from
both the users and model developers has made private
inference (PI) an important aspect of MLaaS. In PI the
service provider retains the proprietary models in the
cloud where the inference is performed on the client’s
encrypted data (ciphertexts), thus preserving both model
(Kundu et al., 2021b) and data-privacy (Yin et al., 2020).

Existing PI methods rely on various cryptographic proto-
cols, including homomorphic encryption (HE) (Braker-
ski & Vaikuntanathan, 2014; Gentry, 2009) and additive
secret sharing (ASS) (Goldreich et al., 2019) for the lin-
ear operations in the convolutional and fully connected
(FC) layers. For example, popular methods like Gazelle
(Juvekar et al., 2018), DELPHI (Mishra et al., 2020), and
Cheetah (Reagen et al., 2021) use HE while MiniONN (Liu et al., 2017) and CryptoNAS (Ghodsi
et al., 2020) use ASS. For performing the non-linear ReLU operations, the PI methods generally
use Yao’s Garbled Circuits (GC) (Yao, 1986). However, GCs demand orders of magnitude higher
latency and communication than the PI of linear operations, making latency-efficient PI an exceed-
ingly difficult task. In contrast, standard inference latency is dominated by the linear operations
(Kundu et al., 2022b) and is significantly lower than that of PI.

This has motivated the unique problem of reducing the number of ReLU non-linearity operations to
reduce the communication and latency overhead of PI. In particular, recent literature has leveraged

∗Part of the work was done when the first author was a graduate student at USC.
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Table 1: Comparison between existing approaches in yielding efficient models to perform PI. Note,
SENet++ can yield a model that can be switched to sub-models of reduced channel sizes.

Name Method Reduced Granularity Reduce modelSupports dynamic
used non-linearity dimension channel dropping

Irregular pruning Various 7 Scalar weight 7 7
Structured pruning Various 3 Channel, filter 3 7

Sphynx (Cho et al., 2021) NAS 3 Layer-block 7 7
CryptoNAS (Ghodsi et al., 2020) NAS 3 Layer-block 7 7

DELPHI (Mishra et al., 2020) NAS + PA 3 Layer-block 7 7
SAFENet (Lou et al., 2021) NAS + PA 3 Channel 7 7

DeepReDuce (Jha et al., 2021) Manual + HE 3 Layer-block 7 7
SNL (Cho et al., 2022) l1-regularized 3 Channel, pixel 7 7

SENet (ours) Automated 3 Channel, pixel 7 7
SENet++ (ours) Automated 3 Channel, pixel 3 3

neural architecture search (NAS) to optimize both the number and placement of ReLUs (Ghodsi
et al., 2020; Cho et al., 2021). However, these methods often cost significant accuracy drop, par-
ticularly when the ReLU budget is low. For example, with a ReLU budget of 86k, CryptoNAS
costs ∼9% accuracy compared to the model with all ReLUs (AR) present. DeepReDuce (Jha et al.,
2021) used a careful multi-stage optimization and provided reduced accuracy drop of ∼3% at simi-
lar ReLU budgets. However, DeepReDuce heavily relies on manual effort for the precise removal of
ReLU layers, making this strategy exceedingly difficult, particularly, for models with many layers.
A portion of these accuracy drops can be attributed to the fact that these approaches are constrained
to remove ReLUs at a higher granularity of layers and channels rather than at the pixel level. Only
very recently, (Cho et al., 2022) proposed l1-regularized pixel level ReLU reduction. However, such
approaches are extremely hyperparameter sensitive and often do not guarantee meeting a specific
ReLU budget. Moreover, the large number of training iterations required for improved accuracy
may not be suitable for compute-limited servers (Mishra et al., 2020).

Our contributions. Our contribution is three-fold. We first empirically demonstrate the relation
between a layer’s sensitivity towards pruning and its associated ReLU sensitivity. Based on our ob-
servations, we introduce an automated layer-wise ReLU sensitivity evaluation strategy and propose
SENet, a three-stage training process to yield secure and efficient networks for PI that guarantees
meeting a target ReLU budget without any hyperparameter-dependent iterative training. In particu-
lar, for a given global ReLU budget, we first determine a sensitivity-driven layer-wise non-linearity
(ReLU) unit budget. Given this budget, we then present a layer-wise ReLU allocation mask search.
For each layer, we evaluate a binary mask tensor with the size of the corresponding activation map
for which a 1 or 0 signifies the presence or absence of a ReLU unit, respectively. Finally, we use
the trained mask to create a partial ReLU (PR) model with ReLU present only at fixed parts of
the non-linearity layers, and fine-tune it via distillation from an iso-architecture trained AR model.
Importantly, we support ReLU mask allocation both at the granularity of individual pixels and acti-
vation channels.

To further reduce both linear and non-linear (ReLU) layer compute costs, we extend our approach
to SENet++. SENet++ uses a single training loop to train a model of different channel dropout
rates (DRs) dr (dr ≤ 1.0) of the weight tensor, where each dr yields a sub-model with a MAC-
ReLU budget smaller than or same as that of the original one. In particular, inspired by the idea of
ordered dropout (Horvath et al., 2021), we train a PR model with multiple dropout rates (Horvath
et al., 2021), where each dropout rate corresponds to a scaled channel sub-model having number
of channels per layer ∝ the dr. This essentially allows the server to yield multiple sub-models for
different compute requirements that too via a single training loop, without costly memory footprint.
Table 1 compares the important characteristics of our methods with existing alternatives.

We conduct extensive experiments and ablations on various models including variants of ResNet,
Wide Residual Networks, and VGG on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet
datasets. Experimental results show that SENet can yield SOTA accuracy-ReLU trade-off with
an improved accuracy of up to ∼2.32% for similar ReLU budgets. SENet++ (dr = 0.5) can further
improve the MAC and ReLU cost of SENet, with an additional saving of 4× and∼2×, respectively.

2 PRELIMINARIES AND RELATED WORK

Cryptographic primitives. We briefly describe the relevant cryptographic primitives in this section.

Additive secret sharing. Given an element x, an ASS of x is the pair (〈x〉1, 〈x〉2) = (x−r, r), where
r is a random element and x = 〈x〉1 + 〈x〉2. Since r is random, the value x cannot be revealed by a
single share, so that the value x is hidden.
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Homomorphic encryption. HE (Gentry, 2009) is a public key encryption scheme that supports
homomorphic operations on the ciphertexts. Here, encryption function E generates the ciphertext
t of a plaintext m where t = E(m, pk), and a decryption function D obtains the plaintext m via
m = D(t, sk), where pk and sk are corresponding public and secret key, respectively. In PI, the
results of linear operations can be obtained homomorphically through m1 ◦m2 = D(t1 ? t2, sk),
where ◦ represents a linear operation, ? is its corresponding homomorphic operation, t1 and t2 are
the ciphertexts of m1 and m2, respectively.

Garbled circuits. GC (Yao, 1986) allows two parties to jointly compute a Boolean function f over
their private inputs without revealing their inputs to each other. The Boolean function f is repre-
sented as a Boolean circuit C. Here, a garbler creates an encoded Boolean circuit C̃ and a set of
input-correspondent labels through a procedure Garble(C) to send C̃ and the labels to the other
party who acts as an evaluator. The evaluator further sends the output label upon evaluation via
Eval(C̃). Finally, the garbler decrypts the labels to get the plain results to share with the evaluator.

Private inference. Similar to (Mishra et al., 2020), in this paper, we focus on a semi-honest client-
server PI scenario where a client, holding private data, intends to use inference service from a server
having a private model. Specifically, the semi-honest parties strictly follow the protocol but try to
reveal their collaborator’s private data by inspecting the information they received. On the other
hand, a malicious client could deviate from the protocol.

To defend against various threats existing cryptographic protocols (Mishra et al., 2020; Ghodsi et al.,
2020; Lou et al., 2021) rely on the popular online-offline topology (Mishra et al., 2020), where the
client data independent component is pre-computed in the offline phase (Juvekar et al., 2018; Mishra
et al., 2020; Ghodsi et al., 2021; Lehmkuhl et al., 2021). For the linear operations, DELPHI (Mishra
et al., 2020) and MiniONN (Liu et al., 2017) move the heavy primitives in HE and ASS to offline
enabling fast linear operations during PI online stage. However, the compute-heavy Eval(C̃) of GC
keeps the ReLU cost high even at the online stage.

ReLU reduction for efficient PI. Existing works use model designing with reduced ReLU counts
via either search for efficient models (Mishra et al., 2020; Ghodsi et al., 2020; Lou et al., 2021;
Cho et al., 2021) or manual re-design from an existing model (Jha et al., 2021). In particu-
lar, SAFENet (Lou et al., 2021) enables more fine-grained channel-wise substitution and mixed-
precision activation approximation. CryptoNAS (Ghodsi et al., 2020) re-designs the neural archi-
tectures through evolutionary NAS techniques to minimize ReLU operations. Sphynx (Cho et al.,
2021) further improves the search by leveraging differentiable macro-search NAS (Liu et al., 2018a)
in yielding efficient PI models. DeepReDuce (Jha et al., 2021), on the other hand, reduced ReLU
models via a manual effort of finding and dropping redundant ReLU layers starting from an exist-
ing standard model. Finally, a recent work (Cho et al., 2022) leveraged l1-regularization to remove
ReLU at the pixel level to yield SOTA accuracy vs non-linearity trade-off. However, the extreme
hyperparameter dependence of such methods often provide sub-optimal solution and does not nec-
essarily guarantee meeting a target ReLU budget. Moreover, a resource-limited server (Mishra et al.,
2020) may not afford costly iterative training (Cho et al., 2022) in reducing the ReLU count.

3 MOTIVATIONAL STUDY: RELATION BETWEEN RELU IMPORTANCE AND
PRUNING SENSITIVITY

Existing work to find the importance of a ReLU layer (Jha et al., 2021), requires manual effort and
is extremely time consuming. In contrast, model pruning literature (Lee et al., 2018; Kundu et al.,
2021a) leveraged various metrics to efficiently identify a layer’s sensitivity towards a target pruning
ratio. In particular, a layer’s pruning sensitivity can be quantitatively defined as the accuracy reduc-
tion caused by pruning a certain ratio of parameters from it (Ding et al., 2019). In particular, recent
literature leveraged sparse learning (Ding et al., 2019; Kundu et al., 2021a) and used a trained sparse
model to evaluate the sensitivity of a layer l (ηθl ) as the ratio total # of non-zero layer parameters

total # layer parameters .
Despite significant progress in weight pruning sensitivity, due to the absence of any trainable
parameter in the ReLU layer, its sensitivity for a given ReLU budget is yet to be explored.
We hypothesize that there may be a correlation between a layer’s pruning sensitivity (Kundu et al.,
2021a) and the importance of ReLU and have conducted the following experiments to explore this.

Let us assume an L-layer DNN model Φ parameterized by Θ ∈ Rm that learns a function fΦ, where
m represents the total number of model parameters.
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The goal of DNN parameter pruning is to identify and remove the unimportant parameters from a
DNN and yield a reduced parameter model that has comparable performance to the baseline un-
pruned model. As part of the pruning process for a given parameter density d, each parameter is
associated with an auxiliary indicator variable c belonging to a mask tensor c ∈ {0, 1}m such that
only those θ remain non-zero whose corresponding c = 1. With these notations, we can formulate
the training optimization as

min L(fΦ(Θ� c)), s.t. ||c||0 ≤ d×m (1)

where L(.) represents the loss function, which for image classification tasks is generally the
cross-entropy (CE) loss. We used a sparse learning framework (Kundu et al., 2021a) to train

Figure 2: Layer-wise pruning sensitiv-
ity (d = 0.1) vs. normalized ReLU im-
portance. The later layers are less sensi-
tive to pruning, and, thus, can afford sig-
nificantly more zero-valued weights as
opposed to the earlier ones. On the con-
trary, later ReLU stages generally have
higher importance.

a ResNet18 on CIFAR-100 for a target d = 0.1 and com-
puted the pruning sensitivity of each layer. In particular,
as shown in Fig. 2, earlier layers have higher pruning sen-
sitivity than later ones. This means that to achieve close
to baseline performance, the model trains later layers’ pa-
rameters towards zero more than those of earlier layers.

We then compared this trend with that of the impor-
tance of different ReLU layers as defined in (Jha et al.,
2021). In particular, we first identified five different
modules of ReLU placement in a ResNet18, the pre-
basic-block (BB) stem, BB1, BB2, BB3, and BB4. We
then created five ResNet18 variants with ReLU non-
linearity present only at one of the modules while re-
placing non-linearity at the other modules with identity
layers. We identify the modules yielding higher accu-
racy to be the ones with higher ReLU importance (Jha
et al., 2021). We then normalized the importance of a ReLU stage with accuracy Acc as the ratio
(Acc− Accmin)/(Accmax − Accmin). Here Accmax and Accmin correspond to the accuracy of
models with all and no ReLUs, respectively.

As depicted in Figure 2, the results show that the ReLU importance and parameter pruning sensitivity
of a layer are inversely correlated. This inverse correlation may imply that a pruned layer can afford
to have more zero-valued weights when the associated ReLU layer forces most of the computed
activation values to zero.

4 SENET TRAINING METHODOLOGY

As highlighted earlier, for a large number of ReLU layers Lr, the manual evaluation and analysis of
the candidate architectures become inefficient and time consuming. Moreover, the manual assign-
ment of ReLU at the pixel level becomes even more intractable because the number of pixels that
must be considered, explodes. To that end, we now present SENet, a three-stage automated ReLU
trimming strategy that can yield models for a given reduced ReLU budget.

4.1 SENSITIVITY ANALYSIS

Inspired by our observations in Section 3, we define the ReLU sensitivity of a layer l as

ηαl = (1− ηθl) (2)

It is important to emphasize that, unlike ReLU importance, ReLU sensitivity does not require train-
ing many candidate models. However, ηθl can only be evaluated for a specific d. We empirically
observe that d > 0.3 tends to yield uniform sensitivity across layers due to a large parameter budget.
In contrast, ultra-low density d < 0.1, costs non-negligible accuracy drops (Liu et al., 2018b; Kundu
et al., 2022a). Based on these observations, we propose to quantify ReLU sensitivity with a proxy
density of d = 0.1.

Moreover, to avoid the compute-heavy pruning process, we leverage the idea of sensitivity evaluation
before training (Lee et al., 2018). On a sampled mini batch from training data D, the sensitivity of
the jth connection with associated indication variable and vector as cj and ej , can be evaluated as,
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Algorithm 1: Layer-wise #ReLU Allocation Algorithm
Data: Global ReLU budget r, model parameters Θ, model parameter proxy density d,

1 number of ReLU layers Lr , active ReLU indicator a ∈ {1}Lr
2 Output: Per-layer # ReLU count.
3 ηα ← evalActSens(Θ, d)
4 for l← 0 to Lr do
5 η

αl
←

η
αl∑L

i=0
η
αi

×ai

6 end
7 initVals(rremain, rtotal, rfinal)
8 while rtotal < r do
9 for l← 0 to L do

10 rlcur ← assignReluProportion(rremain, ηαl ,a)

11 rlfinal, rtotal ← assignUpdateRelu(rlfinal, r
l
cur, rtotal)

12 end
13 end
14 rremove ← rtotal − r
15 while rremove > 0 do
16 for l← 0 to L do
17 rlcur ← removeReluProportion(rdel, ηαl ,a)

18 rlfinal, rremove ← removeUpdateRelu(rlfinal, r
l
cur, rremove)

19 end
20 end
21 return rfinal

∆Lj(fΦ(Θ;D)) = gj(fΦ(Θ;D)) =
∂L(fΦ(c�Θ;D))

∂cj

∣∣∣
c=1

(3)

= lim
δ→0

L(fΦ(c�Θ;D))− L(fΦ((c− δej)�Θ;D))

δ

∣∣∣
c=1

where c is a vector containing all indicator variables. The ∂L
∂cj

is an infinitesimal version of ∆Lj
measuring the impact of a change in cj from 1 → 1 − δ. It can be computed using one forward
pass for all j at once. We normalize the connection sensitivities, rank them, and identify the top
d-fraction of connections. We then define the layer sensitivity ηΘl as the fraction of connections
of each layer that are in the top d-fraction. For a given global ReLU budget r, we then assign the
# ReLU for each layer proportional to its normalized ReLU sensitivity. The details are shown in
Algorithm 1 (Fig. 3 as point 1©). Note rlfinal in Algorithm 1 represents the allocated #ReLUs of
layer l at the end of stage 1, with rfinal representing the set of #ReLUs for all the ReLU layers.

4.2 RELU MASK IDENTIFICATION

After layer-wise #ReLU allocation, we identify the ReLU locations in each layer’s activation map.
In particular, for a non-linear layer l, we assign a mask tensor M l ∈ {0, 1}hl×wl×cl , where hl, wl,
and cl represents the height, width, and the number of channels in the activation map. For a layer
l, we initialize M with rlfinal assigned 1’s with random locations. Then we perform a distillation-
based training of the PR model performing ReLU ops only at the locations of the masks with 1, while
distilling knowledge from an AR model of the same architecture (see Fig. 3, point 2©). At the end of
each epoch, for each layer l, we rank the top-rlfinal locations based on the highest absolute difference
between the PR and AR model’s post-ReLU activation output (averaged over all the mini-batches)
for that layer, and update the M l with 1’s at these locations. This, on average, de-emphasizes the
locations where the post-ReLU activations in both the PR and AR models are positive. We terminate
mask evaluation once the ReLU mask1 evaluation reaches the maximum mask training epochs or
when the normalized hamming distance between masks generated after two consecutive epochs is
below a certain pre-defined ε value. Notably, there has been significant research in identifying
important trainable parameters (Savarese et al., 2020; Kusupati et al., 2020; Kundu et al.,
2020; 2022c;b; Babakniya et al., 2022) through various proxies including magnitude, gradient,
Hessian, however, due to the absence of any trainable parameter in the ReLU layer, such
methods can’t be deployed in identifying important ReLU units of a layer.

1The identified mask tensor has non-zeros irregularly placed. This can be easily extended to the generation
of the structured mask, by allowing the assignment and removal of mask values at the granularity of channels
instead of activation scalar (Kundu et al., 2021a).
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Figure 3: Different stages of the proposed training methodology for efficient private inference with
dynamic channel reduction. For example, the model here supports two channel SFs, S1 and S2.
Note, similar to (Horvath et al., 2021), for each SF support we use a separate batch-normalization
(BN) layer to maintain separate statistics.

Channel-wise ReLU mask identification. The mask identification technique described above, cre-
ates irregular ReLU masks. To support a coarser level of granularity where the ReLU removal
happens ”channel-wise”, we now present a simple yet effective extension of the mask identification.
For a layer l, we first translate the total non-zero ReLU counts to total non-zero ReLU channels as

rlc = d r
l
final

hlwl
e. We then follow the same procedure as irregular mask identification, however, only

keep top-rlc channels as non-zero.

4.3 MAXIMIZING ACTIVATION SIMILARITY VIA DISTILLATION

Once the mask for each layer is frozen, we start our final training phase in which we maximize the
similarity between activation functions of our PR and AR models, see Fig. 3, point 3©. In particular,
we initialize a PR model with the weights and mask of best PR model of stage 2 and allow only the
parameters to train. We train the PR model with distillation via KL-divergence loss (Hinton et al.,
2015; Kundu & Sundaresan, 2021) from a pre-trained AR along with a CE-loss. Moreover, we
introduce an AR-PR post-ReLU activation mismatch (PRAM) penalty into the loss function. This
loss drives the PR model to have activation maps that are similar to that of the AR model.

More formally, let Ψm
pr and Ψm

ar represent the mth pair of vectorized post-ReLU activation maps of
same layer for Φpr and Φar, respectively. Our loss function for the fine-tuning phase is given as

L = (1− λ)Lpr(y, ypr)︸ ︷︷ ︸
CE loss

+λLKL
(
σ

(
zar

ρ

)
, σ

(
zpr

ρ

))
︸ ︷︷ ︸

KL-div. loss

+
β

2

∑
m∈I

∥∥∥∥ Ψm
pr

‖Ψm
pr‖2

− Ψm
ar

‖Ψm
ar‖2

∥∥∥∥
2︸ ︷︷ ︸

PRAM loss

(4)

where σ represents the softmax function with ρ being its temperature. λ balances the importance
between the CE and KL divergence loss components, and β is the weight for the PRAM loss. Similar
to (Zagoruyko & Komodakis, 2016a), we use the l2-norm of the normalized activation maps to
compute this loss.

4.4 SENET++: SUPPORT FOR ORDERED CHANNEL DROPPING

To yield further compute-communication benefits, we now present an extension of SENet, namely
SENet++, that can perform the ReLU reduction while also supporting inference with reduced model
sizes. In particular, we leverage the idea of ordered dropout (OD) (Horvath et al., 2021) to simulta-
neously train multiple sub-models with different fractions of channels. The OD method is parame-
terized by a candidate dropout set Dr with dropout rate values dr ∈ (0, 1]. At a selected dr for any
layer l, the model uses a dr-sub-model with only the channels with indices {0, 1, ..., ddr · Cle − 1}
active, effectively pruning the remaining {ddr · Cle, ..., Cl − 1} channels. Hence, during training,
the selection of a dr-sub-model with dr < 1.0 ∈ Dr, is a form of channel pruning, while dr = 1.0
trains the full model. For each mini-batch of data, we perform a forward pass once for each value of
dr in Dr, accumulating the loss. We then perform a backward pass in which the model parameters
are updated based on the gradients computed on the accumulated loss. We first train an AR model
with a dropout set Dr. For the ReLU budget evaluation, we consider only the model with dr = 1.0,
and finalize the mask by following the methods in Sections 4.1 and 4.2. During the maximizing
of activation similarity stage, we fine-tune the PR model supporting the same set Dr as that of the
AR model. In particular, the loss function for the fine-tuning is the same as 4, for dr = 1.0. For
dr < 1.0, we exclude the PRAM loss because we empirically observed that adding the PRAM loss
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for each sub-model on average does not improve accuracy. During inference, SENet++ models can
be dynamically switched to support reduced channel widths, reducing the number of both ReLUs
and MACs compared to the baseline model.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Models and Datasets. To evaluate the efficacy of the SENet yielded models, we performed ex-
tensive experiments on three popular datasets, CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009),
Tiny-ImageNet (Hansen, 2015), and ImageNet2 with three different model variants, namely ResNet
(ResNet18, ResNet34) (He et al., 2016), wide residual network (WRN22-8) (Zagoruyko & Ko-
modakis, 2016b), and VGG (VGG16) (Simonyan & Zisserman, 2014). We used PyTorch API to
define and train our models on an Nvidia RTX 2080 Ti GPU.

Training Hyperparameters. We performed standard data augmentation (horizontal flip and random

Table 2: Runtime and communication
costs of linear and ReLU operations for
15-bit fixed-point model parameters/inputs
and 31-bit ReLUs (Mishra et al., 2020).

Operation Mode Runtime(µs) Comm. cost(KB)
Linear Offline 32.6 0.095

Online 0.248 0.000563
ReLU Offline 154.9 17.5

Online 85.3 2.048

cropping with reflective padding) and the SGD opti-
mizer for all training. We trained the baseline all-
ReLU model for 240, 120, and 60 epochs for CIFAR,
Tiny-ImageNet, and ImageNet respectively, with a
starting learning rate (LR) of 0.05 that decays by a
factor of 0.1 at the 62.5%, 75%, and 87.5% training
epochs completion points. For all the training we used
an weight decay coefficient of 5 × 10−4. For a target
ReLU budget, we performed the mask evaluation for
150, 100, and 30 epochs, respectively, for the three dataset types with the ε set to 0.05, meaning
the training prematurely terminates when less than 5% of the total #ReLU masks change their po-
sitions. Finally, we performed the post-ReLU activation similarity improvement for 180, 120, and
50 epochs, for CIFAR, Tiny-ImageNet, and ImageNet respectively. Also, unless stated otherwise,
we use λ = 0.9, and β = 1000 for the loss described in Eq. 4. Further details of our training
hyper-parameter choices are provided in the Appendix. In Table 5, we report the accuracy averaged
over three runs.

5.2 SENET RESULTS

As shown in Table 5, SENet yields models that have higher accuracy than existing alternatives by

Table 3: Results on Tiny-ImageNet and ImageNet.
Model Baseline #ReLU Method Test Acc%/ Comm.

Acc% (k) Acc% #1k ReLU Savings
Dataset: Tiny-ImageNet

142 SENet 58.9 0.414 ×15.7
ResNet18 66.1 298 64.96 0.218 7.5×

393 DeepReDuce(Jha et al., 2021) 61.65 0.157 5.7×
917 64.66 0.071 ×2.4

Dataset: ImageNet
ResNet18 71.94 600 SENet 70.28 0.117 3.86×

950 71.16 0.075 2.43×

Table 4: Results with ReLU reduction at the granu-
larity of activation channel evaluated on CIFAR-100.

Model Baseline #ReLU Method Test Acc%/ Comm.
Acc% (k) Acc% #1k ReLU Savings

180 SENet 79.02 0.44 7.7×
WRN22-8 80.82 240 SENet 79.3 0.33 5.8×

200 SNL (Cho et al., 2022) 77.45 0.38 6.9×

a significant margin while often requiring
fewer ReLUs. For example, at a small
ReLU budget of ≤ 100k, our models yield
up to 4.15% and 7.8% higher accuracy, on
CIFAR-10 and CIFAR-100, respectively. At
a ReLU budget of ≤ 500k, our improve-
ment is up to 0.50% and 2.38%, respectively,
on the two datasets. We further evaluate
the communication saving due to the non-
linearity reduction by taking the per ReLU
communication cost mentioned in Table 2.
In particular, the communication saving re-
ported in the 8th column of Table 5 is com-
puted as the ratio of communication costs
associated with an AR model to that of the
corresponding PR model with reduced Re-
LUs. We did not report any saving for the custom models, as they do not have any corresponding
AR baseline model. On Tiny-ImageNet, SENet models can provide up to 0.3% higher performance
while requiring 3.08× fewer ReLUs (Table 3). More importantly, even for a high resolution dataset
like ImageNet, SENet models can yield close to the baseline performance, depicting the efficacy of
our proposed training method.

2On ImageNet, for comprehensive training with limited resources, we sample 100 classes from the Ima-
geNet dataset with 500 and 50 training and test examples per class, respectively.
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Table 5: Performance of SENet and other methods on various datasets and models.
min≤ r≤ max Model Baseline #ReLU (k) Method Test Acc%/ Comm.

Acc% Acc% #1k ReLU Savings
Dataset: CIFAR-10

VGG16 93.8 12.5 91.6 7.33 23.6×
49.2 SENet(ours) 93.16 1.89 6.0×

0 ≤ r ≤ 100k ResNet18 95.2 49.1 93.60 1.9 11.3×
82 93.05 1.14 6.8×

ResNet18 95.2 12.9 SNL (Cho et al., 2022) 88.23 6.84 43.1×
VGG16 93.8 36.8 DeepReDuce (Jha et al., 2021) 88.9 2.41 8×
VGG16 93.8 126 SENet(ours) 93.42 0.74 2.3×

ResNet18 95.2 150 94.91 0.63 3.7×
100k≤ r ≤ 500k VGG16 93.8 126 DeepReDuce (Jha et al., 2021) 92.5 0.73 2.3×

VGG16 93.8 126 SAFENet (Lou et al., 2021) 88.9 0.7 2.3×
Custom Net 95.0 100 CryptoNAS (Ghodsi et al., 2020) 92.18 0.92 –

500 94.41 0.19 –

Dataset: CIFAR-100
ResNet18 78.05 24.6 70.59 2.87 21.8×

49.6 75.28 1.52 11.2×
100 SENet(ours) 77.92 0.78 5.6×

0 ≤ r ≤ 100k ResNet34 78.42 50.1 74.84 1.5 19.3×
80 76.66 0.96 12.1×

ResNet18 78.05 28.7 DeepReDuce (Jha et al., 2021) 68.6 2.39 19.4×
49.2 69.5 1.41 11.3×

Custom Net 74.93 51 Sphynx (Cho et al., 2021) 69.57 1.36 –
ResNet18 78.05 150 78.32 0.52 3.7×
ResNet34 78.425 200 78.8 0.4 4.8×
WRN22-8 80.82 180 SENet(ours) 79.12 0.44 7.7×

240 79.81 0.33 5.8×
300 80.54 0.27 4.6×

WRN22-8 80.82 180 SNL (Cho et al., 2022) 77.65 0.43 7.7×
100k≤ r ≤ 500k ResNet18 78.05 229.4 DeepReDuce (Jha et al., 2021) 76.22 0.33 2.4×

Custom Net 74.93 102 Sphynx (Cho et al., 2021) 72.9 0.714 –
230 74.93 0.32 –

Custom Net 79.07 100 CryptoNAS (Ghodsi et al., 2020) 68.67 0.69 –
500 77.69 0.16 –

Results with activation channel level ReLU reduction. As shown in Table 4, while trimming
ReLUs at a higher granularity of activation channel level, SENet models suffer a little more drop
in accuracy compared to that at pixel level. For example, at a ReLU budget of 240k, channel-level
ReLU removal yields an accuracy of 79.3% compared to 79.81% of pixel-level. However, compared
to existing alternatives, SENet can achieve improved performance of up to 1.85% for similar ReLUs.

5.3 SENET++ RESULTS

For SENet++, we performed experiments withDr = [0.5, 1.0], meaning each training loop can yield
models with two different channel dropout rates. The 0.5-sub-model enjoys a∼4×MACs reduction
compared to the full model. Moreover, as shown in Fig. 4, the 0.5-sub-model also requires signif-
icantly less #ReLUs due to reduced model size. In particular, the smaller models have #ReLUs
reduced by a factor of 2.05×, 2.08×, and 1.88× on CIFAR-10, CIFAR-100, and Tiny-ImageNet,
respectively, compared to the PR full models, averaged over four experiments with different ReLU
budgets for each dataset. Lastly, the similar performance of the SENet and SENet++ models at
dr = 1.0 with similar ReLU budgets, clearly depicts the ability of SENet++ to yield multiple sub-
models without sacrificing any accuracy for the full model.

5.4 ANALYSIS OF LINEAR AND RELU INFERENCE LATENCY

Table 2 shows the GC-based online ReLU operation latency is ∼343× higher than one linear oper-
ation (multiply and accumulate), making the ReLU operation latency the dominant latency compo-
nent. Inspired by this observation, we quantify the online PI latency as that of the N ReLU opera-
tions for a model with ReLU budget of N . In particular, based on this evaluation, Fig. 5(a) shows
the superiority of SENet++ of up to ∼9.6× (∼1.92×) reduced online ReLU latency on CIFAR-10
(CIFAR-100). With negligibly less accuracy this latency improvement can be up to ∼21×. Fur-
thermore, when dr < 1.0, SENet++ requires fewer MACs and the linear operation latency can be
significantly reduced, as demonstrated in Fig. 5(b).

5.5 ABLATION STUDIES

Importance of ReLU sensitivity. To understand the importance of layer-wise ReLU sensi-
tivity evaluations at a given ReLU budget, we conducted experiments with evenly allocated
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Figure 4: Performance of SENet++ on three datasets for various #ReLU budgets. The points labeled
A, B, C, and D corresponds to experiments of different target #ReLUs for the full model (dr = 1.0).
For SENet++, note that a single training loop yields two points with the same label corresponding
to the two different dropout rates.

Figure 5: Performance comparison of SENet++ (with dr = 1.0 and 0.5) vs. existing alternatives
(a) with VGG16 and ResNet18 in terms of ReLU latency. The labels A, B, C, D correspond to
experiments of different target #ReLUs for the full model (dr = 1.0). For SENet++, note that a
single training loop yields two points with the same label corresponding to the two different dropout
rates. (b) Comparison between DeepReDuce and SENet++ for a target # ReLU budget of ∼50k
with ResNet18 on CIFAR-100.

Table 6: Importance of ReLU sensitivity.
Model Baseline #ReLU ReLU Test Acc%/ Comm.

Acc% (k) Sensitivity Acc% #1k ReLU Savings
139.2 7 70.12 0.503 ×4

ResNet18 78.05 135 3 75.88 0.56 ×4.12
70.4 3 73.03 1.03 ×7.9

ReLUs. Specifically, for ResNet18, for a ReLU bud-
get of 25% of that of the original model, we randomly
removed 75% ReLUs from each PR layer with identity
elements to create the ReLU mask, and trained the PR
model with this mask. We further trained two other
PR ResNet18 with similar and lower # ReLU budgets with the per-layer ReLUs assigned following
the proposed sensitivity. As shown in Table 6, the sensitivity-driven PR models can yield signifi-
cantly improved performance of ∼5.76% for similar ReLU budget, demonstrating the importance
of proposed ReLU sensitivity.

Choice of the hyperparameter λ and β. To determine the influence of the AR teacher’s influence

Figure 6: Ablation studies with different λ and
β values for the loss term in Eq. 4.

on the PR model’s learning, we conducted the final
stage distillation with λ ∈ [0.1, 0.3, 0.5, 0.7, 0.9]
and β ∈ [100, 300, 500, 700, 1000]. As shown
in Fig. 6, the performance of the student PR
model improves with the increasing influence of
the teacher both in terms of high λ and β values.
However, we also observe, the performance im-
provement tends to saturate at β ≈ 1000. Note,
we keep λ = 0.5 and β = 1000, for the β and λ
ablations, respectively.

6 CONCLUSIONS

In this paper, we introduced the notion of ReLU sensitivity for non-linear layers of a DNN model.
Based on this notion, we present an automated ReLU allocation and training algorithm for models
with limited ReLU budgets that targets latency and communication-efficient PI. The resulting net-
works can achieve similar to SOTA accuracy while significantly reducing the # ReLUs by up to
9.6× on CIFAR-10, enabling a dramatic reduction of the latency and communication costs of PI.
Extending this idea of efficient PI to vision transformer models is an interesting future research.
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A APPENDIX

A.1 TRAINING HYPERPARAMETERS AND MODELS

The training hyperparameter details for each stage is provided in table 7. Also, for the KL-
divergence loss in stage 2 and 3, we fix the temperature value ρ = 4.0. To evaluate ηθ, we a
set of 1000 randomly selected training image samples.

Table 8 details the loss function used for different OD rate values for the SENet++ (at the fine-tuning
stage of the PR model i.e. training stage 3). Note, the training stage 1 where the AR model gets
trained, we use standard CE loss for all the sub-models with different OD rate values. The detailed
fine-tune training algorithm is provided in 2. Note, for SENet, the algorithm remains the same with
Dr = [1.0], meaning supporting only the full model with all the channels present3.

Model Selection. For lower resolution images (CIFAR-10, CIFAR-100, Tiny-ImageNet) compared
to that of ImageNet, we have used the variant of ResNet18 and ResNet34 models that are suitable
for supporting lower resolution datasets. In particular, we replaced the 7 × 7 kernel, stride 2, and
padding 3 of the first layer with a 3 × 3 kernel having a stride and padding of 1 each. We would
also like to highlight that this is a popular practice and can be seen in various other peer-reviewed
manuscripts (Wang et al., 2020; Liu et al., 2020; Wong et al., 2020). More importantly, both the
existing state-of-the-art methods (Cho et al., 2022; Jha et al., 2021) used similar ResNet models as
ours, for their evaluations at a reduced ReLU budget.

Table 7: Hyperparameter settings of SENet/SENet++ training method.
Model(s) Dataset Epoch batch Initial LR Momen- Optim- Weight

stage1 stage2 stage3 -size stage1 stage2 stage3 tum izer decay
ResNet18, CIFAR-10 240 150 180 128 0.05 0.05 0.01 0.9 SGD 0.0005

VGG16
ResNet{18, 34} CIFAR-100 240 150 180 128 0.05 0.05 0.01 0.9 SGD 0.0005

WRN22-8
ResNet18 Tiny-ImageNet 120 100 120 32 0.05 0.05 0.01 0.9 SGD 0.0005
ResNet18 ImageNet 60 30 50 16 0.05 0.05 0.01 0.9 SGD 0.0005

3We have open-sourced the validation codes with the supplementary.
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Table 8: Loss function used for sub-models with different OD rates in SENet++ at training stage 3.
OD rate (dr) Loss

1.0 (1-λ)LCE + λ LKL + β2 LPRAM
< 1.0 (1-λ)LCE + λ LKL

Algorithm 2: SENet++ Fine-Tune Training Stage
Data: Trained AR model parameters ΘAR, PR model parameters ΘPR, mini-batch size B, learned ReLU

mask from stage 2 Π, OD set Dr .
1 , Output: Trained PR model with # ReLU count r.
2 ΘPR ← applyModelWeight(ΘAR,Π)
3 for i← 0 to to ep do
4 for j← 0 to nB do
5 for dropout rate dr in sorted Dr do
6 sampleSBN(dr) //sample the BN corresponding to dr
7 LCE ← computeCELoss(X0:B, Y0:B,Y

pr
0:B,Π)

8 LKL ← computeKLLoss(fΦ(ΘPR), fΦ(ΘAR), ρ,Π)
9 if dr == 1.0 then

10 LPRAM ← computePRAMLoss(fΦ(ΘPR), fΦ(ΘAR),Π)

11 L ← (1− λ)LCE + λLKL + β
2
LPRAM

12 else
13 L ← (1− λ)LCE + λLKL
14 end
15 accumulateGrad(L)
16 end
17 updateParam(ΘPR,∇L)
18 end
19 end

A.2 MODEL LATENCY ESTIMATION

Similar to the existing literature (Jha et al., 2021; Cho et al., 2022; Lou et al., 2021), we assume
the popular PI framework described in Delphi (Mishra et al., 2020), and leverage their reported
per ReLU operation latency to estimate the total online cryptographic private inference latency. In
particular, assuming sequential execution, the total latency can be estimated as

T = (NMAC ∗ tmac +NReLU ∗ trelu)µS. (5)

where NMAC and NReLU corresponds to the total number of MAC and ReLU operations required
to perform a single forward pass. trelu represents per ReLU cipher-text execution time and its value
is assumed as 85.3µS. Note, Per ReLU cipher text execution wall-clock time is taken from (Mishra
et al., 2020) and the execution of 1000 ReLUs takes proportional time as reported in (Cho et al.,
2022). Thus similar to (Cho et al., 2022; Jha et al., 2021), we extrapolated per-ReLU wall clock
time to extract total ReLU latency for cryptographic inference. Similarly, we evaluated the per
linear operation latency tmac to be 0.248µS (Mishra et al., 2020). Now, as cryptographic ReLU
latency is around 343× costlier than that for linear ops, similar to earlier literature (Jha et al., 2021;
Cho et al., 2022; Lou et al., 2021), for comparable NMAC and NReLU we can approximate the total
latency with that of the non-linear latency. Note, the values of the ReLU and linear operation latency
are taken from (Mishra et al., 2020), however, we understand with recent improvement of operation
latency the ‘per-operation delay’ can reduce (Huang et al., 2022).

A.3 DISCUSSION ON THE RELATION BETWEEN RELU IMPORTANCE AND PRUNING
SENSITIVITY

Fig. 2 of the main manuscript demonstrated the inverse trend between ReLU importance and param-
eter pruning sensitivity. Here, as an exemplary, we used an extremely low target parameter density
d = 0.1 to compute the parameter sensitivity. This choice forces an aggressive drop in pruning
sensitivity of later layers because they correspond to the majority of the model parameters. In con-
trast, when we set a less aggressive compression with higher parameter density d of 0.3 or 0.5, we
observe a more gradual reduction in weight pruning sensitivity at later layers similar to change ob-
served with ReLU importance. More importantly, as shown in Fig. 7, the inverse trend between
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ReLU importance and pruning sensitivity can still be clearly observed irrespective of the choice of
d, while abruptness of sensitivity change remains a function of target d.

Figure 7: Ablation with different d yielding different layer-wise parameter pruning sensitivity. It
can be clearly observed that as the d increases, the aggressiveness of sensitivity change reduces and
becomes similar to what we observe for the ReLU importance plot.

A.4 MORE RESULTS AND ANALYSIS

Figure 8: (a) ReLU sensitivity per non-layer layer meeting different target ReLU budget, (b) ReLU
count for different layers, evaluated following the sensitivity. We used ResNet18 on CIFAR-100 for
this analysis.
Layer-wise ReLU Sensitivity. Fig. 8(a) shows the ReLU sensitivity per layer. As elaborated in
the Section 3, the ReLU sensitivity is more in the later layers, making our ReLU sensitivity follow
similar trend as ReLU importance in DeepReDuce (Jha et al., 2021). Fig. 8(b) shows the layer
wise ReLU count for different ReLU budget, allocation driven by sensitivity (Fig. 8(a)). With the
increasing count of ReLU budget, the assignment of ReLU happens more aggressively at the later
layers, compared to the earlier ones.

SENet++: Training with More Than 2 Dropout Rates. In the original manuscript we showed
results with two dropout rates (Dr = [0.5, 1.0]), while training with different dropouts, and yield
models with different channel width factors. We now show results with Dr = [0.25, 0.5, 0.75, 1.0].
In particular, Fig. 9 and 10 show the results with models yielded via training on four different dr
choices. As shown in the Fig. 9(a) and 10(a), the performance of the models at dr = 1.0 and
dr = 0.5, are similar for both two and four dr choices, making SENet++ an efficient algorithm in
yielding multiple reduced FLOPs/ReLU models. Moreover, the effective ReLU reduction remains
proportional to the corresponding ordered dropout rate (OD rate) (Fig. 9(b) and 10(b)). Fig.9(c)
shows the effective FLOPs reduction for the CONV layers while performing inference at a reduced
OD rate model selection.

A.5 FURTHER ABLATION STUDIES

Ablation Studies for Stage 2 Importance. To understand the importance of the ReLU mask iden-
tification stage, we now present results for SENet with and without that stage. In particular, for the
model without stage 2, we randomly assign the ReLU mask by following the ReLU layer sensitivity,
meaning layers having higher sensitivity will have non-zero mask values of similar proportions at
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Figure 9: (a) Accuracy vs. OD rate, (b) ReLU count vs. OD rate for SENet++ training with different
OD rate supports (two and four), (c) CONV layer FLOPs reduction factor for models at different
OD rate values. We used ResNet18 on CIFAR-100 for this evaluation.

Figure 10: (a) Accuracy vs. OD rate, (b) ReLU count vs. OD rate for SENet++ training with
different OD rate supports (two and four). We used VGG16 on CIFAR-10 for this evaluation.

random locations of the corresponding ReLU mask tensors.Table 9 clearly demonstraates the ben-
efits of stage 2 as the model can provide improved performance of 11.28% compared to the one
trained without stage 2.

Table 9: Importance of ReLU mask identification stage (stage 2). We used CIFAR-100 dataset.
Model Baseline #ReLU ReLU mask Test Acc%/

Acc% (k) identification (stage 2) Acc% #1k ReLU
24.6 7 59.12 2.37

ResNet18 78.05 24.6 3 70.59 2.87

Ablation Studies for Stage 3 Importance. Table 10 shows the importance of fine-tuning stage
(stage 3). In particular, the accuracy difference of a model before and after stage 3 training can vary
up to 6.3%.

Table 10: Importance of Activation similarity maximization (stage 3). We used CIFAR-100 dataset.
Model Baseline #ReLU Activation similarity Test Acc%/

Acc% (k) maximization (stage 3) Acc% #1k ReLU
24.6 7 64.10 2.57

ResNet18 78.05 24.6 3 70.59 2.87

Ablation Studies with the PRAM Loss Component. Table 11 shows the importance of PRAM
loss component during the fine-tuning stage (stage 3). In particular, the accuracy can improve up to
0.69% on CIFAR-10 as evaluated with ResNet18 for 150k ReLU budget.

Table 11: Importance of PRAM loss at final fine-tuning stage. We used CIFAR-10 dataset.
Model Baseline #ReLU With PRAM Test Acc%/

Acc% (k) loss Acc% #1k ReLU
150 7 94.12 0.62

ResNet18 95.2 150 3 94.91 0.63
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