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Abstract

Synthetic control method (SCM) is a widely used approach to assess the treatment
effect of a point-wise intervention for cross-sectional time-series data. The goal
of SCM is to approximate the counterfactual outcomes of the treated unit as a
combination of the control units’ observed outcomes. Many studies propose a
linear factor model as a parametric justification for the SCM that assumes the
synthetic control weights are invariant across time. However, such an assumption
does not always hold in practice. We propose a generalized SCM with time-varying
weights based on state-space model (GSC-SSM), allowing for a more flexible and
accurate construction of counterfactual series. GSC-SSM recovers the classic SCM
when the hidden weights are specified as constant. It applies Bayesian shrinkage for
a two-way sparsity of the estimated weights across both the donor pool and the time.
On the basis of our method, we shed light on the role of auxiliary covariates, on
nonlinear and non-Gaussian state-space model, and on the prediction interval based
on time-series forecasting. We apply GSC-SSM to investigate the impact of German
reunification and a mandatory certificate on COVID-19 vaccine compliance.

1 Introduction

The synthetic control method (SCM) is widely used in analyzing the impacts of interventions on
the aggregated units [Abadie, 2021]. Synthetic control is often considered as a comparative case
study—the impact of an intervention is inferred by comparing the development of outcome variables
of interest between a unit subjected to that intervention, referred as the target, and a set of units that
are comparable to the exposed unit but are not influenced by that intervention, referred as donors.

Under the potential outcome framework [Splawa-Neyman et al., 1923, Rubin, 1974], classic SCM
imputes the counterfactual outcomes of the target with time-invariant weights of donors’ observed
outcomes [Abadie et al., 2010]. The weights are often estimated by a regression under convex hull
constraints in practice. To justify the regression and the time-invariant linear weights, parametric
assumptions are usually made about the real data generating process (DGP) with a linear factor
model [Bai, 2009].

A concern of SCM is that the estimated weights are invariant to the permutation of the time index
in the pre-treatment period. Such permutation invariance is a result of linear factorization, which
could be inconsistent with the sequential nature of the time series data where the order of the time
index matters. To cope with the sequential data, a popular approach is the state-space model that
adopts a Markov dependence structure. The state-space model has been applied in estimating the
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effect of point interventions [Brodersen et al., 2015, Li and Bühlmann, 2020]. However, applying the
state-space model directly to causal inference requires correctly specifying the underlying DGP; a
misspecified model may suffer from time-varying unmeasured confounders.

Synthetic control for comparative case study mitigates the confounding problem. Under the spirit of
comparative cases analysis, we model the target unit using all the donors as time-varying covariates,
and construct the counterfactual series leveraging the similarity among the units. Unconfoundness is
delivered by the assumption that the unmeasured confounders are shared by the target and donors,
and the relationship between the target and donors can be captured by the time-varying weights.

In this paper, we generalize the classic SCM with time-varying weights of donors. We first propose a
a generalized synthetic control with state-space model (GSC-SSM) under dynamic linear regression.
The estimate of the time-varying donor weights have a closed-form via Kalman filter and smoother
for the linear Gaussian case, and we can naturally provide the prediction interval in the context of
time-series forecasting. We will further discuss the two-way dynamic sparsity under the Bayesian
inference framework. Moreover, the linear factorization can be view as a special case of state-space
modeling with transition matrices specified as identity matrix and the variance being zero. GSC-SSM
can adapt to the true DGP automatically, recovering the classic SCM when the data suggests so. On
the synthetic data, we find when the latent state is stationary, GSC-SSM will predict counterfactual
series similarly to those by classic SCMs; when the hidden state is non-stationary, it has a significantly
lower prediction error. We further demonstrate the application of GSC-SSM on two observational
datasets that manifest non-stationarity.

2 Setup

2.1 Review of SCM and notations

We first introduce the background and notation. For the sake of simplicity, we review the synthetic
control under the situation of only one treated unit and no covariates. Let the unit index j = 1 be
the treated unit (target) and I(0) = {2, ..., N} be the index set for the control units (donors). For the
time index set {1, ..., T0, T0 + 1, ..., T}, we define T pre = {1, ..., T0} as the pre-treatment period,
and define T post = {T0 + 1, ..., T} as the post-treatment period. Here, T0 + 1 is the time point
for the one time shock. We denote Djt as the treatment assignment where Djt = 0 for all t ∈
T pre and units j. For t ∈ T post, the treatments Djt = 0 and D1t = 1. Under the SUTVA and
consistency assumptions [Rubin, 1980] (see Appendix A for detailed definition and the additional
assumptions of exchangeability and positivity we rely on), we have,

Yjt = DjtYjt(1) + (1−Djt)Yjt(0). (1)

Our goal is to estimate the causal effect of the policy at time t > T0,
τt = Y1t(1)− Y1t(0).

The key challenge is to build a counterfactual series for the post-treatment period of the target
{Y1t(0)}t∈T post . The classic SCM using no covariates imputes the counterfactual by

Ŷ1t(0) =
∑

j∈I(0)

β̂jYjt(0), for t ∈ T post. (2)

Here β = {βj : j ∈ I(0)}′ where β̂ = argminβ
∑

t∈T pre

(
Y1t −

∑
j∈I(0) βjYjt

)2

. It often
assumes there is a convex hull constraint on βj to avoid extrapolation with non-negative βj ≥ 0 and∑

j∈I(0) β̂j = 1 [Abadie et al., 2010].

The parametric assumption of the data generation follows the interactive fixed effect [Bai, 2009], i.e.,
Yjt = λ′

tγj + τtDjt+ ϵjt. This serves as a theoretical justification for classic SCM, as the regression
over the pre-treatment assumes the existence of βj such that γ1 =

∑
j∈I(0) βjγj .

2.2 State-space model

A limitation for regression under linear factorization is that it gives the same βj regardless of any
permutation for the time index in the pre-treatment period. In developing GSC-SSM, we consider a
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Figure 1: An illustration of GSC-SSM, compared to classic SCMs with constant synthetic weights.

situation when βjt is time-varying and the linear factorization assumption does not necessarily hold.
For simplicity, we define βt = {βjt : j ∈ I(0)}′ which is a (N−1)×1 vector, Yt = {Yjt : j ∈ I(0)}
which is a 1× (N − 1) vector, and the corresponding potential outcomes as Yt(0),Yt(1). Instead
of a static linear combination, we consider a state-space model underlying the potential outcomes,

Y1t(0) = f(Y1:t(0),β1:t, Y1,1:t−1(0)), (3)

where the hidden state βt = ϕ(βt−1). Under dynamic linear regression, the potential outcomes are
modeled as

Y1t(0) = Yt(0)βt + vt
βt = Φβt−1 +wt,

(4)

where {
vt
wt

}
i.i.d.∼ N

[
0,

(
R 0
0 Q

)]
.

We further assume diagonal Φ = diag(ϕ2, ..., ϕN ),Q = diag(ω2
2 , ..., ω

2
N ).

The classic SCM (2) can be represented under the framework of (3) as Y1t(0) = Yt(0)β, βt = β,
or under the framework of (4) with Φ = I and Q = 0.

2.3 Inference

There exists a closed-form estimate for the βt in the dynamic linear model. Denote the conditional
expectation and covariance of βt for a given period Y1,1:s as βs

t := E (βt | Y1,1:s) ,P
s
t1,t2 :=

E
[(
βt1 − βs

t1

) (
βt2 − βs

t2

)′]
. The expectation and variance of the time-varying synthetic control

weights can be estimated by the Kalman filtering [Shumway and Stoffer, 2017].

Theorem 1 (Kalman filter) The synthetic weights and the covariance matrix are estimated as
βt−1
t = Φβt−1

t−1, Pt−1
t = ΦPt−1

t−1Φ
′ +Q,

where we can recursively give

βt
t = βt−1

t +Kt

(
Y1t −Yt(0)β

t−1
t

)
,Pt

t = (I −KtYt(0))P
t−1
t

Kt = Pt−1
t Yt(0)

′ (Yt(0)P
t−1
t Yt(0)

′ +R
)−1

.

Prediction for t > t0 is accomplished recursively with initial conditions βt0
t0 and Pt0

t0 . To estimate the
counterfactual, for t ∈ T post,

Ŷ1t(0) := E (Y1t(0) | Y1,1:t−1) = Yt(0)β
t−1
t .

Based on the estimated potential outcome, we can estimate the treatment effect and generate the
confidence interval by its variance.

Theorem 2 (estimation and variance of the treatment effect) The treatment effects τ̂t on the tar-
get unit and its variance are

τ̂t = Ŷ1t(1)− Ŷ1t(0) = Y1t −Yt(0)β
t−1
t ,Var(τ̂t) = Yt(0)P

t−1
t Yt(0)

′ +R.
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2.4 Shrinkage for state-space model

In practice, we will need another source of dynamic sparsity since we are now extending the traditional
synthetic control with a time-varying weight, as it may introduce the problem of over-fitting. So, we
develope a two-way shrinkage approach. One shrinkage selects which unit should be in the donor pool,
and the other one indicates whether ϕj and ωj should be all set at zero in the hidden space equation.
The estimation framework is similar to Belmonte et al. [2014], Bitto and Frühwirth-Schnatter [2019]
and details can be found in Appendix C.

2.5 Different roles of covariates

The role of covariates is complicated even in the classic synthetic regression. Abadie et al. [2010]
suggest that there are p time-invariant auxiliary covariates Zj ∈ Rp that could be helpful to construct
the synthetic control as additive factors (usually they are covariates like population, age structure),

Yjt = λ′
tγj + θ′

tZj + τtDjt + ϵjt.

And they assume the existence of β∗
j simultaneously fulfill

γ1 =
∑

j∈I(0)

β∗
j γj and Z1 =

∑
j∈I(0)

β∗
jZj .

Botosaru and Ferman [2019] further discusses the role of Zj and suggests we do not need to
simultaneously fulfill both equations once the outcome is matched well.

In our state-space model setting, the role of auxiliary covariates can be even more flexible. Denote
the time-varying auxiliary covariates Zjt as a p× 1 vector, and Zt := {Zjt; for all j ∈ I(0)} as the
p× (N − 1) stacked matrix over donors. Now the state-space model can be written as an extension
of Equation 4,

Y1t(0) = Yt(0)βt +ΥZ1t + vt
βt = Φβt−1 + ΓZt +wt.

(5)

The term ΓZt can introduce more flexibility in the hidden-state. Here, Γ is a 1× p vector, meaning
the similarity between the units can be affected by the covariate, while Υ should be set to a zero
matrix based on the idea of comparative study. The Kalman filter under Equation 5 with fixed Υ,Γ
has a similar form to Theorem 1, see [Shumway and Stoffer, 2017, Naranjo et al., 2013].

Another way of including the auxiliary covariate is by the idea of Abadie et al. [2010]. We extend
the uni-variate dynamic linear regression to a multivariate version. Define all the outcomes need to
match as A1t = {Y1t,Z1t}, which is a (p+ 1)× 1 vector, and A·t = {Yjt,Zjt} for all j ∈ I(0) as
the (p+ 1)× (N − 1) stacked matrix over donors. The dynamic linear regression is adjusted as

A1t(0) = A·t(0)βt + vt

βt = Φβt−1 +wt.

3 Simulation Study

We evaluate the performance of different synthetic control methods for a synthetic panel data with
large T = 1000 and small N = 4. The donors are I(0) = {2, 3, 4}, each of these donors {Yjt}j∈I(0)

follows a different random walk. We choose random walk to ensure we can not make any valid
long-term prediction for the target alone, and hence we can evaluate the performance more accurately.

The DGP of Y1t follows

Y1t = β2tY2t + β3tY3t + β4tY4t + τtD1t + ϵ1t,

where the treatment effect τt = 1 and the observation error ϵ1t ∼ N (0, 0.01), with intervention
D1t = 1 when T > 700. We consider five different scenarios for βt = {β2t, β3t, β4t}′. We
compare the Mean Squared Prediction Error (MSPE) of the proposed GSC-SSM with the classic
SCM [Abadie et al., 2010] (SC-ADH), and with the SCM without convex hull constrains [Hsiao et al.,
2012] (SC-Hsiao). The comparison of MSPE is listed in Table 3. GSC-SSM has similar MSPE as
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Table 1: Results for simulation. GSC-SSM generally gives a lower or similar MSPE.

Scenario βt GSC-SSM SC-Hsiao SC-ADH
constant βt (0.5, 0.3, 0.2) 0.00974 0.00974 0.00972

constant + white noise (0.5, 0.3, 0.2) + i.i.d wt 0.0708 0.0708 0.0707

change point Tc = 300
(0.5, 0.3, 0.2) for t < Tc

(0.2, 0.4, 0.4) for t ≥ Tc
0.0390 0.384 0.563

AR(1) βjt = ϕjβj,t−1 + ωj , ϕj ̸= 0, 1 0.064 0.234 0.330
random walk βjt = βj,t−1 + ωj 0.184 0.480 0.445

classic SCMs when the latent state βt is stationary (the first two scenarios). GSC-SSM has significant
lower MSPE compared to other two classic SCMs for non-stationary scenarios when the latent state
is generated as a random walk or with a change point. Figures including observed simulated Y1t,
synthetic counterfactual Ŷ1t(0) (with 95% CI) and estimated τ̂t for each scenario can be found in
Appendix E.

4 Empirical Analysis

4.1 German reunification data

We apply GSC-SSM to the analysis of classic German reunification data [Abadie et al., 2015]. The
purpose of this study is to examine the economic consequences of German reunification in 1990
on West Germany. The donor pools are countries from OECD assumed to be comparable to West
Germany. Using GSC-SSM, we have the results in Figure 2.

Figure 2: Left: Synthetic counterfactual series Ŷ1t(0) (with 95% CI) and the observed series Y1t for
the GDP ; Right: The estimated treatment effect τ̂t = Y1t − Ŷ1t(0) of German reunification.

Based on GSC-SSM, we have the estimate of the treatment effect and also the estimate of the hidden
state. The estimation of the pre-treatment outcomes are close to the synthetic target and the true
target. We notice a pronounced negative effect on West German GDP after the first few years. Such
conclusion is consistent with previous literature.

We notice there is a change during the time point t = 14 ∼ 16 (corresponding to the year of
1974~1976) of the estimated hidden state (see Appendix E). This suggests a change of similarity
between the donors and target at those years. The change can be a further proof of the advantage
of our method. The 1973 oil crisis, often known as the first oil crisis, began in October 1973, and
it has great impact and heterogeneous effect on the GDP of next year for OECD countries. The
price of oil had nearly tripled by the time. The embargo ended in March 1974. The existence of oil
crisis suggests a time-varying relationship between the donors and the target. GSC-SSM shows a clear
variety of effect among donors, causing the weight to shift during those years.
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4.2 Vaccination compliance study

We apply GSC-SSM to revisit the study of [Mills and Rüttenauer, 2022]. In this study, we investigate
the daily vaccination data of twenty five countries. Nineteen of twenty five countries didn’t introduce
any mandatory COVID-19 vaccination certificate for entry into public places. These are the donors
for the SCM. Further, we have six target countries that introduced such mandatory policy. We revisit
this analysis and suggest that a time-varying weight might produce a better pre-treatment fit. In
Figure 3, GSC-SSM has a good pre-treatment fit. The estimated treatment effect suggests a significant
effect of a mandatory vaccination policy on increasing the vaccination compliance in Israel.

Figure 3: Left: Synthetic counterfactual series Ŷ1t(0) (with 95% CI) and the observed series Y1t for
vaccine dose per million of Israel ; Right: The estimated treatment effect τ̂t = Y1t − Ŷ1t(0).

5 Discussions

In this paper, we propose GSC-SSM, a novel synthetic control framework based on state-space model.
We demonstrate how our new framework can uncover time-series nature when evaluating the effect
of point-wise intervention. GSC-SSM is more flexible and generally gives better pre-treatment fit.
GSC-SSM can accommodate the common generalizations of classic SCM like more than one target,
convex hull assumption, and robustness check methods such as the placebo test. Dynamic linear
regression can be further extended to non-linear and non-Gaussian cases. A more detailed discussion
of those extensions can be found in Appendix D.

Our work has a close relationship with CausalImpact [Brodersen et al., 2015] and CausalTransfer
[Li and Bühlmann, 2020]. They both study the effect of point-wise intervention. However, both
CausalImpact and CausalTransfer directly model the time-series. In CausalImpact, the unit
specific dynamic similarity is not considered. While CausalTransfer is not built under the context
of comparative cases or synthetic control. Both methods do not emphasize the benefits of comparative
cases, making them more similar to a state-space model version of interrupted time series analysis
[Ferron and Rendina-Gobioff, 2005].

Comparative case studies have their own advantages in terms of reducing the effect of unmeasured con-
founders and taking advantage of natural experiment. The dynamic of weights is typically required, as
the similarity between different units can vary over time. The similarity might evolve as a separate time
series or be influenced by an external shock. Our method benefits from both sides: it operates within
the framework of a comparative case study while also models the counterfactual with dynamic weights.
The simulation and observational studies confirm the necessity of dynamic weights. Furthermore, as
the simulation shows, if the true DGP follows a linear factor form, indicating a static weight, GSC-SSM
still provide the similar estimation as classic SCM. We also alleviate some of the concerns about the
overfitting by discussing a two-way sparsity and whether time-varying weights are necessary.

After the acceptance to this workshop, we became aware of [Klinenberg, 2022], who proposed a
similar approach using state-space model and Bayesian shrinkage. Though we address different
simulations scenarios of βt which Φ ̸= I , the role of auxiliary covariates and different extentions.
And our research has different empirical study and findings therein. We hope to conduct thorough
comparisons of these approaches in future research.
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Appendix

A Assumption for Equation 1

We need a few more classic assumptions:

Assumption 1 (Stable Unit Treatment Value Assumption(SUTVA)) Djt is well-defined and
there is only one version of the potential outcome, and a certain unit’s outcome only depends
on its own treatment Yjt(D1:N,t) = Yjt(Djt)

Assumption 2 (Consistency) When the treatment Djt = D, Yjt = Yjt(D).

Assumption 3 (Exchangeability) The treatment assignment to a unit at a time t does not depend
on the unit’s potential outcomes, {Yjt(0), Yjt(1)} ⊥ Djt

Assumption 4 (Positivity) Pr(Djt = d) > 0

B Unknown Parameters

We will need initial value βt=0 ∼ N (µ0,Σ0) for the starting of recursive estimation, we define the
unknown parameters set as Θ = (µ0,Σ0,Φ,Q, R). In most of the case, Θ is unknown unless we
have some prior knowledge about the dynamic regression. An EM algorithm is a classic solution for
this problem[Dempster et al., 1977, Shumway and Stoffer, 2017]. Algorithm:

(i) Initialize by choosing starting values for the parameters in (µ0,Σ0,Φ,Q, R), say Θ(0), and
compute the incomplete-data likelihood, − lnLY

(
Θ(0)

)
.

On iteration j, (j = 1, 2, . . .) :

(ii) Perform the E-Step: Using the parameters Θ(j−1), obtain the smoothed values βn
t ,P

n
t

and Pn
t,t−1, t = 1, . . . , n, and calculate some component derived from quasi likelihood

Q
(
Θ | Θ(j−1)

)
= E

[
lnL(Θ | β, Y ) | Y,Θ(j−1)

]
, .

(iii) Perform the M-Step: Update the estimates in (µ0,Σ0,Φ,Q, R) from the quasi likelihood
Θ(j) = argmaxΘ Q

(
Θ | Θ(j−1)

)
, obtaining Θ(j).

(iv) Compute the incomplete-data likelihood, − lnLY

(
Θ(j)

)
.

(v) Repeat Steps (ii)-(iv) to convergence.

Theorem 3 (Asymptotic distribution of the estimators for Θ0) Under general conditions, let Θ̂n

be the estimator of Θ0 obtained by maximizing the innovations likelihood, LY (Θ),. Then, as n → ∞,
√
n
(
Θ̂n −Θ0

)
d→ N

[
0, I (Θ0)

−1
]

where I(Θ) is the asymptotic information matrix given by

I(Θ) = lim
n→∞

n−1E
[
−∂2 lnLY (Θ)/∂Θ∂Θ′]

C Details for Bayesian shrinkage

Based on Equation 4, and follow the ideas of [Frühwirth-Schnatter and Wagner, 2010, Belmonte
et al., 2014, Bitto and Frühwirth-Schnatter, 2019]

Y1t(0) = Yt(0)βt + vt
βt = Φβt−1 +wt

Proposition 1 We decompose the βt into two parts: a constant βC and a time-varying β∗
t with

initial values of zero,
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βt = βC + β∗
t

We can first rewrite the Equation 4 in an equivalent way:

Y1t(0) = Yt(0)βC +Yt(0)β
∗
t + vt

β∗
t = Φβ∗

t−1 +wt,β
∗
t=0 = 0

We expand the above formula at subject level βt = {βjt : j ∈ I(0)}:
for each subject j, first define β̃jt = β∗

jt/ωj we can have

Y1t(0) =

N∑
j=2

Yjt(0)βj,C +

N∑
j=2

Yjt(0)ωj β̃jt + vt

β̃jt = ϕj β̃j,t−1 + ct, β̃j,0 = 0 , with ct ∼ i.i.d N (0, 1)

Based on the shrinkage properties of ωj and βj,C , here follows different scenarios:

• If ωj is shrunk to 0, but βj,C is not shrunk to 0, then the estimator is deterministic, if ϕj = 1,
returning to the classic synthetic control without convex hull constrains.

• If ωj is shrunk to 0, and βj,C is shrunk to 0 , then unit j is irrelevant to impute the
counterfactual.

• If ωj is not shrunk to 0, but βj,C is shrunk to 0, it means a time-varying coefficient starting
at zero.

• If ωj is not shrunk to 0, and βj,C is not shrunk to 0, it is an unrestricted time-varying
coefficient for unit j.

The hierarchical mixtures of normal prior:

Proposition 2 for βj,C: βj,C | σ2
j ∼ N (0, σ2

j ) and σ2
j follows: σ2

j | λ ∼ Exp(λ2/2) and λ2 ∼
G(a1, a2), ωj | ξ2i ∼ N

(
0, ξ2i

)
, also with exponential mixing density: ξ2i | κ ∼ Exp

(
κ2/2

)
with

κ ∼ G(b1, b2) and β̃jt | β̃j,t−1 can be given by state-space model.

And then compute the posterior by MCMC. The details of MCMC can be found in [Belmonte et al.,
2014, Bitto and Frühwirth-Schnatter, 2019]. With such method, we can automatically characterize
each control subject into the four categories of sparsity.

D Details for extension

D.1 More than one target

We can further generalize our case with more than one target, using a multivariate dynamic re-
gression. Suppose we have a target set I(1) = {1, ..., k, ...,M} with more than one treated
units, and donor set I(0) = {1, ..., j, ..., N}, we define the multivariate stacked outcome as
C1t = {Ykt, k ∈ I(1)}, C0t = {Yjt, j ∈ I(0)}, and their corresponding potential outcome
{C1t(1),C1t(0)}, {C0t(1),C0t(0)}. We have the following equation and the estimation is sim-
ilar to the univariate version.

C1t(0) = C0t(0)βt + vt

βt = Φβt−1 +wt

D.2 Constrains and convex hull assumptions

When it comes to the constraints of βj in the original synthetic control setting, there exists a convex
hull constrain to avoid extrapolation. A set of non-negative weight summed up to 1 is also easy and
transparent to interpret. In our model, adding non-negative constrain making the state-space model
non-linear, and we can not have a closed-form estimation. But we can still address the issue under
Bayesian inference with techniques like MCMC or using variational inference approach.
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D.3 Approximate Bayesian inference

When it goes to non-Gaussian and non-linear cases, the estimation becoming challenging since
Kalman filter can not be used(though it is still the best linear predictor). Under such situations,
approximate Bayesian inference like variational inference [Blei et al., 2017, Hoffman et al., 2013]
will be an effective method. And Black Box variational inference [Archer and Park, 2016] can address
the issue without specifying a model.

D.4 Prediction Interval

There has been many discussions of prediction interval problems in synthetic controls based on
conformal inference [Chernozhukov et al., 2021, Cattaneo et al., 2021]. Our method gives out a
prediction interval based on time-series forecasting, but it is only a small proportion of randomness.
The randomness of wrongly specified model is not considered, and its uncertainty is usually assessed
by bootstrapping based method. Abadie et al. [2010] originally suggested a placebo test and leave-
one-out method as an evaluation of robustness. We can further implement these robustness check
methods and conformal prediction for a better prediction interval.

E Details of Simulation & Empirical Analysis

We presented figures for imputed counterfactuals and estimated treatment effect for each scenario:

Figure 4: Scenario 1: βt is constant, the DGP is the same as classic SCMs, GSC-SCM gives a similar
imputation as the other two methods.

Figure 5: Scenario 2: constant βt + white noise; In this case βt is still stationary, we find the three
methods give similar imputation.
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Figure 6: Scenario 3: We add a change point for βt at Tc = 300, now the classic SCMs are trying to
give a constant β, resulting in a biased estimation of βt and hence has higher MSPE.

Figure 7: Scenario 4: βt follows an AR(1) process before convergence, GSC-SSM gives estimation of
treatment effect closer to the ground truth τt = 1.

Figure 8: Scenario 5: βt follows a random walk process , GSC-SSM gives estimation of treatment
effect closer to the ground truth τt = 1, but in the long term, we can not make any valid prediction.
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Figure 9: Estimated hidden states of each donor for German reunification data, we noticed the
changing during the time point t = 14 ∼ 16. We also label the value of βj,t=T0

for each donor.
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