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Abstract
Text embedding models have significantly con-
tributed to advancements in natural language
processing by adeptly capturing semantic prop-
erties of textual data. However, the ability of
these models to generalize across a wide range
of syntactic contexts remains under-explored.
In this paper, we first develop an evaluation set,
named SR, to scrutinize the capability for syn-
tax understanding of text embedding models
from two crucial syntactic aspects: Structural
heuristics, and Relational understanding among
concepts, as revealed by the performance gaps
in previous studies. Our findings reveal that
existing text embedding models have not suffi-
ciently addressed these syntactic understanding
challenges, and such ineffectiveness becomes
even more apparent when evaluated against ex-
isting benchmark datasets. Furthermore, we
conduct rigorous analysis to unearth factors
that lead to such limitations and examine why
previous evaluations fail to detect such inef-
fectiveness. Lastly, we propose strategies to
augment the generalization ability of text em-
bedding models in diverse syntactic scenarios.
This study serves to highlight the hurdles as-
sociated with syntactic generalization and pro-
vides pragmatic guidance for boosting model
performance across varied syntactic contexts.

1 Introduction

Text embedding plays a significant role in a va-
riety of natural language processing applications
including language understanding (Du et al., 2020),
information retrieval (Thakur et al., 2021) and ques-
tion answering (Ni et al., 2021). Recently, many
methods (Reimers and Gurevych, 2019; Gao et al.,
2021; Ni et al., 2021; Neelakantan et al., 2022; Su
et al., 2023), targeting at converting textual data
into vector representations, have demonstrated a
remarkable performance across massive text em-
bedding benchmarks (Muennighoff et al., 2023).
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Cats chase mice.

Mice chase cats.

SimCSE 94%

SBERT 98%

Figure 1: A probing example by using SBERT (all-
MiniLM-L6-v2) and SimCSE (Roberta-Large) to com-
pute the semantic similarity between "Cats chase mice"
and "Mice chase cats". Both models exihibit high simi-
larity socres at this simple task.

However, as we delve deeper into different hier-
archies of language comprehension, the question
that naturally arises is: How well do these text em-
bedding models understand syntax? For example,
could the state-of-the-art text embedding models
understand and distinguish the difference between
"Cats chase mice" and "Mice chase cats"? Syntax,
constituted by a set of rules that define sentence
structures, forms a pivotal aspect of natural lan-
guage. It integrates both heuristics and composi-
tional elements, establishing the bedrock for the
expansive and intricate nature of human language
(Manning and Schütze, 1999; Jurafsky and Martin,
2000). A thorough comprehension of syntax is es-
sential for a text embedding model to effectively
ascertain the relationships among words, thereby
facilitating a level of language understanding that
mirrors human cognitive processes. Moreover, as
text embedding models are increasingly deployed
in LLM-based agents and real-world applications,
ensuring that they maintain a solid understanding
of syntax is critical to guarantee their reliability
and efficacy.

In this study, we address this question by in-
troducing a new evaluation set called SR desig-
nated to probe the ability of text embedding mod-
els from three syntactic aspects (Partee, 1995; Gib-
son, 1998; Gildea and Jurafsky, 2000; Mitchell
and Lapata, 2010; McCoy et al., 2019; Linzen and
Baroni, 2020): 1) Structural heuristics: the rules
and patterns that govern sentence structures, and
2) Relational understanding among concepts: the



models’ capability to infer relationships between
different concepts in text. These dimensions repre-
sent the multifaceted nature of syntax.

We take this inquiry a step further by conducting
an incisive analysis to uncover the underpinnings
of these limitations. By examining various mod-
els and their responses to syntactic challenges, we
delineate the factors that contribute to the mani-
festation of these limitations and the reasons why
they have eluded detection in conventional bench-
marks. Recognizing these challenges is a precursor
to addressing them. Finally, we show that simply
augmenting the training Data with SR-like exam-
ples, which can be generated through ChatGPT
with designed prompts, can significantly enhance
the generalization capabilities of text embedding
models in syntactically diverse settings.

This research is aimed at shedding light on the
challenges of syntactic generalization in text em-
bedding models. By establishing a more rigorous
evaluation set and proposing strategies for enhance-
ment, we contribute to the advancement of text
embedding models that are capable of nuanced
understanding and high performance across var-
ied syntactic contexts. Our work provides valu-
able guidance and sets the stage for future research
aimed at achieving more syntactically aware and
robust text embedding models. SR benchmark and
code are released 1.

2 SR Benchmark

Typical evaluation sets have often been inadequate
in rigorously assessing a model’s understanding of
syntax. They tend to focus on high-level perfor-
mance metrics, while overlooking the finer aspects
of syntactic understanding. SR was designed to ad-
dress the limitations and specifically evaluate text
embedding models from two important syntactic
aspects: Structural heuristics, and Relational un-
derstanding. These dimensions were chosen due
to their fundamental roles in natural language un-
derstanding. In this section, we introduce the con-
struction process of the SR benchmark.

2.1 Foundation Corpus for SR Construction

For constructing the SR benchmark, it was vital to
base it on rich and diverse foundational corpus that
encompass different domains and compositional
structures. These corpus include:

1SR Benchmark, code, prompts, and other details are pub-
licly available at https://github.com/fzp0424/SR.

STS: We adopt the STS benchmark (Cer et al.,
2017), which comprises a selection of STS tasks
organized in the context of SemEval between 2012
and 2017. The dataset include 1,379 sentence pairs
from image captions, news headlines and user fo-
rums. They provide a range of sentences with vary-
ing complexity and structures, making them an
ideal starting point for our SR benchmark.

SICK: SICK(Sentences Involving Composi-
tional Knowledge) (Marelli et al., 2014) includes
9927 sentence pairs that are rich in the lexical and
syntactic phenomena. They provide a range of sen-
tences with diverse compositional structure for our
SR benchmark.

CQADupStack: CQADupStack (Hoogeveen
et al., 2015) is a dataset derived from Stack Ex-
change and is geared towards the identification
of duplicate questions in community Question-
Answering forums. It brings in diversity from real-
world queries and their paraphrased versions.

Twitter: The Twitter dataset (Xu et al., 2015)
consists of pairs of tweets together with a crowd-
annotated score if the pair is a paraphrase. Includ-
ing this dataset allows the SR benchmark to ac-
count for the informal and concise nature of social
media text, which often involves unique linguistic
constructs.

BIOSSES: BIOSSES (Soğancıoğlu et al., 2017)
is a dataset designed to evaluate biomedical seman-
tic similarity with 100 testing pairs. By includ-
ing BIOSSES, the SR benchmark encompasses the
domain-specific language used in biomedical texts.

AskUbuntu: AskUbuntu (Lei et al., 2015) is
a collection of user posts from the technical fo-
rum AskUbuntu. The inclusion of AskUbuntu al-
lows for the SR benchmark to encompass complex
and technical questions typically encountered in
community-driven platforms.

By utilizing these datasets, the SR benchmark is
well-equipped to evaluate text embedding models’
syntactic understanding across varying domains
and compositional structures. More important, the
recent text embedding models have already demon-
strated remarkable performance on these bench-
marks. This configuration not only ensures a holis-
tic evaluation but also effectively pinpoints the
models’ strengths and weaknesses in diverse set-
tings.

https://github.com/fzp0424/SR


Input: You are a semantic similarity scoring assistant.Here is the standard of 
 scoring.

 The two sentences are completely equivalent, as they mean the same 
 thing. Scoring 5
 e.g. Sentence 1: The bird is bathing in the sink. Sentence 2: Birdie is washing 
 itself in the water basin.

...
 The two sentences are completely dissimilar. Scoring 0
 e.g. Sentence 1: The black dog is running through the snow. Sentence 2: A 
 race car driver is driving his car through the mud.

 Follow the standard to score the similarity between Sentence 1 and Sentence 2.

 Sentence 1: {Original Sentence}
 Sentence 2: {Original Sentence Variation}
 Scoring: 

Output: <Score>

CQADupStack

Original Sentence

A band is performing on a stage.

STS

Twitter BIOSSES

a)

SICK AskUbuntu

Semantic Textual Similarity Scoring

ChatGPTx

SR

Performing on a stage, a band is.

A band is performing on a stage.

Structural Heuristics 5

Input: Here are some examples of turning the 
 sentence into an inverted one.
 
 S1: The horse is eating the grass.
 Change1: Eating the grass, the horse is.

...
 Original Sentence:{Original Sentence}
 Change:

Output: <Answer>

Structural Heuristics

ChatGPT

Performing on a stage, a band is.

A band is performing on a stage.

Structural Heuristics

Input: Here are some examples of changing the 
 subject relation in the sentence in the sentence.

 S1: The horse is eating the grass.
 Change1: The grass is eating the horse.

...
 Original Sentence:{Original Sentence}
 Change:

Output: <Answer>

Relational Understanding

ChatGPT

A stage is performing for a band.

A band is performing on a stage.

Relational Understanding

b)

A stage is performing for a band.

A band is performing on a stage.

Relational Understanding 1

Figure 2: Workflow of SR benchmark construction. The workflow begins with the selection of foundation
datasets, followed by the generation of data probing structural heuristics and relational understanding among
concepts. Subsequently, the generated data is annotated with a score to represent the semantic similarity of sentence
pairs. Finally, the assembled SR benchmark is utilized to evaluate the syntactic understanding capabilities of text
embedding models.

2.2 Assessing Structural Heuristics

To assess how well text embedding models compre-
hend structural heuristics, we focus on the transfor-
mation of sentences into different syntactic struc-
tures (Gibson, 1998). In particular, we emphasize
the exchange between active and passive voice as
well as creating inverted sentences or partially in-
verted sentences.

Active and Passive Voice Exchange: In the ac-
tive voice, the subject of the sentence performs the
action, whereas in the passive voice, the subject
is acted upon. We transform sentences from the
foundation dataset into their passive or active coun-
terparts. For instance, an active sentence such as
"The chef cooked the meal" can be transformed
into its passive equivalent, "The meal was cooked
by the chef." Text embedding models should rec-

ognize that these sentences convey the same action
but with a different focus and structure.

Inverted and Partially Inverted Sentences: In-
verted sentences involve reversing the canonical
subject-verb-object order, often for emphasis or
stylistic purposes. Partial inversion involves only a
segment of the sentence being inverted. Assessing
text embedding models on their ability to under-
stand these structural changes is critical for gauging
how well they can adapt to varied syntactic con-
structs. For instance, a standard sentence like "The
team has won the championship." can be converted
into an inverted sentence, such as "Won the cham-
pionship has the team.", while a partially inverted
example might be, "The championship, the team
has won.". The models should be able to under-
stand that, despite the alteration in structure, the



core information remains the same.

2.3 Assessing Relational Understanding

The arrangement and relationship of concepts
within a sentence contribute significantly to the
meaning and interpretation of the text. Changing
the order or relationship of these concepts may
radically alter the sentence’s meaning.

Concept Order Manipulation: Concept order
within sentences often plays a critical role in con-
veying meaning. We manipulate the order of con-
cepts in sentences from the foundation dataset to
create new sentences. The objective is to exam-
ine whether text embedding models can recognize
how these manipulations impact the meaning of
sentences. For example, consider the sentence:
"Tom likes Taylor Swift.". By altering the order
of the concepts, we get: "Taylor Swift likes Tom.".
Though structurally similar, these sentences have
completely different meanings. The models should
recognize the shift in the subject and object and the
corresponding change in the meaning.

Conceptual Relationships Perturbations: Fur-
thermore, we evaluate the models’ ability to under-
stand various relationships among concepts, such
as cause-effect, part-whole, and synonymy etc. For
instance, in a sentence like "Rain causes floods.",
the model should identify the cause-effect relation-
ship between "rain" and "floods". As another ex-
ample, consider the sentence "He read the book
because he was interested in history.". By chang-
ing the order, e.g., "Because he was interested in
history, he read the book.", the meaning remains
the same, but the structure has changed. The model
should be able to recognize the constancy in the
meaning despite the alteration in syntax.

STS
Original Samples Modified Samples Modification Rate

Structural Heuristics 400 3 0.75%
Relational Understanding 400 4 1.00%

Table 1: Statistical breakdown of the revision rate for
modified sentences in STS.

Twitter
Original Samples Modified Samples Modification Rate

Structural Heuristics 400 5 1.25%
Relational Understanding 400 8 2.00%

Table 2: Statistical breakdown of the revision rate for
modified sentences in Twitter.

CQADupStack
Original Samples Modified Samples Modification Rate

Structural Heuristics 400 9 2.25%
Relational Understanding 400 6 1.50%

Table 3: Statistical breakdown of the revision rate for
modified sentences in CQADupStack.

2.4 Annotation and Validation

As presented in Figure 2, we first utilize ChatGPT
to generate sentence pairs that probes the above
three syntactic dimensions with specific designed
prompts. Afterwards, ChatGPT is also utilized to
annotate the sentence pairs with semantic similarity
scores. Through a process of duplication and filter-
ing of sentences that are too short, we manage to
assemble a dataset comprising 9,424 sentence pairs
for each syntactic dimension in the SR benchmark.

To verify the generation and annotation quality,
we first conduct additional validation by randomly
sampling 800 sentence pairs from the SR bench-
mark. Any sentences that are inaccurately gener-
ated will be corrected as needed. Any sentences
that are inaccurately generated will be modified
as needed. Table 1, Table 2, and Table 3 present
the statistical breakdown of the revision rate for
these corrected sentences. Moreover, we utilize
ChatGPT to assign similarity scores to the standard
STS-B evaluation set, and we compute the correla-
tion between these scores and the STS-B standard
annotated scores.

Upon completion of these exercises, we find that
the revision rate is no more than 3% and the cor-
relation scores between ChatGPT annotations and
human annotations stand at 83.8%. This indicates
that ChatGPT is proficient in generating syntax var-
ied sentences and annotations that closely resonate
with human evaluations, thereby affirming the reli-
ability and authenticity of the SR benchmark.

3 Evaluating Test Embedding Models on
SR

In this section, we employ the SR Benchmark to
evaluate the syntactic understanding capabilities of
five state-of-the-art text embedding models, includ-
ing SentenceBERT (Reimers and Gurevych, 2019),
SimCSE (Gao et al., 2021), Sentence-T5 (Ni et al.,
2021), One embedder (Su et al., 2023) and OpenAI
Embedding (Neelakantan et al., 2022). Detailed
information on these models can be found in their
original papers. Following previous works, we
employ Spearman’s correlation as the evaluation



Model STS SICK AskUbuntu CQADupStack Twitter BIOSSES Avg

Structural Heuristics

SimCSE-BERT-Base-sup 19.14 21.82 35.38 14.17 19.68 37.27 24.73
SimCSE-BERT-Large-sup 19.93 23.52 33.27 15.60 18.59 35.13 24.34
SimCSE-RoBERTa-Large-sup 22.97 26.88 37.87 19.20 15.88 35.42 26.37
SBERT-all-MiniLM-L6-v2 13.08 14.83 36.56 19.69 10.99 13.17 18.05
SBERT-all-mpnet-base-v2 18.35 24.62 37.62 24.39 13.14 16.00 22.35
Sentence-T5-Base 15.60 21.55 35.34 23.31 20.80 35.45 25.34
Sentence-T5-Large 17.03 22.83 36.20 24.30 21.83 35.90 26.35
Sentence-T5-XL 17.86 23.25 37.02 26.93 21.24 35.79 27.01
Instructor-Base 17.48 18.73 33.94 21.06 15.95 23.31 21.75
Instructor-Large 20.96 26.35 36.36 22.09 19.34 29.79 25.81
Instructor-XL 20.46 18.32 34.89 19.97 20.28 26.55 23.41
OpenAI (text-embedding-ada-002) 15.35 21.55 36.25 26.50 17.90 22.40 23.32

Relational Understanding

SimCSE-BERT-Base-sup 30.39 38.82 44.87 30.15 38.07 41.79 37.35
SimCSE-BERT-Large-sup 38.8 43.48 44.13 30.64 40.09 48.80 41.16
SimCSE-RoBERTa-Large-sup 48.34 48.16 46.51 31.28 40.22 50.43 44.16
SBERT-all-MiniLM-L6-v2 -2.72 18.30 47.53 25.14 25.70 11.69 20.94
SBERT-all-mpnet-base-v2 30.39 40.42 50.54 30.29 26.09 0.26 29.67
Sentence-T5-Base 33.61 39.36 52.59 35.72 42.53 47.63 41.91
Sentence-T5-Large 51.08 50.20 51.09 39.85 44.80 53.82 48.47
Sentence-T5-XL 58.64 53.34 55.12 42.10 48.21 53.41 51.80
Instructor-Base 1.33 28.06 48.64 31.46 36.75 18.68 27.49
Instructor-Large 21.88 40.88 49.41 38.50 40.71 41.74 38.84
Instructor-XL 28.97 37.67 48.94 39.30 42.34 35.24 38.74
OpenAI (text-embedding-ada-002) 19.10 33.20 48.70 24.60 33.20 29.90 31.45

Table 4: Results of five text embedding models on the SR Benchmark. Spearman’s correlation is reported.

metric to assess how well the relationship between
the cosine similarities of the sentence pairs and the
annotated scores.

We present the evaluation results on the SR
benchmark in Table 4. Though these models have
previously exhibited remarkable performance on
foundational test datasets, they all perform poorly
with low correlations on the SR benchmark. This
suggests that existing text embedding models have
not been optimized sufficiently to address the syn-
tactic understanding challenge.

Interestingly, we observe that, despite be-
ing trained solely on natural language inference
datasets, SimCSE outperforms SBERT, Instructor
and OpenAI embedding models. These competing
models often have more diverse supervised pair-
wise training datasets or a greater number of pa-
rameters, or both. For instance, SimCSE achieves
performance with an average Spearman’s correla-
tion of 44.16% on the benchmark for assessing
relational understanding, while SBERT, Instruc-
tor and OpenAI embedding models achieve an av-
erage Spearman’s correlation of 29.67%, 38.74%
and 31.45%, respectively. This could indicate that
training on natural language inference tasks may

provide valuable syntactic understanding that isn’t
captured through mere parameter scale or breadth
of training data. Sentence-T5, which is trained
on a large scale of web-based question-answering
datasets, demonstrates most robust performance.
This might suggest that the diversity and complex-
ity found in web-based question-answering data
could be beneficial for embedding models in cap-
turing syntactic aspects. We hypothesize that the
web-based question-answering data, often encom-
passing a wide range of topics, styles, and struc-
tures, are likely to present a richer and more varied
set of syntactic compositions compared to other
data types.

We use tree kernel (Collins and Duffy, 2002; Yu
and Sun, 2022) as a measure of sentence structure
diversity. The central idea of tree kernel is to count
the number of common subtrees between two con-
stituency pars. We compare the syntactic diversity
of two corpora: WebQA (233k sentences selected)
and NLI (275k sentences selected). We use Stan-
fordCoreNLP to obtain constituency parse trees of
sentences. Then, we randomly select 1,000 parse
trees and use the tree kernel to calculate their simi-
larity. The results are shown in Table 5. The lower



Corpus Tree Kernel Similarity

WebQA 0.064
NLI 0.072

Table 5: Comparison of tree kernel similarity between
WebQA and NLI corpora.

the score, the more diverse the sentence structures
are. As we can see, sentences in WebQA have
lower tree kernel similarity than those in NLI, in-
dicating that WebQA has more diverse sentence
patterns and structures. This diversity could expose
the model to a more comprehensive spectrum of
syntactic elements, instilling a deeper sense of syn-
tax into the embedding models. Since prevailing
text embedding models like SBERT, SimCSE, etc.
are mainly trained on NLI, we argue that Sentence-
T5, which is trained on WebQA, can capture more
syntactic nuances of sentences. Additionally, we
found that these models generally struggle in the
CQADupStack domain but show relatively better
performance in the AskUbuntu domain. This dis-
crepancy may be due to the specific challenges and
complexities associated with the CQADupStack
domain compared to the AskUbuntu domain.

Moreover, a noteworthy trend across all the text
embedding models we assessed was the consis-
tent pattern of comparatively better performance on
the benchmark for relational understanding, as op-
posed to benchmarks for structural heuristics. This
suggests that the current text embedding models
may be more adept at capturing relations among
concepts in sentences than they are at grappling
with the finer points of syntax, such as sentence
structures. This superior performance in captur-
ing relations could be a result of the training data,
which often tends to focus on semantic relation-
ships. However, it might also indicate that the mod-
els have an innate aptitude for discerning semantic
relations as compared to understanding complex
syntactic structures.

4 Analysis

4.1 Shortcomings of Traditional Evaluation
Paradigms

It is noteworthy that many text embedding mod-
els, despite exhibiting poor syntactic understand-
ing, have consistently shown high performance on
semantic embedding matching tasks. A primary
reason for this is that these models tend to cap-
ture semantic content effectively, even when syn-

A man is watering a flower.

Original Sentence Pair

Is man a flower a watering.

A man is pruning a flower.

Order Perturbation

A man is pruning a flower.

A flower is watering a man.

A man is pruning a flower.

Relational Perturbation

Figure 3: Retrain SBERT under syntactic perturbations
such as randomized word order and exchanged relation-
ships among concepts. Despite significant alterations in
syntactic structure, the models continue to exhibit high
similarity scores, highlighting their reliance on semantic
content over syntactic understanding.

tactic information is not properly encoded. The
rich semantic information contained in the large-
scale corpora on which these models are trained
allows them to make reasonably accurate predic-
tions about the similarity between sentence pairs
based on shared content words, irrespective of their
syntactic structure.

Traditional evaluation paradigms in semantic
matching tasks often lack sensitivity to syntactic
nuances. Specifically, they tend to reward models
for correctly identifying semantic content overlap,
but do not penalize them adequately for failing to
recognize distinct syntactic constructions. As such,
a model might receive a high similarity score for
two sentences that share similar content but have
different syntactic structures, thus effectively ignor-
ing syntax.

To empirically demonstrate that models can
achieve high performance on semantic embedding
matching tasks without proper syntactic under-
standing, we conducted an experiment where we
manipulated the input data to the text embedding
models to remove or alter syntactic information
while preserving semantic content. The models’
performance was then evaluated in terms of their
ability to accurately measure semantic similarity in
the manipulated data.



Figure 4: Enhancing syntactic proficiency of SBERT
through strategic data augmentation.

As presented in Figure 3, we created two variants
of perturbations on the STS dataset – one with ran-
domized word order, and another with exchanged
relationships among concepts – both of which sig-
nificantly transform the syntactic architecture of
the sentences. STS training dataset consists of
sentence 1, sentence 2, and its semantic similarity
score is marked by humans. We denote it as [S1,
S2, score]. In this section, we fixed sentence 1 and
did the perturbation on sentence 2. Each sentence
pair is changed into [S1, Perturbed S2, score]. Re-
markably, after retraining SBERT with perturbed
input while keeping the original annotations unal-
tered, we discerned that the text embedding mod-
els continued to yield high similarity scores on the
standard STS evaluation set. To illustrate, the corre-
lation score following relational perturbation stood
at 85.2%, nearly on par with the original score of
86.2%.

This experiment underscores the models’ pro-
clivity to latch onto semantic content, often over-
looking syntactic structures when adjudicating
the similarity between sentences. These findings
prompt a more rigorous and discerning evaluation
paradigm that factors in both semantic and syntac-
tic elements, paving the way for more holistic and
accurate assessments of text embedding models.

4.2 Simple Solution: Enhancing Syntactic
Understanding through Targeted Data
Augmentation

In light of the observation that contemporary text
embedding models tend to exhibit weak syntac-
tic understanding, one simple approach entails en-
riching the training data with examples that mirror

those in the SR benchmark, which is specifically
designed to probe syntactic understanding. The pro-
cess involves creating additional training examples
that emulate the two facets of the SR benchmark:
structural heuristics and relational understanding
among concepts. Such new sentences can be syn-
thesized by altering the original sentences through
ChatGPT with designed prompts. Similar to Sec-
tion 4.1, we fix sentence 1, do syntactic changes on
each sentence 1 and ask ChatGPT(gpt-3.5-turbo-
0301) to score the semantic similarity between the
fixed sentence 1 and its perturbed one based on
similarity scores with explanations and English
examples from (Cer et al., 2017). We manually
verified the generation reliability and annotation
rationality. Each sentence pair can be written as
[S1, Perturbed S1, re-score].

For our experiment, we adopt SBERT as the base
model and conducted experiments by enhancing
the STS training dataset with 10,000 SR-like ex-
amples for each of the syntactic dimensions (struc-
tural heuristics and relational understanding among
concepts). We then retrained SBERT on the aug-
mented dataset. We choose microsoft/mpnet-base
as our raw model which is also the basic model of
the best SBERT text embedding model SBERT-all-
mpnet-base-v2. We follow Sentence-BERT train-
ing settings (Reimers and Gurevych, 2019), use the
regression objective function, a batch-size of 16, 4
training epochs, Adam optimizer with learning rate
2e-5, and a linear learning rate warm-up over 10%
of the training data. Our default pooling strategy is
MEAN. We save the best parameters according to
the dev set at the end of each epoch. At evaluation
time, we compute the cosine-similarity between
the sentence embeddings.

Figure 4 presented the results. We can observe
that the incorporation of the augmented training
examples led to a substantial improvement in the
performance on the SR evaluation set, especially
in the aspect of relational understanding. Specifi-
cally, the Spearman’s rank correlation coefficient
in relational understanding witnessed a remarkable
increase from 24.9% to 60.1%. This indicates that
the augmented data effectively enabled the model
to develop a better grasp of the syntactic relation-
ships between concepts.

However, while the performance improvement
on the SR evaluation set is significant, it is also im-
portant to observe how this augmentation impacts
the performance on the original STS test set (STS-



B). We noticed a slight decline in the performance
on the STS-B test set, with the score decreasing
from 86.7% to 84.4% after data augmentation. This
slight decrease suggests that while the model be-
came more proficient in understanding complex
syntactic structures, it may have marginally com-
promised on some aspects it had initially learned.

This experiment demonstrates the feasibility and
potential effectiveness of targeted data augmenta-
tion as a means to enhance the syntactic understand-
ing of text embedding models. It also emphasizes
the importance of careful data curation and bal-
anced training to ensure that improvements in one
area do not come at the expense of performance
in another. Future work can focus on refining this
approach to optimize the trade-offs and achieve im-
proved performance across different dimensions of
syntactic understanding.

5 Related Work

Text Embeddings Text representation learning is
a fundamental task in natural language processing.
In recent literature, contrastive learning (Hjelm
et al., 2019; He et al., 2020; Chen et al., 2020)
has emerged as the dominant paradigm for train-
ing text embedding (Carlsson et al., 2020; Zhang
et al., 2020; Gao et al., 2021; Yan et al., 2021;
Ni et al., 2021; Chuang et al., 2022; Neelakantan
et al., 2022; Su et al., 2023). These approachese
typically involves the use of large pairwise pre-
training datasets with rich compositional structures,
wherein the model is optimized to distinguish be-
tween similar and dissimilar text samples. Con-
trastive pretraining is geared towards optimizing
text embedding matching. As a result, most text
embedding models (Reimers and Gurevych, 2019;
Gao et al., 2021; Ni et al., 2021) are evaluated on
the basis of their performance in semantic similar-
ity matching tasks (Cer et al., 2017; Muennighoff
et al., 2023). However, these tasks not sufficiently
encompass the complexity of syntax in natural lan-
guage, which involve not only the arrangement
of words but also their relationships and composi-
tional semantics.

Syntax Probing in NLP Syntactic Probing
seeks to understand to what extent the learned rep-
resentations in NLP models capture syntactic infor-
mation and how such information can be effectively
extracted and analyzed. There have been numerous
studies focused on this topic, each offering unique
insights and methods for syntactic generalization.

(Dyer et al., 2016; Linzen et al., 2016; Hupkes and
Zuidema, 2017; Conneau et al., 2018; Lin et al.,
2019; McCoy et al., 2019; Shen et al., 2020; New-
man et al., 2021). For example, Conneau et al.
(2018) assess the syntactic generalization of mod-
ern sentence encoders through a series of selected
downstream tasks. Their approach is more geared
towards understanding what properties are encoded
in the sentence embeddings and how these embed-
dings can be used for various NLP tasks. On the
other hand, McCoy et al. (2019) developed the
HANS dataset to specifically examine the perfor-
mance of Natural Language Inference (NLI) mod-
els, particularly focusing on whether these models
are adopting superficial syntactic heuristics over a
deeper semantic understanding. Their work is espe-
cially relevant in the context of NLI tasks and aims
to discern the methods that models use to arrive at
decisions.

In contrast, our work aims to construct a bench-
mark for directly evaluating the syntactic capabili-
ties of text embedding models, without being con-
fined to a specific task like NLI. The primary goal
is to facilitate the selection of robust and effective
text embedding models for training in various appli-
cations by providing a direct measure of their syn-
tactic understanding. This benchmark thus serves
as an essential tool for researchers and practitioners
who are looking to employ text embedding models
that are both syntactically sound and effective in
real-world applications.

6 Conclusion

This paper highlights the shortcomings of current
text embedding models in understanding syntax.
We introduced the SR benchmark to analyze mod-
els across two syntactic dimensions: structural
heuristics and relational understanding. Our find-
ings reveal that while these models are adept at
semantic tasks, they struggle with syntax. We pro-
posed a data augmentation technique using exam-
ples tailored for syntactic understanding, leading to
notable performance gains on the SR benchmark.
However, a slight performance dip was observed
on the original test set. Future work could refine
augmentation strategies to balance syntactic and se-
mantic learning and create more holistic evaluation
benchmarks.



7 Limitation

One limitation is that the SR benchmark may not
comprehensively cover all the intricacies of natural
language syntax. Real-world text data can be vastly
more complex and varied. Also, the enhancement
in syntactic understanding was primarily based on
simple data augmentations, while a augmentation
strategy is on demand to ensure that enhancing syn-
tactic understanding does not come at the expense
of semantic comprehension.
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A Lexical Compositionality

We also do additional research which we call Lexi-
cal Compositionality. It refers to how the individual
meanings of words come together to form the com-
posite meaning of the larger linguistic structure
in which they are embedded. For evaluating text
embedding models’ adeptness in lexical composi-
tionality, we create variants of the sentences in the
foundation datasets through the insertion or replace-
ment of different types of words: nouns, adjectives,
and verbs. The modified sentences retain the basic
structure of the originals but feature an additional
or changed word, either a noun, adjective, or verb.
This method of dataset generation aims to examine
whether text embedding models can adapt to and
accurately capture the semantic changes brought
by these insertions and replacements.

Noun: The insertion or replacement of a noun is
anticipated to modify the subject matter or the en-
tities referred to within the sentence. For instance,
the original sentence, "The cat jumped over the
fence," could be transformed into "The cat jumped
over the garden fence," by inserting the noun "gar-
den". Similarly, by replacing the noun "cat" with
"dog", we rewrite the original sentence as "The dog
jumped over the fence". This method allows us to
gauge the text embedding models’ ability to discern
the introduction of new elements within the sen-
tence’s subject matter and evaluate their sensitivity
and adaptability to these semantic alterations.

Adjective: The insertion or replacement of an
adjective adds or changes a descriptive aspect to
the sentence, and it is imperative for a text embed-
ding model to recognize how these change the sen-
tence’s attributes or qualities. For instance, by mod-
ifying the sentence "The car is fast." to "The lead-
ing car is incredibly fast.", we can test the model’s
ability to comprehend the enhanced emphasis on
the car’s position and its speed. The robustness of
embedding models can be verified.

Verb: The insertion or replacement of a verb
can modify the actions or states conveyed in the
sentence while the verb alter may radically trans-
form its essence. Thus, it’s crucial for text em-
bedding models to detect how this influences the
sentence’s dynamics. For instance, changing "She
reads books." to "She reads and enjoys books." by
inserting the verb "enjoys" examines the model’s
capability to understand the introduction of an ad-
ditional action. In a similar way, when the sentence
"Two kids are walking on a path in the woods." is

transformed into "Two kids are fighting on a path in
the woods," through verb replacement, it serves to
test the model’s proficiency in redirecting its focus
to the altered semantic components of the sentence.

We follow experiment settings in Section 3. The
results are reported in Table 6.

B Generated Example

Table 7 showcases an example of sentence pertur-
bation.



Model STS SICK AskUbuntu CQADupStack Twitter BIOSSES Avg

Lexical Compositionality

SimCSE-BERT-Base-sup 32.77 27.89 45.54 5.01 17.86 40.06 28.19
SimCSE-BERT-Large-sup 33.29 28.99 45.18 4.49 17.55 40.74 28.37
SimCSE-RoBERTa-Large-sup 38.24 35.32 48.06 6.59 19.64 42.69 31.76
SBERT-all-MiniLM-L6-v2 25.00 19.21 46.93 6.88 17.78 25.13 23.49
SBERT-all-mpnet-base-v2 30.82 28.96 45.53 7.92 18.14 28.11 26.58
Sentence-T5-Base 34.24 23.90 48.30 6.39 22.41 36.00 28.54
Sentence-T5-Large 36.11 24.48 48.38 6.61 21.61 38.79 29.33
Sentence-T5-XL 37.49 25.94 48.81 7.70 21.46 36.31 29.62
Instructor-Base 28.02 21.48 45.61 7.31 18.20 26.96 24.76
Instructor-Large 32.69 28.00 46.92 8.31 18.68 39.30 29.15
Instructor-XL 28.57 20.86 49.97 7.81 20.38 31.18 26.46
OpenAI(text-embedding-ada-002) 26.43 26.70 49.77 6.67 20.73 26.37 26.11

Table 6: Results of five text embedding models on the Lexical Compositionality Benchmark. Spearman’s correlation
is reported.

Input: A group of people are nervous about crossing the water.

Structural Heuristics

Prompt: Change the active and passive voice of the sentence. Score
Turn the sentence into an inverted one.

Crossing the water makes a group of people nervous. 4

Nervous about crossing the water, a group of people are. 4

Relational Understanding

Prompt: Change the subject relation in the sentence, it needs you to change Score
your thinking habits and say something anticonventional.

The water is nervous about crossing a group of people. 1

Lexical Compositionality

Prompt: Randomly add or replace nouns / verbs / adjectives in the sentence, but Score
keep the structure and other parts of the sentence unchanged.

A group of tourists are nervous about crossing the water. 4

A group of people are nervous about traversing over the water. 5

A group of anxious people are afraid of crossing the deep water. 3

Table 7: Example of generated perturbations given the input sentence and specific prompts.


