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ABSTRACT

Addressing domain shifts for complex perception tasks in autonomous driving has
long been a challenging problem. In this paper, we show that existing domain
adaptation methods pay little attention to the content mismatch issue between
source and target images, thereby weakening the domain adaptation performance
and the decoupling of domain-invariant and domain-specific representations. To
solve the aforementioned problems, we propose an image-level domain adaptation
framework that aims at adapting source-domain images to the target domain with
content-aligned image pairs. Our framework consists of three mutual-beneficial
modules in a cycle: a cross-domain content alignment module to generate source-
target pairs with consistent content representations in a self-supervised manner, a
reference-guided image synthesis using the generated content-aligned source-target
image pairs, and a contrastive learning module to self-supervise domain-invariant
feature extractor from the generated images. Our contrastive appearance adaptation
is task-agnostic and robust to complex perception tasks in autonomous driving.
Our proposed method demonstrates state-of-the-art results in cross-domain object
detection, semantic segmentation, and depth estimation as well as better image
synthesis ability qualitatively and quantitatively.

1 INTRODUCTION

Building scalable and robust perception capabilities such as object detection (Chen et al., 2018;
Faster, 2015; He & Zhang, 2019) and semantic segmentation (Chen et al., 2017; Xie et al., 2021)
is a challenging task in autonomous driving systems. A fundamental challenge is the domain shift,
where the systems are expected to work in various conditions such as under adverse weather, different
illuminations, and varying geographic locations. In theory, supervised learning can be used to
train object detectors and semantic segmentation models with data and labels acquired in various
conditions, but in practice, this approach is too expensive due to the high cost of data acquisition and
annotation, the countless variants of the road conditions, and some potential changes in hardware,
sensors, and simulation environments in autonomous driving.

To mitigate such issues, a practical solution is domain adaptation, which aims at adapting a model
trained with labels in a source domain to a novel target domain without labels. Recent domain
adaptation methods mainly focus on the feature-level adaptation, including discrepancy-based (Long
et al., 2015; 2016), adversarial feature learning (Chen et al., 2018), self-training (RoyChowdhury
et al., 2019; Khodabandeh et al., 2019) and knowledge distillation (He et al., 2022; Deng et al.,
2021; Li et al., 2022b; Cai et al., 2019). Beyond these methods, image-level adaptation (Zhu et al.,
2017; Choi et al., 2018) can reduce appearance differences between the two domains by generating
target-like images from the source images. An inherent advantage of image-level adaptation is that it
is task-agnostic, which means that the generated target-like images can be used for a wide variety of
downstream tasks, making it highly suitable for multi-task scenarios such as autonomous driving.
However, existing image-level adaptation methods tend to suffer from visual artifacts caused by
imperfect image synthesis, degrading overall domain adaptation performance.

In this paper, we hypothesize that the inferior performance of image-level adaptation is attributed
to the content mismatches between samples from the source and target domains. We define content
mismatches by the limited semantic correspondences or layout similarity (Li et al., 2020b) between a
source-domain image and a target-domain image. We provide a motivating example in Figure 1. In
this example, we aim to translate an image xs from the source domain S to the target domain T by
using a reference image x1

t or x2
t from T. We observe that reference x1

t shares more similar semantic
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Figure 1: Addressing content mismatches between the source image and the reference image is key
to effective image synthesis and domain adaptation. This example shows that with the same source
image, choosing a reference image with well-aligned semantic correspondences leads to better quality
in image synthesis. Best viewed in color.

correspondences (green region) with the source image than reference x2
t (red region). Therefore,

the generated image x̃1
t has better image quality and fewer visual artifacts than x̃2

t . This example
motivates that choosing the right reference to reduce content mismatches is key to achieving effective
image translation and domain adaptation. Unfortunately, few existing domain adaptation methods
consider such content mismatches between samples from the source and target domains. It has
been shown that addressing such semantic correspondences enables the disentanglement of the
domain-invariant and domain-specific representations (Zhou et al., 2021).

To better model these semantic correspondences, in this paper, we propose a novel framework for
image-level domain adaptation that incorporates cross-domain content alignment (CDCA), contrastive
learning (Chen et al., 2020), and reference-guided image synthesis. Our method is general-purpose
and task-agnostic, which can support different perception tasks such as object detection, semantic
segmentation, and depth estimation. The modules in our framework are mutual-beneficial. The
cross-domain content alignment (CDCA) module builds pairs of images from the source and the
target domain, respectively, such that the discrepancy in the content representation in each image pair
is minimized. Such content representation can be extracted from a domain-invariant feature extractor
trained by contrastive learning on source images and generated images from the reference-guided
image synthesis module. Specifically, our reference-guided image synthesis takes a source image
and a reference image from the target domain as input and synthesizes a new image that fuses the
content of the source with the style of the reference. We term this new image a target-like image. The
source image and the generated target-like image form a pair of augmented views that can be used
in contrastive learning to learn a feature extractor to output domain-invariant features. The feature
extractor can then be used by the CDCA module to retrieve a better content-aligned reference image
that subsequently boosts the overall performance. The three modules mutually improve each other
and eventually converge to an accurate adaptation.

We have conducted experiments of our proposed method with multiple downstream tasks for cross-
domain perception in autonomous driving including object detection, semantic segmentation, and
depth estimation. Our results show that our method can deal with domain shifts effectively and
outperform all existing state-of-the-art methods by a large margin. Our contributions are:

• A novel task-agnostic image-level domain adaptation method that addresses the content mismatches
between the source domain and the target domain by using reference-guided image synthesis and
contrastive learning.

• Ablation studies and result analysis that explain the merits of our method in modeling the implicit
semantic correspondences between domains, resulting in the better disentanglement of the domain-
invariant and domain-specific knowledge.

• Extensive experiments that demonstrate the effectiveness of our method on multiple datasets in
autonomous driving for multiple tasks including cross-domain object detection, semantic segmen-
tation, and depth estimation, achieving state-of-the-art results.

2 RELATED WORK

Cross-domain perception systems. Domain adaptation techniques for specific perception tasks such
as object detection and semantic segmentation have been developed based on the main principles
originally developed for unsupervised domain adaptation for visual data (Csurka, 2017; Zhao et al.,
2020b; Oza et al., 2021) such as discrepancy-based methods (Long et al., 2015; 2016; Kang et al.,
2019), adversarial training (Nam et al., 2021; Chen et al., 2022), self-training (Sun et al., 2019;
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Prabhu et al., 2021) and knowledge distillation (Xu et al., 2021; Nguyen-Meidine et al., 2021).
Adversarial training was pioneered in object detection by reducing the domain discrepancy in a
min-max manner with a domain classifier (Chen et al., 2018; Hoffman et al., 2018). To improve
the performance, the gradient reversal layer and domain classifier (Goodfellow et al., 2020) were
designed for adversarial feature learning. Similarly, one can also minimize the domain discrepancy by
learning the domain-invariant representations for semantic segmentation (Vu et al., 2019). However,
solely using adversarial learning in the feature space only achieved marginal accuracy improvement
in complex scenarios. Self-training algorithms (Zou et al., 2018; RoyChowdhury et al., 2019) utilize
the supervision from the pre-trained model in the source domain for retraining in the target domain.
However, these methods suffer from the low quality of generated pseudo labels in the target domain.

Recent knowledge distillation algorithms (Cai et al., 2019; Tian et al., 2021; Zhang et al., 2021; Deng
et al., 2021) introduced the Mean-Teacher framework to the domain-adaptive object detection and
semantic segmentation. MGADA (Zhou et al., 2022) conducted the multi-granularity (category-level,
instance-level and pixel-level) domain adaptation for object detection. AT (Li et al., 2022b) aimed to
improve the quality of the generated pseudo-label in the target domain through leveraging domain
adversarial learning and mutual learning. DaFormer (Hoyer et al., 2022a) and HRDA (Hoyer et al.,
2022b) achieved the current state-of-the-art domain adaptive semantic segmentation performance
by introducing SegFormer (Xie et al., 2021) for more effective knowledge distillation. Recently,
cross-domain perception tasks have also been solved by using multi-source domain adaptation (Yao
et al., 2021; Peng et al., 2019; Wu et al., 2022) that aims to preserve the target-relative knowledge
from various source domains to promote the detection performance in the target domain (Wu et al.,
2022). While being successful for some scenarios, these domain adaptation approaches remain
limited when there exist significant content mismatches between the source and target domains.

Content-aware adaptation. Some efforts have been done to address content mismatches between
the source and target images. CCM (Li et al., 2020b) constructed the positive pairs for better domain
adaptation in the label space through pixel-wise similarity matching. SIGMA (Li et al., 2022a)
proposed to design a bipartite graph matching to find well-matched instance pairs across graphs
for reducing content mismatches. Recent works (Sakaridis et al., 2019; 2020; 2021) propose to
construct normal-adverse image pairs that have a similar layout based on the GPS information. The
utilization of the normal images collected with good visibility results in better domain adaptation
performance (Bruggemann et al., 2023; Sakaridis et al., 2020), which also demonstrates that aligned
content representation can boost the domain adaptation performance. Compared to these works, our
work focuses on a more generic cross-domain content alignment without leveraging annotation labels.
We support multiple downstream tasks by building our method upon image synthesis methods.

Image synthesis for task-agnostic domain adaptation. Image synthesis methods can learn to
generate target-like images from images in the source and target domains to reduce the domain gap
for task-agnostic image-level domain adaptation (Romera et al., 2019; Zheng et al., 2020b; Nam
et al., 2021; Yu et al., 2022). State-of-the-art image translation methods are CycleGAN with the
cycle-consistency loss (Zhu et al., 2017) and its variants (Choi et al., 2018; Zheng et al., 2020b;
Pizzati et al., 2021). Recent works (Hoffman et al., 2018; Romera et al., 2019; Chen et al., 2020;
Deng et al., 2021) introduced image translations for cross-domain image classification (Nam et al.,
2021), semantic segmentation (Hoffman et al., 2018; Romera et al., 2019) and object detection (Deng
et al., 2021; Yu et al., 2022). However, solely using the cycle-consistency loss cannot guarantee
the disentanglement of the domain-invariant and domain-specific representations. Specifically, the
generated images in the target domain may lose content representation or yield unnecessary visual
artifacts. Recent reference-guided image synthesis (Huang et al., 2018; Lee et al., 2018; Zheng et al.,
2020a; Jiang et al., 2020) can combine the style representation from a reference image in the target
domain and the content representation from a source image to generate a target-like image, resulting
in better feature disentanglement. However, these methods do not consider the content mismatches
between the source image and the reference image, which might result in inferior disentanglement.
In this work, we propose an effective approach that wires contrastive learning and image translation
in a mutual-beneficial way for retrieving content-aware reference images, thereby reducing content
mismatches and improving overall image translation and domain adaptation performance.

3 OUR METHOD

Let us now formulate our problem by assuming the domain adaptation from a source domain S to
a target domain T, where their data distribution is different, i.e., PS ̸= PT. The source domain
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Figure 2: The core of our image-level domain adaptation is a cycle of three mutual-beneficial modules:
cross-domain content alignment (CDCA), reference-guided image synthesis and contrastive learning.
CDCA uses the domain-invariant feature extractor learned by contrastive learning to construct source-
reference image pairs for training the reference-guided image synthesis module to produce target-like
images. The source and target-like images can be regarded as augmented views for contrastive
learning to improve the domain-invariant feature extractor. Final target-like images and source labels
can be adopted for downstream perception tasks.

is labeled while the target domain is unlabeled. Let S = {xi
s, y

i
s}, where xi

s is the source image
and yis is the corresponding annotation in the source domain for i ∈ 1..Ns. Similarly, T = {xi

t}
for i ∈ 1..Nt, where Ns and Nt indicate the number of images in each domain, respectively. For
cross-domain perception tasks in autonomous driving, we assume that the labels for object detection
are 2D bounding boxes and for semantic segmentation the labels are pixel-level annotations.

An overview of the proposed method for domain adaptation is shown in Figure 2, which mainly
includes three modules in a cycle: 1) cross-domain content alignment (CDCA) to construct source-
reference pairs between images from the source and target domain; 2) reference-guided image
synthesis; and 3) contrastive learning for domain-invariant feature extraction. Based on the extracted
content representation from both source and target images, the CDCA module retrieves the target
images with the most consistent content representation with each source image and constructs
the source-reference pairs. Given such source-reference pairs, reference-guided image-to-image
translation generates images in the target domain for reducing the domain gap. Later, source images
and the corresponding generated images are used in the contractive learning module for learning
domain-invariant features, for further content similarity computation in CDCA.

3.1 CROSS-DOMAIN CONTENT ALIGNMENT

In each cycle, to perform cross-domain content alignment (CDCA), all the real source and target
images from the whole training datasets are fed into the feature extractor f(·) to obtain the content
representations. The architecture of f(·) is a ResNet-50 (He et al., 2016). f(·) is initialized with
the pre-trained weights on ImageNet dataset and optimized by contrastive learning described in
Section 3.3. To build source-reference image pairs, we first compute the content representation
similarity between the source and the reference image in each pair by cosine similarity. For each
source image, the target image with the highest similarity score is selected to form a source-reference
image pair during the training procedure.

3.2 REFERENCE-GUIDED IMAGE SYNTHESIS

After performing CDCA, the constructed pairs are then used for the reference-guided image synthesis,
which aims at generating target-like images based on the source images to reduce the domain gap.
Let the source-reference image pair generated by CDCA be (xs, xt). Our reference-guided image
synthesis is a dual-stream neural network that fuses the content of the source image and the style of the
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reference image into a final image. Particularly, xs is fed into the content stream to extract the source
content feature, while xt is put into the style stream to extract domain-specific representations (style
or appearance). We use FAdaIN and FADE (Jiang et al., 2020) for borrowing the style representation
from xt and preserving the content representation of xs. The two modules that can perform the
feature adaptive normalization are constructed in a multi-scale manner to capture the coarse-to-fine
content and style information. The generated image x̃t is target alike, which means that the pair
(xs, x̃t) has a smaller domain gap compared to the (xs, xt) image pair. To improve the photorealism
of generated images we use a multi-scale discriminator (Huang et al., 2018). Our image translation is
trained with hinge-based adversarial loss. The generator loss LG and the discriminator loss LD can
be written as:

LG = −E[D(x̃t)] + λfmLfm(x̃t, xt), (1)
LD = −E[min(−1 +D(xt), 0)]− E[min(−1−D(x̃t), 0)], (2)

where D is the discriminator; Lfm is the feature matching loss (Wang et al., 2018) to enforce the
similarity of the intermediate feature representations at different layers of the multi-scale discrim-
inators. Since the content representations of the source images can be better preserved with the
aligned source-reference image pairs, we found that perceptual loss (Johnson et al., 2016) is no longer
required, which can reduce the computation cost and alleviate memory usage.

3.3 DOMAIN-INVARIANT REPRESENTATION LEARNING

The contrastive learning framework is adopted for projecting both the source and target images into
the same feature space, optimizing the feature extractor f(·) for further use in CDCA. Particularly, we
can view the source-generated image pair (xs, x̃t) from the reference-guided image synthesis stage
as augmented views of a latent domain-invariant representation, and therefore we can use contrastive
learning to train the feature extractor to be insensitive to the domain gap between xs and x̃t. We
feed the source image xs and corresponding generated image x̃t into the feature extractor f(·) to
obtain feature representations, and then pass these features to a projection head g(·) to obtain the final
features zxs and zx̃t for computing the contrastive loss. Similar to SimCLR (Chen et al., 2020), we
apply transform operations from the transformation sets T (including random resizing and cropping,
color jitter and random greyscale) to get augmented input data xs ← t1(xs) and x̃t ← t2(x̃t) where
t1, t2 are augmentation operators drawn randomly from T . The contrastive loss Lcl can be written as

Lcl = − log
exp(sim(zxs

, zx̃t
))/τ)∑

x∈X,x ̸=xs
exp(sim(zxs , zx)/τ)

, (3)

where sim(u, v) = uT v/∥u∥∥v∥ denotes the pair-wise content similarity between feature u and v
and τ is the temperature parameter. X is the set of total images in the current mini-batch. Note
that our contrastive learning does not utilize the original target images for training since there is no
correspondence between source and target images for constructing positive pairs and we can already
reduce the domain gap through image synthesis.

3.4 CROSS-DOMAIN PERCEPTION

We train the modules in our framework in an end-to-end manner. Particularly, we integrate the
reference-guided image synthesis and contrastive learning through joint training and iteratively
optimize each module. In this work, we consider two supervised downstream tasks with object
detection and semantic segmentation, and an unsupervised downstream task with depth estimation,
respectively. For object detection and semantic segmentation, we adopt the target-like images and the
source labels as training data for supervised learning. For depth estimation, we consider unsupervised
monocular depth estimation and assume that a well-trained depth estimator is available for the source
domain. We therefore perform domain adaptation from the target domain to the source domain, and
apply the depth estimator on the generated source-like images.

4 EXPERIMENTS

4.1 IMPLEMENTATION

The image resolution of the reference-guided image synthesis is set to 1024 × 512 for both cross-
domain object detection and 2048 × 1024 for cross-domain semantic segmentation. We perform
all the cross-domain object detection experiments based on the MMDetection (Chen et al., 2019).
We adopt Faster R-CNN (Faster, 2015) with ResNet-50 (He et al., 2016) pre-trained on ImageNet
as the backbone network. The shorter side of each input image is resized to 600 pixels. For
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Figure 3: Generated image quality comparison between CycleGAN, TSIT and our method under
Cityscapes→Foggy Cityscapes (above dashed line) and Sim10k→Cityscapes (below the dashed line).
The ground truth from the Foggy Cityscapes dataset is provided in the yellow box for reference.

Table 1: FID scores of different image synthesis methods. Our method outperforms both previous
non-reference method (CycleGAN) and reference-based method (TSIT).

Methods CycleGAN (Zhu et al., 2017) TSIT (Jiang et al., 2020) Ours

Cityscapes→Foggy Cityscapes 25.76 7.35 5.68
Sim10k→Cityscapes 77.31 60.24 48.23

semantic segmentation, we adopt the DACS (Tranheden et al., 2021) DAFormer (Hoyer et al., 2022a)
and HRDA (Hoyer et al., 2022b) as backbones and conduct the experiments following the official
instructions. We choose both the source data and the target-like translated data to optimize the both
detection and segmentation models, which encourages the training model without being biased. We
provide more implementation details for each task in our appendix.

4.2 EVALUATING TASK-AGNOSTIC IMAGE SYNTHESIS

Let us first evaluate the quality of the generated images qualitatively and quantitatively as high-quality
image synthesis could imply high performance for the downstream perception tasks. We compare
our reference-guided image synthesis with two representative image synthesis methods namely
CycleGAN (Zhu et al., 2017) and TSIT (Jiang et al., 2020). CycleGAN translates the source image to
the target domain without reference. TSIT is a reference-guided image synthesis method similar to
ours. For quantitatively measuring the image quality of the synthesized images, we adopt FID (Heusel
et al., 2017) (lower is better) as the evaluation metric. We report the qualitative and quantitative
results in Figure 3 and Table 1 respectively, under the adaptation Cityscapes→Foggy Cityscapes and
Sim10k→Cityscapes. Our image synthesis outperforms both CycleGAN and TSIT on both datasets
by a large margin. Such improvement can be explained by the improved source-reference image pairs
obtained from the improved domain-invariant feature extractors trained by contrastive learning.

4.3 EVALUATING CROSS-DOMAIN OBJECT DETECTION

We first report results on Cityscapes→ Foggy Cityscapes in Table 2. We report the average precision
(AP) of 8 categories on the Foggy Cityscapes are computed as well as the mAP. We compare
our method with the recent state-of-the-art methods including SCL (Shen et al., 2019), GPA (Xu
et al., 2020b), UMT (Deng et al., 2021), MeGA-CDA (Vs et al., 2021), CDG (Li et al., 2021),
MGADA (Zhou et al., 2022), SIGMA (Li et al., 2022a), TDD (He et al., 2022) and AT (Li et al.,
2022b). As can be seen, our proposed method outperforms the existing cross-domain object detection
methods by a large margin. The qualitative results are shown in Figure 4. As illustrated, the proposed
method could accurately detect small objects under dense fog, e.g., the bicycle in the first row.

We then report synthetic-to-real and cross-camera detection results from Sim10k/KITTI to
Cityscapes. Sim10k is a simulated dataset containing 10,000 images. KITTI is a scene dataset
(7,481 labeled images) with a different camera setup as Cityscapes. The validation set of Cityscapes
is used for evaluation. Only the category car is used for evaluation under both settings. The quantita-
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Figure 4: Qualitative comparisons of cross-domain object detection methods on Cityscapes→Foggy
Cityscapes and Sim10k→Cityscapes. Models are trained on the car category.

Table 2: Cross-domain object detection on the Foggy Cityscapes dataset using Cityscapes→Foggy
Cityscapes adaptation.

Methods Detector Backbone person rider car truck bus train motor bicycle mAP↑
SCL (Shen et al., 2019) F-RCNN VGG-16 31.6 44.0 44.8 30.4 41.8 40.7 33.6 36.2 37.9
GPA (Xu et al., 2020b) F-RCNN ResNet-50 32.9 46.7 54.1 24.7 45.7 41.1 32.4 38.7 39.5

UMT (Deng et al., 2021) F-RCNN VGG-16 56.5 37.3 48.6 30.4 33.0 46.7 46.8 34.1 41.7
MeGA-CDA (Vs et al., 2021) F-RCNN VGG-16 37.7 49.0 52.4 25.4 49.2 46.9 34.5 39.0 41.8

CDG (Li et al., 2021) F-RCNN VGG-16 38.0 47.4 53.1 34.2 47.5 41.1 38.3 38.9 42.3
MGADA (Zhou et al., 2022) F-RCNN VGG-16 43.9 49.9 60.6 29.6 50.7 39.0 38.3 42.8 44.3

SIGMA (Li et al., 2022a) F-RCNN ResNet-50 44.0 43.9 60.3 31.6 50.4 51.5 31.7 40.6 44.2
TDD (He et al., 2022) F-RCNN ResNet-50 50.7 53.7 68.2 35.1 53.0 45.1 38.9 49.1 49.2
AT (Li et al., 2022b) F-RCNN VGG-16 45.5 55.1 64.2 35.0 56.3 54.3 38.5 51.9 50.9

Ours F-RCNN ResNet-50 53.7 58.3 72.2 36.6 60.6 51.3 44.3 51.6 53.6

tive results are reported in Table 3 and we provide the qualitative comparisons with SIGMA (Li et al.,
2022a), TDD (He et al., 2022) and MGADA (Zhou et al., 2022) in Figure 4 for Sim10k→Cityscapes
adaptation. We also perform multi-source cross-domain object detection in our appendix.

Table 3: Synthetic-to-real/Cross-camera domain adaptation from Sim10k/KITTI to Cityscapes on
object detection task.

Methods Detector Backbone mAP (car) Sim10k / KITTI ↑
CST (Zhao et al., 2020a) F-RCNN VGG-16 44.5 / 43.6

MeGA-CDA (Vs et al., 2021) F-RCNN VGG-16 44.8 / 43.0
UMT (Deng et al., 2021) F-RCNN VGG-16 43.1 / -

CDN (Su et al., 2020) F-RCNN VGG-16 49.3 / 44.9
CFA (Hsu et al., 2020) FCOS VGG-16 49.0 / 43.2
CFA (Hsu et al., 2020) FCOS ResNet-101 51.2 / 45.0

SAPNet (Li et al., 2020a) F-RCNN VGG-16 44.9 / 43.4
MGADA (Zhou et al., 2022) F-RCNN VGG-16 49.8 / 45.2
MGADA (Zhou et al., 2022) FCOS VGG-16 54.6 / 48.5

SIGMA (Li et al., 2022a) F-RCNN VGG-16 53.7 / 45.8
TDD (He et al., 2022) F-RCNN VGG-16 53.4 / 47.4

Ours F-RCNN ResNet-50 56.8 / 53.1

4.4 EVALUATING CROSS-DOMAIN SEMANTIC SEGMENTATION

We then extend our framework to cross-domain semantic segmentation to demonstrate the ver-
satility of the proposed method. We combine our method with DACS (Tranheden et al., 2021)
DAFormer (Hoyer et al., 2022a) and HRDA (Hoyer et al., 2022b). We include the recent ProCST (Et-
tedgui et al., 2022) for comparison, which proposed synthesizing the source-in-target image to
promote the domain adaptation performance for semantic segmentation. We perform experiments for
GTA5→Cityscapes adaptation. GTA5 (Richter et al., 2016) dataset contains 24,966 synthetic images
with image resolution 1920 × 1080 and also the pixel level semantic annotations for 19 semantic
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Figure 5: Qualitative comparisons with cross-domain semantic segmentation algorithms on
GTA5→Cityscapes (above dashed line) and Cityscapes→Dark Zurich (below dashed line).

Table 4: Cross-domain semantic segmentation under GTA5→Cityscapes and Cityscapes→Dark
Zurich-test set (DZ for abbreviation) adaptation.

Methods Settings Road S.walk Build. Wall Fence Pole Tr.Light Sign Veget. Terrain Sky Person Rider Car Truck Bus Train M.bike Bike mIoU ↑
DACS

G
TA

5→
C

ity
sc

ap
es

89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1
DACS+Ours 90.4 41.2 88.4 33.1 38.2 39.2 48.1 51.5 89.4 47.2 89.1 66.9 37.4 86.0 47.3 52.1 0.2 28.1 35.1 53.1

DAFormer 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3
ProCSTDAFormer 95.4 68.2 89.8 55.1 46.4 50.4 56.4 63.4 90.4 49.9 92.3 72.4 45.3 92.6 78.4 81.2 70.6 56.8 63.6 69.4

DAFormer+Ours 93.8 56.9 90.5 58.4 43.3 58.0 63.3 71.1 91.3 48.5 94.6 74.0 16.3 94.0 83.1 85.3 72.8 64.6 68.4 69.8

HRDA 96.7 75.6 91.0 61.0 45.2 56.4 62.1 63.8 91.6 51.7 94.0 78.1 47.3 94.1 84.4 82.6 76.6 63.9 68.0 72.8
ProCSTHRDA 96.7 75.8 91.3 60.3 52.8 58.8 66.0 72.1 91.5 50.4 93.8 78.6 52.1 94.0 81.4 85.7 71.8 63.8 67.6 73.9
HRDA+Ours 97.0 79.5 90.9 53.2 50.2 59.2 66.3 71.3 91.5 54.0 94.2 79.8 55.5 93.8 81.4 86.6 75.1 62.1 73.2 74.5

DACS

C
ity

sc
ap

es
→

D
Z 83.1 49.1 67.4 33.2 16.6 42.9 20.7 35.6 31.7 5.1 6.5 41.7 18.2 68.8 76.4 0.0 61.6 27.7 10.7 36.7

DACS+Ours 90.3 61.4 71.5 31.5 9.6 43.2 18.5 37.3 38.2 16.7 32.3 41.5 45.2 75.3 74.2 0.0 64.2 35.2 25.3 42.7

DAFormer 92.0 63.0 67.2 28.9 13.1 44.0 42.0 42.3 70.7 28.2 83.6 51.1 39.1 76.4 31.7 0.0 78.3 43.9 26.5 48.5
DAFormer+Ours 94.7 72.9 69.8 38.3 15.6 54.2 54.8 47.9 61.3 39.2 61.2 59.7 53.7 82.6 40.3 0.2 86.8 54.9 28.9 53.5

HRDA 90.4 56.3 72.0 39.5 19.5 57.8 52.7 43.1 59.3 29.1 70.5 60.0 58.6 84.0 75.5 11.2 90.5 51.6 40.9 55.9
HRDA+Ours 94.8 73.4 75.3 40.4 21.8 55.5 54.3 48.7 68.7 38.7 78.3 62.2 54.7 83.1 44.5 0.2 87.1 57.3 33.4 56.4

classes. The experimental results based on different algorithms are reported in Table 4. The proposed
method could achieve various degrees of performance improvement based on different backbones.

Furthermore, we perform the Cityscapes→Dark Zurich (daytime-to-nighttime) adaptation. Dark
Zurich dataset (Sakaridis et al., 2019) is captured in Zurich, with 3,041 daytime, 2,920 twilight
and 2,416 nighttime images for training, which are all unlabeled. The Dark Zurich contains 201
annotated nighttime images: 151 images (Dark Zurich-test) are used for testing and 50 images are
used for validation. The experimental results are also reported in Table 4. With a larger distribution
shift (complicated mixed style and illumination factors), the proposed method could achieve more
performance gains since our method can effectively reduce the visibility gap. Finally, we provide the
qualitative comparisons with DAFormer and HRDA for GTA5→Cityscapes and Cityscapes→Dark
Zurich adaptation in Figure 5. We conduct Synthia→Cityscapes adaptation in our appendix.

4.4.1 EVALUATING CROSS-DOMAIN DEPTH ESTIMATION

To evaluate depth estimation, we conducted the domain adaption from the adverse to normal condition,
e.g., foggy→daytime for visibility enhancement. We evaluate the performance of Monodepth2, a
recent monocular depth estimator (Godard et al., 2019), on the KITTI dataset. We use the pre-trained
model on the KITTI dataset with the model resolution of 1024× 320 for evaluation. In Table 5, we
provide quantitative comparisons on results without and with visibility enhancement on the Foggy
Cityscapes dataset since ground truth depth is provided in this dataset. As can be seen, with visibility
enhancement by our domain adaptation, the depth estimator performs better than the baseline.

4.5 ABLATION STUDIES

Effectiveness of our contrastive learning. The image synthesis is important for domain-invariant
feature extraction. We choose SimCLR for comparison on the Cityscapes→Foggy Cityscapes
adaptation. We compute the average LPIPS score (Zhang et al., 2018) (lower is better) between 500
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Table 5: Cross-domain depth estimation. The pre-trained depth estimator achieves higher performance
on Foggy Cityscapes with our foggy→daytime domain adaptation.

Method Error↓ Accuracy↑
RMSE RMSE(log) Abs Rel Sq Rel δ < 1.25 δ < 1.252 δ < 1.253

w/o foggy→daytime 13.74 0.430 0.319 4.587 0.445 0.737 0.875
w/ foggy→daytime 10.70 0.317 0.232 2.769 0.578 0.857 0.947

Table 6: Effectiveness of our reference-guided image synthesis. Compared to other image synthesis
methods, our method achieves better performance as shown by the object detection task under
Cityscapes→Foggy Cityscapes adaptation.

Methods Source only CycleGAN (Zhu et al., 2017) TSIT (Jiang et al., 2020) Ours

mAP ↑ 31.7 36.2 50.6 53.6

Table 7: Effectiveness of our cross-domain content alignment (CDCA) on object detection on Foggy
Cityscapes. CDCA can be added to existing methods, improving overall mAP.

Methods CDCA Backbone person rider car truck bus train motor bicycle mAP↑

DA-faster (Chen et al., 2018) × VGG-16 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.3 27.6
✓ VGG-16 27.4 32.8 41.7 23.5 37.4 21.4 21.5 29.1 29.4 (+1.8)

SCL (Shen et al., 2019) × VGG-16 31.6 44.0 44.8 30.4 41.8 40.7 33.6 36.2 37.9
✓ VGG-16 32.5 44.9 45.6 31.5 43.1 41.8 34.8 37.1 38.9 (+1.0)

UMT (Deng et al., 2021) × VGG-16 56.5 37.3 48.6 30.4 33.0 46.7 46.8 34.1 41.7
✓ VGG-16 56.6 39.1 49.5 31.5 34.2 47.3 47.3 35.0 42.6 (+0.9)

MeGA-CDA (Vs et al., 2021) × VGG-16 37.7 49.0 52.4 25.4 49.2 46.9 34.5 39.0 41.8
✓ VGG-16 38.7 49.8 53.1 27.1 49.9 47.7 35.5 38.9 42.6 (+0.8)

validation images from Cityscapes dataset (source) and the according retrieved top-1 foggy images
from the Foggy Cityscapes dataset (target) for content similarity measurement. The LPIPS score of
our method is 0.1718 while the naive SimCLR achieves 0.3936. The average LPIPS score of random
sampling is 0.6123. The proposed method can effectively reduce the content mismatch between the
source and target images. The t-SNE visualization is also included in our appendix.

Effectiveness of our reference-guided image synthesis in cross-domain tasks. We have reported
the FID scores of different image synthesis algorithms in Table 1, which can only provide the
image synthesis quality comparison. To perform further analysis on the effect of the image syn-
thesis for perception tasks, we adopt the generated images for the object detection task under the
Cityscapes→Foggy Cityscapes adaptation (Table 6). As can be seen, the proposed method could
achieve the largest performance improvement compared with other algorithms. Please refer to
Table 11 in our appendix for detailed per-class detection results.

Effectiveness of cross-domain content alignment (CDCA) in cross-domain tasks. We evaluate
the effectiveness of the retrieved target images provided by CDCA versus traditional methods (e.g.,
random sampling) in a downstream task. Here we choose cross-domain object detection. For CDCA,
only in this experiment, to guarantee the sample diversity and that most target images will be sampled
for training, instead of top-1 retrieval, we use the top-10 retrieved target images for each source image
during training: we randomly select one over the 10 target images for the source image to perform
adaptation in each iteration. As reported in Table 7, our proposed CDCA module can alleviate the
content mismatches between the source images and the target images, achieving performance gain,
and potentially working as a plug-and-play module for existing cross-domain perception algorithms.

5 CONCLUSION

In this paper, we comprehensively performed the analysis of content mismatch during domain
adaptation. Built on a mutual-beneficial system of reference-guided image synthesis and contrastive
learning, we can alleviate the content mismatch and perform the task-agnostic image synthesis
for various visual perception tasks in autonomous driving. The proposed method demonstrates
the effectiveness of the disentanglement of domain-invariant and domain-specific representations.
The comprehensive experiments of using different benchmark algorithms on various datasets have
demonstrated the superior performance of the proposed method.
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In this appendix, we provide additional implementation details (Section A), additional comparison
results, more ablation studies and discussions about our method (Section B).

A IMPLEMENTATION DETAILS

A.1 CONTRASTIVE LEARNING

We adopt SimCLR (Chen et al., 2020) as our backbone for the contrastive learning. The projected
output z is a 128-dimensional vector while the temperature τ inherited from Chen et al. (2020) is 0.5.
The batch size is set to 64. The image resolution is 256× 256 for contrastive learning. We change the
random resize scale from (0.2, 1.0) adopted in SimCLR to (1.0, 1.12) to preserve the most content
representations in the figures. We choose Adam optimizer (Kingma & Ba, 2015) with a learning rate
of 1e−3 and weight decay of 1e−6 for optimization.

A.2 REFERENCE-GUIDED IMAGE SYNTHESIS

We adopt TSIT (Jiang et al., 2020) as our backbone for reference-guided image synthesis. It is
worthy to note that we adopt the instance normalization (FAdaIN) with a small batch size (2 for
image resolution 1024× 512 and 1 for image resolution 2048× 1024) for the translation module,
and batch normalization with a larger batch size (64) for the contrastive learning. For generating the
images with image resolution 2048× 1024, the channel number of the first convolutional module for
downsampling is set to 32 for reducing the computational cost and memory burden. The multi-scale
discriminator architecture remains the same for the above two settings. At the inference stage, we
generate the target-like images in the target domain based on the constructed source-reference pairs
generated by the cross-domain content alignment module. The image synthesis is then utilized to
reduce the domain gap. Note that the translation module and the following object detection, semantic
segmentation and depth estimation module are optimized separately.

A.3 CROSS-DOMAIN OBJECT DETECTION

The training epoch is set to 12 for Cityscapes→Foggy Cityscapes adaptation, and 3 for both
KITTI→Cityscapes and Sim10k→Cityscapes. For the multi-source cross-domain object de-
tection setting, the training epoch is set to 9 for Cityscapes+KITTI→BDD100K and 12 for
Daytime+Nighttime→Dawn on the BDD100K dataset. All the experimental results are performed
based on the MMDetection following the configuration of fast rcnn r50 fpn 1x. Both the original
source images and translated images are utilized for training the detection network. The annotations
of the original source images are inherited by the translated counterparts in the target domain. The
image resolution for the generated images is 1024× 512 and we resize the generated images into the
required image resolution (shorted side is 600 pixels) while keeping the aspect ratio unchanged.

A.4 CROSS-DOMAIN SEMANTIC SEGMENTATION

To preserve as much information as possible, the image resolution is set to 2048×1024 for generating
images for domain adaptive semantic segmentation. We adopted DACS (Tranheden et al., 2021)
DAFormer (Hoyer et al., 2022a) and HRDA (Hoyer et al., 2022b) as the backbones to perform experi-
ments following the official configuration files. We rerun the HRDA on our GTX 3090 for fair compar-
ison (hardware-wise) following https://github.com/shahaf1313/ProCST/issues/2.
Similarly, annotations of source images are inherited by translated images, and both source and
translated images with labels are used for training. In our ablation study, we demonstrate that the
proposed cross-domain content alignment (CDCA) could promote domain adaptation performance.
Thus, to reduce the content mismatch problem during the domain adaptation procedure, we conduct
CDCA during the domain adaptation procedure. In detail, we replace the random sampling strategy
in DACS, DAFormer and HRDA with our content-aligned strategy to sample the target images. To
guarantee the sample diversity and that most target images will be sampled for training, the top-10
retrieved target images for each source image will be utilized during the training procedure: we
randomly select one over the 10 target images for the source image to perform adaptation in each
iteration.
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B ADDITIONAL RESULTS

B.1 TASK-AGNOSTIC IMAGE SYNTHESIS

We provide the qualitative results generated by our image translation module for var-
ious image synthesis tasks: Cityscapes→Foggy Cityscapes, Sim10k/KITTI→Cityscapes,
Cityscapes/KITTI→BDD100K, daytime→dawn on BDD100K, Synthia/GTA5→Cityscapes and
Cityscapes→Dark Zurich in Figure 6. As illustrated, the proposed method could achieve reasonable
and natural image synthesis.

Figure 6: The qualitative results of various image synthesis tasks.

B.2 CROSS-DOMAIN OBJECT DETECTION

In this section, we provide the experimental results for the multi-source domain adaptive object
detection. We first perform the KITTI+Cityscapes→BDD100K adaptation. The images from
both KITTI and Cityscapes datasets are used for training and the daytime training images from the
BDD100K dataset without annotations are used for training following the experimental setup of Yao
et al. (2021). The AP of the car category on the daytime validation images is reported. We provide
quantitative comparisons with previous algorithms in Table 8. We achieve the best results on the
Cityscapes+KITTI→BDD100K domain adaptation.

Furthermore, we perform the Daytime+Nighttime→Dawn adaptation on the BDD100K dataset (Yu
et al., 2020). The daytime and nighttime images from the BDD100K dataset are used for training and
the dawn images are regarded from the target domain without annotations. Similarly, following the
experimental setup of Yao et al. (2021), we report the detailed experimental results under various
settings in Table 9. The AP of 10 categories is reported on the dawn validation images.

B.3 CROSS-DOMAIN SEMANTIC SEGMENTATION

Synthia dataset (Ros et al., 2016) is a synthetic dataset that consists of 9,400 images with image
resolution 1280× 960 rendered from a virtual city and comes with pixel-level semantic annotations
for 16 classes. In Table 10, we provide the comparison results between our method and previous
algorithms in detail. As illustrated, the proposed method could achieve various degrees of performance
gain based on different backbones.

B.4 ENHANCEMENT FOR DEPTH ESTIMATION

In this section, we provide the qualitative results of foggy→daytime translation on the Foggy
Cityscapes dataset and Nighttime→Daytime translation on the BDD100K dataset and the correspond-
ing mono depth estimation results in Figure 7. For the image enhancement, the image resolution
for the reference-guided image synthesis is set to 1024× 512. Then we adopt the pre-trained Mon-
odepth2 model on the KITTI dataset with the model resolution of 1024× 320 for evaluation. The
qualitative results demonstrate that reasonable and consistent image enhancement could promote
depth estimation performance.
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Table 8: Experimental results on cross-domain object detection from Cityscapes and KITTI to
BDD100k (daytime) (Yu et al., 2020). Average precision (AP, %) on car category in the target domain
is evaluated. The best result is in bold.

Standards Methods AP on car ↑

Source-only
Cityscapes 44.6

KITTI 28.6
Cityscapes+KITTI 43.2

Cityscapes-only DA

Strong-Weak Saito et al. (2019) 45.5
SCL Shen et al. (2019) 46.3

DA-ICR-CCR Xu et al. (2020a) 45.3
SW-ICR-CCR Xu et al. (2020a) 46.5

KITTI-only DA

Strong-Weak Saito et al. (2019) 29.6
SCL Shen et al. (2019) 31.1

DA-ICR-CCR Xu et al. (2020a) 29.2
SW-ICR-CCR Xu et al. (2020a) 30.8

Source-combined DA

Strong-Weak Saito et al. (2019) 41.9
SCL Shen et al. (2019) 43.0

DA-ICR-CCR Xu et al. (2020a) 41.3
SW-ICR-CCR Xu et al. (2020a) 43.6

Multi-source DA

MDAN Zhao et al. (2018) 43.2
M3SDA Peng et al. (2019) 44.1
DMSN Yao et al. (2021) 49.2
TKPD Wu et al. (2022) 58.4

Ours† 63.1
Ours 66.4

Oracle Faster R-CNN Faster (2015) 60.2

Table 9: Experimental results on cross-domain object detection from Daytime and Nighttime to Dawn
on BDD100K dataset Yu et al. (2020). Average precision (AP, %) on 10 categories in the target
domain is evaluated. The best result is in bold.

Standards Methods bike bus car motor person rider light sign train truck mAP↑

Source-only
Daytime 35.1 51.7 52.6 9.9 31.9 17.8 21.6 36.3 0 47.1 30.4

Night 27.9 32.5 49.4 15.0 28.7 21.8 14.0 30.5 0 30.7 25.0
Daytime+Night 31.5 46.9 52.9 8.4 29.5 21.6 21.7 34.3 0 42.2 28.9

Daytime-only DA

Strong-Weak Saito et al. (2019) 34.9 51.2 52.7 15.1 32.8 23.6 21.6 35.6 0 47.1 31.4
SCL Shen et al. (2019) 29.1 51.3 52.8 17.2 32.0 19.1 21.8 36.3 0 47.2 30.7
GPA Xu et al. (2020b) 36.6 52.1 53.1 15.6 33.0 23.0 21.7 35.4 0 48.0 31.8

DA-ICR-CCR Xu et al. (2020a) 35.6 47.5 52.7 13.9 32.2 22.7 22.8 35.5 0 45.7 30.9
SW-ICR-CCR Xu et al. (2020a) 32.8 51.4 53.0 15.4 32.5 22.3 21.2 35.4 0 47.9 31.2

Night-only DA

Strong-Weak Saito et al. (2019) 31.4 38.2 51.0 9.9 29.5 22.2 18.7 32.5 0 35.7 26.9
SCL Shen et al. (2019) 25.3 31.7 49.3 8.9 25.8 21.2 15.0 28.6 0 26.2 23.2
GPA Xu et al. (2020b) 32.7 38.3 51.8 14.1 29.0 21.5 17.1 31.1 0 40.0 27.6

DA-ICR-CCR Xu et al. (2020a) 30.0 32.4 50.1 14.4 29.1 22.8 17.4 32.2 0 29.7 25.8
SW-ICR-CCR Xu et al. (2020a) 32.3 45.1 51.6 7.2 29.2 24.9 19.9 33.0 0 41.1 28.4

Source-combined DA

Strong-Weak Saito et al. (2019) 29.7 50.0 52.9 11.0 31.4 21.1 23.3 35.1 0 44.9 29.9
SCL Shen et al. (2019) 33.9 47.8 52.5 14.0 31.4 23.8 22.3 35.4 0 45.1 30.9
GPA Xu et al. (2020b) 31.7 48.8 53.9 20.8 32.0 21.6 20.5 33.7 0 43.1 30.6

DA-ICR-CCR Xu et al. (2020a) 28.2 47.6 51.6 17.6 28.8 21.9 17.4 33.2 0 45.8 29.2
SW-ICR-CCR Xu et al. (2020a) 25.3 51.3 52.1 17.0 33.4 18.9 20.7 34.8 0 47.9 30.2

Multi-source DA

MDAN Zhao et al. (2018) 37.1 29.9 52.8 15.8 35.1 21.6 24.7 38.8 0 20.1 27.6
M3SDA Peng et al. (2019) 36.9 25.9 51.9 15.1 35.7 20.5 24.7 38.1 0 15.9 26.5
DMSN Yao et al. (2021) 36.5 54.3 55.5 20.4 36.9 27.7 26.4 41.6 0 50.8 35.0
TKPD Wu et al. (2022) − − − − − − − − − − 39.8

Ours 36.9 58.8 68.5 23.4 39.4 21.9 23.4 35.9 0 50.0 39.1

Oracle Faster R-CNN Faster (2015) 27.2 39.6 51.9 12.7 29.0 15.2 20.0 33.1 0 37.5 26.6

Table 10: Comparison with UDA methods on semantic segmentation under the Synthia→Cityscapes.
The best result is in bold.

Methods Settings Road S.walk Build. Wall Fence Pole Tr.Light Sign Veget. Terrain Sky Person Rider Car Truck Bus Train M.bike Bike mIoU ↑
DACS

Sy
nt

hi
a→

C
ity

sc
ap

es 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 − 90.8 67.6 38.3 82.9 − 38.9 − 28.5 47.6 48.3
DACS+Ours 83.4 26.5 82.3 24.3 4.5 39.1 24.2 25.5 85.0 − 92.4 68.4 35.4 83.5 − 39.1 − 34.3 49.6 49.8

DAFormer 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 − 89.8 73.2 48.2 87.2 − 53.2 − 53.9 61.7 60.9
ProCSTDAFormer 84.8 39.5 88.2 40.2 7.3 51.1 56.3 55.1 86.5 − 89.8 74.6 48.4 86.5 − 58.6 − 55.6 62.9 61.6

DAFormer+Ours 84.1 44.2 87.8 38.7 6.2 54.9 64.3 53.7 88.1 − 93.4 78.7 48.2 89.2 − 33.1 − 63.0 64.7 62.0

HRDA 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 − 92.9 79.4 52.8 89.0 − 64.7 − 63.9 64.9 65.8
ProCSTHRDA 86.7 50.7 88.7 50.0 6.4 58.0 66.6 62.2 86.4 − 93.6 78.8 52.7 88.4 − 64.6 − 63.5 64.4 66.4
HRDA+Ours 86.9 51.3 88.9 50.6 4.8 55.7 64.2 62.0 87.7 − 93.2 72.2 52.7 87.7 − 67.2 − 64.5 66.2 66.0
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Figure 7: The qualitative results of the depth estimation based on the pre-trained model.

(a)	SimCLR (b)	Ours

Cityscapes

Foggy
Cityscapes

Cityscapes

Foggy
Cityscapes

Figure 8: The t-SNE visualization of feature representation extracted from 400 samples from
Cityscapes and Foggy Cityscapes datasets.

B.5 ABLATION STUDIES

T-SNE visualization. To demonstrate that the reference-guided image synthesis is necessarily
important for extracting the domain-invariant feature extraction, we compare SimCLR with our
method. The naive SimCLR is optimized based on the real source images from the Cityscapes dataset
and target images from the Foggy Cityscapes dataset. Differently, the proposed method with image
synthesis is optimized by the source images and the corresponding translated images. We provide
the t-SNE visualization comparison between SimCLR and our method as shown in Figure 8. The
obtained feature representations extracted by f(·) for 200 clear images from the Cityscapes dataset
and 200 foggy images from the Foggy Cityscapes dataset are used for visualization. We can observe
that the proposed method could extract the domain-invariant content representations (more mixed
distribution as shown in Figure 8).

Effectiveness of Cross-domain Content Alignment (CDCA). We provide the visual quality re-
sults of performing the cross-domain content alignment (CDCA) on Synthia→Cityscapes and
GTA5→Cityscapes in Figure 9. The proposed method could return the images with similar content
(layout) representation to the query image. Besides, we also provide the image synthesis results for
GTA5→Cityscapes under two settings: without CDCA and with CDCA in Figure 10.

Effectiveness of image synthesis for cross-domain object detection. Additionally, we provide the
detailed per-class detection results in Table 11 through using the translated images by different image
synthesis algorithms for Cityscapes→Foggy Cityscapes adaptation. In theory, better image synthesis
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Figure 9: The cross-domain content alignment (image retrieval) results for Synthia→Cityscapes
(above the gray dashed line) and GTA5→Cityscapes (below the gray dashed line). The first column
is the query image and the images in the other columns are the top-4 retrieved images.

Table 11: The per-class results of comparison on cross-domain object detection on the Foggy
Cityscapes dataset for Cityscapes→Foggy Cityscapes adaptation. The best result is in bold.

Methods person rider car truck bus train motor bicycle mAP↑
Source only 40.7 46.1 45.0 19.5 27.9 3.6 27.4 43.6 31.7

CycleGAN (Zhu et al., 2017) 44.3 52.0 50.3 25.3 29.6 9.5 32.1 46.6 36.2
TSIT (Jiang et al., 2020) 54.1 58.5 72.8 34.5 54.5 36.1 41.5 53.1 50.6

Ours 53.7 58.3 72.2 36.6 60.6 51.3 44.3 51.6 53.6

will lead to better object detection performance in the target domain. As reported, the proposed
method has achieved the largest performance gain over all the image synthesis algorithms.

B.6 LIMITATION

While the proposed method aims to reduce the appearance shift between the source domain and the
target domain by image synthesis in the target domain, it shows limited ability on generating abstract,
highly iconic, exaggerated, or succinct images (e.g., photo-to-caricature, photo-to-watercolor), result-
ing in marginal performance improvement under the unsupervised domain adaptation setting. We
attribute this to the reason that the image-to-image translation module generates unfaithful target-like
images due to the change of scale, shape, and other image characteristics between the source and
target domain. Incorporating more sophisticated image synthesis methods might resolve this problem
in future work.
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Figure 10: The image synthesis results of without CDCA (above the dashed line) and with CDCA
(below the dashed line) for GTA5→Cityscapes adaptation. Best viewed in color.
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