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Abstract

Transformers acquire in-context learning abilities in abrupt phases during training,
often unfolding over multiple stages, during which certain keys circuits like induc-
tion heads emerge. In this work, we characterize the training dynamics behind the
emergence of such circuits during these stages. We focus on a synthetic in-context
associative recall task, where sequences are drawn from random maps between a
permutation group and a vocabulary range and the model is required to complete
the mapping of a permutation by retrieving it from the context. On this task, we
study the trajectories of gradient flow of a simplified two-layer, attention-only
transformer. Leveraging symmetries in both the transformer architecture and the
data, we derive conservation laws that guide the dynamics of the parameters. These
conservation laws crucially reveal how initialization —both in shape and scale—
determines the order of learning as well as the timescales over which such circuits
emerge revealing the implicit curriculum. Furthermore, at the limit of vanishing
scale of initialization, we characterize the trajectory of the gradient flow revealing
how the training jumps from one saddle to another.

1 Introduction

In-context learning (ICL) [11], the ability of a model to perform new tasks from examples provided
in its prompt without parameter updates, is a characteristic ability of language models. Beyond what
these models can do in context, how these abilities emerge during training remains poorly understood.
Empirical works [30, 12] report long plateaus in the training loss followed by abrupt transitions, after
which specific circuits, such as induction heads, become functional. Understanding these training
dynamics is essential both for theory (which optimization biases make ICL learnable by gradient
descent) and for practice (how hyperparameters impact convergence speed and training stability).

While recent analyses [28, 13] have advanced understanding, they fall short of a complete explanation.
Approaches based on layerwise training [28] or highly simplified architectures [41] (e.g., linear
attentions) have crucially clarified isolated aspects of the phenomenon, but struggle to account for the
sequential acquisition of partial solutions and the duration of plateau phases observed in full models.
In particular, we lack a theory that predicts the order in which partial circuits appear, and that explains
what controls the length of each phase, including sensitivity to initialization scale.

In this paper, we propose combining optimization dynamics with mechanistic interpretability to
study how circuits emerge during training. Our analysis is purely dynamical, we study the training
trajectories induced by gradient-based optimization, yet our conclusions are mechanistic: we identify
which circuit is implemented, which sub-circuits appear first, and how the full circuit crystallizes.

To render the problem analytically tractable while preserving its essential structure, we introduce a
simplified recall task that retains the induction mechanism underlying in-context n-gram learning
but in a form that is more amenable to analysis. Crucially, we couple this task with a series of
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principled simplifications, that isolate the essential components of the transformer responsible for
incremental learning, while removing spurious elements that obscure analysis. Our analysis reveals a
staged learning process: training trajectories encounter intermediate, partially correct solutions where
gradients nearly vanish (training plateaus) before transitioning to higher-order solutions.

Contributions. Our results (i) formalize a in-context recall task that preserves the induction structure
while enabling tractable analysis, (ii) derive training dynamics that exhibit plateaus aligned with sub-
circuits, and (iii) provide quantitative predictions for phase ordering and lengths as functions of model
and optimization parameters, with empirical validation on small transformers trained end-to-end.

2 Problem Setting

2.1 In-Context Associative Recall Task

In-context learning abilities of transformers are driven by certain key circuits, such as induction heads.
A basic induction head circuit [30] learns to complete simple repeating patterns, e.g., [A][B][C] ... [A].
When the model encounters the second [A], the circuit attends to the first [A] and predicts the
subsequent token, [B]. This paper investigates how models handle a more general version of this
pattern: [A][B][C][X]...[A][B][C]. In this setting, the model must recognize the entire sequence
[A][B][C], locate its previous occurrence in the context, and then use it to predict the next token [X].

Formally, the task is defined as follows. The model must complete a sequence by matching the last k
tokens, where k > 1 is the fask order. Let Py, denote the set of all permutations of {0, 1,...,k — 1},
indexed as 7y, s, . .., Tk, Where each 7; is a string of £ numbers. Let R be the set of possible
responses. The task is defined by a function f : P — R, sampled from a uniform distribution D(F)
over the set of all such functions 7 = {f | f : P, — R}. An input sequence is then generated by
first sampling ¢ € Py, uniformly at random, and independently sampling a function f, from D(F).
The final input sequence takes the form:

T(1,00y TT(1,1)5 - =+ s (1, k—1)5 fT(TFl), (2,005« T (2,k—1)> fT(7T2)7 s 540y -5 qk—1, 7.
— —_—
1 T2 qM-—1
Note that 7y, 72, . . . each represent a sequence of k tokens, rather than a single token. For example,

m =0,1,...,k—1. Figure ?? illustrates the task for & = 2 with a response set { A, B}. We define
the vocabulary as S = [k] U R. Each sequence has a fixed length of { = (k + 1)! + k. To solve this
task, the transformer must learn to identify the part of the context that matches the final k tokens and
recall the subsequent token. For completeness, the context contains all possible query permutations,
ensuring that the model can always retrieve the correct response, which enables exact learning.

2.2 Multi-headed Attention-Only Transformer

We analyze a specific attention-only transformer with a two-layer structure. The first layer contains
k attention heads, and the second layer contains a single head. The architecture is based on the
disentangled transformer [15, 28] and incorporates several simplifications from prior work [28, 14].

Token encodings. We represent the input sequence using one-hot encodings. A sequence of length [
is mapped into RI| by the embedding function F : S — RIS, defined as E(i) = e}’ fori € [k]
and E(r;) = e}’/,. For convenience, we omit the superscript |S| in what follows. After the encoding
layer, the input sequence xg, 21, . . ., 2;—1 is given by

X=lez €z --- exlflf e R¥XISI
First attention layer. The first attention layer has &k heads and considers only positional information,
which is a convenient choice for this task. We use relative positional encodings with a causal mask.

Each head i is parameterized by a vector w* € R!. The pre-softmax attention scores of head i form a
lower-triangular matrix with entries given by

A'lg,h] = {

The output of attention head i (1 < i < k) is R* = a(A?") X € RISl where o denotes the
row-wise softmax operation with causal masking. The output of the first attention layer is the

ngh fOo<h<g<li-1

—oo  otherwise

ey
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concatenation of the outputs from all heads together with a skip connection R° = X (which differs
from the standard architecture): R = [R® R! ... R*] e R**+DS — Zf:o e @R

K3
Second attention layer. The second attention layer consists of a single head, parameterized by
matrices Q, K € REFTDISIX(E+1)IS| The attention scores are O'(XQTKXT) , where the softmax is
applied row-wise with causal masking. The output of the second layeris R, = o (RQTKRT) RV
We further simplify it by introducing a parameter 3 € R* and parameterize Q'K as

QK =diag_, (8°) ©T, Ry =0 (R|[diag_, (8°) @T,| RT) RV

where diag_,(u) € RFEFUX(E+1) denotes a matrix with u on its first sub-diagonal and zeros
elsewhere. Squaring of 3 serves two purposes, (i) it ensures positivity of the entries and (ii) it
preserves the 2-homogeneity of Q " K. We choose the value matrix V = ef "' @ I|5| € RE+FDISIXIS],
This matrix consists of a column of blocks, with the identity matrix as the first block and zeros
elsewhere. By construction, V' extracts the skip connection from the concatenated output of the first
layer, i.e., RV = R’ = X, using the mixed-product property of the Kronecker product.

The model output. As the loss is computed only on the last token, the model’s output depends only
on the embedding of the final token after the second layer, i.e.,

p=(R:)i1 = (¢ (RQ'KRT) X),_, =R (¢ (RQ'KR") _,) =R7o ((RQ'KR") _,).
We denote the attention scores by s = o (RQ"KR), | and the corresponding pre-softmax scores
bys = (RQ'KR), .. The choice of V together with the orthogonal embeddings ensures that
p is a valid probability distribution over the vocabulary, i.e., p € AlS | and requires no further
normalization. Hence, the output of the model is given by p = X 's = X o(3). Finally, we denote
the parameters of the simplified model by 8 = (w',w?, ..., w* 3) here w* € R¥ for all i and
B=(B.,B.,...,5) € RF. We use p(0) to denote the output of the model for parameters . We
refer to section A.2 for a discussion on the simplifications and their implications.

2.3 The final problem setup
Training Objective. We replace the cross-entropy (CE) loss with the dot-product (DP) loss
l(p,p) =1—(P,P+) Lee(P;Ps) = — (Px,logp).

See App. A.3 for a detailed comparison of the two loss functions. Finally, the population DP loss is
L(0) =Ef, vp(F).q~pi LP(0). €5, (g) =1 =Ky, 4 (P(O). €1, () - @)

Gradient Flow. To analyse the training dynamics, we consider the continuous-time limit of gradient
descent, known as gradient flow. The parameters evolve according to the negative gradient of the
population loss £ with respect to the parameters. This approach does not account for the stochasticity
or adaptive features of the optimizers used in practice. Nevertheless, it captures key aspects of
training. The gradient flow is given by
: oL y oL
/Bh:_aﬁh7 and W?:_TVVi”

forall i, h € [k].

3 Technical Results

A stagewise learning process. We train the simplified transformer model with SGD and momentum
on the DP loss over the in-context learning task of order k4-1. A crucial observation is that the training
dynamics are stage-wise. The model plateaus for an extended period before abruptly transitioning to
another plateau with lower loss, and eventually converges to zero loss. This behavior becomes more
pronounced as the initialization scale decreases, a phenomenon reminiscent of the saddle-to-saddle
dynamics observed in deep networks under small-scale initialization [20, 31].

To mechanistically interpret these intermediate stages, we analyze what the model represents on each
plateau, see Figure |. At the first plateau, the model learns to match a single token in the context:
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one attention head h; and its associated coefficient 3, are activated. At the second plateau, an
additional head ho with coefficient 3,,, is activated, enabling the model to match two tokens of the
query, gix+1—h, » Gk+1—h, 10 the context. This process continues incrementally: at each stage, a new
head—coefficient pair is activated, allowing the model to match one additional token. After k such
stages, all tokens in the query are matched and the model achieves zero loss. We now turn to a
detailed study of the stage-wise dynamics. We begin by analyzing a stylized initialization that isolates
the transitions between plateaus. We then combine these analyses to obtain a complete picture.

The first jump. We study the dynamics of the first jump, when the model escapes from the initial
plateau. We consider a stylized initialization, denoted Z;, where 8; = e and 8; = O for all j # 1.
The heads are initialized as w* = 0 for all 7. Note that at initialization, all heads are symmetric.

Theorem 3.1. Consider the simplified transformer model 0 = (w*, w?,...w* ) with k heads and
initialization T, evolving under gradient flow on the DP loss. Then:
(a) Directional bias: For all timet > 0, w'(t) = aq(t)e} + 61(t)1 for some a(t),0(t) € R.

(b) Sparse attention: w! > 0 and w! < 0,Vi # 1, i.e., the head attends to the 1 token from end.
(c) A Sufficient ODE: The learning dynamics can be fully described by the evolution of a1 (t), B, (t)
. B2en k2 . e —1

= = ,=28,————F
' (e +k—1)"k—1"" p ﬁe“1+k—1

where Z is defined in equation (4) in Appendix.

(d) Conservation law: The quantity f(ay) — Bi/4 is conserved along the trajectory, i.e., the time
derivative d(f(ay) — Bi/a) = 0 where

k-1 . kE—1
T (sinh(a1) —aq) — ?

flag) =2 le™® + oy —1].

Some comments are in order. The parameters of the heads except head 1 are stationary. All relative
position encodings except w, evolves together. This follows from the inherent symmetry of the task:
since token positions an be permuted within a sequence without leaving the distribution, the dynamics
must preserve this symmetry. Combined with the symmetry of the initialization, this leads to the
directional bias described above. The transformer rapidly learns to attend to the first token and results
in sprase attention. There is a clear dichotomy: the embedding corresponding to this token grows,
while the others decay at proportional rates.

From the ODE description, on any compact set, the time derivatives are bounded away from zero,
ensuring that both oy and 3, diverge to infinity, where the gradient is zero. The conservation
law show a coupled evolution of the parameters, note that sub conservation laws are common in
dynamical systems, and recent works have identified conservation principles in transformers as
well [27]. However, prior results are typically restricted to a single attention layer. In contrast,
our result shows how parameters across multiple layers, separated by the softmax, jointly obey a
conservation law.

This conservation law allows us to derive the timescale of the jump, i.e., how long training remains in
the plateau. Suppose 3;(0) = € with € a2 0. For convenience define s = e** — 1 with s(0) = 0, for
small s, a Taylor expansion gives 32 ~ 452 + €2, and the local dynamics reduce to ds ~ c(s? + €2).
Thus the growth of parameters in self-attention has an information exponent of 2 [5]. Solving the ODE
yields s = e tan(eT"), implying that s requires O(1/¢) time to reach O(1). When s has sufficiently
grown, the dynamics switch regimes. Now 3, ~ +/s, = which decays in s kicks in and the ODE
simplifies to

ds ~ bse—® —> /%ds — T 3)

The integral function on the right-hand side is the exponential integral, implying that s grows at rate
log T and hence «; grows only at rate log log 7T'.

Full stagewise dynamics. We refer to Appendix A.6 for the analysis of subsequent jumps, which is
very similar to the first jump but of reduced order. Combining these analyses, we paint a complete
picture of the stagewise dynamics.
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A Appendix

w

0 1000 4000 5000

2000 3000
Step (t)
(a) (b)

Figure 1: The left panel is shown in a and the right panel in b. Note that the 5 values rise simultane-
ously with the loss, and the attention patterns at times 800, 1750, and 4500 demonstrate incremental
learning.

Notation. For any positive integers a,b,s, [s] denotes the set {0,1,...,s — 1}, and [a, b] represents
{a,...,b}. For a vector v, its i-th coordinate is v; and € is the i-th standard basis vector in R®. For a
matrix A € R™*", its entry at row ¢ and column j is A;;, and its r-th row is A, € R™. For any set
S, |S| denotes the cardinality of the vocabulary. A denotes the probability simplex in RY. The
Kronecker product is denoted by ®. We use 1 to denote all vector of all ones.

Definition A.1 (Jacobian of a function). Let f : R”™ — R" be a C;-function defined on a variable
X e R™. % denotes the Jacobian which is a function from R™ — R™*",

BEAENAENE

Figure 2: Illustration of the in-context associative recall task. The sequence shows mappings between
query permutation elements (rectangles labeled 0, 1) and response tokens (triangles labeled A, B).
The model must predict the missing association, marked with "?".
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A.1 Related Work

In-context learning. The phenomenon of in-context learning (ICL) [11] has been investigated
from several perspectives. Mechanistic interpretability has identified induction heads as key circuits
supporting ICL [30]. A complementary direction examines restricted hypothesis classes, providing
controlled settings to analyze how transformers develop in-context capabilities. A recurring observa-
tion across these studies is the emergence of training plateaus followed by sudden capability gains
[12, 24]. These dynamics have been observed in regression tasks [17, 40, 2], boolean and formal
language recognition [7, 3], and n-gram prediction.

n-gram models. n-grams models are related our work as the transformer circuit that solves our
task also solves the taks of in-context learning n-grams. n-gram language models [35, 23] provide a
natural testbed for analyzing transformer behavior. Several recent works adopt this viewpoint: the
optimization landscape has been analyzed in [26], expressivity over n-gram distributions in [36],
and in-context generalization in [32]. Other studies connect ICL to the emergence of induction
heads [8] and their acquisition through gradient descent [28]. Edelman et al. [14] identify stage-wise
dynamics in transformer training on in-context n-gram prediction, where intermediate solutions
resemble sub-n-grams, while Varre et al. [37] formalize these sub-n-grams as near-stationary points.
Finally, Chen et al. [13] investigate the same task with a modified architecture and initialization
scheme that enforces head specialization from the start, thereby eliminating the stage-wise dynamics
central to our analysis.

Incremental learning. Plateau-shaped learning curves arise broadly in neural network training,
beyond ICL. Early work by Fukumizu and Amari [16] linked such phenomena to critical points
in supervised learning. Related characterizations appear in simplified models such as matrix and
tensor factorization [33, 21], matrix sensing [4, 25, 22], diagonal and linear networks [19, 34, 18, 20,
6, 31, 38, 39], ReLU networks [10, 1], and simplified transformer architectures [9]. Nichani et al.
[29] studied the stage wise dynamics in Factual recall with linear attention. These results provide
theoretical tools that we build on to characterize plateaus in in-context learning.

A.2 A simplified model

The goal of this paper is to study the training dynamics of transformers on the in-context associative
recall task. The simplified architecture described above, although easier than a full transformer,
remains too complex for a complete study of training dynamics. To address this intractability, we
introduce additional simplifications that preserve the qualitative behavior of the full model while
making analysis feasible. Before detailing these simplifications, we first present the construction of
the solution implemented by the transformer for this task, which clarifies the rationale behind our
design choices.

The transformer’s solution. To solve the task, the transformer must learn to attend to the portion of
the context that matches the final £ tokens. This mechanism is implemented through a multi-head
construction, variants of which have appeared in prior work [14, 32]. Its parameters are defined as

w'=c-elwhereic[l,k], Q' K=c (B ®Tk) .
Here c is a positive constant, Tk € RISIXISI where the first k x k block is given by T:kn:k =1 —71 1kT
and 0’s elsewhere. The matrix B € R(:+1)*(*+1) i5 defined as

1 ifg+1=nh

For0 < g,h <k Bgn = {0 otherwise

As ¢ — o0, the relative positional encoding ensures that head h outputs the embedding of x;_j, for

token 7. With this choice of B, the presoftmax attention scores are s; = ¢ Zzzl Wxi—p = xip}
which is maximized when the histories of 7 and [ match. In the limit ¢ — oo, the softmax approaches
hardmax attention, i.e, s; — 1 (where 1 is the token that matches the history). The model output is

then
pP= E Sj€r; N €y,
J

This construction is illustrated in the Figure 3.
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Figure 3: Layer-2 representation structure of the optimal solution constructed by the transfomer We
use it to simplify this structure by a diagonal block matrix with trainable scales.

Simplifying the model. Our simplifications are motivated by the transformer’s solution described
above and preserve its overall structure, especially in the second layer. We emphasize that, despite
these simplifications, the analysis remains intricate, as shown in the following sections and the training
dynamics of the simplified model closely mirror those of the original model. For i € [k,l — 1],t €
[7], h € [1, k], the modification of the parametric model are given by:

Original model Simplified model

3
h
Ri=2 o(Ayer, R’ = .a(A%

j=0
k

w=> R QKR 5o % e, @ 0] w1,
9.h=0 h=1

-1 .
s=0(8), P=) st s=o0(r), P= t;génste“'
t=0

In words, we make the following modifications:

(A0) We fix the attention window in the first layer to k for all heads. For each head i we train only
the weights w’ for 1 < j < k while the remaining entries are masked out and set to —oo.

(A1) We configure the second-layer attention parameters to match the structure of the optimal
solution shown in Figure 3. This configuration is held fixed, and we train only the scalar
multipliers that scale these parameters. In particular, we introduce a parameter 3 € R* and
parameterize Q" K as

Q'K = diag_, (8% @1,

where diag_, (u) € REFFUX(E+1) denotes a matrix with v on its first sub-diagonal and zeros
elsewhere. Squaring of 3 serves two purposes, (i) it ensures positivity of the entries and (ii) it
preserves the 2-homogeneity of Q" K.

As a further simplification, we replace the embeddings of the last with its embeddings at the
solution. This assumption is mild and does not affect the training dynamics. It is mainly a
convenience, as it avoids the bilinearity of the first layer outputs and leads to simpler gradient
computations.
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Since the output always lies in R, we trim s and apply the softmax only to the coordinates
corresponding to responses. This ensures the output is always a probability vector over R.

Other than which simplifies the second attention layer from matrix parameters to vector
parameters, the other simplifications are mild and do not affect the essence of the analysis. We justify
these choices both analytically and empirically in the next section.

Finally, we denote the parameters of the simplified model by 8 = (w', w?, ..., w", 3) here w* € R¥
forall i and B3 = (B,,8s,...,8.) € R¥. We use p(0) to denote the output of the model for
parameters 6.

A.3 Cross Entropy and Dot-Product losses.

The minimum of the DP loss is

argminl — (p, p.) = e; where i = arg max (p.);,
pEAIS] J

while the minimum of the CE loss is p.. These minima coincide whenever p, is a one-hot vector.
Since in our task each input sequence has a unique correct response, the target distribution p, is
always one-hot and the two losses are therefore equivalent. Their gradients also align when p. is
one-hot, differing only by a scaling factor: Vo4(p, p«) = —p«, Vples(P, P+) = — (P, p*>71 Px-
Thus, the training dynamics under DP and CE losses are qualitatively identical, making the DP loss a
perfect proxy for CE loss in our analysis.

A.4 Stage and Order of Learning

Formal description of stages Formally, if 11, ho, ... hi denote the sequence of heads activated
across training, then on an input sequence f, the model incrementally learns the functions:

fR— iy plinteh — L I

pa

where () is the empty set and qu_\f for N C [1, k] is a function from Py, to ARl and gives the
frequency of the set {f(w) : Vi € N, Tryr1—i = qr+1—i}» i-€., count the frequency of output of
the permutations that match g at positions in A/ from the right.

Order of learning. A key observation concerns the order in which heads are activated. At small
initialization scales, this order is determined by the relative magnitudes of the 3 coefficients at
initialization. For example, if B(,) > B(n,) > ... > B(x,) the heads are activated sequentially
in the order Ay, ho, .. . hg, see Fig. 4 in App.. Thus the implicit regularization induced by the scale
and shape of initialization provides a natural curriculum, guiding the model to acquire the task in a
stage-wise manner. For the remainder of the analysis, we assume without loss of generality that the
coefficients are ordered 3; > B2 > ... > (%, so that heads are activated in order 1,2, ..., k. By
re-indexing the heads, the analysis for arbitrary initial orderings reduces to this canonical case.

A.5 Supporting material for theoritical results

et —1

e +k—1

(1]

“

_ 214y Jem(R[-1) _ 5
et k—1)2 [ k— 2[R ] where 71 = (1+7)6,

A.6 Subsequent Jumps and their analysis

The subsequent jumps. Similar to the first jump, we can analyze the subsequent ones. We consider
a stylized initialization, denoted Zj,, where 3; = cforall ¢ € [1,h — 1], B, = ¢, and 3; = 0 for
all j > h, with c taken to be very large. Likewise, we set w* = c¢qef + co1 fori € [1,h — 1], and
w' = 0 otherwise. Under this initialization, we study the dynamics of the A" jump as the model
escapes the plateau where it has learned to match A — 1 tokens in the context. A key detail is the
interplay between macroscopic parameters (the large ¢) and microscopic parameters (the small €).
In this setting, the striking feature is that the macroscopic parameters remain stationary while the
microscopic ones evolve.

10
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Proposition A.2. Consider the simplified transformer model 0 = (w',w?,...w" 3) with k heads
and initialization Iy, evolving under gradient flow on the DP loss. Then:

(a) Stationarity of the macroscopic variables: The gradients of parameters in the first h — 1
heads vanish at scale Vi L,V g, L = O(e™°) fori € [1,h —1].

(b) Dynamics of the microscopic variables: At c — oo, the dynamics of the remaining parame-
ters corresponds to the those of the first jump on a task of reduced order.

Stitching the jumps. Without loss of generality, assume the initialization 8 = (c1¢, co€, ¢3¢, . . .),
for ¢y > co > c3 > ---, with € very small. Using the first-jump computations, we obtain an time
T such that 3,(T") > C for some large constant C. During this time, the gradients of the other
heads remain O(¢), so their parameters stay close to the origin. Next, applying the subsequent-jump
analysis, we can compute a time 75 such that 3, > C. Proceeding in this manner, we can stitch the
jumps together to describe the full trajectory. This shows that, in principle, the entire evolution can
be characterized by chaining together successive jumps, though we do not pursue the full analysis
here, as it does not reveal qualitatively new phenomena beyond perturbation analysis.

Generalizations of the simple model. We discuss possible relaxations of the perturbed model.
In particular, we highlight three illustrative generalizations. For simplification (A0), the attention
window of size k provides a convenient way to compute closed-form expressions. The conservation
law and the time scale can also be derived without this assumption, though in that case we lose the
directional bias and the ability to obtain closed-form formulas. For simplification , replacing the
embeddings of the last token does not pose difficulties for the analysis. The argument still holds for
the ordering 3, > 3, > B, > - - -, since the skip connection supplies the embedding of the last token
for the first jump, and the head learned at jump ¢ provides the embedding of the last token for jump
1 + 1. Simplification can also be avoided by choosing a value matrix V' that directly outputs the
response. However, the output is not guaranteed to be a probability vector. Normalizing by the sum
restores this property, making it equivalent to considering the pre-softmax scores of the responses.
These generalizations indicate that the phenomena we study are robust to modest relaxations of the
simplified setup, even if the algebraic convenience of the original model is lost.

Experiments. We use task of order 4 and the response vocabulary of also size 4. Overall, the results
confirm our theoretical predictions: the model exhibits stage-wise plateaus followed by sharp jumps,
with attention heads activating sequentially to implement recall.

B Proofs of Main Results

B.1 Proof of Theorem 3.1

The gradient flow of the parameters is given by

. ot
=-FE——
B 9B,
. ot
h

First to show a directional bias, we will show that the trajectory always move along the manifold
M ={6:w"=ae}, + 011, a1,01,€ Rand 38,,w" = 0for h # 1}.

Consider any point on the manifold M, say 8 = (w', w>,... w", 3) where w' = a¢}, + ¢;1 and
B, = 0 for h # 1. We will show that the gradient has no component along the normal space of the
manifold M; at the point 8. Hence the trajectory will always move along the manifold M.

11



404 As the parameters satisfy the form prescribed by Lemma C.2, we can invoke the Lemma C.1 to
405 compute the gradients. The population gradients are given by

ol e — 1
ET,@}L = 2ﬁhm(l + 'V)EAh,h, 5)
o 2 (e = 1) 1{i = b} + 1) o1
8W1h - (1 + '7) e+ k—1 EAh,z - mEAh,h 6)

406 where

k! ! k!
Api=— Zstl{n =T ANQh—h = Tap-n} — Zsj]l{rj =r} (Z st (1{qr—n = ﬂ-(t,k—i)})> .
=1 =1

t=1

k
s = U(S )7 Sy = Z’Yh]l{Qk—h = W(t‘k—h,)}
h=1
ap 1

e
=(1 2__ -
’Yh ( +’Y)ﬂh eo‘h + k o 1

407 Note that the gradients of 3y, for h # 1 are zero as 3, = 0 for h # 1. Also note that the gradients of
a8 w" for h # 1 are zero as 32 = 0 for h # 1. The only thing that is left to show is that the gradients of
409 w' are of the form % = &1e] + (11 for some &3, (1 € R.

410 Note that s; =1 1{gr-1 = 7.1} as v, = 0 for h # 1 and the softmax score is given by

e MHaw—1=m( k-1)} (e =) {gr1 = Tepnt+1l 1

25’:1 e H{ak-1=m¢ -1} N en+k—1 (k—1)! ’

St =

411 From Lemma C.3 we have

1 e (R| - 1) |
EA, ; = , f 1.
YT en r k1) [(k—l)!|72| ore 7
1 e (|R|—1)
EA 1 =—(k—1)EA; =— .
11 = (k= DEA, (en +k—1)2 {(kz)!m
412 So the gradient of w; given by 6251 is independent of ¢ for ¢ # 1 since EA; ; is independent of :.

413 Hence the gradient of w' is of the form % = £1e] + (11 for some &1, (1 € R. This proves the
414 directional bias of the trajectory.

415 For the next signal propagation part of the result, we will show that there exists note that EA; ; < 0
s16 forally; > Oand EA;; > 0 forall 4 > 0 and ¢ # 1. Using these expressions, the population
417 gradient of w] is given by

ol B2e™ e —1
E = (1 —  (EA;; — ——EA
w! ( +V)ea1+k—1< R A 1,1)

2p01 k—1
=(1 E EA 0
( +V)e“1+k—1<e“1+k‘—1 1,1)<

418 Similarly the population gradient of w; for ¢ # 1 is given by

o B? e —1
E = ]_ -t EA /— EA b
aw! ( +7)60‘1+k‘—1 ( T 1,1)
o ,612 ]EAI,I e‘“ — 1
Iyl G i g vy LR R
>0

12



419 The dynamics of gradient descent is given by

. ov Be k
— _ R =—(1 L EA 0
W1 awi ( +,Y)€a1+]€—1 <6a1+k—1 1,1) > )
* 8€ ,82 EAll e”‘l—l .
= _F =(1 L — = — EA 0 1
e ow! (+7)ea1+k—1( Fol  emghoiion) <0 i
. ov e —1
=—E— =-28,———— (1++)EA
B 98, B 1T VEALL >0

420 The complete dynamics of the system is given by ozl, 3, and they can be written as

EAI,I et —1
k-1 exn+4+k—-1

. . . 132 (k)eal
oy :wi_W;:(1+’Y)ea1+ll<f—l 60‘1—|—k—1EA171+ EA;; ) <O,

e(ll —

et
B= =2

(1 + 'Y)EALI >0

421 The final system of ODE is given by’

2
. B2

k2

= —E(1 A
Ry P (I+7)A1,
8, =28 &—E(l—i— )A
1= 16’0‘1 n E_1 Y 1,1
a2 Lets denote = = —2(1 + v)EA; ; which is positive and given by
2(1+7)  [en(R[=1) o€ —1
== h =(1
ek =12 | ho2yRy | Ve = 08
423 Using this the system of ODE can be written as
. B2e k>
(e +k—1)2k—1""
. 6041 _1
1 =206, E
p s e +k—1
424 Note that
'6712 — ﬁ2 et —1 =
4 ten +k—1
425
° o ’ i ’ ﬁ?eal k2 —_
flar) = f (ar)ar = f (041)(6061 ho1P k-1
426 If we choose f(a) such that
, Be kK2 _ e —1 _
f (0[1) : 2 = :ﬁ? o =,
(e +k—1) k—1 et +k—1
/ E—1(e* —1)(e* —1+k)
= f (Oél) = k2 e
k—1
=3 (e =24 e ™ —ke ' + k)
k=1 a —on —on
= f() = 2 (e —2a1 — € + ke +I4JO[1)7
k-1, . k-1, _
flay) =2 (sinh(ay) — ay) + [e™® + g — 1]

k

a27 Now f(a) — B7/4is conserved along the trajectory. As d(f(ay) — Bi/1) = 0.

428 This completes the proof of the theorem.
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429 B.2 Proof of Theorem A.2

430 The gradient flow is given by The population gradients are given by

ol e —1
ES —28,— 5~ (1+7)EA ;
28, /GlLeah+k_1( +V)EAR R, (N
o 2((e*» —1)1{i=h} +1) e — 1
=(1 . EA,; — ———EA 8
gwr — 117 o k1 vy 2 ) ®)
431 where
k! k! k!
Ah,i = — Zst]l{rt =T NQk—n = W(t,kfi)} - ZSJH{TJ = ’I"} (Z St (H{Qk—h = Tr(t,ki)})) ,
t=1 j=1 t=1
k
s=o0(s), s= Z'VhIL{Qkfh = ﬂ-(t,k—h)}
h=1
e —1
= (1 2.~ -
Th ( + ’Y)ﬁh, eon +k—1

a2 Without loss of generality, assume that y; = ¢ for ¢ € [1,h — 1]. Now split the set of permutations
433 into two partitions Pg and Pg where for query ¢, Ps is the set that matches the last h — 1 tokens
43¢ and others do not. Now s, = e “ fort € Pg. Now A; ; fori € [1,h — 1] and j # 1, it can seen that
435 sy (1{qx—i = T r_;}) = e ¢ forany ¢, hence EA; ; = e~°. The cases left are EA; ;, but it is also
436 of e"“asthe A;.’s sumto 0.

437 Now the case of i = h, now for ¢t € Pg
exp {c}exp{va{qk—n = T _n}}
> reps exp{ctexp{ynl{gr—n = Tsom}} + O(1)
exp{yn M{aqx—n = Tm}}

= +O(e™*
Zmeps exp{VnI{qr—n = T }} €™

St =

438 This expression is exactly equivalent to the first jump however now restricted on the set Pg of reduced
439 order.

a0 C  Computations of the derivatives of the simplified transformer model

441 The forward pass of the simplified transformer model on a single input sequence is given by, let r be
442 the response of the query.

i—1
R} = (A" eq;, (%a)
j=i—k
k ~
=8 (eo, Ik RY), (%)
h=1
s =0 (Sr) 9¢)
P= ) sie, (9d)
t:xi ER
(=1-(pe) (%)

443 For the convenience of the analysis, we will drop R in the subscript of S and now s € R*' where s,
aaa  denotes the score of the response corresponding to the ¢/ permutation in the sequence.

415 Derivatives wrt to the s. The derivatives of the loss with respect to the predicted scores can be
446 computed using the chain rule:

ot 0¢ 0p 0

A —e, Xp (diag(s) —ss').

Js Opdsds
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448
449
450

451
452

453

454

455

456

457

458
459

460

The co-ordinate wise derivative is

or - /
av?:—st IL{Tt:T}—ZSjIl{’I’j:T} :ft.
t =
where 7 is the response corresponding to the tth permutation in the sequence. Using the property of
the softmax we have £(S + ¢1) = £(S) as the softmax is invariant when even co-ordinate is shifted by
a constant. Now taking the derivative with c at ¢ = 0 we get
k!

>4 =0 (10)

t=1

Derivative of s wrt to 3 and w"’s The derivative of s with respect to 3 can be computed as
follows:

Js ~

37,6% =20 <€wl_h71k Rt>

The derivative of s with respect to w” can be computed as follows:

Js, OR!
L= }2<ewz haIk >

h v h
ow?! ow?!

Using Lemma D.2 we have

h
5} ~ eWVi h
8wh = IBh €z, Lk Z?Zl €w3h (eﬁ(t,k—i) - Rt')

‘ T h
A wh <<e$17thk eﬂ'(t,k—z)> <67'l h’IkR >)
Zj:l e

Note that x;_;, = gqr_p and <€z,,h71k€m,k,i)> = Hagp-n = Tunn} — YHau-n #
Teen—i t L{@k—n = Tn_snt — - Using this computation, we have,

(“)Et 26 i ~
B It =) 1 (e )
) j=1

Computing the derivative of the loss with respect to ﬂ and w! we have
k!

(‘fﬁgh —Zf 23, <€xl h,Ith> —QﬁhZ£ <€x, thth>

s —Z€ ((1+7)]1{q1c =Moo} =7 - <e“”’*’L’TkR:L>>7

owh
Jj= 1

Bt ¢ -
= ZE ( L4+ 7){qk—n =T o}t — <€zl,h,,Ika>>,
Z] 16

Now collecting the final expressions we have the following lemma.
Lemma C.1. The derivatives of the loss ¢ with respect to the parameters (3 and w"’s are given by

685 —2ﬁhZ£ (er 0 TWRE)

3(35? = EﬁjQ 1“: if ( + VU @h—n = Tn—n} — <€ml,hjk Ri‘>),

where {, = —s, (Il{rt =r}— Zf‘zl s;1{r; = r})
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461 The proof of the lemma is given above.

462 Now we will use the above lemma to compute the gradients at a particular parameter configuration,
463 we choose a general parameter configuration so that we can invoke this lemma whenever gradient
464 computations are needed.

465 Lemma C.2. Consider a parameter configuration Zg defined such that for all h and 1,
w = ahe’fl + 0p1
466 (3, is used as is. Then the gradients at this parameter configuration are given by

ot en — 1

—(1 A 11
35 = s (L A an
or J¢; e"‘h+5h en — 1
=(1 — i — ——A 12
owh (1+7) erh +k—1 h, eh +k—1 hih (12)
467  where
k! k! k!
Api=— | sil{ri=rAqu_n=meun}— | Y sjLl{r; =7} (Z st (L{qr—n = mt,kw}))
t=1 j=1 t=1

468 where s = o'(s’) and s; = 22:1 Y U{@h—h = T pn) } With v, = (1 +7) f%

469 Proof. First let us compute the forward pass

k wh

k vl

h i
E A tt 71671'(1)C i) = E _, e‘ﬂ'(fk i)
=1 i=1 Z] 1€

enton Sn

e
(eo‘h+k—1)e5h = ")+Z (ear +k—1)edn -

h—1 1

= e%h +k_ 1e7r(t7k7h) + eh _|_k_ 1“

470 Note that y = Zle €r(, ,_; 18 the same for all £. Now the presoftmax score is given by
k
~ 2 T
= Z B, <€$th .y R?> )
h=1

k
e —1
= Zﬁf (eah—l—k—l(l TN Ge-n = Tepom} =7 — (1+ V)) ;

e +k—1
g e —1 ¢ B =
h
={1+7) Zﬁ Wl{% h = W(t,k—h)}*(lJr’Y)};m*’Y;Bh-
471 Define
Oéh _1
m=+NB S (13)
472 Denote

k
Sy = Z'Yh]l{Qk—h = ﬂ-(t,k—h)}'
h=1
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473 Note that's; = s/t + c where c is a constant independent of ¢. Using the property of the softmax we
a74 haves = /(s'). Using the lemma C.1 we have

aa; —QﬁhZE (eor R,

1
_QIBhZE (eah+k (L +MUGr—h =T r-m} —7— W“(l‘i‘ﬂ)a

er —1 Ny 1 :
ey C) ;ﬁtﬂ{qkfh = Tewm} — 2B (’Y toa et 7>> ;@’
an k!
€ ’
= 26, eon +k—1 (1+7) ;gtﬂ{q’v—h = Mok}

475 Now the derivative with respect to w is given by

ot = i Zf (1+’Y 1{qr— h = Ttk L)} <e$l_h7TkRiL>)7

ow"
i 716 i t=1
2 ah+5h k!

B S (s = )~ (o ),

k!
/@2 ap+dpn et — 1 ,
ey — Zé (T +){gr—n = Ternt — m(l + NEHqe—n = Term} ),

Kl
62 ap+on e — 1
(147) con 1 k= Zf Hap—n =m@rn} — Wﬂ{% h=Txm} s

476 We introduce a notation where

k!
Ah i = th (]l{qkfh = W(t,k—rﬁ)})
t=1

477 Using this notation, the gradients can be written as

o¢ e NN
3ﬁh /@hW( +7)Anh,
or 2en+ton e —1
14y 2 (A, — =2 A,
w" =(1+7) ea, Th o ( hi T an k1 h,h>
478 where Ay, ; = t 1 (]l{q;C h = Tr_n})- Substituting the expression of K; we have
k! k!
Api =Y =si | Hrio=r} =D s;1{r; =r} | (H{ae-n = 7in}),
t=1 j=1
k! k! k!
== D sil{ri=rAqen=muo}— | Y sl{r;=r1} (Z st (H{qr—n = mt,ki)})) ;
t=1 j=1 t=1
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t=1

k! k! k!
Api=— Zstﬂ{Tt =T AQo—h =T it — Zsj]l{Tj =r} (Z st (H{gr—n = W(t,k—i)}))
=1 t=1
(14)

79 where s = o°(s’). This completes the proof of the lemma.

480 O

a8t Lemma C.3. For the parameter configuration @ = (w',w>, ... w*, 3) where w' = aye;, + 611
482 and (3, = 0 for h # 1. The following quantities are

_ 1 e (IR -1) :
EA,,; = (en +k—1)2 [ (k —1|R| ] , fori#1.

B o 1 e (IR~ 1)
EA = —(k—1)EA;; = (em +k—1)2 { (k= 2)IIR| ] .

483 wherey; = (1+7) 12651(1;;

484 Proof. Recall that s; =v11{qr—1 = Tr_1)} asyn = 0 for h # 1 and the softmax score is given by
en{ae—1=m(s,k—1)} (@ =) g1 =Tt +1 1
Z;?' Lena=mGa-n} en+k—1 (k—1)

St =

as5  First lets compute EA, ; for ¢ # 1, Note that

k! k!
(em — 1) 1{gp-1 =7upnr+1 1
ZSt (]l{qk—l = W(t,kfi,)} Z - 1( k—i) (k — 1)' (11{%—1 = W(p,k—i)}) 5
t=1 — !
B 1
T em4k—1"
486 For i = 1, we have,
k! k!
(e —1)1{gp—1 =7@rn}+1 1
ZSt (I{gr—1 = Tan_n}) = Z T 1( k—i) I (1{qr—1=Trrnl}),
t=1 t=1 ’
e’Yl
Cem4t k-1

457 Now we can compute EA; ; for 7 # 1 as follows:

k! k! k!
EA; =-E Zst]l{rt =T AQr-1=Tar i} — Zsj]]-{rj =r} (Z st (L{gr—1 = W(t,ki)})> )
j=1 t=1

t=1

M k! k!
1
=-E Zst]l{rt =T AQr—1=Turot| +E Zsj]l{rj =r} e
Lt=1 j=1 en+k—1
488 Fori # 1,
k! 1 1 k!
D ZSt]l{Tt =7rA qk—1 = W(t,ki)}] = en + kE—1 (l{ — 1)']E Z l{rt =rA dk—1 = Tr(t,ki)}] )
t=1 ’ t=1

1 1 k!

T et k—1(k—1) Z;IP(” =T A G = M),
t=
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s89 Note that for i # 1, P(r, = r A qu—1 = Tusx-n) = P(re = 7)P(qr—1 = Tx_s) due to the
as0 independence as ¢ is not same as 7. P(qr—1 = T i) = % as qx—1 is uniformly distributed over
a1 [k]. P(ry=7r)= ﬁ So,

1 1 k!

1 1 1
E = —.
e%+k—1(l~s—1)!;k\7€| e +k—1|R]

k!
Zst]l{rt =T AQk—1 = T(t,k—i)}] =
t=1

492 Now fori =1,

k! k!

en 1
E St]l{rt =TNQk—1 = 7T<f,,k—1>}] = e +k—1 (k — 1),E E ]1{7":6 =rAqp—1 = ﬂ-(t,l«—l)} s
t=1 ’

t=1
493 Coming to the expectation term, now they are no longer independent.

E

k! k!
E Z ]l{Tt =rAQk—1= W(t,k—l)}] = Z]P(Tt =TNQk—1 = ﬂ-(t,k—l))?
t=1 t=1
k!
= ZIP(Tt = T‘Qkfl = ﬂ-(t,k—l))lp(qkfl = W(t,k—l))?
t=1

k!
=Y [P(re =r,q=m|qe-1=m000) + P = 7,0 # mlqe-1 = Tun)] P(ge-1 = T(uos),
t=1

P(re =7r,q=m¢|q—1 = Ti-n) = P(re = 7)g = 7, o1 = Tion0)P(q = Tl g1 = Tnn)),
11

(k-1  (k—1)

P(ry =r,q # m¢|qr—1 = Ta—n) = P(ry = rlq # 1, @1 = Tan)P(q # Tel@r—1 = Tann),

“ [

494 Summming them up and substituting in the previous equation, we get,

O o L e |

t=1 t=1

o=y ()
_IRI=1 k=)

IR R|

1
k?

495  Substituting this back in the expectation term, we get,

k! k!
en 1
E Zstl{rt =7rANqx-1 = Tr(t,kl)}‘| = o k1 (k — 1)!E [Z ﬂ{Tt =7 ANQx—1 = ﬂ(t,kl)}]
t=1 t=1
B emn 1 RI—1 (k—1)!
S en+k—1(k-1)| |R| Rl |’
_ 671 |R| — 1 6'71 i
Cem+k—1[(k—DIR||] en+k—-1|R|

496 Recall the term for ¢ = 4, we have,

k!
Zstﬂ{rt =T NQr—1= 7T(t,k-'i)}] =
t=1

1 1 k!

1 1 1
E = —.
eVIJrkfl(kfl)!;k\m o +k—1[R]
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497 Note that

K k k!
E lz se1{ry = r}] = ZE Zst]l{rt =rAqp_1 = 7'('(”6_,‘,)}‘| ,
t=1 i=1 t=1

en RI-1 ], 1
e+ k—1 | (k-DIR[| "R

498 Now for ¢ # 1, we have,

k! k!

1
EAI,@' =-E ;St]].{’l"t = T’/\qk-_l = W(t,k—z)} — ;Sjl{’r]‘ = T'} m ’

__{11_< [IRI—1 ]g)l}

en +k—1|R]| en+k—1|(k-DIR]| IR|) en+k—1]"
1 e (R 1)

T (e k1) [(kmm ]

499 Now for 7 = 1, we have,

k! k!

EA;; =—-E Zst]l{rt =7 AQr-1=Tur 1)} — Zsj]l{rj =r}

t=1 j=1

e’Yl
en+k—1

)

_ en IR| -1 P en IR| -1
o lem+ k-1 [(k-DIR||] en+k—-1|R| en+k—1|(k-DIR|

—_ en [ IR|—1 }_ (em)? [ IR|—1 H
e k=1 [k=DIR[|  (en+k—12 [k DIR[] ]’
en(k—1) [ IR| -1

(e +k—1)2 (k- DR

:|:| = —(k — 1)EA1’Z‘ fori 7é 1.

500

500 D Technical Lemmas

1
R|

s02  Gradient of the first layer. For both relative positional encoding, the gradient of the first layer can

503 be computed as follows.

s04 Lemma D.1. Denote the forward pass of the first layer as follows,

R" = O'(Ah) )(7 R? = XTO'(Ah)t = ZU(Ah)t,i es

t
T
=0

505 The gradient of the embeddings with respect to the parameters W' is given by

wh
oR: | (es..—Ry) wi<t,
—_— J:Oe J
owr o ifi>t,
Proof.
R" =o(AM) X,

t
R =X"o(A"), =) o(A") e

T
=0
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s06 Recall that the matrix A" is defined as follows,

w) 0 0 0
whow) 0 0
N w; o ow! w) 0
A" = . . .
h h h
WZ_Q w,},_3 w, Oh
L v
Wlfl Wl*2 Wl*3 M WO
507 Now,
h
h ewt—i
U(A )t 2 t )
X e
j=0
h
t eWVi—i ¢ eW;L
Rh — eS _ eS
t t wh T t wh Tt
1=0 ZJ—Oe ’ 1=0 ZJ—O
h h t
OR! e%i e%i h
Fori < ¢, L= e - E eViel |
h t wh TTt—i 2 Ti_j
w Z e t wh °
i =0 ijo eVi j=1

s08 S0, we have the result as follows,

wi AN
OR? _ ﬁ <ejtﬂ_ — Rf) ifi <t
ow’ = e
i 0 if1 > t,
509
st0  Now in the context of simplified transformer model with a fixed window we have the following

511 Lemma D.2. Denote the forward pass of the first layer as follows,

R" = O'(Ah) )(7 R? = XTO'(A.h)t = Za(Ah)t,tfi eﬂ(twk_i)7
i=1

512 The gradient of the embeddings with respect to the parameters w' is given by

h
OR} eVi ( Rh)
= — (€ ) — g
an‘ k wh T(t,k—1i) t
J

e
1

J

Proof.

R'=c(AMX, Ri=X"o(A"),=> (A" iex,, ..

i=1
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513

evi
N y
o(A" )i = )
wi
> e
J=1
k h
h e™
R, = Z P Cmie k—iys
=1y Wi
i=1
h
OR’ eVi
- t h
Forl <i<k, owr  k (eﬂ-(t‘k—i) - Rt)
i wh
S %
i=1
514 O
si5. E  Additional Experiments
—— Loss
08 > Layer 1, Head 1 Layer 1, Head 2 Layer 1, Head 3
.
0.6
g
" 52
3 2
g, s . .
0.2
1
I
—.
0.0 — Bz {0

0 1000 000 4000 5000

2000 step (© 34
(@ (b)

Figure 4: The left panel is shown in a and the right panel in b. Note that the 8 values rise as the
loss drops, and the attention patterns at times 800, 1750, and 4500 demonstrate incremental learning.
This is in the opposite order as they are initialized in the opposite order 83 > 2 > 1
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