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Abstract

Transformers acquire in-context learning abilities in abrupt phases during training,1

often unfolding over multiple stages, during which certain keys circuits like induc-2

tion heads emerge. In this work, we characterize the training dynamics behind the3

emergence of such circuits during these stages. We focus on a synthetic in-context4

associative recall task, where sequences are drawn from random maps between a5

permutation group and a vocabulary range and the model is required to complete6

the mapping of a permutation by retrieving it from the context. On this task, we7

study the trajectories of gradient flow of a simplified two-layer, attention-only8

transformer. Leveraging symmetries in both the transformer architecture and the9

data, we derive conservation laws that guide the dynamics of the parameters. These10

conservation laws crucially reveal how initialization —both in shape and scale—11

determines the order of learning as well as the timescales over which such circuits12

emerge revealing the implicit curriculum. Furthermore, at the limit of vanishing13

scale of initialization, we characterize the trajectory of the gradient flow revealing14

how the training jumps from one saddle to another.15

1 Introduction16

In-context learning (ICL) [11], the ability of a model to perform new tasks from examples provided17

in its prompt without parameter updates, is a characteristic ability of language models. Beyond what18

these models can do in context, how these abilities emerge during training remains poorly understood.19

Empirical works [30, 12] report long plateaus in the training loss followed by abrupt transitions, after20

which specific circuits, such as induction heads, become functional. Understanding these training21

dynamics is essential both for theory (which optimization biases make ICL learnable by gradient22

descent) and for practice (how hyperparameters impact convergence speed and training stability).23

While recent analyses [28, 13] have advanced understanding, they fall short of a complete explanation.24

Approaches based on layerwise training [28] or highly simplified architectures [41] (e.g., linear25

attentions) have crucially clarified isolated aspects of the phenomenon, but struggle to account for the26

sequential acquisition of partial solutions and the duration of plateau phases observed in full models.27

In particular, we lack a theory that predicts the order in which partial circuits appear, and that explains28

what controls the length of each phase, including sensitivity to initialization scale.29

In this paper, we propose combining optimization dynamics with mechanistic interpretability to30

study how circuits emerge during training. Our analysis is purely dynamical, we study the training31

trajectories induced by gradient-based optimization, yet our conclusions are mechanistic: we identify32

which circuit is implemented, which sub-circuits appear first, and how the full circuit crystallizes.33

To render the problem analytically tractable while preserving its essential structure, we introduce a34

simplified recall task that retains the induction mechanism underlying in-context n-gram learning35

but in a form that is more amenable to analysis. Crucially, we couple this task with a series of36



principled simplifications, that isolate the essential components of the transformer responsible for37

incremental learning, while removing spurious elements that obscure analysis. Our analysis reveals a38

staged learning process: training trajectories encounter intermediate, partially correct solutions where39

gradients nearly vanish (training plateaus) before transitioning to higher-order solutions.40

Contributions. Our results (i) formalize a in-context recall task that preserves the induction structure41

while enabling tractable analysis, (ii) derive training dynamics that exhibit plateaus aligned with sub-42

circuits, and (iii) provide quantitative predictions for phase ordering and lengths as functions of model43

and optimization parameters, with empirical validation on small transformers trained end-to-end.44

2 Problem Setting45

2.1 In-Context Associative Recall Task46

In-context learning abilities of transformers are driven by certain key circuits, such as induction heads.47

A basic induction head circuit [30] learns to complete simple repeating patterns, e.g., [A][B][C] . . . [A].48

When the model encounters the second [A], the circuit attends to the first [A] and predicts the49

subsequent token, [B]. This paper investigates how models handle a more general version of this50

pattern: [A][B][C][X]...[A][B][C]. In this setting, the model must recognize the entire sequence51

[A][B][C], locate its previous occurrence in the context, and then use it to predict the next token [X].52

Formally, the task is defined as follows. The model must complete a sequence by matching the last k53

tokens, where k > 1 is the task order. Let Pk denote the set of all permutations of {0, 1, . . . , k − 1},54

indexed as π1, π2, . . . , πk!, where each πi is a string of k numbers. Let R be the set of possible55

responses. The task is defined by a function f : Pk → R, sampled from a uniform distribution D(F)56

over the set of all such functions F = {f | f : Pk → R}. An input sequence is then generated by57

first sampling q ∈ Pk uniformly at random, and independently sampling a function fτ from D(F).58

The final input sequence takes the form:59

π(1,0), π(1,1), . . . , π(1,k−1)︸ ︷︷ ︸
π1

, fτ (π1), π(2,0), . . . , π(2,k−1)︸ ︷︷ ︸
π2

, fτ (π2), . . . , q0, . . . , qk−1︸ ︷︷ ︸
qM−1

, ?.

Note that π1, π2, . . . each represent a sequence of k tokens, rather than a single token. For example,60

π1 = 0, 1, . . . , k−1. Figure ?? illustrates the task for k = 2 with a response set {A,B}. We define61

the vocabulary as S = [k] ∪R. Each sequence has a fixed length of l = (k + 1)! + k. To solve this62

task, the transformer must learn to identify the part of the context that matches the final k tokens and63

recall the subsequent token. For completeness, the context contains all possible query permutations,64

ensuring that the model can always retrieve the correct response, which enables exact learning.65

2.2 Multi-headed Attention-Only Transformer66

We analyze a specific attention-only transformer with a two-layer structure. The first layer contains67

k attention heads, and the second layer contains a single head. The architecture is based on the68

disentangled transformer [15, 28] and incorporates several simplifications from prior work [28, 14].69

Token encodings. We represent the input sequence using one-hot encodings. A sequence of length l70

is mapped into R|S| by the embedding function E : S → R|S|, defined as E(i) = e|S|
i for i ∈ [k]71

and E(ri) = e|S|
k+i. For convenience, we omit the superscript |S| in what follows. After the encoding72

layer, the input sequence x0, x1, . . . , xl−1 is given by73

X = [ex0
ex1

. . . exl−1 ]
⊤ ∈ Rl×|S|.

First attention layer. The first attention layer has k heads and considers only positional information,74

which is a convenient choice for this task. We use relative positional encodings with a causal mask.75

Each head i is parameterized by a vector wi ∈ Rl. The pre-softmax attention scores of head i form a76

lower-triangular matrix with entries given by77

Ai[g, h] =

{
wi

g−h if 0 ⩽ h ⩽ g ⩽ l − 1

−∞ otherwise
. (1)

The output of attention head i (1 ⩽ i ⩽ k) is Ri = σ(Ai)X ∈ Rl×|S|, where σ denotes the78

row-wise softmax operation with causal masking. The output of the first attention layer is the79
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concatenation of the outputs from all heads together with a skip connection R0 = X (which differs80

from the standard architecture): R = [R0 R1 . . . Rk] ∈ Rl×(k+1)S =
∑k

i=0 (e
k+1

i )
⊤ ⊗Ri.81

Second attention layer. The second attention layer consists of a single head, parameterized by
matrices Q,K ∈ R(k+1)|S|×(k+1)|S|. The attention scores are σ

(
XQ⊤KX⊤) , where the softmax is

applied row-wise with causal masking. The output of the second layer is R+ = σ
(
RQ⊤KR⊤) RV

We further simplify it by introducing a parameter β ∈ Rk and parameterize Q⊤K as

Q⊤K = diag−1

(
β2
)
⊗ Ĩk, R+ = σ

(
R
[
diag−1

(
β2
)
⊗ Ĩk

]
R⊤
)
RV

where diag−1(u) ∈ R(k+1)×(k+1) denotes a matrix with u on its first sub-diagonal and zeros82

elsewhere. Squaring of β serves two purposes, (i) it ensures positivity of the entries and (ii) it83

preserves the 2-homogeneity of Q⊤K. We choose the value matrix V = ek+1

0 ⊗ I|S| ∈ R(k+1)|S|×|S|.84

This matrix consists of a column of blocks, with the identity matrix as the first block and zeros85

elsewhere. By construction, V extracts the skip connection from the concatenated output of the first86

layer, i.e., RV = R0 = X , using the mixed-product property of the Kronecker product.87

The model output. As the loss is computed only on the last token, the model’s output depends only88

on the embedding of the final token after the second layer, i.e.,89

p = (R+)l−1 =
(
σ
(
RQ⊤KR⊤) X

)
l−1

= R⊤
(
σ
(
RQ⊤KR⊤)

l−1

)
= R⊤σ

((
RQ⊤KR⊤)

l−1

)
.

We denote the attention scores by s = σ
(
RQ⊤KR⊤)

l−1
and the corresponding pre-softmax scores90

by s̃ =
(
RQ⊤KR⊤)

l−1
. The choice of V together with the orthogonal embeddings ensures that91

p is a valid probability distribution over the vocabulary, i.e., p ∈ ∆|S|, and requires no further92

normalization. Hence, the output of the model is given by p = X⊤s = X⊤σ(s̃). Finally, we denote93

the parameters of the simplified model by θ = (w1,w2, . . . ,wk,β) here wi ∈ Rk for all i and94

β = (β1,β2, . . . ,βk) ∈ Rk. We use p(θ) to denote the output of the model for parameters θ. We95

refer to section A.2 for a discussion on the simplifications and their implications.96

2.3 The final problem setup97

Training Objective. We replace the cross-entropy (CE) loss with the dot-product (DP) loss98

ℓ(p,p∗) = 1− ⟨p,p∗⟩ ℓCE(p,p∗) = −⟨p∗, logp⟩ .

See App. A.3 for a detailed comparison of the two loss functions. Finally, the population DP loss is99

L(θ) = Efτ∼D(F),q∼Pk
ℓ(p(θ), efτ (q)) = 1− Efτ ,q

〈
p(θ), efτ (q)

〉
. (2)

Gradient Flow. To analyse the training dynamics, we consider the continuous-time limit of gradient100

descent, known as gradient flow. The parameters evolve according to the negative gradient of the101

population loss L with respect to the parameters. This approach does not account for the stochasticity102

or adaptive features of the optimizers used in practice. Nevertheless, it captures key aspects of103

training. The gradient flow is given by104

•
βh = − ∂L

∂βh
, and

•
wh

i = − ∂L
∂wh

i

, for all i, h ∈ [k].

3 Technical Results105

A stagewise learning process. We train the simplified transformer model with SGD and momentum106

on the DP loss over the in-context learning task of order k+1. A crucial observation is that the training107

dynamics are stage-wise. The model plateaus for an extended period before abruptly transitioning to108

another plateau with lower loss, and eventually converges to zero loss. This behavior becomes more109

pronounced as the initialization scale decreases, a phenomenon reminiscent of the saddle-to-saddle110

dynamics observed in deep networks under small-scale initialization [20, 31].111

To mechanistically interpret these intermediate stages, we analyze what the model represents on each112

plateau, see Figure 1. At the first plateau, the model learns to match a single token in the context:113
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one attention head h1 and its associated coefficient βh1
are activated. At the second plateau, an114

additional head h2 with coefficient βh2
is activated, enabling the model to match two tokens of the115

query, qk+1−h1 , qk+1−h2 in the context. This process continues incrementally: at each stage, a new116

head–coefficient pair is activated, allowing the model to match one additional token. After k such117

stages, all tokens in the query are matched and the model achieves zero loss. We now turn to a118

detailed study of the stage-wise dynamics. We begin by analyzing a stylized initialization that isolates119

the transitions between plateaus. We then combine these analyses to obtain a complete picture.120

The first jump. We study the dynamics of the first jump, when the model escapes from the initial121

plateau. We consider a stylized initialization, denoted I1, where β1 = ϵ and βj = 0 for all j ̸= 1.122

The heads are initialized as wi = 0 for all i. Note that at initialization, all heads are symmetric.123

Theorem 3.1. Consider the simplified transformer model θ = (w1,w2, . . .wk,β) with k heads and124

initialization I1, evolving under gradient flow on the DP loss. Then:125

(a) Directional bias: For all time t ⩾ 0, w1(t) = α1(t)e
k
1 + δ1(t)1 for some α(t), δ(t) ∈ R.126

(b) Sparse attention:
•
w1

1 > 0 and
•
w1

i < 0,∀i ̸= 1, i.e., the head attends to the 1st token from end.127

(c) A Sufficient ODE: The learning dynamics can be fully described by the evolution of α1(t),β1(t)128

•
α1 =

β2
1 e

α1

(eα1 + k − 1)
2

k2

k − 1
Ξ,

•
β1 = 2β1

eα1 − 1

eα1 + k − 1
Ξ

where Ξ is defined in equation (4) in Appendix.129

(d) Conservation law: The quantity f(α1) − β2
1/4 is conserved along the trajectory, i.e., the time130

derivative d(f(α1)− β2
1/4) = 0 where131

f(α1) = 2
k − 1

k2
(sinh(α1)− α1)−

k − 1

k

[
e−α1 + α1 − 1

]
.

Some comments are in order. The parameters of the heads except head 1 are stationary. All relative132

position encodings except w1
1 evolves together. This follows from the inherent symmetry of the task:133

since token positions an be permuted within a sequence without leaving the distribution, the dynamics134

must preserve this symmetry. Combined with the symmetry of the initialization, this leads to the135

directional bias described above. The transformer rapidly learns to attend to the first token and results136

in sprase attention. There is a clear dichotomy: the embedding corresponding to this token grows,137

while the others decay at proportional rates.138

From the ODE description, on any compact set, the time derivatives are bounded away from zero,139

ensuring that both α1 and β1 diverge to infinity, where the gradient is zero. The conservation140

law show a coupled evolution of the parameters, note that sub conservation laws are common in141

dynamical systems, and recent works have identified conservation principles in transformers as142

well [27]. However, prior results are typically restricted to a single attention layer. In contrast,143

our result shows how parameters across multiple layers, separated by the softmax, jointly obey a144

conservation law.145

This conservation law allows us to derive the timescale of the jump, i.e., how long training remains in146

the plateau. Suppose β1(0) = ϵ with ϵ ≈ 0. For convenience define s = eα1 − 1 with s(0) = 0, for147

small s, a Taylor expansion gives β2
1 ≈ 4s2 + ϵ2, and the local dynamics reduce to ds ∼ c(s2 + ϵ2).148

Thus the growth of parameters in self-attention has an information exponent of 2 [5]. Solving the ODE149

yields s ≈ ϵ tan(ϵT ), implying that s requires O(1/ϵ) time to reach O(1). When s has sufficiently150

grown, the dynamics switch regimes. Now βh ∼ √
s, Ξ which decays in s kicks in and the ODE151

simplifies to152

ds ∼ bse−s =⇒
∫

es

s
ds = bT (3)

The integral function on the right-hand side is the exponential integral, implying that s grows at rate153

log T and hence α1 grows only at rate log log T .154

Full stagewise dynamics. We refer to Appendix A.6 for the analysis of subsequent jumps, which is155

very similar to the first jump but of reduced order. Combining these analyses, we paint a complete156

picture of the stagewise dynamics.157
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A Appendix262
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Figure 1: The left panel is shown in a and the right panel in b. Note that the β values rise simultane-
ously with the loss, and the attention patterns at times 800, 1750, and 4500 demonstrate incremental
learning.

Notation. For any positive integers a,b,s, [s] denotes the set {0, 1, . . . , s− 1}, and [a, b] represents263

{a, . . . , b}. For a vector v, its i-th coordinate is vi and es
i is the i-th standard basis vector in Rs. For a264

matrix A ∈ Rm×n, its entry at row i and column j is Aij , and its r-th row is Ar ∈ Rn. For any set265

S, |S| denotes the cardinality of the vocabulary. ∆N denotes the probability simplex in RN . The266

Kronecker product is denoted by ⊗. We use 1 to denote all vector of all ones.267

Definition A.1 (Jacobian of a function). Let f : Rm → Rn be a C1-function defined on a variable268

X ∈ Rm. ∂f
∂X denotes the Jacobian which is a function from Rm → Rn×m.269

0 1
A

1 0
B

1 0
?

Figure 2: Illustration of the in-context associative recall task. The sequence shows mappings between
query permutation elements (rectangles labeled 0, 1) and response tokens (triangles labeled A, B).
The model must predict the missing association, marked with "?".
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A.1 Related Work270

In-context learning. The phenomenon of in-context learning (ICL) [11] has been investigated271

from several perspectives. Mechanistic interpretability has identified induction heads as key circuits272

supporting ICL [30]. A complementary direction examines restricted hypothesis classes, providing273

controlled settings to analyze how transformers develop in-context capabilities. A recurring observa-274

tion across these studies is the emergence of training plateaus followed by sudden capability gains275

[12, 24]. These dynamics have been observed in regression tasks [17, 40, 2], boolean and formal276

language recognition [7, 3], and n-gram prediction.277

n-gram models. n-grams models are related our work as the transformer circuit that solves our278

task also solves the taks of in-context learning n-grams. n-gram language models [35, 23] provide a279

natural testbed for analyzing transformer behavior. Several recent works adopt this viewpoint: the280

optimization landscape has been analyzed in [26], expressivity over n-gram distributions in [36],281

and in-context generalization in [32]. Other studies connect ICL to the emergence of induction282

heads [8] and their acquisition through gradient descent [28]. Edelman et al. [14] identify stage-wise283

dynamics in transformer training on in-context n-gram prediction, where intermediate solutions284

resemble sub-n-grams, while Varre et al. [37] formalize these sub-n-grams as near-stationary points.285

Finally, Chen et al. [13] investigate the same task with a modified architecture and initialization286

scheme that enforces head specialization from the start, thereby eliminating the stage-wise dynamics287

central to our analysis.288

Incremental learning. Plateau-shaped learning curves arise broadly in neural network training,289

beyond ICL. Early work by Fukumizu and Amari [16] linked such phenomena to critical points290

in supervised learning. Related characterizations appear in simplified models such as matrix and291

tensor factorization [33, 21], matrix sensing [4, 25, 22], diagonal and linear networks [19, 34, 18, 20,292

6, 31, 38, 39], ReLU networks [10, 1], and simplified transformer architectures [9]. Nichani et al.293

[29] studied the stage wise dynamics in Factual recall with linear attention. These results provide294

theoretical tools that we build on to characterize plateaus in in-context learning.295

A.2 A simplified model296

The goal of this paper is to study the training dynamics of transformers on the in-context associative297

recall task. The simplified architecture described above, although easier than a full transformer,298

remains too complex for a complete study of training dynamics. To address this intractability, we299

introduce additional simplifications that preserve the qualitative behavior of the full model while300

making analysis feasible. Before detailing these simplifications, we first present the construction of301

the solution implemented by the transformer for this task, which clarifies the rationale behind our302

design choices.303

The transformer’s solution. To solve the task, the transformer must learn to attend to the portion of304

the context that matches the final k tokens. This mechanism is implemented through a multi-head305

construction, variants of which have appeared in prior work [14, 32]. Its parameters are defined as306

wi = c · el

i where i ∈ [1, k], Q⊤K = c
(

B ⊗ Ĩk

)
.

Here c is a positive constant, Ĩk ∈ R|S|×|S| where the first k×k block is given by Ĩ:k,:k = Ik−γ1k1
⊤
k307

and 0’s elsewhere. The matrix B ∈ R(k+1)×(k+1) is defined as308

For 0 ⩽ g, h ⩽ k Bgh =

{
1 if g + 1 = h

0 otherwise
.

As c → ∞, the relative positional encoding ensures that head h outputs the embedding of xi−h for
token i. With this choice of B, the presoftmax attention scores are s̃i ≈ c

∑k
h=1 1{xl−h = xi−h}

which is maximized when the histories of i and l match. In the limit c → ∞, the softmax approaches
hardmax attention, i.e, si → 1 (where i is the token that matches the history). The model output is
then

p =
∑
j

sjexj
≈ exi

.

This construction is illustrated in the Figure 3.309
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exl−1
exl−2

exl−3

exi−2

2nd Head

exi−1

1st Head

exi

Skip

β ⊗ Ĩ|S|

Figure 3: Layer-2 representation structure of the optimal solution constructed by the transfomer We
use it to simplify this structure by a diagonal block matrix with trainable scales.

Simplifying the model. Our simplifications are motivated by the transformer’s solution described310

above and preserve its overall structure, especially in the second layer. We emphasize that, despite311

these simplifications, the analysis remains intricate, as shown in the following sections and the training312

dynamics of the simplified model closely mirror those of the original model. For i ∈ [k, l − 1], t ∈313

[l], h ∈ [1, k], the modification of the parametric model are given by:314

Original model Simplified model

Rh

i =

i∑
j=0

σ(Ah)ij exj
,

s̃t =

k∑
g,h=0

[
Rh

l−1

]⊤ [
Q⊤K

]
hg

[Rg

t ] ,

s = σ(s̃), p =

l−1∑
t=0

st ext
.

Rh

i =
i−1∑

j=i−k

σ(Ah)ij exj
,

s̃t =
k∑

h=1

[
exl−h

]⊤
β2

h

[̃
Ik

]
[Rh

t ] , ,

s = σ (s̃R) , p =
∑

t:xt∈R
st ext

.

315

In words, we make the following modifications:316

(A0) We fix the attention window in the first layer to k for all heads. For each head h we train only317

the weights wh
j for 1 ⩽ j ⩽ k while the remaining entries are masked out and set to −∞.318

(A1) We configure the second-layer attention parameters to match the structure of the optimal
solution shown in Figure 3. This configuration is held fixed, and we train only the scalar
multipliers that scale these parameters. In particular, we introduce a parameter β ∈ Rk and
parameterize Q⊤K as

Q⊤K = diag−1

(
β2
)
⊗ Ĩk,

where diag−1(u) ∈ R(k+1)×(k+1) denotes a matrix with u on its first sub-diagonal and zeros319

elsewhere. Squaring of β serves two purposes, (i) it ensures positivity of the entries and (ii) it320

preserves the 2-homogeneity of Q⊤K.321

(A2) As a further simplification, we replace the embeddings of the last with its embeddings at the322

solution. This assumption is mild and does not affect the training dynamics. It is mainly a323

convenience, as it avoids the bilinearity of the first layer outputs and leads to simpler gradient324

computations.325
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(A3) Since the output always lies in R, we trim s̃ and apply the softmax only to the coordinates326

corresponding to responses. This ensures the output is always a probability vector over R.327

Other than (A1) which simplifies the second attention layer from matrix parameters to vector328

parameters, the other simplifications are mild and do not affect the essence of the analysis. We justify329

these choices both analytically and empirically in the next section.330

Finally, we denote the parameters of the simplified model by θ = (w1,w2, . . . ,wk,β) here wi ∈ Rk331

for all i and β = (β1,β2, . . . ,βk) ∈ Rk. We use p(θ) to denote the output of the model for332

parameters θ.333

A.3 Cross Entropy and Dot-Product losses.334

The minimum of the DP loss is335

argmin
p∈∆|S|

1− ⟨p,p∗⟩ = ei where i = argmax
j

(p∗)j ,

while the minimum of the CE loss is p∗. These minima coincide whenever p∗ is a one-hot vector.336

Since in our task each input sequence has a unique correct response, the target distribution p∗ is337

always one-hot and the two losses are therefore equivalent. Their gradients also align when p∗ is338

one-hot, differing only by a scaling factor: ∇pℓ(p,p∗) = −p∗, ∇pℓCE(p,p∗) = −⟨p,p∗⟩−1
p∗.339

Thus, the training dynamics under DP and CE losses are qualitatively identical, making the DP loss a340

perfect proxy for CE loss in our analysis.341

A.4 Stage and Order of Learning342

Formal description of stages Formally, if h1, h2, . . . hk denote the sequence of heads activated343

across training, then on an input sequence fτ the model incrementally learns the functions:344

f∅
τ −→ f{h1}

τ −→ f{h1,h2}
τ −→ . . . −→ f [1,k]

τ ,

where ∅ is the empty set and fN
τ for N ⊆ [1, k] is a function from Pk+1 to ∆|R| and gives the345

frequency of the set {fτ (π) : ∀ i ∈ N , πk+1−i = qk+1−i}, i.e., count the frequency of output of346

the permutations that match q at positions in N from the right.347

Order of learning. A key observation concerns the order in which heads are activated. At small348

initialization scales, this order is determined by the relative magnitudes of the β coefficients at349

initialization. For example, if β(h1) > β(h2) > . . . > β(hk), the heads are activated sequentially350

in the order h1, h2, . . . hk, see Fig. 4 in App.. Thus the implicit regularization induced by the scale351

and shape of initialization provides a natural curriculum, guiding the model to acquire the task in a352

stage-wise manner. For the remainder of the analysis, we assume without loss of generality that the353

coefficients are ordered β1 > β2 > . . . > βk, so that heads are activated in order 1, 2, . . . , k. By354

re-indexing the heads, the analysis for arbitrary initial orderings reduces to this canonical case.355

A.5 Supporting material for theoritical results356

Ξ =
2(1 + γ)

(eγ1 + k − 1)2

[
eγ1(|R| − 1)

(k − 2)!|R|

]
where γ1 = (1 + γ)β2

1

eα1 − 1

eα1 + k − 1
(4)

A.6 Subsequent Jumps and their analysis357

The subsequent jumps. Similar to the first jump, we can analyze the subsequent ones. We consider358

a stylized initialization, denoted Ih, where βi = c for all i ∈ [1, h − 1], βh = ϵ, and βj = 0 for359

all j > h, with c taken to be very large. Likewise, we set wi = c1e
k
i + c21 for i ∈ [1, h − 1], and360

wi = 0 otherwise. Under this initialization, we study the dynamics of the hth jump as the model361

escapes the plateau where it has learned to match h − 1 tokens in the context. A key detail is the362

interplay between macroscopic parameters (the large c) and microscopic parameters (the small ϵ).363

In this setting, the striking feature is that the macroscopic parameters remain stationary while the364

microscopic ones evolve.365
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Proposition A.2. Consider the simplified transformer model θ = (w1,w2, . . .wk,β) with k heads366

and initialization Ih, evolving under gradient flow on the DP loss. Then:367

(a) Stationarity of the macroscopic variables: The gradients of parameters in the first h− 1368

heads vanish at scale ∇wiL,∇βi
L = O(e−c) for i ∈ [1, h− 1].369

(b) Dynamics of the microscopic variables: At c → ∞, the dynamics of the remaining parame-370

ters corresponds to the those of the first jump on a task of reduced order.371

Stitching the jumps. Without loss of generality, assume the initialization β = (c1ϵ, c2ϵ, c3ϵ, . . .),372

for c1 > c2 > c3 > · · · , with ϵ very small. Using the first-jump computations, we obtain an time373

T such that β1(T ) > C for some large constant C. During this time, the gradients of the other374

heads remain O(ϵ), so their parameters stay close to the origin. Next, applying the subsequent-jump375

analysis, we can compute a time T2 such that β2 > C. Proceeding in this manner, we can stitch the376

jumps together to describe the full trajectory. This shows that, in principle, the entire evolution can377

be characterized by chaining together successive jumps, though we do not pursue the full analysis378

here, as it does not reveal qualitatively new phenomena beyond perturbation analysis.379

Generalizations of the simple model. We discuss possible relaxations of the perturbed model.380

In particular, we highlight three illustrative generalizations. For simplification (A0), the attention381

window of size k provides a convenient way to compute closed-form expressions. The conservation382

law and the time scale can also be derived without this assumption, though in that case we lose the383

directional bias and the ability to obtain closed-form formulas. For simplification (A2), replacing the384

embeddings of the last token does not pose difficulties for the analysis. The argument still holds for385

the ordering β1 > β2 > β3 > · · · , since the skip connection supplies the embedding of the last token386

for the first jump, and the head learned at jump i provides the embedding of the last token for jump387

i+ 1. Simplification (A3) can also be avoided by choosing a value matrix V that directly outputs the388

response. However, the output is not guaranteed to be a probability vector. Normalizing by the sum389

restores this property, making it equivalent to considering the pre-softmax scores of the responses.390

These generalizations indicate that the phenomena we study are robust to modest relaxations of the391

simplified setup, even if the algebraic convenience of the original model is lost.392

Experiments. We use task of order 4 and the response vocabulary of also size 4. Overall, the results393

confirm our theoretical predictions: the model exhibits stage-wise plateaus followed by sharp jumps,394

with attention heads activating sequentially to implement recall.395

B Proofs of Main Results396

B.1 Proof of Theorem 3.1397

The gradient flow of the parameters is given by398

•
βh = −E

∂ℓ

∂βh
,

•
wh

i = −E
∂ℓ

∂wh
i

.

First to show a directional bias, we will show that the trajectory always move along the manifold399

M1 = {θ : w1 = α1e
1

h + δ11, α1, δ1,∈ R and βh,w
h = 0 for h ̸= 1}.400

Consider any point on the manifold M1 say θ = (w1,w2, . . .wk,β) where w1 = α1e
1

h + δ11 and401

βh = 0 for h ̸= 1. We will show that the gradient has no component along the normal space of the402

manifold M1 at the point θ. Hence the trajectory will always move along the manifold M1.403
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As the parameters satisfy the form prescribed by Lemma C.2, we can invoke the Lemma C.1 to404

compute the gradients. The population gradients are given by405

E
∂ℓ

∂βh
= 2βh

eαh − 1

eαh + k − 1
(1 + γ)E∆h,h, (5)

E
∂ℓ

∂wh
i

= (1 + γ)
β2

h ((e
αh − 1)1{i = h}+ 1)

eαh + k − 1

(
E∆h,i −

eαh − 1

eαh + k − 1
E∆h,h

)
(6)

where406

∆h,i = −

 k!∑
t=1

st1{rt = r ∧ qk−h = π(t,k−i)} −

 k!∑
j=1

sj1{rj = r}

( k!∑
t=1

st (1{qk−h = π(t,k−i)})
) ,

s = σ(s
′
), s

′
t =

k∑
h=1

γh1{qk−h = π(t,k−h)}

γh = (1 + γ)β2
h

eαh − 1

eαh + k − 1

Note that the gradients of βh for h ̸= 1 are zero as βh = 0 for h ̸= 1. Also note that the gradients of407

wh for h ̸= 1 are zero as β2
h = 0 for h ̸= 1. The only thing that is left to show is that the gradients of408

w1 are of the form ∂ℓ
∂w1 = ξ1e

1
1 + ζ11 for some ξ1, ζ1 ∈ R.409

Note that s
′
t = γ11{qk−1 = π(t,k−1)} as γh = 0 for h ̸= 1 and the softmax score is given by410

st =
eγ11{qk−1=π(t,k−1)}∑k!
j=1 e

γ11{qk−1=π(j,k−1)}
=

(eγ1 − 1)1{qk−1 = π(t,k−1)}+ 1

eγ1 + k − 1

1

(k − 1)!
.

From Lemma C.3 we have411

E∆1,i =
1

(eγ1 + k − 1)2

[
eγ1(|R| − 1)

(k − 1)!|R|

]
, for i ̸= 1.

E∆1,1 = −(k − 1)E∆1,i = − 1

(eγ1 + k − 1)2

[
eγ1(|R| − 1)

(k − 2)!|R|

]
.

So the gradient of w1
i given by ∂ℓ

∂w1
i

is independent of i for i ̸= 1 since E∆1,i is independent of i.412

Hence the gradient of w1 is of the form ∂ℓ
∂w1 = ξ1e

1
1 + ζ11 for some ξ1, ζ1 ∈ R. This proves the413

directional bias of the trajectory.414

For the next signal propagation part of the result, we will show that there exists note that E∆1,1 < 0415

for all γ1 > 0 and E∆1,i > 0 for all γ1 > 0 and i ̸= 1. Using these expressions, the population416

gradient of w1
1 is given by417

E
∂ℓ

∂w1
1

= (1 + γ)
β2

1 e
α1

eα1 + k − 1

(
E∆1,1 −

eα1 − 1

eα1 + k − 1
E∆1,1

)
= (1 + γ)

β2
1 e

α1

eα1 + k − 1

(
k − 1

eα1 + k − 1
E∆1,1

)
< 0

Similarly the population gradient of w1
i for i ̸= 1 is given by418

E
∂ℓ

∂w1
i

= (1 + γ)
β2

1

eα1 + k − 1

(
E∆1,i −

eα1 − 1

eα1 + k − 1
E∆1,1

)
,

= (1 + γ)
β2

1

eα1 + k − 1

(
−E∆1,1

k − 1
− eα1 − 1

eα1 + k − 1
E∆1,1

)
,

> 0
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The dynamics of gradient descent is given by419

•
w1

1 = −E
∂ℓ

∂w1
1

= −(1 + γ)
β2

1 e
α1

eα1 + k − 1

(
k

eα1 + k − 1
E∆1,1

)
> 0,

•
w1

i = −E
∂ℓ

∂w1
i

= (1 + γ)
β2

1

eα1 + k − 1

(
−E∆1,1

k − 1
− eα1 − 1

eα1 + k − 1
E∆1,1

)
< 0, i ̸= 1

•
β1 = −E

∂ℓ

∂β1
= −2β1

eα1 − 1

eα1 + k − 1
(1 + γ)E∆1,1 > 0

The complete dynamics of the system is given by
•
α1,

•
β1 and they can be written as420

•
α1 =

•
w1

1 −
•
w1

2 = (1 + γ)
β2

1

eα1 + k − 1

(
(k)eα1

eα1 + k − 1
E∆1,1 +

E∆1,1

k − 1
+

eα1 − 1

eα1 + k − 1
E∆1,1

)
< 0,

•
β1 = −2β1

eα1 − 1

eα1 + k − 1
(1 + γ)E∆1,1 > 0

The final system of ODE is given by ’421

•
α1 =

β2
1 e

α1

eα1 + k − 1

2
k2

k − 1
− E(1 + γ)∆1,1,

•
β1 = 2β1

eα1 − 1

eα1 + k − 1
− E(1 + γ)∆1,1

Lets denote Ξ = −2(1 + γ)E∆1,1 which is positive and given by422

Ξ =
2(1 + γ)

(eγ1 + k − 1)2

[
eγ1(|R| − 1)

(k − 2)!|R|

]
where γ1 = (1 + γ)β2

1

eα1 − 1

eα1 + k − 1

Using this the system of ODE can be written as423

•
α1 =

β2
1 e

α1

(eα1 + k − 1)
2

k2

k − 1
Ξ,

•
β1 = 2β1

eα1 − 1

eα1 + k − 1
Ξ

Note that424

•

β2
1

4
= β2

1

eα1 − 1

eα1 + k − 1
Ξ

425

•
f(α1) = f

′
(α1)

•
α1 = f

′
(α1)

β2
1 e

α1

(eα1 + k − 1)
2

k2

k − 1
Ξ

If we choose f(α1) such that426

f
′
(α1)

β2
1 e

α1

(eα1 + k − 1)
2

k2

k − 1
Ξ = β2

1

eα1 − 1

eα1 + k − 1
Ξ,

=⇒ f
′
(α1) =

k − 1

k2
(eα1 − 1)(eα1 − 1 + k)

eα1

=
k − 1

k2
(
eα1 − 2 + e−α1 − ke−α1 + k

)
=⇒ f(α1) =

k − 1

k2
(
eα1 − 2α1 − e−α1 + ke−α1 + kα1

)
,

f(α1) = 2
k − 1

k2
(sinh(α1)− α1) +

k − 1

k

[
e−α1 + α1 − 1

]
Now f(α1)− β2

1/4 is conserved along the trajectory. As d(f(α1)− β2
1/4) = 0.427

This completes the proof of the theorem.428
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B.2 Proof of Theorem A.2429

The gradient flow is given by The population gradients are given by430

E
∂ℓ

∂βh
= 2βh

eαh − 1

eαh + k − 1
(1 + γ)E∆h,h, (7)

E
∂ℓ

∂wh
i

= (1 + γ)
β2

h ((e
αh − 1)1{i = h}+ 1)

eαh + k − 1

(
E∆h,i −

eαh − 1

eαh + k − 1
E∆h,h

)
(8)

where431

∆h,i = −

 k!∑
t=1

st1{rt = r ∧ qk−h = π(t,k−i)} −

 k!∑
j=1

sj1{rj = r}

( k!∑
t=1

st (1{qk−h = π(t,k−i)})
) ,

s = σ(s
′
), s

′
t =

k∑
h=1

γh1{qk−h = π(t,k−h)}

γh = (1 + γ)β2
h

eαh − 1

eαh + k − 1

Without loss of generality, assume that γi = c for i ∈ [1, h− 1]. Now split the set of permutations432

into two partitions PS and Pc
S where for query q, PS is the set that matches the last h − 1 tokens433

and others do not. Now st = e−c for t ∈ Pc
S . Now ∆i,j for i ∈ [1, h− 1] and j ̸= i, it can seen that434

st (1{qk−i = π(t,k−j)}) = e−c for any t, hence E∆i,j = e−c. The cases left are E∆i,i, but it is also435

of e−c as the ∆i,:’s sum to 0.436

Now the case of i = h, now for t ∈ PS437

st =
exp {c} exp{γh1{qk−h = π(t,k−h)}}∑

πt∈PS
exp {c} exp{γh1{qk−h = π(t,k−h)}}+O(1)

,

=
exp{γh1{qk−h = π(t,k−h)}}∑

πt∈PS
exp{γh1{qk−h = π(t,k−h)}}

+O(e−c)

This expression is exactly equivalent to the first jump however now restricted on the set PS of reduced438

order.439

C Computations of the derivatives of the simplified transformer model440

The forward pass of the simplified transformer model on a single input sequence is given by, let r be441

the response of the query.442

Rh

i =

i−1∑
j=i−k

σ(Ah)ij exj
, (9a)

s̃t =

k∑
h=1

β2
h

〈
exl−h

, Ĩk R
h

t

〉
, (9b)

s = σ (s̃R) (9c)

p =
∑

t:xt∈R
st ext

(9d)

ℓ = 1− ⟨p, er⟩ (9e)

For the convenience of the analysis, we will drop R in the subscript of s̃ and now s̃ ∈ Rk! where s̃t443

denotes the score of the response corresponding to the tth permutation in the sequence.444

Derivatives wrt to the s̃. The derivatives of the loss with respect to the predicted scores can be445

computed using the chain rule:446

∂ℓ

∂s̃
=

∂ℓ

∂p

∂p

∂s

∂s

∂s̃
= −e⊤r X⊤

R
(
diag(s)− s s⊤

)
.
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The co-ordinate wise derivative is447

∂ℓ

∂s̃t
= −st

1{rt = r} −
k!∑

j=1

sj1{rj = r}

 = ℓ
′
t.

where rt is the response corresponding to the tth permutation in the sequence. Using the property of448

the softmax we have ℓ(s̃+ c1) = ℓ(s̃) as the softmax is invariant when even co-ordinate is shifted by449

a constant. Now taking the derivative with c at c = 0 we get450

k!∑
t=1

ℓ
′
t = 0 (10)

Derivative of s̃ wrt to β and wh’s The derivative of s̃ with respect to β can be computed as451

follows:452

∂s̃t
∂βh

= 2βh

〈
exl−h

, Ĩk R
h

t

〉
The derivative of s̃ with respect to wh

i can be computed as follows:453

∂s̃t
∂wh

i

= β2
h

〈
exl−h

, Ĩk
∂Rh

t

∂wh
i

〉

Using Lemma D.2 we have454

∂s̃t
∂wh

i

= β2
h

〈
exl−h

, Ĩk
ew

h
i∑k

j=1 e
wh

j

(
eπ(t,k−i)

−Rh

t

)〉

= β2
h

ew
h
i∑k

j=1 e
wh

j

(〈
exl−h

, Ĩk eπ(t,k−i)

〉
−
〈
exl−h

, Ĩk R
h

t

〉)
Note that xl−h = qk−h and

〈
exl−h

, Ĩk eπ(t,k−i)

〉
= 1{qk−h = π(t,k−i)} − γ1{qk−h ̸=455

π(t,k−i)}1{qk−h = π(t,k−i)} − γ. Using this computation, we have,456

∂s̃t
∂wh

i

=
β2

he
wh

i∑k
j=1 e

wh
j

(
(1 + γ)1{qk−h = π(t,k−i)} − γ −

〈
exl−h

, Ĩk R
h

t

〉)
Computing the derivative of the loss with respect to β and wh

i we have457

∂ℓ

∂βh
=

k!∑
t=1

ℓ
′
t 2βh

〈
exl−h

, Ĩk R
h

t

〉
= 2βh

k!∑
t=1

ℓ
′
t

〈
exl−h

, Ĩk R
h

t

〉
∂ℓ

∂wh
i

=

k!∑
t=1

ℓ
′
t

β2
he

wh
i∑k

j=1 e
wh

j

(
(1 + γ)1{qk−h = π(t,k−i)} − γ −

〈
exl−h

, Ĩk R
h

t

〉)
,

=
β2

he
wh

i∑k
j=1 e

wh
j

k!∑
t=1

ℓ
′
t

(
(1 + γ)1{qk−h = π(t,k−i)} −

〈
exl−h

, Ĩk R
h

t

〉)
,

Now collecting the final expressions we have the following lemma.458

Lemma C.1. The derivatives of the loss ℓ with respect to the parameters β and wh’s are given by459

∂ℓ

∂βh
= 2βh

k!∑
t=1

ℓ
′
t

〈
exl−h

, Ĩk R
h

t

〉
∂ℓ

∂wh
i

=
β2

he
wh

i∑k
j=1 e

wh
j

k!∑
t=1

ℓ
′
t

(
(1 + γ)1{qk−h = π(t,k−i)} −

〈
exl−h

, Ĩk R
h

t

〉)
,

where ℓ
′
t = −st

(
1{rt = r} −∑k!

j=1 sj1{rj = r}
)

.460
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The proof of the lemma is given above.461

Now we will use the above lemma to compute the gradients at a particular parameter configuration,462

we choose a general parameter configuration so that we can invoke this lemma whenever gradient463

computations are needed.464

Lemma C.2. Consider a parameter configuration IG defined such that for all h and i,465

wh = αhe
k

h + δh1

βh is used as is. Then the gradients at this parameter configuration are given by466

∂ℓ

∂βh
= 2βh

eαh − 1

eαh + k − 1
(1 + γ)∆h,h, (11)

∂ℓ

∂wh
i

= (1 + γ)
β2

he
αh+δh

eαh + k − 1

(
∆h,i −

eαh − 1

eαh + k − 1
∆h,h

)
(12)

where467

∆h,i = −

 k!∑
t=1

st1{rt = r ∧ qk−h = π(t,k−i)} −

 k!∑
j=1

sj1{rj = r}

( k!∑
t=1

st (1{qk−h = π(t,k−i)})
)

where s = σ(s
′
) and s

′
t =

∑k
h=1 γh1{qk−h = π(t,k−h)} with γh = (1 + γ)β2

h

eαh−1
eαh+k−1 .468

Proof. First let us compute the forward pass469

Rh

t =

k∑
i=1

σ(Ah)t,t−i eπ(t,k−i)
=

k∑
i=1

ew
h
i∑k

j=1 e
wh

j

eπ(t,k−i)
,

=
eαh+δh

(eαh + k − 1) eδh
eπ(t,k−h)

+
∑
i ̸=h

eδh

(eαh + k − 1) eδh
eπ(t,k−i)

,

=
eαh − 1

eαh + k − 1
eπ(t,k−h)

+
1

eαh + k − 1
µ

Note that µ =
∑k

i=1 eπ(t,k−i)
is the same for all t. Now the presoftmax score is given by470

s̃t =

k∑
h=1

β2
h

〈
exl−h

, Ĩk R
h

t

〉
,

=

k∑
h=1

β2
h

(
eαh − 1

eαh + k − 1
(1 + γ)1{qk−h = π(t,k−h)} − γ − 1

eαh + k − 1
(1 + γ)

)
,

= (1 + γ)

k∑
h=1

β2
h

eαh − 1

eαh + k − 1
1{qk−h = π(t,k−h)} − (1 + γ)

k∑
h=1

β2
h

eαh + k − 1
− γ

k∑
h=1

β2
h.

Define471

γh = (1 + γ)β2
h

eαh − 1

eαh + k − 1
. (13)

Denote472

s
′
t =

k∑
h=1

γh1{qk−h = π(t,k−h)}.
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Note that s̃t = s
′
t + c where c is a constant independent of t. Using the property of the softmax we473

have s = ℓ(s
′
). Using the lemma C.1 we have474

∂ℓ

∂βh
= 2βh

k!∑
t=1

ℓ
′
t

〈
exl−h

, Ĩk R
h

t

〉
,

= 2βh

k!∑
t=1

ℓ
′
t

(
eαh − 1

eαh + k − 1
(1 + γ)1{qk−h = π(t,k−h)} − γ − 1

eαh + k − 1
(1 + γ)

)
,

= 2βh

eαh − 1

eαh + k − 1
(1 + γ)

k!∑
t=1

ℓ
′
t1{qk−h = π(t,k−h)} − 2βh

(
γ +

1

eαh + k − 1
(1 + γ)

) k!∑
t=1

ℓ
′
t,

= 2βh

eαh − 1

eαh + k − 1
(1 + γ)

k!∑
t=1

ℓ
′
t1{qk−h = π(t,k−h)},

Now the derivative with respect to wh
i is given by475

∂ℓ

∂wh
i

=
β2

he
wh

i∑k
j=1 e

wh
j

k!∑
t=1

ℓ
′
t

(
(1 + γ)1{qk−h = π(t,k−i)} −

〈
exl−h

, Ĩk R
h

t

〉)
,

=
β2

he
αh+δh

eαh + k − 1

k!∑
t=1

ℓ
′
t

(
(1 + γ)1{qk−h = π(t,k−i)} −

〈
exl−h

, Ĩk R
h

t

〉)
,

=
β2

he
αh+δh

eαh + k − 1

k!∑
t=1

ℓ
′
t

(
(1 + γ)1{qk−h = π(t,k−i)} −

eαh − 1

eαh + k − 1
(1 + γ)ℓ

′
t1{qk−h = π(t,k−h)}

)
,

= (1 + γ)
β2

he
αh+δh

eαh + k − 1

k!∑
t=1

ℓ
′
t

(
1{qk−h = π(t,k−i)} −

eαh − 1

eαh + k − 1
1{qk−h = π(t,k−h)}

)
,

We introduce a notation where476

∆h,i =

k!∑
t=1

ℓ
′
t (1{qk−h = π(t,k−i)})

Using this notation, the gradients can be written as477

∂ℓ

∂βh
= 2βh

eαh − 1

eαh + k − 1
(1 + γ)∆h,h,

∂ℓ

∂wh
i

= (1 + γ)
β2

he
αh+δh

eαh + k − 1

(
∆h,i −

eαh − 1

eαh + k − 1
∆h,h

)
,

where ∆h,i =
∑k!

t=1 ℓ
′
t (1{qk−h = π(t,k−i)}). Substituting the expression of ℓ

′
t we have478

∆h,i =

k!∑
t=1

−st

1{rt = r} −
k!∑

j=1

sj1{rj = r}

 (1{qk−h = π(t,k−i)}) ,

= −

 k!∑
t=1

st1{rt = r ∧ qk−h = π(t,k−i)} −

 k!∑
j=1

sj1{rj = r}

( k!∑
t=1

st (1{qk−h = π(t,k−i)})
) ,
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∆h,i = −

 k!∑
t=1

st1{rt = r ∧ qk−h = π(t,k−i)} −

 k!∑
j=1

sj1{rj = r}

( k!∑
t=1

st (1{qk−h = π(t,k−i)})
) .

(14)

where s = σ(s
′
). This completes the proof of the lemma.479

480

Lemma C.3. For the parameter configuration θ = (w1,w2, . . .wk,β) where w1 = α1e
1

h + δ11481

and βh = 0 for h ̸= 1. The following quantities are482

E∆1,i =
1

(eγ1 + k − 1)2

[
eγ1(|R| − 1)

(k − 1)!|R|

]
, for i ̸= 1.

E∆1,1 = −(k − 1)E∆1,i = − 1

(eγ1 + k − 1)2

[
eγ1(|R| − 1)

(k − 2)!|R|

]
.

where γ1 = (1 + γ)β2
1

eα1−1
eα1+k−1 .483

Proof. Recall that s
′
t = γ11{qk−1 = π(t,k−1)} as γh = 0 for h ̸= 1 and the softmax score is given by484

st =
eγ11{qk−1=π(t,k−1)}∑k!
j=1 e

γ11{qk−1=π(j,k−1)}
=

(eγ1 − 1)1{qk−1 = π(t,k−1)}+ 1

eγ1 + k − 1

1

(k − 1)!
.

First lets compute E∆1,i for i ̸= 1, Note that485

k!∑
t=1

st (1{qk−1 = π(t,k−i)}) =
k!∑
t=1

(eγ1 − 1)1{qk−1 = π(t,k−i)}+ 1

eγ1 + k − 1

1

(k − 1)!
(1{qk−1 = π(t,k−i)}) ,

=
1

eγ1 + k − 1
.

For i = 1, we have,486

k!∑
t=1

st (1{qk−1 = π(t,k−i)}) =
k!∑
t=1

(eγ1 − 1)1{qk−1 = π(t,k−i)}+ 1

eγ1 + k − 1

1

(k − 1)!
(1{qk−1 = π(t,k−i)}) ,

=
eγ1

eγ1 + k − 1
.

Now we can compute E∆1,i for i ̸= 1 as follows:487

E∆1,i = −E

 k!∑
t=1

st1{rt = r ∧ qk−1 = π(t,k−i)} −

 k!∑
j=1

sj1{rj = r}

( k!∑
t=1

st (1{qk−1 = π(t,k−i)})
) ,

= −E

[
k!∑
t=1

st1{rt = r ∧ qk−1 = π(t,k−i)}
]
+ E

 k!∑
j=1

sj1{rj = r}

 1

eγ1 + k − 1

 ,

For i ̸= 1,488

E

[
k!∑
t=1

st1{rt = r ∧ qk−1 = π(t,k−i)}
]
=

1

eγ1 + k − 1

1

(k − 1)!
E

[
k!∑
t=1

1{rt = r ∧ qk−1 = π(t,k−i)}
]
,

=
1

eγ1 + k − 1

1

(k − 1)!

k!∑
t=1

IP(rt = r ∧ qk−1 = π(t,k−i)),
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Note that for i ̸= 1, IP(rt = r ∧ qk−1 = π(t,k−i)) = IP(rt = r)IP(qk−1 = π(t,k−i)) due to the489

independence as q is not same as πt. IP(qk−1 = π(t,k−i)) =
1
k as qk−1 is uniformly distributed over490

[k]. IP(rt = r) = 1
|R| . So,491

E

[
k!∑
t=1

st1{rt = r ∧ qk−1 = π(t,k−i)}
]
=

1

eγ1 + k − 1

1

(k − 1)!

k!∑
t=1

1

k|R| =
1

eγ1 + k − 1

1

|R| .

Now for i = 1,492

E

[
k!∑
t=1

st1{rt = r ∧ qk−1 = π(t,k−1)}
]
=

eγ1

eγ1 + k − 1

1

(k − 1)!
E

[
k!∑
t=1

1{rt = r ∧ qk−1 = π(t,k−1)}
]
,

Coming to the expectation term, now they are no longer independent.493

E

[
k!∑
t=1

1{rt = r ∧ qk−1 = π(t,k−1)}
]
=

k!∑
t=1

IP(rt = r ∧ qk−1 = π(t,k−1)),

=

k!∑
t=1

IP(rt = r|qk−1 = π(t,k−1))IP(qk−1 = π(t,k−1)),

=

k!∑
t=1

[
IP(rt = r, q = πt

∣∣qk−1 = π(t,k−1)) + IP(rt = r, q ̸= πt

∣∣qk−1 = π(t,k−1))
]

IP(qk−1 = π(t,k−1)),

IP(rt = r, q = πt

∣∣qk−1 = π(t,k−1)) = IP(rt = r|q = πt, qk−1 = π(t,k−1))IP(q = πt|qk−1 = π(t,k−1)),

= 1 · 1

(k − 1)!
=

1

(k − 1)!
.

IP(rt = r, q ̸= πt

∣∣qk−1 = π(t,k−1)) = IP(rt = r|q ̸= πt, qk−1 = π(t,k−1))IP(q ̸= πt|qk−1 = π(t,k−1)),

=
1

|R| ·
[
1− 1

(k − 1)!

]
Summming them up and substituting in the previous equation, we get,494

E

[
k!∑
t=1

1{rt = r ∧ qk−1 = π(t,k−1)}
]
=

k!∑
t=1

[
1

(k − 1)!
+

1

|R| ·
(
1− 1

(k − 1)!

)]
1

k
,

= k!

[
1

(k − 1)!
+

1

|R| ·
(
1− 1

(k − 1)!

)]
1

k
,

=
|R| − 1

|R| +
(k − 1)!

|R| .

Substituting this back in the expectation term, we get,495

E

[
k!∑
t=1

st1{rt = r ∧ qk−1 = π(t,k−1)}
]
=

eγ1

eγ1 + k − 1

1

(k − 1)!
E

[
k!∑
t=1

1{rt = r ∧ qk−1 = π(t,k−1)}
]

=
eγ1

eγ1 + k − 1

1

(k − 1)!

[ |R| − 1

|R| +
(k − 1)!

|R|

]
,

=
eγ1

eγ1 + k − 1

[ |R| − 1

(k − 1)!|R|

]
+

eγ1

eγ1 + k − 1

1

|R| .

Recall the term for i ̸= i, we have,496

E

[
k!∑
t=1

st1{rt = r ∧ qk−1 = π(t,k−i)}
]
=

1

eγ1 + k − 1

1

(k − 1)!

k!∑
t=1

1

k|R| =
1

eγ1 + k − 1

1

|R| .
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Note that497

E

[
k!∑
t=1

st1{rt = r}
]
=

k∑
i=1

E

[
k!∑
t=1

st1{rt = r ∧ qk−1 = π(t,k−i)}
]
,

=
eγ1

eγ1 + k − 1

[ |R| − 1

(k − 1)!|R|

]
+

1

|R| .

Now for i ̸= 1, we have,498

E∆1,i = −E

 k!∑
t=1

st1{rt = r ∧ qk−1 = π(t,k−i)} −

 k!∑
j=1

sj1{rj = r}

 1

eγ1 + k − 1

 ,

= −
[

1

eγ1 + k − 1

1

|R| −
(

eγ1

eγ1 + k − 1

[ |R| − 1

(k − 1)!|R|

]
+

1

|R|

)
1

eγ1 + k − 1

]
,

=
1

(eγ1 + k − 1)2

[
eγ1(|R| − 1)

(k − 1)!|R|

]
.

Now for i = 1, we have,499

E∆1,1 = −E

 k!∑
t=1

st1{rt = r ∧ qk−1 = π(t,k−1)} −

 k!∑
j=1

sj1{rj = r}

 eγ1

eγ1 + k − 1

 ,

= −
[

eγ1

eγ1 + k − 1

[ |R| − 1

(k − 1)!|R|

]
+

eγ1

eγ1 + k − 1

1

|R| −
(

eγ1

eγ1 + k − 1

[ |R| − 1

(k − 1)!|R|

]
+

1

|R|

)
eγ1

eγ1 + k − 1

]
,

= −
[

eγ1

eγ1 + k − 1

[ |R| − 1

(k − 1)!|R|

]
− (eγ1)

2

(eγ1 + k − 1)2

[ |R| − 1

(k − 1)!|R|

]]
,

= −
[

eγ1(k − 1)

(eγ1 + k − 1)2

[ |R| − 1

(k − 1)!|R|

]]
= −(k − 1)E∆1,i for i ̸= 1.

500

D Technical Lemmas501

Gradient of the first layer. For both relative positional encoding, the gradient of the first layer can502

be computed as follows.503

Lemma D.1. Denote the forward pass of the first layer as follows,504

Rh = σ(Ah)X , Rh

t = X⊤σ(Ah)t =

t∑
i=0

σ(Ah)t,i e
S
xi
,

The gradient of the embeddings with respect to the parameters wh
i is given by505

∂Rh
t

∂wh
i

=


ew

h
i∑t

j=0 e
wh

j

(
eS
xt−i

−Rh
t

)
if i ⩽ t,

0 if i > t,

Proof.

Rh = σ(Ah)X ,

Rh

t = X⊤σ(Ah)t =

t∑
i=0

σ(Ah)t,i e
S
xi

20



Recall that the matrix Ah is defined as follows,506

Ah =



wh
0 0 0 . . . 0

wh
1 wh

0 0 . . . 0
wh

2 wh
1 wh

0 . . . 0
...

...
...

. . .
...

wh
l−2 wh

l−3 . . . wh
0 0

wh
l−1 wh

l−2 wh
l−3 . . . wh

0


Now,507

σ(Ah)t,i =
ew

h
t−i

t∑
j=0

ew
h
j

,

Rh

t =

t∑
i=0

ew
h
t−i∑t

j=0 e
wh

j

eS
xi

=

t∑
i=0

ew
h
i∑t

j=0 e
wh

j

eS
xt−i

,

For i ⩽ t,
∂Rh

t

∂wh
i

=
ew

h
i∑t

j=0 e
wh

j

eS
xt−i

− ew
h
i(∑t

j=0 e
wh

j

)2 t∑
j=1

ew
h
j eS

xt−j
,

=
ew

h
i∑t

j=0 e
wh

j

(
eS
xt−i

−Rh

t

)
So, we have the result as follows,508

∂Rh
t

∂wh
i

=


ew

h
i∑t

j=0 e
wh

j

(
eS
xt−i

−Rh
t

)
if i ⩽ t,

0 if i > t,

509

Now in the context of simplified transformer model with a fixed window we have the following510

Lemma D.2. Denote the forward pass of the first layer as follows,511

Rh = σ(Ah)X , Rh

t = X⊤σ(Ah)t =

k∑
i=1

σ(Ah)t,t−i eπ(t,k−i)
,

The gradient of the embeddings with respect to the parameters wh
i is given by512

∂Rh
t

∂wh
i

=
ew

h
i

k∑
j=1

ew
h
j

(
eπ(t,k−i)

−Rh

t

)

Proof.

Rh = σ(Ah)X , Rh

t = X⊤σ(Ah)t =

k∑
i=1

σ(Ah)t,t−i eπ(t,k−i)
,
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513

σ(Ah)t,t−i =
ew

h
i

k∑
j=1

ew
h
j

,

Rh

t =

k∑
i=1

ew
h
i

k∑
j=1

ew
h
j

eπ(t,k−i)
,

For 1 ⩽ i ⩽ k,
∂Rh

t

∂wh
i

=
ew

h
i

k∑
j=1

ew
h
j

(
eπ(t,k−i)

−Rh

t

)
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E Additional Experiments515
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Figure 4: The left panel is shown in a and the right panel in b. Note that the β values rise as the
loss drops, and the attention patterns at times 800, 1750, and 4500 demonstrate incremental learning.
This is in the opposite order as they are initialized in the opposite order β3 > β2 > β1
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