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ABSTRACT

Diffusion models have achieved remarkable success in generative tasks across
various domains. However, the increasing demand for content moderation and
the removal of specific concepts from these models has introduced the challenge
of unlearning. In this work, we present a suite of robust methodologies that sig-
nificantly enhance the unlearning process by employing advanced loss functions
within knowledge distillation frameworks. Specifically, we utilize the Cramer-
Wold distance and Jensen-Shannon (JS) divergence to facilitate more efficient and
versatile concept removal. Although current non-learning techniques are effec-
tive in certain scenarios, they are typically limited to specific categories such
as identity, nudity, or artistic style. In contrast, our proposed methods demon-
strate robust versatility, seamlessly adapting to and performing effectively across
a wide range of concept erasure categories. Our approach outperforms existing
techniques, achieving consistent results across different unlearning categories and
showcasing its broad applicability. Through extensive experiments, we show that
our method not only surpasses previous benchmarks but also addresses key limi-
tations of current unlearning techniques, paving the way for more responsible use
of text-to-image diffusion models.

1 INTRODUCTION

Diffusion models|Ho et al.| (2020); Dhariwal & Nichol| (2021)); Kawar et al.|(2022);|Gu et al.| (2023)
have advanced text-to-image generation, enabling the creation of high-quality visuals from diverse
prompts. However, the extensive datasets used to train these models, often sourced indiscriminately
from the Internet, pose significant ethical and safety challenges. It also presents a serious risk of
misuse. Their ability to generate realistic images can be exploited to produce misleading or harmful
content, such as deepfakes, disinformation, or unauthorized reproductions of copyrighted material.
These concerns underscore the need for effective safeguards, including methods that can selectively
unlearn or restrict certain concepts to prevent the misuse of these models.

Recently, there has been increasing interest in developing techniques to unlearn or erase specific
concepts from diffusion models. In this direction, progress has been made in unlearning nudity,
artistic, insignia, copyrighted images, and identity styles Kumari et al.|(2023)); [Zhang et al.| (2024a);
Heng & Soh| (2024); |Gandikota et al.| (2023); Kim et al.| (2023); |Golatkar et al.| (2024); |[Lu et al.
(2024). Although concept erasure is the primary objective of these methods, achieving consistent
effectiveness in various unlearning scenarios remains a significant challenge. Identities of well-
known figures, such as politicians or celebrities, are intricately woven into the latent space of the
model, making them difficult to remove. Unlike simpler concepts such as nudity, which can often be
managed by filtering outputs, identities are deeply embedded in the model’s knowledge, requiring
more sophisticated techniques for effective erasure.

Motivation. A widely used unlearning approach in diffusion models involves fine-tuning the origi-
nal model by conditioning the noise estimate on the target concept to be removed, guiding it to align
with the unconditional estimate [Kumari et al.| (2023)); |Gandikota et al.| (2023)); Kim et al.| (2023)).
All the existing methods use the L2 loss function during fine-tuning. The choice of loss function
is critical for guiding the model’s ability to selectively remove undesirable concepts, such as nudity
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or artistic styles, while preserving image quality in retain set data. We empirically observe that L2
loss is limited in handling complex, multi-modal distributions within the model’s latent space. This
motivated us to explore other loss functions such as Jensen-Shannon (JS) divergence and Cramer-
Wold distance. Both provide a nuanced way to align the model’s output distribution with the target
distribution, allowing for more effective unlearning without catastrophic forgetting.

Our Contributions. In this work, we empirically demonstrate that employing L2 loss as the default
loss function in the unlearning (fine-tuning) setup results in suboptimal performance in current un-
learning methods. We study the impact of employing advanced loss functions such as JS divergence
and Cramer-Wold distance within a knowledge distillation framework. We hypothise that L2 loss
provides a simple pointwise correction, whereas, JS divergence and Cramer-Wold distance enable
a more robust alignment of distributions within the latent space of diffusion models. These loss
functions are better at handling complex, multi-modal latent spaces. This allows for the removal of
targeted concepts while retaining the model’s generative capabilities. By leveraging these loss func-
tions, we ensure that unlearning is adaptable across different scenarios and minimizes interference
with non-targeted concepts, resulting in a more versatile and reliable unlearning process.

We demonstrate how JS divergence and Cramer-Wold distance can be effectively integrated into
the unlearning process to guide the removal of targeted concepts while preserving image quality
in the remaining dataset. We provide comprehensive experiments showing that our approach not
only outperforms existing L2-based methods in concept removal but also mitigates the risk of catas-
trophic forgetting, thereby maintaining the model’s versatility across various unlearning scenarios.
By introducing these loss functions in the knowledge distillation framework and demonstrating their
effectiveness to erase concepts, we offer a significant step forward in the development of safe and
reliable unlearning techniques for diffusion models.

2 RELATED WORK

We discuss some of the major challenges in ensuring effective moderation of content generated by
text-to-image diffusion models. These challenges include handling NSFW and restricted content,
addressing rights and usage concerns. We review how prior research has approached these issues.

NSFW and Restricted Content. Diffusion models can be misused to generate inappropriate im-
ages, including violent or explicit content. Some methods attempt to mitigate this by filtering train-
ing data or employing post-processing safety checks during inference (Gandhi et al.| (2020); Nichol
et al.| (2022)); Bedapudi; Rando et al.;|Schramowski et al.[(2023). While effective, these methods can
be bypassed when open-source code and model weights are publicly accessible|Sharma et al.|(2024)).
A more difficult-to-circumvent approaches involve altering the model’s knowledge by modifying at-
tention weights|Gandikota et al.|(2023)), through fine-tuning [Zhang et al.| (2024b)), or with continual
learning Heng & Soh|(2024). However, they have been shown to be prone to partial diffusion based
attacks in |Sharma et al.|(2024). Our method proposes a more effective solution to erase unwanted
concepts that also performs well in the recently introduced unlearning metrics |Sharma et al.| (2024).

Rights and Usage Concerns. Stable diffusion models trained on extensive datasets such as LAION-
5B |Schuhmann et al.| (2022)) have been found to infringe on copyrights related to artistic styles,
largely because of their tendency to memorize copyrighted material in the training data|Zhang et al.
(2024c). Under U.S. copyright law [7_1 the concept of Fair Use allows others to use copyrighted ma-
terial only if it is transformed in a way that differs significantly from the original. Legal precedents
have shown that structural similarity to the original work can result in infringement claims.

Somepalli et al.| (2023)); Wang et al.| (2024) examined how diffusion models can infringe on copy-
rights through memorization, enabling the generation of existing posters, artworks, and other images
that may be protected by copyright. To address this, some studies have suggested adding minor per-
turbations, acting as watermarks, into images to prevent their memorization by diffusion models |Cu1
et al.| (2023); Zhao et al.[(2023)). However, these watermarks can be readily eliminated using tech-
niques like denoising or blurring. Another approach involves post-training model adjustments to
delete undesired concepts, such as modifying model weights to remove specific styles Gandikota
et al.|(2023);|Heng & Soh!(2024); Kim et al.|(2023)); Kumari et al.|(2023)); Zhang et al.| (2024b).

"https://www.copyright.gov/title17/
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Unlearning in Diffusion Models. Unlearning in diffusion models presents a challenge due to the in-
tricate and interconnected nature of their latent space representations. Concepts within these models
are not independent but are woven into a larger knowledge distribution. Consequently, the removal
of specific elements, like copyrighted logos or identifiable human faces, without compromising the
model’s ability to produce high-quality images is difficult. Current leading methods in the field in-
volve fine-tuning the diffusion model by adjusting attention heads or using distillation techniques
that condition the noise estimate on the concept to be removed |Gandikota et al.| (2023)); Heng &
Soh| (2024); |[Kim et al.| (2023); [Kumari et al.| (2023)); Zhang et al.| (2024b). However, recent findings
by|Sharma et al.|(2024) indicate that many of these approaches Kumari et al.|(2023); Gandikota et al.
(2023) do not completely erase the concepts, as they can still be generated using partial diffusion
probing.

3 PRELIMINARIES

3.1 UNLEARNING IN DIFFUSION MODELS

Unlearning aims to remove specific learned concepts from diffusion models while preserving the
model’s overall performance. In diffusion models, the goal is to eliminate targeted knowledge,
such as biases or harmful content, without degrading the image generation quality. The unlearning
process can be expressed through the following general equation:

T
aunleamed = efully trained — 7] Z VoL (97 Dra Lt C)» (1)

t=1

where Ougleamed i the model’s parameter after the unlearning process, Gty trainea 1S the model’s pa-
rameter before unlearning, 7 is the learning rate, 7" is the total number of diffusion steps, ¢ denotes
the conditioning using a particular modality, and L (6; D,., x+, ¢) is the loss function at step t.

3.2 UNLEARNING VIA DISTILLATION

Several existing methods have adopted different forms of knowledge distillation for unlearning in
classification models, regression models, language models and diffusion models. We define the
general form of the unlearning objective as:

L=D (69>ludenl (Ztﬂ Cs; t)v Sg(eesludenl (Ztﬂ t))) ) (2)

where D(-,-) is a generic distance function or loss metric. This could be the L? norm, L' norm,
Kullback-Leibler (KL) divergence, or any other suitable loss function. Here, €g_,.. (2, ¢s, t) is the
noise estimate conditioned on the target concept c,, and €g,,. (2, t) is the unconditional noise
estimate. The stop-gradient operation, sg(-), is applied to prevent gradient computation for the un-
conditional noise estimate, ensuring that updates are made solely based on the conditioned estimate.

The teacher model is then updated using the student’s parameters to smooth out abrupt changes:

gteacher — (b(gteacherv Qstudem) ) (3)

where ¢(-, -) denotes the update rule that integrates the student’s potentially drastic latent updates
into a more stable adjustment for the teacher model. This update process reflects the student’s learn-
ing while ensuring that the changes to the teacher model remain gradual and controlled, avoiding
harsh updates that may destabilize the model.

4 PROPOSED WORK

We formally define the key mathematical properties for three distances Cramér-Wold |Cramér &
Wold (1936) distance, Jensen-Shannon Divergence |Lin| (1991); Rao & Nayak| (1985)), and L2 dis-
tance experimented in this work. To our knowledge this is the first work to mathematically and
empirically analyze the significance of each distances in the context of unlearning in diffusion mod-
els. We introduce four lemmas by analyzing several mathematical principles such as functional
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analysis (norms and decomposition), measure theory (distributional differences), information the-
ory (entropy and divergence measures), and orthogonal projections. We will use these principles
to rigorously demonstrate the limitations of L2 distance and the effectiveness of JS divergence and
Cramér-Wold distance in capturing concept-specific changes in a diffusion model.

4.1 LIMITATIONS OF L2 DISTANCE IN UNLEARNING

We identify two main limitations of using L2 distance in unlearning. First, we demonstrate that 1.2
distance is highly sensitive to irrelevant dimensions. To this end we formally show:

Lemma 1. (L2 Distance is Sensitive to Irrelevant Dimensions)

Let zp,zs € R" be two n-dimensional vectors representing the teacher and student embed-
dings respectively, and let the concept c to be unlearned be represented in a subset of dimensions
D. C{1,2,...,n}. The L2 distance between zr and zgs is non-zero even when the concept is fully
unlearned, as long as z and zg differ in irrelevant dimensions, Dy, = {1,2,...,n} \ D..

The proof for Lemma [I]shows that the L2 distance between vectors mathbfzp and mathbfzs can
be decomposed into concept-related and non-concept-related parts. If the concept is fully unlearned,
the contribution from concept-related components becomes zero. However, if differences exist in
non-concept-related components, the overall L2 distance remains positive, indicating that the L2
distance is not zero even when the concept is unlearned. The detailed proof is added in the Appendix.

Next we show that L2 distance have difficulty capturing correlated conceptual changes, which is
crucial property for any unlearned system.

Lemma 2. (L2 Distance Fails to Capture Correlated Conceptual Changes)

Let zp,zs € R™ be two n-dimensional vectors. Suppose the concept c is represented as a lin-
ear combination of multiple correlated dimensions in zr. If the unlearning process changes these
dimensions uniformly in zg, then the L2 distance will overestimate or underestimate the actual con-
ceptual difference.

The Lemma 2] argues that if a conceptc is represented by multiple correlated dimensions in z7, and
these dimensions are uniformly altered during the unlearning process in zg, the L2 distance will
not accurately reflect the true conceptual change. This is because L2 distance treats each dimension
independently, failing to capture the correlation between dimensions. As a result, the L2 distance
may either overestimate or underestimate the difference depending on the nature and scale of the
uniform changes, the detailed proof can be found in appendix.

4.2 QUANTIFYING CONCEPTUAL DIFFERENCES WITH JS DIVERGENCE

We show JS divergence is well equipped to quantify conceptual differences.

Lemma 3. (Jensen-Shannon Divergence Accurately Quantifies Conceptual Differences)

Let zr and zg be n-dimensional embeddings represented as probability distributions P and @)
over the same n-dimensional space. Suppose the concept c is encoded in a subset of dimensions
D. C {1,2,...,n}. If P and Q differ only in the concept dimensions D, and are identical in the
remaining dimensions D,,. = {1,2,...,n}\D,, the Jensen-Shannon (JS) divergence will accurately
capture the concept difference while remaining invariant to changes in D,,.

The proof for Lemma [3] demonstrates that the Jensen-Shannon (JS) divergence is a better measure
for concept unlearning compared to L2 distance. It starts by defining the JS divergence between two
probability distributions P and (), and decomposes these distributions into concept-related and non-
concept-related components. By showing that if the non-concept-related parts of P and () are equal,
the JS divergence becomes zero for these dimensions, it highlights that JS divergence is invariant
to changes in irrelevant dimensions. In contrast, L2 distance would still capture these differences,
making it sensitive to irrelevant variations. Therefore, JS divergence accurately captures conceptual
changes, while L2 distance may overestimate the differences. The detailed proof is provided in the
Appendix.
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Table 1: We compare the CLIP scores obtained by the CW, JS and L2 unlearning methods. We
show the mean CLIP score by unlearning the following concepts: baby, narendra modi, elon musk,
amitabh bachchan, nike, nudity, pablo picasso, vincent van gogh). lower is better..

Steps SD 14 CW JS L2

1500 29.7618 23.4975 22.9702 23.4436
1400 29.7618 23.4934 22.6502 23.0212
1300 29.7618 24.1404 24.4098 23.4957
1200 29.7618 252973 24.8594 23.0008
1100 29.7618 25.5798 25.8554 26.3378

Table 2: Comparing the unlearning performance in terms of CCS, and CRS score. We compare the
CW and JS with L2 loss based method. We evaluate the effectiveness of concept erasure for three
types of concepts: celebrity, baby, and artistic style.

Concept Erased Prompt ces T CRS T
Cw IS L2 \ CW JS L2

amitabh bachchan amitabh bachchan 0.74 0.61 0.74 \ 0.05 0.05 0.04

baby baby with teddy bear 0.62 0.62 0.63 \ 0.02 0.02 0.03

vincent van gogh  sunflowers by vincent van gogh 0.51 042 0.52 \ 0.009 0.008 0.008

4.3 CAPTURING HIGH-ORDER CONCEPTUAL CORRELATIONS WITH CRAMER-WOLD
DISTANCE

Cramér-Wold distance has ability to capture higher-order correlations and joint distributional
changes between dimensions, which can be formally represented as follows:

Lemma 4. (Cramér-Wold Distance Captures High-Order Conceptual Correlations)

Let zp,zg € R™ be two vectors, and let P, Q be the corresponding distributions over these vectors.
If the concept c is represented by correlations between multiple dimensions, then the Cramér-Wold
distance between the distributions of zr and z.s will be zero if and only if ¢ has been fully unlearned,
even if the individual L2 distances in some dimensions are non-zero.

The proof for Lemma [ establishes that Cramér-Wold (CW) distance is a more suitable measure for
detecting conceptual changes compared to L2 distance. It begins by defining the CW distance as the
supremum over 1-dimensional linear projections of the distributions P and (). It then shows that
CW distance captures correlations by analyzing projections aligned with the concept subspace. If
a concept is represented by correlated dimensions, changes in these dimensions will be detected by
CW distance but may be missed by L2 distance, which only considers dimension-wise differences.
Finally, the proof highlights that CW distance is invariant to changes in irrelevant projections, mak-
ing it robust in measuring concept changes across different subspaces. The detailed proof is provided
in the Appendix.

5 EXPERIMENTS AND RESULTS

We show that both Cramér-Wold distance and Jensen-Shannon (JS) divergence outperform L2 dis-
tance in a knowledge distillation setup for unlearning in diffusion models. Our approach is com-
pared against existing state-of-the-art methods ESD-u, ESD-x |Gandikota et al.| (2023), Ablating
Concepts [Kumari et al|(2023), and SDD Kim et al.| (2023), which also utilize a knowledge distil-
lation framework but rely on L2 distance as their default loss function. We choose SDD |[Kim et al.
(2023)) to represent all four distillation-based unlearning methods, as it has already been demon-
strated to outperform ESD-u, ESD-x, and Ablating concepts in [Sharma et al.| (2024). The L2 loss
results are basically the results in SDD. We denote Cramér-Wold results as CW, JS Divergence
results as JS, and L2 loss-based method as L2 in our discussions.
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Table 3: CLIP directional similarity score based comparison of the proposed CW and JS methods
with L2 loss based method. Both CW and JS perform better erasure as compared to the L2 based
unlearning. higher is bettert.

Concept Erased Prompt Cw JS L2
baby a baby playing with teddy bear 0.1289 0.1874 0.1363
narendra modi narendra modi in a park 0.1375 0.1876 0.0996
elon musk elon musk shaking hand with a girl 0.2085 0.1802 0.1348
amitabh bachchan  amitabh bachchan in blue background 0.1682 0.2138 0.1738
nike a shoe with nike logo 0.0926 0.0585 0.1058
mean score 0.1328 0.1463 0.1284
T Gonceptn,_ 214 | ow s L2

Amitabh
Bachchan

Narendra d?
Modi Nike
Elon
\ # Pablo
Musk / Picasso
Nl.ldlty Vincent 3 :
i Van Gogh =@

Figure 1: The concept erasure results are shown for the CW, JS, and L2 methods for a variety of
erasure tasks. We observe similar results in most of the categories except in Nike concept erasure,
where CW and JS generated images of shoe without Nike logo, whereas, L2 generated footwear that
is not a shoe but looks like crocs.

Evaluation of Concept Erasure. We assess the effectiveness of unlearning using four metrics:
the CLIP score, CLIP directional similarity score Kumari et al.| (2023, Concept Confidence Score
(CCS), and Concept Retrieval Score (CRS) |Sharma et al|(2024). Additionally, we provide qualita-
tive results for both the erased and retained concepts, allowing for a fair comparison of the various
unlearning methods.

Experiment Setting. We assess the performance of concept erasure across the following categories:
art style, logo, identity, and NSFW content, utilizing Stable Diffusion 1.4 (SD 1.4). The experiments
were carried out with NVIDIA A6000 48GB GPU. We observe that different methods give optimal
results at varying iterations. Therefore, we present the results at multiple iteration intervals to ensure
a fair comparison.

Quantitative Analysis. We show the mean CLIP scores for the 8 erased concepts from the SD
1.4 model in Table[T] The CLIP score is a metric used to measure how well the generated images
semantically match their target concepts. For the erased concepts, lower CLIP score indicates a
reduced similarity between the generated images and the given prompt, suggesting more effective
concept erasure. For example, after erasing the concept “Amitabh Bachchan”, the model would
not generate images resembling to Amitabh Bachchan. In Table |1} JS method (ours) consistently
outperforms CW (ours) and L2 (existing method) at steps 1500, 1400, and 1300. At step 1200,
L2 is better, while at step 1100, CW gives better score. JS method exhibits particularly strong
performance, achieving the lowest CLIP scores in the majority of the steps. Overall, we observe
CW and JS either maintains similar performance or improves upon the L2 method.
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Figure 2: Comparing the unlearning results of CW, JS, and L2 after erasing the concepts of Pablo
Picasso and Elon Musk from the SD 1.4. Prompts: the old guitarist by Pablo Picasso, Elon Musk.
We observe that at 1100 step, both CW and JS generate old guitarist but without the style of Pablo

Picasso but L2 generates a visibly young guitarist.

Steps 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

Figure 3: We show the progression of concept unlearning across iterations (100 to 1500) for CW,
JS, and L2 methods.

We examine the CLIP directional similarity scores across various domains, with the results presented
in Table[3] Five different concepts were selected, and we applied unlearning to the SD 1.4 model for
each. The CLIP directional similarity scores for JS, CW, and L2 were then evaluated, where a higher
score indicates more effective unlearning. For the concept of “baby,” JS achieved the highest score
of 0.1874. Similarly, CW obtained a score of 0.2085 when erasing the concept of “Elon Musk,”
outperforming both L2 and JS. On average, JS outperforms both CW and L2. Overall, the proposed
JS and CW methods perform better than L2 in terms of the CLIP directional similarity score.

We evaluate the methods CW, JS and L2 based on the adversarial recovery attacks Concept Con-
fidence Score (CCS), Concept Retrieval Score (CRS). We conduct the erasure for three distinct
categories: celebrity (Amitabh Bachchan), object (baby), and artistic style (vincent van gogh). We
observe similar performance for all three methods CW, JS, and L2 in Table |Zl This indicates that
the change in loss function doesn’t influence the ability of the unlearned model against adversarial
recovery attacks such as CCS and CRS.

Qualitative Analysis. We show the visual results for erasing varieties of concepts: artistic style,
celebrity, baby/children, nudity, logo, and harmful contents. In Figure [I] we show the unlearning
results of CW, JS, and L2. In most of the concept erasure requests, we observe similar results
except for erasure of Nike logo. In Nike concept erasure, CW and JS generate images of shoe with
a different type of logo, whereas, L2 generates a footwear that is not a shoe but looks like crocs.
We show another comparison between these methods in Figure[2] We erase the concepts of Pablo
Picasso and Elon Musk from SD 1.4. We observe CW and JS generate old guitarist without the style
of Pablo Picasso but L2 generates a young guitarist.

Unlearning at Different Iterations. Figure [3] illustrates the unlearning process across different
iterations in JS, CW, and L2. The visuals provides insights into the dynamics of concept erasure
when using different loss functions like JS, CW, and L2. After 800 steps, CW(ours) and JS(ours)
generate different looking image than Amitabh Bachchan while L2 still generates an image similar
to Amitabh Bachchan. In the final step (step 1500), L2 fails to generate human face while CW and
JS generate human face that is not similar to Amitabh Bachchan.

Visualization at the Teacher and Student Model. Figure {] compares the outputs of the teacher
and student models during the unlearning process in JS, CW, and L2. The comparison highlights the
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Steps 100 300 500 700 900 1100 1300 1500
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Figure 4: We compare the change in generated outputs by the teacher and student models in CW,
JS, and L2. We show the outputs of teacher and student models at different iterations (100 to 1500)
to assess the impact of using different loss functions.

Erase Erase Erase Erase Erase Erase

Elon Musk Amitabh Narendra Van Gogh Amitabh Nudit

SD1.4 Bachchan  Modi SD14 Style  Bachchan ¥

. 1 RS . - -
Elon Sunflowers
Musk by Vincen
Van Gogh
-

Amitabh Amitabh
Bachchan Bachchan
Narendra e gt i | : Japan
Modi 3 . _ "Bt Body

Figure 5: We show the results produced by the proposed method (JS) over the unlearned and re-
tention set of concepts. The diagonal images are the generated for the erasure concepts and the
remaining images are generated for the retained concepts (for the corresponding unlearned model).
It shows our method preserves the general capabilities of the diffusion model after unlearning.

effectiveness of teacher-student framework in transferring the unlearning process while maintaining
overall image quality. The student that is given an empty prompt is naturally producing noisy image
for all the three methods. The teacher model which is eventually used for unlearning shows that JS
and CW learn finer variations for the erasing concepts as compared to the L2 method.

Observing the Results for the Retained Concepts. To assess whether the unlearning methods
maintain the model’s overall capabilities post-unlearning, we present results on the retained concepts
for the modified models. Figure[5]displays a diverse set of generated images unrelated to the erased
concepts. The images along the diagonal represent the concepts meant to be removed, while the
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Figure 6: Before and after unlearning results for a variety of unlearning requests that cover the
usecases for NSFW, restricted content, rights, and usage concerns. The results are shown for JS
method.

remaining images correspond to the concepts the model should retain. It is evident that the proposed
JS method effectively preserves the retained concepts while successfully forgetting the targeted ones.

Concepts Generated Before and After Unlearning. Figure|[6illustrates the results of our unlearn-
ing process across various concepts, both before and after applying the method. The comparison
highlights the model’s capability to effectively remove specific concepts while preserving overall
image quality and coherence. The examples include facial unlearning (e.g., Elon Musk, Amitabh
Bachchan, Narendra Modi, Brad Pitt, Nicole Kidman), artistic styles (e.g., Pablo Picasso, Vincent
van Gogh, pencil art, tattoos), logos (e.g., Google, Starbucks, Nike), and other miscellaneous cate-
gories (e.g., nudity, children, fake news, temple carvings, violence, broken car). Additional results
are shown in Figure[7] Figure[8] and Figure 9]

Orlgmal Unlearned | Original |Unlearned | Original | Unlearned| Original |Unlearned | Original |Unlearned

Figure 7: Before and after unlearning results while erasing the concept of Nudity (JS method)

6 CONCLUSION

In this paper, we proposed a set of robust methodologies for concept unlearning in diffusion models,
utilizing advanced loss functions like Cramer-Wold distance and Jensen-Shannon (JS) divergence
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Figure 8: Before and after unlearning results while erasing the concept of Pencil Art (JS method).
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Figure 9: Before and after unlearning results while erasing the concept of Baby (JS method).

=

within a knowledge distillation framework. Our approach demonstrated improved performance over
L2 loss based method over diverse concept removal categories. Extensive experiments and math-
ematical analysis confirmed the versatility and effectiveness of our unlearning method, paving the
way for more controlled and responsible applications of text-to-image diffusion models.
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A APPENDIX

A.1 PROOF OF LEMMAI1

Proof. The L2 distance between zy = [27,1, 21,2, - - -, 270] and Zzg = [25.1, 25,2, - - - , 25, ] 1S given
by:

n

L2(zr,25) = | Y (21 — 25.0)? 4)

i=1

We can partition the sum into concept-related and non-concept-related dimensions:

L2(zr,25) = Z (27, — 25,i)% + Z (21 — 25,i)? )

i€D, 1€Dn

(6)

If the concept c is unlearned, then 27 ; = zg,; for all « € D.. Hence:

Z (21,i — 254)> = 0. @)

i€D,

However, if zp; # zg, for any i € D;,, then:

Y (i —zs4)° >0, (8)
ieD’VLC
implying:
L2(zr,zs) > 0 )
Thus, L2 distance is not zero even if the concept is fully unlearned, as long as there are differences
in irrelevant dimensions. O

A.2 PROOF OF LEMMA2

Proof. Let the concept ¢ be represented as a linear combination of dimensions ¢, j, k such that:

c = azr;+ Barj +yar k- (10



Under review as a conference paper at ICLR 2025

Suppose unlearning results in a proportional decrease in these dimensions in zg, i.e.,
zsi=2ri—0, Zzsj=z2r;—0, Zsk=z2rk—0, (an
for some constant §. The L2 distance is:
L2(zr,2s) = \/(ZT,z' —(z1i = 0)) + (21 — (215 = )2 + (omk — (21 — 0))2 = 0V3
(12)

However, the true change in the concept is along c, and the L2 distance does not reflect the con-
ceptual change accurately unless & = /3 = ~y. Therefore, L2 distance fails to correctly capture the
change in correlated dimensions.

A.3 PROOF OF LEMMA3

Proof. Let’s recall the definition of JS Divergence 1. Definition of JS Divergence: Let P =
[p1,p2, .., pn]) and @ = [q1, G2, ..., gs] be the probability distributions derived from the teacher
and student representations such that:

dopi=1, > a=1, p,g>0 (13)
=1 =1

The Jensen-Shannon (JS) divergence between P and (Q is defined as:

IS(P,Q) = S KL(PIM) + SKL(Q|M), (14

where M = % and K L is the Kullback-Leibler divergence:

q; pi +q;
L(P||M) i1 —, KL(Q||M) dog 2& oy =L 15
(Pl E pilog @Il E gilog. =, m 5 (15)

2. PFartition into Concept and Non-Concept Dimensions: Let D, denote the set of concept-related
dimensions and D,,. denote the irrelevant dimensions. Decompose P and () as:

P = [PcaPnc]a Q: [QC7Q’I’LC]7 (16)

where P. = {p; : i € D.} and P,,. = {p; : i € Dy} (similarly for Q. and Q,..). If P,,c = Qe,
then p; = g, for all ¢ € D,,.. For these dimensions, the KL divergence terms are zero:

> pllog—:o, > qzlog— = (17)

1€Dnc 1€Dnc

Thus, the JS divergence simplifies to:

szlog + Zqzlogf (18)

zGD 1€D

3. Invariant to Irrelevant Changes: Fort € D,,., if p; = ¢, the divergence between P and () in these
dimensions will remain zero, regardless of the magnitude of p; and ¢;. In contrast, L2 distance will
still consider the differences in D,,., leading to misleading conclusions about whether the concept
has been unlearned.

4. Effectiveness in Concept Unlearning: If unlearning is successful and P, = @), then:

IS(P,Q) =0, 19)



Under review as a conference paper at ICLR 2025

even if P,. # Q.. Thus, JS divergence accurately measures concept alignment by focusing only
on relevant dimensions, whereas L2 distance remains sensitive to changes in irrelevant dimensions.

O

A.4 PROOF OF LEMMA4

Proof. 1. Definition of Cramér-Wold Distance: The Cramér-Wold distance between two distribu-
tions P and @ is defined as the supremum over all 1-dimensional linear projections:

CW(P,Q) = Sl‘lp Py — Qoll, (20)
lloll=1
where 6 is a unit vector, and Py and )y are the 1-dimensional projections of P and @ along 6:

Pg = eTZT7 Qg == 9TZs. (21)

2. Effectiveness in Capturing Correlations: If the concept c is represented by a set of correlated
dimensions D.., define a linear combination for the concept:

c= Z Q2T (22)

i€D,

Consider a projection 6 such that it aligns with the concept subspace. If P and () are identical along
0,i.e., Py = Qp, then:

[P — Qoll = 0. (23)

3. Detecting Higher-Order Correlations: Unlike L2 distance, which measures dimension-wise dif-
ferences, Cramér-Wold distance takes into account joint distributions and higher-order correlations.
Thus, if unlearning leads to a change in joint correlations but not in individual dimensions, L2 dis-
tance might be zero, while CW distance will detect the conceptual change.

4. Invariant to Irrelevant Projections: If 6 is orthogonal to the concept subspace, then Py = Qg
for all such projections, even if zr # zg in irrelevant dimensions. Thus, Cramér-Wold distance
provides a more comprehensive measure of concept unlearning by considering projections along all
directions, ensuring that the concept is completely removed. O

A.5 MORE VISUAL RESULTS

We show additional visual results of concept erasure in the proposed JS method in Figure [T4{eras-
ing Nike logo), Figure [I5(erasing Narendra Modi), Figure [I6{(erasing Amitabh Bachchan), Fig-
ure [[7(erasing Elon Musk), Figure [I8{erasing child), Figure [I9erasing Vincent Van Gogh styled
paintings), Figure 20(erasing Pablo Picasso styled paintings).
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Flgure 10: Unlearmng results after erasing the concept of Brad Pitt (JS method).
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Figure 11: Unlearning results after erasing the concept of Starbucks logo (JS method).
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Flgure 12: Unlearnlng results after erasing the concept of Vincent Van Gogh (J S method).
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Figure 14: Unlearning results after erasing the concept of Nike logo (JS method).
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igure 15: Unlearning results after erasing the concept of Narendra Modi (JS method).
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Figure 16: Unlearning results after erasing the concept of Amitabh Bachchan (JS method).
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Figure 17: Unlearning results after erasing the concept of Elon Must (JS method).
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Figure 18: Unlarning results after erasin the oncept of Child (JS method).
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Figure 19: Unlearning results after erasing the concept of Vincent Van Gogh (JS method).
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F1gure 20: Unlearmng results after erasmgthe concept of Pablo Picasso (JS method).
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