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Abstract

Automated Theorem Proving (ATP) in formal languages remains a formidable
challenge in AI, demanding rigorous logical deduction and navigating vast search
spaces. While large language models (LLMs) have shown promising performance,
existing stepwise provers often suffer from biased search guidance, leading to
inefficiencies and suboptimal proof strategies. This paper introduces the Multi-
Perspective Search Prover (MPS-Prover), a novel stepwise ATP system designed
to overcome these limitations. MPS-Prover incorporates two key innovations: a
highly effective post-training data curation strategy that prunes approximately 40%
of redundant training data without sacrificing performance, and a multi-perspective
tree search mechanism. This search integrates a learned critic model with strategi-
cally designed heuristic rules to diversify tactic selection, prevent getting trapped
in unproductive states, and enhance search robustness. Extensive evaluations
demonstrate that MPS-Prover achieves state-of-the-art performance on multiple
challenging benchmarks, including miniF2F and ProofNet, outperforming prior 7B
parameter models. Furthermore, our analyses reveal that MPS-Prover generates
significantly shorter and more diverse proofs compared to existing stepwise and
whole-proof methods, highlighting its efficiency and efficacy. Our work advances
the capabilities of LLM-based formal reasoning and offers a robust framework and
a comprehensive analysis for developing more powerful theorem provers.

1 Introduction

Automated Theorem Proving (ATP) is the task of automatically generating formal proofs for given
mathematical or logical statements. By transforming problems into theorems in a formal language
(e.g., Lean [Moura and Ullrich, 2021] or Isabelle [Paulson, 1994]) and recursively interacting with
the proof assistant’s engine to construct full proofs, an ATP system generates machine-verified
proofs that guarantee strict logical correctness. This verifiability makes ATP indispensable for
formal verification of solutions and proofs, where each reasoning step must be checked rigorously.
ATP has long been viewed as a foundational and challenging problem in both AI and mathematics,
as such systems can leverage massive computational power, potentially aiding mathematicians in
evaluating new hypotheses and even solving open mathematical problems. The rapid progress of large
language models (LLMs) has significantly advanced automated theorem proving (ATP), exemplified
by AlphaProof’s silver medal performance at IMO 2024 [AlphaProof and Teams, 2024].

Recent research tackles these challenges by combining the reasoning abilities of LLMs with feedback
from proof checkers (e.g., the Lean compiler). Two main approaches have emerged. One is whole-
proof generation [Wang et al., 2024c, Xin et al., 2024, Lin et al., 2025, Zhang et al., 2025, Wang
et al., 2025], where the LLM attempts to output an entire proof script in one shot. This leverages
the model’s ability to plan with a high-level view but forgoes intermediate verification, making it
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Repetitive Tactics/Steps

…
"have h20 := h (-1),", 
"have h22 := h (-1),", 
"have h24 := h (-1),", 
"have h26 := h (-1),", 
"have h28 := h (-1),", 
"have h18 := h 0,", 

"have h22 := h (-1),", 
"have h9 := h 0,”

…

Unprovable States

Condition: 
w : ℕ

a : ℕ → NNReal
right : ¬a 0 = 1

left : w = 0

Goal: 
⊢ 1 < a 0

Tactics/Steps without Progress

…
”rfl",

"all_goals aesop",
"all_goals ",

"norm_num",
"try simp_all”

”omega"
"all_goals ring_nf"

…

(a) (b) (c)

Figure 1: Common failure patterns in step-based theorem provers. (a) Repetitive steps caused by
critique model over-preference for specific tactics. (b) Unprovable states resulting from incorrect
tactic choices that overly simplify conditions. (c) Ineffective tactic applications that fail to make
progress.

prone to failures on long or intricate proofs. The second, and the focus of this paper, is stepwise
formal proof generation [Wu et al., 2024, Li et al., 2024b, Xin et al., 2025]. Here, an LLM iteratively
proposes the next proof step (a formal tactic) given the current proof state. After each step, a formal
proof assistant verifies the result, ensuring the proof stays on a correct path and providing an updated
proof state as feedback. This step-by-step strategy offers several advantages: it allows for continuous
interaction with the proof engine, enables progressive simplification of the search target, offers higher
fault tolerance (errors only require backtracking to the previous step, not restarting the entire proof),
and naturally lends itself to tree search methods that explore different proof paths.

However, stepwise LLM-based provers face their own key challenges, as illustrated in Figure 1. First,
the critic model guiding node selection in tree search can become biased. This bias often stems from
the high frequency of certain "safe" or broadly applicable tactics (e.g., have, or general-purpose
simplifiers like aesop and simp_all when part of a successful sequence) in the training data. These
tactics, while often part of valid proofs and less prone to immediate errors, may not always lead to the
most efficient or even a correct overall proof path if the model over-relies on them, leading to stalled
progress from similar tactic suggestions (Figure 1a). Second, incorrect tactic applications can lead
to unprovable states by oversimplifying conditions (Figure 1b). Third, powerful but conditionally
effective tactics (e.g., aesop, simp_all) might be applied ineffectively. LLMs may propose these
due to their frequent appearance in the training data or their ability to produce local simplifications
that seem promising, yet they can make no progress or even obscure the path forward when the state
is not genuinely suitable for such simplification (Figure 1c). While Best-First Search (BFS)-based
methods [Li et al., 2024b, Xin et al., 2025] have shown promise in navigating this search space, their
typical reliance on a single critic score for node expansion can still render them vulnerable to these
failure modes, particularly the biases inherent in learned critics.

In this paper, we introduce the Multi-Perspective Search Prover (MPS-Prover), a novel approach
designed to overcome these limitations and significantly enhance stepwise proving performance.
Our first contribution is a carefully designed post-training data curation strategy. Unlike existing
expert iteration approaches that uniformly add all newly proved problems, we introduce explicit
rules to filter out approximately 40% of redundant or low-value training examples, focusing the
model on learning more complex reasoning patterns. This curates a higher-quality training set,
leading to improved model accuracy and mitigating overfitting, especially when augmented with
natural language reasoning datasets. Our second core contribution, building upon Best-First Search
(BFS) methodologies [Li et al., 2024b, Xin et al., 2025], is a multi-perspective tree search enhanced
with strategically devised heuristic critiques. These critiques diversify tactic selection, reducing the
risk of becoming trapped in repetitive, unproductive, or unprovable states by encouraging broader
exploration during proof search.

Our experiments demonstrate that MPS-Prover achieves state-of-the-art performance across multiple
ATP benchmarks, including miniF2F and the more challenging ProofNet. On miniF2F, MPS-Prover
surpasses previous stepwise provers. Furthermore, on ProofNet, within the 7B model class, MPS-
Prover outperforms all baselines, including those employing CoT reasoning. Our analyses also
reveal that MPS-Prover generates significantly shorter and more diverse proofs compared to both
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BFS-based stepwise provers (under equivalent computational budgets) and leading whole-proof
provers, highlighting the efficiency and efficacy of our multi-perspective search strategy. More
specifically, the average solution length produced by MPS-Prover is only 3.44, compared to 15.91
and 52.16 for Kimina-Prover and Deepseek-Prover V2, respectively. These findings illustrate key
advantages of our enhanced stepwise approach and suggest promising directions for future hybrid
prover development. The primary contributions of this paper are:

1. A novel post-training data curation strategy for stepwise provers, effectively eliminating approxi-
mately 40% of redundant training data while achieving superior performance.

2. The Multi-Perspective Search Prover (MPS-Prover), an innovative tree search method with heuristic
critiques to enhance tactic diversity, prevent critique model bias, and improve search robustness.

3. Demonstration of state-of-the-art performance by MPS-Prover on multiple benchmarks, including
miniF2F and ProofNet, along with analyses showing generation of shorter and more diverse proofs.

2 Method

2.1 Expert Iteration on Tactic Generation

Most recent Automated Theorem Proving (ATP) systems utilize an expert iteration [Polu and
Sutskever, 2020] process to collect training data, which consists of several key steps: (1) auto-
formalization of natural language problems into formal proofs; (2) attempting proofs or disproofs
using the model trained in the previous iteration; and (3) integrating newly proved theorems and the
proofing steps into subsequent training iterations.

We follow previous work to collected public available natural language problems and formal theorems
and their proofs, including the Lean Workbook [Ying et al., 2024], Numina [Li et al., 2024a] and
AoPS-Instruct [Mahdavi et al., 2025] for expert iteration. After formalizing the natural language
problems, we conducted 26 iterative rounds of expert iteration. This process yielded over 30,000
proven theorems and approximately 6 million individual proving (state, step) pairs that can be used
to train our prover.

2.2 Training Data Curation

Filtering Short Proofs. To focus the model’s learning on these more complex reasoning patterns
and reduce its reliance on simple tactics, we exclude theorems from the training set that can be
proven in 3 steps or fewer. The number 3 is determined by a grid search on {2, 3, 4, 5}.Our analysis
indicated that these very short proofs predominantly rely on a limited set of elementary tactics
(e.g., rfl, simp_all, or nlinarith) and thus offer minimal insight into advanced problem-solving
techniques. By removing these overly simplistic examples, we reduced our initial training dataset
by approximately 40%. It is important to note that filtering these simple proofs is not expected to
degrade the model’s ability to solve easy problems. This is because the training data for a step-wise
prover inherently includes a vast number of "late-stage" proof steps. These steps, taken when a proof
is already well underway and nearing completion, often resemble the states encountered in simpler
problems. Consequently, the model still receives ample exposure to simpler reasoning contexts
through these intermediate steps of complex proofs.

Removing Ineffective Tactics. We additionally filter out the training data where the step does not
meaningfully advance the proof state. Certain tactics intended for simplification occasionally do
not bring any change to the proof state, such as aesop, all_goals, and simp_all. After evaluating
our dataset, we identified and removed about 5% of such ineffective tactics. This targeted pruning
encourages the model to better discern when these simplification tactics should be applied, reducing
overreliance and improving proof efficiency.

2.3 Multi-Perspective Tree Search

As illustrated in Figure 2, the traditional BFS approach selects nodes based solely on the best critic
scores. Following Li et al. [2024b], our critic model is trained using a hierarchical, tree-based distance
prediction method to enhance its guidance capabilities during proof searches. The output from the
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(a) Best First Search

(b) Multi-perspective Search

Selected Lean 4 States

Unselected Lean 4 States
Selected by Critic
Unselected Tactics

Unprovable States

Failure

Failure…
Success…

Selected by Heuristic

Figure 2: Search-strategy comparison in Lean-based proving. (a) Best-First Search follows the single
branch favoured by a learned critic; when that critic’s inherent bias selects an unprovable state or an
ineffective tactic, the entire proof attempt terminates in failure. (b) Multi-Perspective Search (MPS)
evaluates each expansion step from heuristics as well as the critic, preserving a more diverse set of
promising Lean 4 states and steering the prover around dead ends and toward a successful proof.

critic model guides the proof search tree by indicating proximity to the completion of the proof—the
smaller the predicted distance, the closer the node is to a successful proof.

While the critic model significantly enhances decision-making during most search steps, it can
sometimes fail, resulting in unprovable states and reduced search efficiency. For instance, the proof-
by-contradiction tactic, although powerful, can substantially alter the proof goal and make the theorem
unprovable if misapplied. Additionally, sometimes critic models tend to frequently propose similar
tactics, creating repetitive and ineffective local minima. As illustrated in Figure 2(a), the proof search
is guided by the critic model to reach an intermediate node where the state becomes unprovable,
leading to wasted effort on subsequent steps and ultimately resulting in a failed proof attempt. To
enhance the diversity of the guiding signals, we introduce three heuristic selection rules:

Tactic Effectiveness Scoring. We assign different scores to tactics based on their perceived efficacy
in advancing the proof. Generally, tactics that introduce new, substantive assumptions or significantly
restructure the proof goal, such as rcases, intro, contrapose, induction, or proof by contradiction
(when appropriately applied), are assigned higher scores. These are often tactics that can unlock
new reasoning pathways or simplify the problem by breaking it down. Conversely, auxiliary tactics
or those focused on more localized simplifications, like norm_num and simp_all, receive lower
scores. While tactics like proof by contradiction can be problematic if misapplied by the critic model
alone (as noted earlier), its inclusion with a high score in this heuristic perspective ensures it remains
a viable option for exploration when potentially beneficial. These scores are manually assigned
based on human expert experience in Lean theorem proving. A detailed table of these tactic scores is
provided in Section 2.4.

Minimizing Case Splits. We select tactics that result in the fewest occurrences of case within the
state string. While tactics like induction, constructor, and split are beneficial under specific
circumstances, excessive case splitting complicates proof states. This heuristic encourages simpler,
more manageable proof states.

Shortest State Preference. We prioritize tactics leading to shorter Lean 4 state strings. Similar to
minimizing cases, this heuristic favors simpler, more straightforward states, facilitating more efficient
proof completion.

As shown in Figure 2, our tree search maintains up to four nodes for each expansion step. Specifically,
from the set of nodes selected in the previous iteration, we generate Nsamples candidate tactics for
each using the LLM. This results in a larger pool of potential next states (e.g., if 4 nodes were selected
and Nsamples = 8, we’d have 4× 8 = 32 candidate next states). From this expanded pool: 1. One
node is selected based on the critic model’s prediction (i.e., the one with the smallest predicted
distance to completion). 2. Three additional nodes are selected based on our heuristic rules. Each
heuristic rule evaluates all candidate next states and picks the one that best satisfies its criterion. If
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different perspectives select the same node, we only retain it once, meaning that in such cases, fewer
than four unique nodes might be carried forward to the next search iteration.

2.4 Tactic Effectiveness Scoring

The Tactic Effectiveness Scoring heuristic in MPS-Prover assigns a numerical score to potential
next steps based on the tactic used. These scores are designed to prioritize tactics that are generally
more impactful or transformative in the proof process, while giving lower scores to auxiliary or very
general-purpose tactics that might be applied speculatively. The scores are based on common patterns
observed in mathematical proofs and expert experience with the Lean theorem prover. The goal is to
guide the search towards more direct and structured proofs by favoring steps that represent significant
logical advancements.

Below is the scoring table used. Tactics are grouped by score, with higher scores indicating a stronger
preference. Note that regular expressions are used for some tactic patterns (e.g., simp?? matches
simp and simp?).

Table 1: Tactic Effectiveness Scores
Score Tactics / Patterns

6 exact, refine, rintro, rcases, induction, revert,
by_contra, contrapose

5 rw, rw .* at, convert, apply, subst, linarith,
congr, ring_nf

4 ring, field_simp, group, aesop

3 simp??, simp_all, simp only

2 norm_cast, push_cast, clear

1 norm_num, swap, all_goals

0 have x = y (without a subsequent by block for proof)

Score 6 (Highly Transformative/Goal-Closing): This tier includes tactics that often conclude a proof
branch directly (e.g., exact, refine), introduce crucial case distinctions or structural changes (e.g.,
induction, rcases), or fundamentally alter the goal’s form (e.g., bycontra, contrapose, revert).
These are typically strong indicators of significant progress.

Score 5 (Strong Rewriting/Application): Tactics like rw (rewrite), apply (apply a hypothe-
sis/lemma), and convert (change goal to a definitionally equal one) are powerful for making targeted
changes. Algebraic simplification tools like linarith and ring_nf also fall here as they can often
solve subgoals involving arithmetic or ring structures.

Score 4 (Domain-Specific Solvers/Automated Tactics): This includes more specialized solvers like
ring (for ring equalities) and field_simp (for field simplifications), group (for group theory), as
well as general automated tactics like aesop. While powerful, aesop is placed slightly lower than the
top tier as it can sometimes be a "black box" and its success is highly conditional.

Score 3 (General Simplification): The simp family of tactics (simp, simp_all, simponly) are
general-purpose simplification tools. They are very useful but are scored moderately because they can
sometimes be applied excessively or ineffectively, leading to many unproductive steps. For tactics
that are excluded in the table, we assign a default score of 3.

Score 2 (Normalization/Cleanup): Tactics like norm_cast (normalize casts), push_cast (push
casts inwards/outwards), and clear (remove unused hypotheses) are important for maintaining a
clean and manageable proof state but don’t usually represent major logical steps forward.

Score 1 (Auxiliary/Low Impact): This includes very basic numerical normalization (normnum),
reordering goals (swap), or meta-level tactic combinators (all_goals) which are generally supportive
rather than primary drivers of proof progress.
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Score 0 (Potentially Redundant have): A havex = y statement without an accompanying by
block to prove it (implying it might be proved by a trivial step, or is simply a renaming) is given the
lowest score. The intent here is to penalize the simple act of stating a trivial equality without further
justification as a standalone step.

This heuristic scoring aims to complement the learned critic model by providing a stable, experience-
based bias towards tactics that are historically effective in structuring and advancing mathematical
proofs. We acknowledge that each heuristic rule, including the critic model, has inherent biases and
limitations, favoring certain proof tactics or states. However, by concurrently applying these criteria,
we substantially enhance the diversity of each search layer, ensuring promising nodes are retained
rather than overlooked due to single-criterion bias.

3 Experiment

Benchmarks To comprehensively evaluate our prover, we utilize two widely recognized bench-
marks. 1. miniF2F [Zheng et al., 2022]: This is the standard benchmark in the ATP community. The
problems are sourced from mathematics competitions (AMC, AIME, IMO) as well as high-school
and undergraduate curricula. We use the latest version available from the Huggingface Numina repos-
itory2, which corrects eight errors identified in the original dataset. 2. ProofNet [Azerbayev et al.,
2023]: This benchmark consists of 371 problems, characteristic of undergraduate-level mathematics.
We report performance on its test split.

Supervised Fine-tuning We employ supervised fine-tuning (SFT) on Qwen2.5-Math-7B-base.
The SFT dataset is a composition of: (1) step-by-step proof data generated during expert iteration
and curated by our proposed filtering techniques; (2) whole proof data, formed by concatenating
the accepted proof steps; and (3) data for training the distance critic model for our search algorithm.
This aggregated dataset amounts to approximately 3.5 million question-answer pairs after applying
our training data filtering method. The model was trained for 3 epochs using a cosine learning rate
scheduler with a maximum learning rate of 2× 10−5. We utilized a cumulative batch size of 256.
The training was performed on 8 * H20 80G GPUs, with a total training duration of about 3 days.

Evaluation Setup All evaluations are conducted using Lean version 4.16.0. For interaction
between the LLM and the Lean proof assistant, we utilize the repl tool3, which facilitates step-
by-step execution. To ensure the rigorous correctness of generated proofs, especially since repl
might occasionally misinterpret certain erroneous steps as valid during step-wise execution, we
perform a final verification. This involves concatenating all generated steps to form a complete
proof script, which is then checked by the Lean compiler. The timeout for executing a whole
search is set to 3600 seconds, while the per-step tactic execution timeout is 60 seconds. Our search
budget per problem is defined by the total number of tactic candidates explored. This is given by
Npass ×Nperspectives ×Nmax_iter ×Nsamples, where Npass is the number of independent search
trials for a problem (e.g., for pass@k, Npass = k), Nperspectives = 4, Nmax_iter = 800 (maximum
search iteration), and Nsamples = 8 (LLM samples per selected node). The "accumulative" search
strategy, following Xin et al. [2025] (BFS-Prover), denotes an incremental evaluation protocol to
assess the model’s maximum potential. In this setup, we keep searching and each search iteration
focuses exclusively on problems that were not solved in prior iterations.

3.1 Main Results

We conduct extensive experiments to evaluate MPS-Prover against state-of-the-art methods on
standard benchmarks. Our primary results on miniF2F are summarized in Table 2, with baseline
details in Appendix B. Our method achieves the best performance among all step-level solvers
evaluated. Specifically on miniF2F, MPS-Prover successfully proves 185 out of 244 problems
(75.82% accuracy), demonstrating a significant improvement over the previous state-of-the-art step-
prover, BFS-prover.

When considering all models within the 7B parameter class (both whole-proof and step-wise), our
model’s performance is only surpassed by DeepSeek-Prover-V2 (Distilled, CoT). We posit this
is expected, as their 7B model is distilled from a significantly larger model, a process known to

2https://huggingface.co/datasets/AI-MO/miniF2F_test
3https://github.com/leanprover-community/repl
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Table 2: Comparison of Whole-Proof and Step-level Provers on miniF2F-test.

Method Model Size Sample Budget Accuracy

Large Whole-Proof Provers

Kimina-Prover-Preview [Wang et al., 2025] 72B 8192 80.74%
DeepSeek-Prover-V2 (non-CoT) [Ren et al., 2025] 671B 8192 78.30%
DeepSeek-Prover-V2 (CoT) [Ren et al., 2025] 671B 8192 88.90%

Small Whole-Proof Provers

Leanabell-Prover-GD-RL [Zhang et al., 2025] 7B 128 61.1%
Goedel-Prover-SFT [Lin et al., 2025] 7B 25600 64.7%
STP [Dong and Ma, 2025] 7B 25600 67.6%
Kimina-Prover-Preview-Distill [Wang et al., 2025] 7B 1024 70.8%
DeepSeek-Prover-V2 (Distilled, non-CoT) [Ren et al., 2025] 7B 8192 75.0%
DeepSeek-Prover-V2 (Distilled, CoT) [Ren et al., 2025] 7B 8192 82.0%

Step-level Provers

InternLM2.5-StepProver + BFS + CG [Wu et al., 2024] 7B 256× 32× 600 65.9%
HunyuanProver + BFS + DC [Li et al., 2024b] 7B 600× 8× 400 68.4%
BFS-Prover [Xin et al., 2025] 7B 2048× 2× 600 70.83%
BFS-Prover [Xin et al., 2025] 7B Accumulative 72.54%

MPS-Prover (Ours) 7B

1× 4× 800× 8 67.62%
4× 4× 800× 8 68.44%
16× 4× 800× 8 70.08%
64× 4× 800× 8 72.54%

Accumulative 75.82%

often yield performance exceeding that of models trained natively at the smaller scale [Guo et al.,
2025]. In contrast, our model is trained directly via iterative refinement at the 7B scale. This
comparison highlights the strong performance achieved by our method and suggests substantial
potential for further improvement by leveraging larger base models or incorporating techniques like
Chain-of-Thought (CoT) reasoning during tactic generation.

Another noteworthy finding is the strong performance of MPS-Prover even under constrained search
budgets. At the minimum search budget evaluated, our model achieves a pass rate of 67.62% on
miniF2F, significantly outperforming InternLM (50.7%) and Hunyuan Prover (59.84%) under similar
minimal conditions. Impressively, this base performance already exceeds the maximum reported
performance of several strong baselines, such as Goedel-prover and InternLM2.5-StepProver. This
indicates that our approach exhibits excellent stability and efficiency, capable of achieving competitive
results without necessitating exhaustive search efforts.

Table 3: ProofNet-test performance of different 7B models
(max budget).

Method (7B models) Performance

Goedel-Prover-SFT [Lin et al., 2025] 15.6%
STP [Dong and Ma, 2025] 26.9%
Deepseek-Prover-V1.5-RL [Xin et al., 2024] 25.3%
DeepSeek-Prover-V2 (non-CoT) [Ren et al., 2025] 24.7%
DeepSeek-Prover-V2 (CoT) [Ren et al., 2025] 29.6%

MPS-Prover (Ours) 32.97%

We also evaluate the performance of
MPS-Prover on the ProofNet bench-
mark, which is generally considered
more challenging than miniF2F, fea-
turing undergraduate-level mathemat-
ics problems that demand more in-
tricate reasoning. Table 3 presents
a comparison of our method against
other state-of-the-art 7B parameter
models that have reported results on
the ProofNet-test split. For a fair com-
parison, all models, including ours, were evaluated using their respective maximum reported sampling
budgets. As can be observed, MPS-Prover achieves a success rate of 32.97%, surpassing all other
7B baseline models. Notably, our approach outperforms even DeepSeek-Prover-V2 with Chain-of-
Thought (CoT) reasoning.

3.2 Comparison under Fixed Budgets

A crucial aspect of evaluating search algorithms is their performance relative to computational
resources. Our Multi-Perspective Search (MPS) inherently explores more branches per iteration
compared to standard Best-First Search (BFS) with tree-based distance prediction as critic [Li et al.,
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2024b]. Specifically, MPS expands four nodes (one from the critic model and three from heuristic
rules) for each selected state in a pass, whereas BFS typically expands only the single best node
according to its criterion. Therefore, to ensure a fair comparison under approximately equivalent
computational budgets, we compare the performance of MPS at pass@k against BFS at pass@4k.

As shown in Figure 3, MPS consistently outperforms BFS when allocated similar computational
resources. At the lowest budget (MPS pass@1 vs. BFS pass@4), MPS achieves a success rate of
67.62% (165/244), slightly edging out BFS’s 66.39% (162/244). This advantage becomes more
pronounced as the budget increases. This consistent gap highlights the effectiveness of the diverse
exploration strategy employed by MPS. By considering multiple perspectives (critic score + heuristics)
at each step, MPS is less prone to getting stuck in local optima compared to the single-criterion
approach of BFS, leading to a higher accuracy within a given computational budget.

3.3 Ablation Study

To understand the contribution of each component in our proposed MPS-Prover, we conduct a
comprehensive ablation study. We evaluate the performance of our system by systematically removing
or altering key components while keeping the total computational budget fixed. This budget is
equivalent to our full method’s pass@64 setting (i.e., 64 × 4 × 800 × 8). The experiments are
performed on the miniF2F benchmark, and the results are presented in Table 4.

The ablation study reveals several key insights. First, removing our post-training data curation strategy
results in a marginal decrease in performance, with our model solving one fewer problem. Thus,
it offers substantial savings in training time and computational resources (40% less training data)
with a negligible impact on the final proving capability. Second, when the critic model’s score-based
guidance is replaced with random selection of nodes for expansion, there is a drastic performance
degradation (e.g., from 177 to 164 problems solved). This indicates that the learned critic model is
effective in navigating the vast search space and guiding the prover towards promising proof paths.
Finally, ablating each of our three heuristic rules for multi-perspective search by replacing their
specific selection criteria with random choices also results in noticeable performance drops. In these
variations ("w/o Tactic Eff. Heuristic", "w/o Min. Cases Heuristic", "w/o Short. State Heuristic"), the
specific heuristic rule is deactivated, and its slot in the multi-perspective selection is filled by a random
choice from the Nsamples candidate next states generated by the LLM for the current expansion. This
demonstrates that without these heuristic rules diversifying tactic selection and guiding search, the
prover is more susceptible to the inherent biases of the critic model alone. It becomes more likely to
fall into local minima, explore unproductive tactic sequences, or even reach unprovable states.
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Figure 3: Performance comparison under equiva-
lent computational budgets.

Table 4: Ablation study on miniF2F. Perfor-
mance is problems proved (out of 244) under
a fixed budget (MPS pass@64 equivalent).
"w/o" indicates removing the specified com-
ponent or replacing its guidance with random
selection for heuristics.

Method Variation Proved (n/244)

MPS-Prover (Full Method) 177/244

w/o Data Curation 176/244

w/o Critic Model 164/244
w/o Tactic Eff. 174/244
w/o Min. Cases 173/244
w/o Short. State 172/244

3.4 Proof Length and Diversity Analysis

To further investigate the characteristics of the proofs generated by different search strategies, we
conduct a quantitative comparison between our Multi-Perspective Search (MPS) and standard Best-
First Search (BFS) with tree-based distance prediction as critic. We ensure a fair comparison by
using the identical LLM backbone and analyzing only the set of problems successfully proven by
both MPS and BFS, guaranteeing analysis on the same theorems.
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Figure 4: Quantitative analysis of proof characteristics for commonly solved problems by BFS
(pass@256) and MPS (pass@64).

Figure 4a shows the distribution of proof lengths, measured as the number of tactic steps (grouped
into categories 1-9 and 10+). It is evident that proofs generated by MPS are significantly shorter on
average than those found by BFS, as indicated by the mean values (dashed lines). MPS produces
a higher frequency of proofs with fewer steps, while BFS exhibits a longer tail of lengthier proofs.
This suggests that the diverse guidance signals in MPS help avoid unproductive tactic sequences or
local optima, leading to more concise solutions.

Figure 4b illustrates the distribution of proof tactic diversity. We define diversity as the number
of unique tactics used in a proof divided by its total length (number of steps). A score closer to 1
indicates a wider variety of tactics relative to length. The results clearly show that MPS-generated
proofs possess considerably higher average diversity scores compared to BFS proofs (see mean lines).
While both methods generate proofs with maximal diversity (score = 1.0, detailed in the annotation),
BFS yields a much larger proportion of proofs with very low diversity scores. This highlights MPS’s
effectiveness in promoting exploration and leveraging a broader range of tactics, whereas BFS, guided
solely by the critic model, is more prone to repetitive tactic usage.

3.5 MPS-Prover vs. Whole-Proof Provers: Proof Length

We further analyze proof characteristics by comparing the length of proofs generated by our MPS-
Prover against two leading whole-proof provers, Kimina-Prover-Preview and DeepSeek-Prover-V2.
This comparison uses 170 commonly solved miniF2F problems and measures proof length in Lean
tactic steps. Table 5 reveals that MPS-Prover generates substantially shorter proofs (mean length 3.44
steps) compared to Kimina (15.91) and DeepSeek-Prover-V2 (52.16). Some examples of their proofs
can be found in our Appendix C.

Table 5: Proof length statistics (Lean steps) on 170
common miniF2F problems.

Statistic DeepSeek-V2 Kimina MPS-Prover

Min 3 1 1
Max 698 186 37
Mean 52.16 15.91 3.44
Median 33.0 6.0 2.0
Std Dev 66.47 24.19 4.64

We attribute this to the operational differences:
stepwise provers like MPS-Prover benefit from
frequent interactions with the Lean engine. Each
tactic execution updates the proof state, allow-
ing the prover to adaptively refine its strategy by
treating the new state as a sub-problem. This iter-
ative process, combined with tactic-level search
prioritizing impactful steps, facilitates the dis-
covery of more direct solutions. In contrast,
whole-proof systems often plan the entire proof
initially, with limited dynamic adaptation, potentially leading to longer, albeit correct, proof scripts.
We believe this analysis highlights a key advantage of step provers in producing more efficient proofs.

4 Related Work

Earlier Methods in Automated Theorem Proving Early automated theorem provers relied on
symbolic search algorithms and hand-crafted heuristics. Systems like Vampire (a first-order logic
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prover) [Riazanov and Voronkov, 2001] and SMT solvers like Z3 [de Moura and Bjørner, 2008]
achieved impressive results using resolution, paramodulation, and DPLL-based search without
learning. Some researchers apply premise selection in learning. Given a large library of axioms
or lemmas, the goal is to predict which ones are relevant to a new theorem. Irving et al. [2016]
pioneered deep learning for premise selection with the DeepMath system, using sequence models
to rank premises for a target theorem. Similarly, Wang et al. [2017] used graph embeddings of
knowledge bases to select premises, treating theorem proving as a graph traversal problem. Neural
networks were also used to guide proof search directly inside automated provers. Loos et al. [2017]
integrated a deep network into the E theorem prover, training the network to perform prediction.

LLM-based Whole-Proof Methods. Recent advances have seen LLMs directly generating com-
plete formal proofs without iterative search, exploiting their powerful sequence modeling capabilities.
Early examples include the Draft, Sketch, and Prove (DSP) system [Jiang et al., 2023], which uses
informal natural language proofs as guidance, significantly improving prover accuracy; Baldur [First
et al., 2023] generates proofs for Isabelle theorems and employs a repair mechanism leveraging failure
feedback, achieving state-of-the-art results. LEGO-Prover [Wang et al., 2024b] enhances whole-proof
generation by hierarchically proving and reusing lemmas, effectively managing intermediate results.
Similarly, POETRY [Wang et al., 2024a] employs recursive proof decomposition, systematically
breaking complex theorems into solvable subgoals. Additionally, curriculum learning strategies [Polu
et al., 2022] and reinforcement learning [Dong et al., 2024, Xin et al., 2024] have been employed
to optimize LLM performance. Goedel-Prover [Lin et al., 2025] and leanabell [Zhang et al., 2025]
perform continual training with cognitive behavior data and RL outcomes from Lean 4 compiler.
Kimina-Prover [Wang et al., 2025] demonstrates superior results (80.7% on miniF2F pass@8192)
through structured reasoning patterns and RL training. DeepSeek-Prover-V2 [Ren et al., 2025] is
trained via a recursive subgoal decomposition pipeline using DeepSeek-V3. By integrating CoT-style
reasoning with formal proving, it achieves an impressive 88.9% accuracy on miniF2F.

LLM-based Step-level Tactic Generation Methods. Stepwise methods integrate LLMs into
iterative proof searches, proposing individual proof steps and navigating search trees. GPT-f [Polu
and Sutskever, 2020] pioneered this approach, proposing tactics that are verified incrementally,
laying the groundwork for subsequent systems. HyperTree Proof Search (HTPS) [Lample et al.,
2022] utilized an AlphaZero-inspired algorithm, exploring multiple proof branches simultaneously,
significantly outperforming earlier methods through sophisticated search heuristics. LeanDojo’s
ReProver [Yang et al., 2023] incorporates premise retrieval, selecting relevant lemmas at each proof
step, enhancing efficiency on Lean benchmarks. SubgoalXL [Zhao et al., 2024] employs expert-
guided iterative training, optimizing subgoal generation strategies. ProofAug [Liu et al., 2025] further
develops hybrid integration by alternately invoking neural suggestions, symbolic ATP calls, and
recursive prover applications for efficient verification. Recent models like InternLM2.5-StepProver
[Wu et al., 2024] utilized expert iteration with large-scale datasets. HunyuanProver [Li et al., 2024b]
further enhanced data synthesis and guided tree search algorithms. BFS-Prover [Xin et al., 2025]
demonstrated the efficacy of simpler Best-First Search methods, incorporating direct preference
optimization from compiler feedback, and length normalization.

5 Discussion

In this work, we present the Multi-Perspective Search Prover (MPS-Prover), a novel stepwise
automated theorem proving system that significantly advances the state of the art. By introducing
a principled post-training data curation strategy and a multi-perspective tree search mechanism
enhanced with heuristic critics, MPS-Prover effectively addresses common failure modes in existing
stepwise provers, such as biased search and exploration of unproductive proof paths. Our extensive
experiments demonstrate that MPS-Prover not only achieves superior success rates on challenging
benchmarks like miniF2F and ProofNet but also generates proofs that are more concise and diverse.

For the broader ATP research community, our findings comfirms the strengths of stepwise proving,
particularly in generating efficient proofs. Looking ahead, several promising avenues for future work
emerge. One key direction is the development of hybrid systems that integrate the global planning
capabilities of whole-proof methods with the adaptive, fine-grained search of stepwise provers like
MPS-Prover. Another exciting prospect involves combining MPS-Prover with reinforcement learning
(RL) techniques to further refine the critic model and search heuristics from self-play or direct
feedback from the proof assistant.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the contributions (data curation,
MPS-Prover, SOTA results, proof characteristics) which are supported by the experimental
results presented in Section 4 (Experiments).

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The Conclusion section briefly acknowledges the performance of larger models
and discusses future work, implicitly noting current scope. A dedicated limitations section
could be added if more depth is required by reviewers.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper focuses on empirical contributions and novel system design rather
than new theoretical results or mathematical proofs of algorithmic properties.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 4 (Experiments) details benchmarks, model training (SFT parameters,
data composition), evaluation setup (Lean version, timeouts, search budget calculation), and
specific data curation rules, providing a basis for reproducibility.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code and instructions for reproducing experiments using publicly available
benchmarks will be provided in supplemental material / upon publication via a public
repository upon acceptance.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 4.2 (Supervised Fine-tuning) details training hyperparameters (learning
rate, scheduler, epochs, batch size) and Section 4.3 (Evaluation Setup) describes Lean
version, REPL usage, timeouts, and search budget components. Further details on data splits
are implicit via standard benchmark usage.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
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Justification: The paper reports absolute success rates (pass@k) on deterministic benchmarks.
Due to the high computational cost of full ATP evaluation runs, multiple seeds for training or
extensive runs for error bars were not performed. Comparisons are based on clear margins
over SOTA.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 4.2 (Supervised Fine-tuning) mentions H20 80G GPUs and 3 days
training.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research focuses on algorithmic improvements for automated theorem
proving, a foundational AI task, and does not involve human subjects, sensitive data, or
direct applications with immediate ethical concerns outlined in the Code of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: The paper focuses on foundational research in ATP. While improved ATP
has positive implications for formal verification and mathematics, a detailed discussion of
broader societal impacts was not included due to space and the fundamental nature of the
work. Potential negative impacts are very indirect.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The research uses an LLM for tactic generation in a specialized domain (formal
mathematics). While based on LLMs, the direct output (Lean tactics) does not pose a high
risk for common misuse scenarios like disinformation or fake profile generation.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper uses publicly available benchmarks (miniF2F, ProofNet) and soft-
ware (Lean, Lean REPL), which are cited. URLs for benchmark data sources are provided
in footnotes (Section 4.1, 4.3). Licenses for these standard assets are generally known or
available from their sources.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper introduces a new method (MPS-Prover) and a fine-tuned model but
does not release new, standalone datasets or benchmarks. If model weights are released,
documentation will accompany them.
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The research does not involve crowdsourcing or direct human subject experi-
mentation.
Guidelines:

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The research does not involve human subjects, so IRB approval is not applica-
ble.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The core methodology involves fine-tuning and using an LLM for tactic
generation in automated theorem proving. This is explicitly described in Section 3 (Method)
and Section 4 (Experiments).
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A Limitation

While our MPS-Prover demonstrates significant advancements in stepwise automated theorem
proving, it is important to acknowledge certain inherent limitations of the stepwise paradigm itself,
particularly when compared to whole-proof generation approaches.

A primary limitation of current stepwise provers, including MPS-Prover, lies in their handling of
tactics that introduce complex, nested proof obligations, such as new lemmas that require their own
sub-proofs. Whole-proof systems, like DeepSeek-Prover-V2 [Guo et al., 2025], can generate entire
proof scripts that include have statements to introduce and subsequently prove auxiliary lemmas
within the main proof structure. The verifier then processes the complete script. However, for a purely
stepwise prover interacting with the Lean 4 engine, if a tactic attempts to introduce an unproven
lemma or a complex structure requiring an immediate, unfulfilled sub-proof (e.g., via have, or certain
intricate uses of induction or calc blocks that don’t immediately resolve to simpler goals), the Lean
engine will typically raise an error and halt that proof path. The prover cannot easily "pause" the
main proof, prove the lemma in isolation, and then resume, all within a single interactive step.

This means that MPS-Prover, like other current step-provers, is less adept at autonomously discovering
and utilizing complex intermediate lemmas that are not already present in the context or standard
libraries. While our multi-perspective search can find efficient paths using existing tactics, it does not
inherently support the generation and in-line proving of new, non-trivial lemmas in the same way a
whole-proof generator might plan for. This restricts the prover’s ability to break down very complex
problems into more manageable, lemma-dependent sub-problems in a self-contained manner during
the stepwise search.

Addressing this limitation is a key direction for future work. As mentioned in our conclusion,
exploring hybrid approaches that combine the stepwise search capabilities of MPS-Prover with the
global planning and lemma-handling strengths of whole-proof generation methods could offer a
promising path towards overcoming this challenge and further expanding the scope of theorems that
can be automatically proven.

B Baselines

We compare MPS-Prover against a comprehensive set of state-of-the-art automated theorem provers.
For whole-proof generation methods, we include Kimina-Prover-Preview [Wang et al., 2025], which
employs interleaved natural language reasoning and Lean code blocks along with reinforcement
learning (RL). Another strong contender is DeepSeek-prover V2 [Ren et al., 2025], notable for its
use of subgoal decomposition to break down complex problems and subsequent proof generation,
also enhanced with RL. Goedel prover [Lin et al., 2025] represents methods focused on extensive
data collection, having curated a large formalized mathematics dataset for expert iteration training.
Leanabell-Prover [Zhang et al., 2025] similarly combines expert iteration with RL techniques.
Additionally, STP [Dong and Ma, 2025] utilizes a dual-role architecture with a conjecturer and a
prover, where each component provides training signals for the other. For stepwise proof generation
methods, we select InternLM-StepProver [Wu et al., 2024], one of the pioneers in applying LLMs to
step-level ATP. Hunyuan prover [Li et al., 2024b] advanced this line by designing improved critic
models and integrating Monte Carlo Tree Search (MCTS). The most recent and leading baseline in
this category is BFS-prover [Xin et al., 2025], which combines Supervised Fine-tuning (SFT) with
Direct Preference Optimization (DPO) and incorporates length normalization during its Best-First
Search, representing the previous state-of-the-art for step-provers.

C Case Studies

To provide a more nuanced understanding of the differences in proof strategies and generated solutions,
we conduct case studies on specific theorems. We compare proofs generated by our MPS-Prover
with those from Kimina-Prover and DeepSeek-Prover V2 for two commonly solved problems, and
additionally showcase a problem uniquely solved by MPS-Prover.

17



C.1 Analysis of a Commonly Solved Problem:
algebra_absapbon1pabsapbleqsumabsaon1pabsa

The theorem algebra_absapbon1pabsapbleqsumabsaon1pabsa states that for any real numbers
a and b, |a+b|

1+|a+b| ≤
|a|

1+|a| +
|b|

1+|b| . All three provers successfully found a proof for this theorem, but
their approaches and the resulting proof scripts differ significantly in length and style.

Our MPS-Prover generates a remarkably concise proof of only 8 lines. Key steps include leveraging
rw for rewriting goals based on non-negativity, using by_cases for case analysis (e.g., a = 0), and
then efficiently using field_simp with relevant hypotheses like abs_nonneg and mul_nonneg.
The proof concludes with a call to refine′ combined with div_nonneg and powerful finishers like
nlinarith and positivity. Each step appears to make substantial progress, often simplifying the goal
significantly or discharging parts of it by effectively utilizing built-in Mathlib lemmas and tactics.
This conciseness stems from MPS-Prover’s ability to explore and select tactics that yield significant
progress at each step, guided by the multi-perspective search.

In contrast, the solution from Kimina-Prover for the same problem is considerably longer, spanning
approximately 40 lines. It primarily relies on a sequence of have statements to introduce intermediate
lemmas (e.g., h1 : abs(a+b) ≤ absa+absb, h2 : . . . , h3 : . . . ). Each of these lemmas is then proven
using a combination of more granular tactics like apply, linarith, nlinarith, and field_simp.
While logically sound, this approach of explicitly stating and proving multiple intermediate steps
results in a more verbose proof. This suggests a strategy that might break down the problem based on
an initial plan but does not necessarily find the most direct path available through more powerful,
combined tactics.

The proof generated by DeepSeek-Prover V2 is the longest, around 60 lines. Similar to Kimina-Prover,
it also extensively uses have to introduce and prove a series of lemmas. However, the proof of those
lemmas, and its subsequent applications, are broken down into many fine-grained steps involving
positivity, nlinarith, linarith, and rw[div_le_div_iff . . . ]. While demonstrating a sophisticated
understanding by identifying and proving this general property, the overall proof becomes quite
lengthy due to the detailed, step-by-step derivation of each component. This is characteristic of
whole-proof systems that might formulate a high-level plan (e.g., "prove and use the monotonicity
of f(x) = x/(1 + x)") and then meticulously fill in the details, which may not always be the most
compact way to express the proof in Lean.

These comparisons highlight that MPS-Prover, through its stepwise search and selection of high-
progress tactics, tends to produce more concise proofs by effectively leveraging powerful built-in
Mathlib functionalities. Whole-proof systems, while capable of complex reasoning and planning, may
generate longer proofs due to their tendency to break down problems into many simpler, explicitly
stated intermediate steps, potentially constrained by an initial, possibly more verbose, plan.

1 -- Solution to algebra_absapbon1pabsapbleqsumabsaon1pabsa by our MPS-Prover
2

3 import Mathlib
4 import Aesop
5 set_option maxHeartbeats 0
6 open BigOperators Real Nat Topology Rat
7

8 theorem algebra_absapbon1pabsapbleqsumabsaon1pabsa (a b : R) :
9 abs (a + b) / (1 + abs (a + b)) ≤ abs a / (1 + abs a) + abs b / (1 + abs b) :=

by↪→
10

11 rw [← sub_nonneg, ← sub_nonneg, ← sub_nonneg]
12 by_cases h1 : a = 0
13 all_goals field_simp [abs_of_nonneg, abs_of_pos, *]
14 have h2 : 0 ≤ |b| := abs_nonneg b
15 <;> have h3 : 0 ≤ |a| := abs_nonneg a
16 <;> field_simp [h1, h2, h3]
17 have h4 : 0 ≤ |a + b| := abs_nonneg (a + b)
18 <;>
19 have h5 : 0 ≤ |a| * |b| := mul_nonneg h3 h2
20 <;>
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21 field_simp [h1, h2, h3, h4, h5]
22 refine' div_nonneg (by nlinarith [abs_mul a b, abs_add a b]) (by positivity)

1 -- Solution to algebra_absapbon1pabsapbleqsumabsaon1pabsa by Kimina-Prover
2

3 import Mathlib
4 import Aesop
5

6 set_option maxHeartbeats 0
7

8 open BigOperators Real Nat Topology Rat
9

10 theorem algebra_absapbon1pabsapbleqsumabsaon1pabsa (a b : R) :
11 abs (a + b) / (1 + abs (a + b)) ≤ abs a / (1 + abs a) + abs b / (1 + abs b) :=

by↪→
12 have h1 : abs (a + b) ≤ abs a + abs b := by
13 apply abs_add
14 have h2 : abs (a + b) / (1 + abs (a + b)) ≤ (abs a + abs b) / (1 + abs a + abs

b) := by↪→
15 have h2a : abs (a + b) ≤ abs a + abs b := by
16 apply abs_add
17 have h2b : 0 ≤ abs (a + b) := abs_nonneg (a + b)
18 have h2c : 0 ≤ abs a + abs b := by
19 apply add_nonneg
20 · apply abs_nonneg a
21 · apply abs_nonneg b
22 have h2d : 0 ≤ (1 + abs (a + b)) := by
23 linarith [abs_nonneg (a + b)]
24 have h2e : 0 ≤ (1 + abs a + abs b) := by
25 linarith [abs_nonneg a, abs_nonneg b]
26 have h2f : abs (a + b) / (1 + abs (a + b)) ≤ (abs a + abs b) / (1 + abs a +

abs b) := by↪→
27 apply (div_le_div_iff (by linarith) (by linarith)).mpr
28 nlinarith [abs_nonneg (a + b), abs_nonneg a, abs_nonneg b, h2a]
29 exact h2f
30 have h3 : (abs a + abs b) / (1 + abs a + abs b) ≤ abs a / (1 + abs a) + abs b /

(1 + abs b) := by↪→
31 have h3a : 0 ≤ (1 + abs a + abs b) := by
32 linarith [abs_nonneg a, abs_nonneg b]
33 have h3b : 0 ≤ (1 + abs a) := by
34 linarith [abs_nonneg a]
35 have h3c : 0 ≤ (1 + abs b) := by
36 linarith [abs_nonneg b]
37 have h4 : (abs a + abs b) / (1 + abs a + abs b) ≤ abs a / (1 + abs a) + abs b

/ (1 + abs b) := by↪→
38 have h4a : abs a ≥ 0 := abs_nonneg a
39 have h4b : abs b ≥ 0 := abs_nonneg b
40 have h4c : 1 + abs a + abs b > 0 := by linarith [abs_nonneg a, abs_nonneg b]
41 have h4d : 1 + abs a > 0 := by linarith [abs_nonneg a]
42 have h4e : 1 + abs b > 0 := by linarith [abs_nonneg b]
43 have h5 : abs a / (1 + abs a) + abs b / (1 + abs b) - (abs a + abs b) / (1 +

abs a + abs b) ≥ 0 := by↪→
44 have h5a : abs a / (1 + abs a) + abs b / (1 + abs b) - (abs a + abs b) /

(1 + abs a + abs b) =↪→
45 (abs a * (1 + abs b) * (1 + abs a + abs b) +
46 abs b * (1 + abs a) * (1 + abs a + abs b) -
47 (abs a + abs b) * (1 + abs a) * (1 + abs b)) /
48 ((1 + abs a) * (1 + abs b) * (1 + abs a + abs b)) := by
49 field_simp
50 <;> ring
51 rw [h5a]
52 have h5b : 0 ≤ (abs a * (1 + abs b) * (1 + abs a + abs b) +
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53 abs b * (1 + abs a) * (1 + abs a + abs b) -
54 (abs a + abs b) * (1 + abs a) * (1 + abs b)) := by
55 nlinarith [sq_nonneg (abs a), sq_nonneg (abs b), mul_nonneg (abs_nonneg

a) (abs_nonneg b)]↪→
56 have h5c : 0 < (1 + abs a) * (1 + abs b) * (1 + abs a + abs b) := by
57 apply mul_pos
58 apply mul_pos
59 · linarith [abs_nonneg a]
60 · linarith [abs_nonneg b]
61 · linarith [abs_nonneg a, abs_nonneg b]
62 apply div_nonneg
63 · linarith
64 · nlinarith [abs_nonneg a, abs_nonneg b]
65 linarith [h5]
66 linarith [h4]
67 linarith [h2, h3]

1 -- Solution to algebra_absapbon1pabsapbleqsumabsaon1pabsa by Deepseek-Prover V2
2

3 import Mathlib
4 import Aesop
5

6 set_option maxHeartbeats 0
7

8 open BigOperators Real Nat Topology Rat
9

10 /-- Show that for any real numbers $a$ and $b$, $\frac{|a+b|}{1+|a+b|}\leq
\frac{|a|}{1+|a|}+\frac{|b|}{1+|b|}$.-/↪→

11 theorem algebra_absapbon1pabsapbleqsumabsaon1pabsa (a b : R) :
12 abs (a + b) / (1 + abs (a + b)) ≤ abs a / (1 + abs a) + abs b / (1 + abs b) :=

by↪→
13 have h1 : abs (a + b) ≤ abs a + abs b := by
14 calc
15 abs (a + b) ≤ abs a + abs b := by
16 -- Use the triangle inequality for absolute values.
17 exact abs_add a b
18 _ = abs a + abs b := by rfl
19

20 have h2 : ∀ (x y : R), 0 ≤ x → x ≤ y → x / (1 + x) ≤ y / (1 + y) := by
21 intro x y hx hxy
22 have h3 : 0 ≤ x := hx
23 have h4 : x ≤ y := hxy
24 have h5 : 0 ≤ y := by linarith
25 have h6 : 0 ≤ 1 + x := by linarith
26 have h7 : 0 ≤ 1 + y := by linarith
27 have h8 : 0 < 1 + x := by linarith
28 have h9 : 0 < 1 + y := by linarith
29 -- Use the division inequality to compare the fractions.
30 have h10 : x / (1 + x) ≤ y / (1 + y) := by
31 rw [div_le_div_iff (by positivity) (by positivity)]
32 -- Simplify the inequality to a form that can be handled by linear

arithmetic.↪→
33 nlinarith [mul_nonneg h3 (sub_nonneg.mpr h4), mul_nonneg h5 h3,
34 mul_nonneg h5 (sub_nonneg.mpr h4)]
35 exact h10
36

37 have h3 : abs (a + b) / (1 + abs (a + b)) ≤ (abs a + abs b) / (1 + (abs a + abs
b)) := by↪→

38 have h4 : 0 ≤ abs (a + b) := abs_nonneg (a + b)
39 have h5 : 0 ≤ abs a + abs b := by positivity
40 have h6 : abs (a + b) ≤ abs a + abs b := h1
41 have h7 : 0 ≤ 1 + abs (a + b) := by positivity
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42 have h8 : 0 ≤ 1 + (abs a + abs b) := by positivity
43 have h9 : 0 < 1 + abs (a + b) := by positivity
44 have h10 : 0 < 1 + (abs a + abs b) := by positivity
45 -- Use the fact that the function x / (1 + x) is increasing for x ≥ 0.
46 have h11 : abs (a + b) / (1 + abs (a + b)) ≤ (abs a + abs b) / (1 + (abs a +

abs b)) := by↪→
47 have h12 : abs (a + b) / (1 + abs (a + b)) ≤ (abs a + abs b) / (1 + (abs a +

abs b)) := by↪→
48 -- Apply the increasing property of the function.
49 have h13 : 0 ≤ abs (a + b) := by positivity
50 have h14 : abs (a + b) ≤ abs a + abs b := h1
51 have h15 : 0 ≤ abs a + abs b := by positivity
52 have h16 : 0 < 1 + abs (a + b) := by positivity
53 have h17 : 0 < 1 + (abs a + abs b) := by positivity
54 -- Use the previously proven lemma.
55 have h18 : abs (a + b) / (1 + abs (a + b)) ≤ (abs a + abs b) / (1 + (abs a

+ abs b)) := by↪→
56 apply h2
57 <;> try norm_num
58 <;> linarith
59 exact h18
60 exact h12
61 exact h11
62

63 have h4 : (abs a + abs b) / (1 + (abs a + abs b)) ≤ abs a / (1 + abs a) + abs b
/ (1 + abs b) := by↪→

64 have h5 : 0 ≤ abs a := abs_nonneg a
65 have h6 : 0 ≤ abs b := abs_nonneg b
66 have h7 : 0 ≤ abs a + abs b := by positivity
67 have h8 : 0 < 1 + abs a := by positivity
68 have h9 : 0 < 1 + abs b := by positivity
69 have h10 : 0 < 1 + (abs a + abs b) := by positivity
70 have h11 : (abs a + abs b) / (1 + (abs a + abs b)) = abs a / (1 + (abs a + abs

b)) + abs b / (1 + (abs a + abs b)) := by↪→
71 field_simp [h8, h9, h10]
72 <;> ring
73 <;> field_simp [h8, h9, h10]
74 <;> ring
75 rw [h11]
76 have h12 : abs a / (1 + (abs a + abs b)) ≤ abs a / (1 + abs a) := by
77 have h13 : 0 ≤ abs a := abs_nonneg a
78 have h14 : 0 < 1 + abs a := by positivity
79 have h15 : 0 < 1 + (abs a + abs b) := by positivity
80 have h16 : 0 < 1 + abs a + abs b := by positivity
81 -- Use the fact that 1 + abs a ≤ 1 + (abs a + abs b) to show the inequality
82 have h17 : 1 + abs a ≤ 1 + (abs a + abs b) := by
83 nlinarith [h6]
84 -- Use the division inequality to prove the result
85 have h18 : abs a / (1 + (abs a + abs b)) ≤ abs a / (1 + abs a) := by
86 apply div_le_div_of_le_left (by positivity) (by positivity)
87 <;> nlinarith
88 exact h18
89 have h13 : abs b / (1 + (abs a + abs b)) ≤ abs b / (1 + abs b) := by
90 have h14 : 0 ≤ abs b := abs_nonneg b
91 have h15 : 0 < 1 + abs b := by positivity
92 have h16 : 0 < 1 + (abs a + abs b) := by positivity
93 have h17 : 0 < 1 + abs a + abs b := by positivity
94 -- Use the fact that 1 + abs b ≤ 1 + (abs a + abs b) to show the inequality
95 have h18 : 1 + abs b ≤ 1 + (abs a + abs b) := by
96 nlinarith [h5]
97 -- Use the division inequality to prove the result
98 have h19 : abs b / (1 + (abs a + abs b)) ≤ abs b / (1 + abs b) := by
99 apply div_le_div_of_le_left (by positivity) (by positivity)

100 <;> nlinarith
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101 exact h19
102 have h20 : abs a / (1 + (abs a + abs b)) + abs b / (1 + (abs a + abs b)) ≤ abs

a / (1 + abs a) + abs b / (1 + abs b) := by↪→
103 linarith
104 linarith
105

106 have h5 : abs (a + b) / (1 + abs (a + b)) ≤ abs a / (1 + abs a) + abs b / (1 +
abs b) := by↪→

107 calc
108 abs (a + b) / (1 + abs (a + b)) ≤ (abs a + abs b) / (1 + (abs a + abs b)) :=

h3↪→
109 _ ≤ abs a / (1 + abs a) + abs b / (1 + abs b) := h4
110

111 exact h5

C.2 Analysis of a Commonly Solved Problem: imo_1962_p2

The theorem imo_1962_p2 is another problem successfully solved by all three provers, allowing for
a comparison of proof styles for a different type of problem involving inequalities and square roots.
Our MPS-Prover again produces a very short proof. It effectively uses refine′ to structure the proof
for the conjunction, then leverages a sequence of powerful rewriting and simplification tactics like
rw, field_simp, norm_num, and nlinarith, often chained or applied with specific hypotheses.
This demonstrates an ability to quickly simplify complex algebraic expressions and discharge goals
using arithmetic reasoning.

Kimina-Prover’s solution is also structured around proving the two conjuncts separately using
constructor. It uses have to establish intermediate inequalities and then applies tactics like linarith,
sq_lt_sq′, rw[Real.sq_sqrt], and nlinarith. The steps are logical and clear but involve more
explicit intermediate assertions compared to MPS-Prover.

DeepSeek-Prover V2’s proof is the most detailed. It also uses constructor (implicitly, by proving
h3 and h11 separately for the conjuncts) and introduces many intermediate facts with have. The
reasoning involves careful manipulation of inequalities, squaring both sides (e.g., gcongr), and
algebraic simplification, often broken down into very small, verifiable steps. While demonstrating
thoroughness, this level of granularity contributes to the proof’s length.

This case again illustrates MPS-Prover’s tendency towards conciseness by selecting powerful,
progress-making tactics. The whole-proof methods, while effective, often produce more verbose
proofs due to their strategy of explicit lemma introduction and detailed, step-by-step derivations.

1 -- Solution to imo_1962_p2 by our MPS-Prover
2

3 import Mathlib
4 import Aesop
5 set_option maxHeartbeats 0
6 open BigOperators Real Nat Topology Rat
7

8 theorem imo_1962_p2 (x : R) (h0 : 0 ≤ 3 - x) (h1 : 0 ≤ x + 1)
9 (h2 : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1)) : -1 ≤ x ∧ x < 1 -

Real.sqrt 31 / 8 := by↪→
10

11 refine' 〈_, _〉
12 nlinarith [Real.sq_sqrt h0, Real.sq_sqrt h1]
13 rw [lt_sub_iff_add_lt] at h2
14 rw [lt_sqrt (by positivity)] at h2
15 rw [← sub_pos] at h2 ⊢
16 ring_nf
17 ring_nf at h0 h1 h2 ⊢
18 field_simp at h2 ⊢
19 <;> ring_nf at h2 ⊢ <;> norm_num [h0, h1, h2]
20 rw [Real.sqrt_lt (by linarith)] <;> norm_num
21 <;> nlinarith [Real.sqrt_nonneg (1 + x), Real.sq_sqrt h1]
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1 -- Solution to imo_1962_p2 by Kimina-Prover
2

3 import Mathlib
4 import Aesop
5

6 set_option maxHeartbeats 0
7

8 open BigOperators Real Nat Topology Rat
9

10

11 theorem imo_1962_p2 (x : R) (h0 : 0 ≤ 3 - x) (h1 : 0 ≤ x + 1)
12 (h2 : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1)) : -1 ≤ x ∧ x < 1 -

Real.sqrt 31 / 8 := by↪→
13 constructor
14 · linarith [h1]
15 · have h3 : Real.sqrt (3 - x) - Real.sqrt (x + 1) > 1 / 2 := by linarith
16 have h4 : Real.sqrt (3 - x) > Real.sqrt (x + 1) + 1 / 2 := by linarith
17 have h5 : Real.sqrt (x + 1) ≥ 0 := Real.sqrt_nonneg (x + 1)
18 have h6 : Real.sqrt (3 - x) ≥ 0 := Real.sqrt_nonneg (3 - x)
19 have h7 : Real.sqrt (3 - x) > 0 := by linarith [h6, h5]
20 have h8 : (Real.sqrt (3 - x)) ^ 2 > (Real.sqrt (x + 1) + 1 / 2) ^ 2 := by
21 apply sq_lt_sq'
22 all_goals linarith [h4, h5, h7]
23 have h9 : (Real.sqrt (3 - x)) ^ 2 = 3 - x := by
24 rw [Real.sq_sqrt]
25 linarith
26 have h10 : (Real.sqrt (x + 1) + 1 / 2) ^ 2 = (Real.sqrt (x + 1)) ^ 2 +

Real.sqrt (x + 1) + 1 / 4 := by↪→
27 ring_nf
28 <;> simp [Real.sqrt_nonneg]
29 rw [h9, h10] at h8
30 have h11 : (Real.sqrt (x + 1)) ^ 2 = x + 1 := by
31 rw [Real.sq_sqrt]
32 linarith
33 have h12 : Real.sqrt (x + 1) < 7 / 4 - 2 * x := by nlinarith [h8, h11,

Real.sqrt_nonneg (x + 1)]↪→
34 have h13 : x < 1 - Real.sqrt 31 / 8 := by
35 have h14 : Real.sqrt (x + 1) + 2 * x < 7 / 4 := by linarith [h12]
36 have h15 : Real.sqrt 31 ^ 2 = 31 := by
37 rw [Real.sq_sqrt]
38 norm_num
39 nlinarith [h14, Real.sq_sqrt (show 0 ≤ x + 1 by linarith), Real.sq_sqrt

(show 0 ≤ 3 - x by linarith), Real.sqrt_nonneg (3 - x), Real.sqrt_nonneg
(x + 1), Real.sq_sqrt (show 0 ≤ (31 : R) by norm_num), Real.sq_sqrt
(show 0 ≤ (8 : R) by norm_num)]

↪→
↪→
↪→

40 linarith [h13]

1 -- Solution to imo_1962_p2 by Deepseek-Prover V2
2

3 import Mathlib
4 import Aesop
5

6 set_option maxHeartbeats 0
7

8 open BigOperators Real Nat Topology Rat
9

10

11 theorem imo_1962_p2 (x : R) (h0 : 0 ≤ 3 - x) (h1 : 0 ≤ x + 1)
12 (h2 : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1)) : -1 ≤ x ∧ x < 1 -

Real.sqrt 31 / 8 := by↪→
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13 have h3 : -1 ≤ x := by
14 linarith
15

16 have h4 : Real.sqrt (3 - x) - Real.sqrt (x + 1) > 1 / 2 := by
17 linarith
18

19 have h5 : Real.sqrt (3 - x) > Real.sqrt (x + 1) + 1 / 2 := by
20 linarith
21

22 have h6 : 3 - x > x + 1 + Real.sqrt (x + 1) + 1 / 4 := by
23 have h61 : Real.sqrt (3 - x) > Real.sqrt (x + 1) + 1 / 2 := h5
24 have h62 : 0 ≤ Real.sqrt (x + 1) := Real.sqrt_nonneg (x + 1)
25 have h63 : 0 ≤ Real.sqrt (3 - x) := Real.sqrt_nonneg (3 - x)
26 have h64 : 0 ≤ Real.sqrt (x + 1) * (1 / 2) := by positivity
27 have h65 : 0 ≤ Real.sqrt (3 - x) := Real.sqrt_nonneg (3 - x)
28 have h66 : 0 ≤ Real.sqrt (x + 1) := Real.sqrt_nonneg (x + 1)
29 have h67 : (Real.sqrt (x + 1) + 1 / 2) ≥ 0 := by positivity
30 have h68 : Real.sqrt (3 - x) > Real.sqrt (x + 1) + 1 / 2 := h5
31 have h69 : (Real.sqrt (x + 1) + 1 / 2) ^ 2 < (Real.sqrt (3 - x)) ^ 2 := by
32 gcongr
33 <;> nlinarith [Real.sq_sqrt (show 0 ≤ x + 1 by linarith), Real.sq_sqrt (show

0 ≤ 3 - x by linarith)]↪→
34 have h610 : (Real.sqrt (x + 1) + 1 / 2) ^ 2 = (x + 1) + Real.sqrt (x + 1) + 1 /

4 := by↪→
35 nlinarith [Real.sq_sqrt (show 0 ≤ x + 1 by linarith), Real.sq_sqrt (show 0

≤ 3 - x by linarith),↪→
36 sq_nonneg (Real.sqrt (x + 1) - 1 / 2)]
37 have h611 : (Real.sqrt (3 - x)) ^ 2 = 3 - x := by
38 rw [Real.sq_sqrt] <;> linarith
39 nlinarith [Real.sq_sqrt (show 0 ≤ x + 1 by linarith), Real.sq_sqrt (show 0 ≤

3 - x by linarith)]↪→
40

41 have h7 : 7 - 8 * x > 4 * Real.sqrt (x + 1) := by
42 have h71 : 3 - x > x + 1 + Real.sqrt (x + 1) + 1 / 4 := h6
43 have h72 : 0 ≤ Real.sqrt (x + 1) := Real.sqrt_nonneg (x + 1)
44 nlinarith [Real.sqrt_nonneg (x + 1)]
45

46 have h8 : x < 7 / 8 := by
47 by_contra h
48 have h81 : x ≥ 7 / 8 := by linarith
49 have h82 : 7 - 8 * x ≤ 0 := by
50 linarith
51 have h83 : 4 * Real.sqrt (x + 1) ≥ 0 := by positivity
52 linarith
53

54 have h9 : 0 ≤ Real.sqrt 31 := by positivity
55

56 have h10 : 64 * x ^ 2 - 128 * x + 33 > 0 := by
57 have h101 : 7 - 8 * x > 4 * Real.sqrt (x + 1) := h7
58 have h102 : 0 ≤ Real.sqrt (x + 1) := Real.sqrt_nonneg (x + 1)
59 have h103 : 0 ≤ 7 - 8 * x := by linarith
60 have h104 : 0 ≤ Real.sqrt (x + 1) := Real.sqrt_nonneg (x + 1)
61 have h105 : 0 ≤ 7 - 8 * x := by linarith
62 have h106 : (7 - 8 * x) ^ 2 > (4 * Real.sqrt (x + 1)) ^ 2 := by
63 gcongr
64 have h107 : (4 * Real.sqrt (x + 1)) ^ 2 = 16 * (x + 1) := by
65 nlinarith [Real.sq_sqrt (show 0 ≤ x + 1 by linarith), sq_nonneg (Real.sqrt

(x + 1) - 2)]↪→
66 have h108 : (7 - 8 * x) ^ 2 > 16 * (x + 1) := by
67 linarith
68 nlinarith [Real.sq_sqrt (show 0 ≤ x + 1 by linarith), sq_nonneg (x - 1)]
69

70 have h11 : x < 1 - Real.sqrt 31 / 8 := by
71 by_contra h
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72 have h111 : x ≥ 1 - Real.sqrt 31 / 8 := by
73 linarith
74 have h112 : 64 * x ^ 2 - 128 * x + 33 ≤ 0 := by
75 have h113 : x ≥ 1 - Real.sqrt 31 / 8 := h111
76 have h114 : x ≤ 1 + Real.sqrt 31 / 8 := by
77 by_contra h114
78 have h115 : x > 1 + Real.sqrt 31 / 8 := by linarith
79 have h116 : 64 * x ^ 2 - 128 * x + 33 > 0 := h10
80 have h117 : x < 7 / 8 := h8
81 nlinarith [Real.sqrt_nonneg 31, Real.sq_sqrt (show 0 ≤ 31 by norm_num)]
82 nlinarith [Real.sqrt_nonneg 31, Real.sq_sqrt (show 0 ≤ 31 by norm_num),
83 sq_nonneg (x - (1 - Real.sqrt 31 / 8)), sq_nonneg (x - (1 + Real.sqrt 31 /

8))]↪→
84 linarith [h10]
85

86 exact 〈h3, h11〉

C.3 Analysis of a Problem Uniquely Solved by MPS-Prover: amc12a_2020_p7

The problem amc12a_2020_p7 involves evaluating a sum based on a sequence defined by specific
values of a(k)3. This problem was solved by our MPS-Prover, while both Kimina-Prover and
DeepSeek-Prover V2 failed to find a solution.

The MPS-Prover solution employs induction′ as a key initial step. This is followed by extensive use
of simp_all (often with config := {decide := true}) to simplify goals after instantiating terms of
the sequence (a(0) through a(6)) derived from the hypotheses h0 through h6. The proof also uses
interval_cases to handle natural number variables within certain ranges derived from nlinarith.
The final steps involve further simplification with Nat.cast properties. The success here suggests
that MPS-Prover’s search was able to identify a productive high-level strategy (induction′) and then
effectively use simplification and case analysis tactics to manage the resulting subgoals. The ability
to find this particular combination of tactics, especially the crucial induction′ and effective use of
interval_cases, within the search budget highlights the strength of our multi-perspective approach
in navigating complex search spaces where other methods might falter. The other provers might have
struggled to identify the correct induction variable or effectively simplify the numerous concrete
arithmetic subgoals that arise.

This case study highlights MPS-Prover’s ability to find solutions to problems that prove difficult for
other leading systems. Such successes can be attributed to the robust search paradigm of stepwise
provers, which allows for exploration of various proof strategies, selection of effective tactics, and
crucial backtracking capabilities. These features, amplified by our multi-perspective enhancements,
enable the discovery of solutions even when the reasoning path is intricate or non-obvious.

1 -- A problem solved by our MPS-Prover, where Kimina-Prover and Deepseek-Prover
both fail to solve.↪→

2

3 import Mathlib
4 import Aesop
5 set_option maxHeartbeats 0
6 open BigOperators Real Nat Topology Rat
7

8 theorem amc12a_2020_p7 (a : N → N) (h0 : (a 0)^3 = 1) (h1 : (a 1)^3 = 8) (h2 : (a
2)^3 = 27) (h3 : (a 3)^3 = 64) (h4 : (a 4)^3 = 125) (h5 : (a 5)^3 = 216) (h6 :
(a 6)^3 = 343) :

∑
k in Finset.range 7, (6 * (a k)^2) - ↑(2 *

∑
k in

Finset.range 6, (a k)^2) = 658 := by

↪→
↪→
↪→

9

10 induction' 4 <;> simp_all [Finset.sum_range_succ, pow_succ]
11 have h7 : a 1 ≤ 8 := by nlinarith
12 interval_cases a 1 <;> simp_all (config := {decide := true})
13 have h7 : a 2 * a 2 * a 2 = 27 := by assumption
14 have h8 : a 3 * a 3 * a 3 = 64 := h3
15 <;> try simp_all [Nat.mul_comm, Nat.mul_assoc, Nat.mul_left_comm]
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16 have h9 : a 4 * a 4 * a 4 = 125 := by nlinarith
17 all_goals
18 have : a 2 ≤ 6 := by nlinarith
19 interval_cases a 2 <;> simp_all (config := {decide := true})
20 have h10 : a 5 * a 5 * a 5 = 216 := by nlinarith
21 have h12 : a 6 = 7 := by nlinarith
22 simp_all
23 all_goals
24 have : a 4 ≤ 12 := by nlinarith
25 interval_cases a 4 <;> simp_all (config := {decide := true})
26 have h14 : a 5 = 6 := by nlinarith
27 simp_all [Nat.cast_add, Nat.cast_mul, Nat.cast_pow]
28 have h11 : a 3 ≤ 8 := by nlinarith
29 interval_cases a 3 <;> simp_all
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