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Abstract

Spiking Neural Networks (SNNs) exhibit sig-
nificant potential due to their low energy con-
sumption. Converting Artificial Neural Networks
(ANNs) to SNNs is an efficient way to achieve
high-performance SNNs. However, many con-
version methods are based on rate coding, which
requires numerous spikes and longer time-steps
compared to directly trained SNNs, leading to
increased energy consumption and latency. This
article introduces differential coding for ANN-
to-SNN conversion, a novel coding scheme that
reduces spike counts and energy consumption by
transmitting changes in rate information rather
than rates directly, and explores its application
across various layers. Additionally, the thresh-
old iteration method is proposed to optimize
thresholds based on activation distribution when
converting Rectified Linear Units (ReLUs) to
spiking neurons. Experimental results on var-
ious Convolutional Neural Networks (CNNs)
and Transformers demonstrate that the proposed
differential coding significantly improves accu-
racy while reducing energy consumption, par-
ticularly when combined with the threshold it-
eration method, achieving state-of-the-art per-
formance. The source codes of the proposed
method are available at https://github.
com/h-z-h-cell/ANN-to-SNN-DCGS.
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1. Introduction
Spiking Neural Networks (SNNs) are sometimes regarded
as the third generation of neural network models (Maass,
1997) for their unique neural dynamics and high biological
plausibility (Gerstner et al., 2014), making them a compet-
itive candidate to Artificial Neural Networks (ANNs) (Li
et al., 2024). A significant difference between ANNs and
SNNs is the information representation. ANNs transmit
dense floating values between layers. While in SNNs, com-
munications between layers are based on sparse and binary
spikes, which are triggered by the membrane potentials of
spiking neurons across the threshold, bringing event-driven
computations and extremely low power consumption on neu-
romorphic chips (Merolla et al., 2014; Davies et al., 2018;
DeBole et al., 2019; Pei et al., 2019).

However, the discrete and non-differentiable spike firing
process causes huge learning challenges in SNNs. Recently,
this issue is solved partly by the surrogate learning method
(Neftci et al., 2019), which redefines the gradient of spike
firing process by a smooth and differentiable surrogate func-
tion. Enabled by the surrogate gradients, deep SNNs can be
trained by powerful backward propagation and gradient de-
scent methods, and their performance are greatly improved
(Fang et al., 2021; Duan et al., 2022; Shi et al., 2024). The
applications of SNNs are also extended to complex event-
based vision tasks (Cordone et al., 2022; Liu et al., 2024;
Chen et al., 2024; Liu et al., 2025). Unfortunately, the sur-
rogate gradient method is a coarse approximation, and may
mislead the gradient descent direction in multi-layer SNNs
(Gygax & Zenke, 2024). The time dimension of SNNs
leads to the employment of backpropagation through time
(BPTT), which requires nearly T times of training resources
than ANNs. Here T is the sequence-length, and is also
the number of time-steps of SNNs. Although some online
learning methods (Xiao et al., 2022; Bohnstingl et al., 2023;
Meng et al., 2023; Zhu et al., 2024) can estimate the full
gradients of BPTT by accumulation of single-step gradients,
their task accuracy is sub-optimal.

In addition to the surrogate gradient methods, the ANN
to SNN conversion methods (Cao et al., 2015; Han et al.,
2020; Li et al., 2021; Deng & Gu, 2021; Bu et al., 2022a;
2024) are another spiking deep learning methodology that
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eliminates training challenges of SNNs. They convert pre-
trained ANNs to SNNs with replacing nonlinear activation
functions by spiking neurons. The converted SNNs enjoy
high performance and close accuracy to the source ANNs,
even in the complex ImageNet dataset. Most of the conver-
sion methods are based on the rate coding, which represents
activations in ANNs by the firing rates of SNNs. However,
the precise estimation of firing rates requires a large number
of time-steps, resulting in the obviously higher latency and
energy consumption of the conversion methods than the
surrogate gradient methods.

In this article, we propose the differential coding and its im-
plementation scheme for different layers in ANN-to-SNN
conversion. Instead of considering the average firing rate as
the encoded activation value, differential coding treats time-
weighted spikes as corrections to the encoded activation
value. This approach not only improves network accuracy
but also allows neurons to stop firing once a certain ap-
proximation precision is achieved, thereby reducing energy
consumption without any extra training. Additionally, by
minimizing the expected error between the Rectified Linear
Units (ReLUs) and the encoded values in SNNs, we pro-
pose the threshold iteration method to determine the optimal
thresholds for the spiking neurons for converting ReLUs,
further enhancing the performance of the SNN.

Our main contributions are summarized as follows:

• We propose differential coding for ANN-to-SNN con-
version and establish the dynamics for various modules
in SNNs.

• We design a threshold iteration method to determine the
optimal thresholds of spiking neurons for converting
ReLUs.

• We designed two equivalent implementations of the
employed multi-threshold (MT) neuron to facilitate
hardware-friendly execution.

• By converting different CNNs and Transformers into
SNNs for evaluation, our extensive experiments demon-
strate that the proposed method achieves state-of-the-
art accuracy while significantly reducing network en-
ergy consumption.

2. Related Works
2.1. Rated-based ANN to SNN Conversion

The rate coding method has been early found in biologi-
cal neural systems (Adrian, 1926) that stronger stimulation
causes more frequent spikes. This straightforward coding
method builds the bridge between activations of ReLUs in
ANNs and firing rates of Integrate-and-Fire (IF) neurons in
SNNs, based on which the primary ANN to SNN conversion

method (Cao et al., 2015) was derived. As the firing rate
is defined by the average number of spikes over all time-
steps, its range is restricted between zero and one. For the
negative part, the IF neurons perfectly fit ReLUs. While
the outputs of ReLUs are unbound, the normalization of
weights for regulating activations (Rueckauer et al., 2017)
and the balancing of thresholds for spiking neurons (Han
et al., 2020) are proposed and relieve the range of mismatch
during conversions.

The time is discretized to time-steps in SNNs. Consequently,
the firing rates are also rounded with the fixed interval.
While the floating activations in source ANNs are contin-
uous, the discrete firing rates can not fit them preciously,
causing the quantization errors. To future reduce the con-
version errors, some quantized ANN to SNN methods are
proposed (Bu et al., 2022b; Hu et al., 2023). These methods
quantize and clip activations of ANNs, reliving the quantiza-
tion errors and range mismatch at the same time. However,
the source ANNs must be re-trained, which increases con-
version costs, and their performance declines due to the
change in the activation function.

The spikes may not arrive evenly during inference, which
may cause the unevenness error in conversion (Bu et al.,
2022b). A typical case is that no spike during the first T
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time-steps, and more than T
2 spikes from different synapses

arrive at the neuron during the last T
2 time-steps. Although

the input firing rate is larger than 0.5, the neuron can not
generate the 0.5 output firing rate because it has not enough
time-steps to fire. Several methods have been proposed to
reduce this error, including the two-stage inference strat-
egy (Hao et al., 2023a) and shifting the initial membrane
potential (Hao et al., 2023b).

Recent research has been extended to convert ANNs with
activations beyond ReLUs to SNNs. (Oh & Lee, 2024)
introduced a sign gradient descent based neuron that can
approximate various nonlinear activation functions. (Wang
et al., 2023) and (kang you et al., 2024) trained modified
Transformers and converted them into spiking Transformers.
Meanwhile, (Jiang et al., 2024) and (Huang et al., 2024) de-
veloped modules to approximate nonlinear layers, enabling
a training-free conversion of Transformers to SNNs.

2.2. Temporal Coding Conversions

The rate coding method is inefficient and causes huge la-
tency in rate-based ANN to SNN conversion methods. The
surrogate gradient methods avoid this issue by the end-to-
end training, while the interpretation of coding methods
in these SNNs is not clear yet (Li et al., 2023). For the
conversion method, manual design for the coding strategy
is indispensable. Beyond the rate coding method, several
temporal coding methods are explored.
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The time-to-first-spike (TTFS) coding method (Rueckauer
& Liu, 2018; Zhang et al., 2019; Stanojevic et al., 2023)
encodes the value into the firing time of spikes. Each neuron
only fires one spike in TTFS SNNs, which brings extremely
high power efficiency. However, these methods rely on
layer-by-layer processing, i.e., one layer can only start to
compute after it receives all input spikes from the last layer.
Thus, these TTFS SNNs suffer from high latency increasing
with the network depth.

The phase coding methods (Kim et al., 2018; Wang et al.,
2022b) are similar to binary/decimal conversion. They en-
code values from spikes with the power-of-2 weights. For
a given number of time-steps T , these methods can repre-
sent 2T different values, while the rate coding method can
only represent T values. Their drawbacks are similar to the
latency problem in TTFS SNNs that the values can only be
obtained after all weighted spikes in a phase arrive.

The burst coding methods (Park et al., 2019; Li & Zeng,
2022; Wang et al., 2025) imitates the bursts of spikes during
a short period in biological neural systems. The burst spikes
are implemented by the multiplication of spikes and a co-
efficient, which carry more information than binary spikes,
but may lose the advantages of SNNs based on the binary
characteristic.

3. Preliminaries
3.1. Multi-Threshold Neuron

Many previous works have proposed using ternary-valued
neurons to simulate negative values and reduce conversion
errors (Li et al., 2022; Wang et al., 2022a; kang you et al.,
2024). The ternary representation, with outputs of -1, 0, and
1, does not disrupt the event-driven nature and significantly
enhances the expressive capability. Furthermore, (Huang
et al., 2024) introduced the use of multi-channel methods to
implement multi-threshold (MT) neuron for spike commu-
nication. In this article, we similarly adopt this approach to
simulate y = x using identity spiking MT neurons.

The MT neuron is characterized by several parameters, in-
cluding the base threshold θ, and a total of 2n thresholds,
with n positive and n negative thresholds. The threshold val-
ues of the MT neuron are indexed by i, where λl

i represents
the i-th threshold value in the layer l:

λl
1 = θl, λl

2 =
θl

2
, ..., λl

n =
θl

2n−1
,

λl
n+1 = −θl, λl

n+2 = −θl

2
, ..., λl

2n = − θl

2n−1
.

(1)

Let variables I l[t], W l, sli[t], x
l[t], ml[t], and vl[t] repre-

sent the input current, weight, the output spike of the i-th
threshold, the total output signal, and the membrane poten-
tial before and after spikes in the l-th layer at the time-step

...

Soma Axon DendriteSynapse

Figure 1. Diagram of the MT neuron. The MT neuron receives
input from last module and emits up to one spike at each time-step.

t. The dynamics of the MT neurons are described by the
following equations:

ml[t] = vl[t− 1] + I l[t] = vl[t− 1] + xl−1[t], (2)

sli[t] = MTHθ,n(m
l[t], i) (3)

xl[t] =
∑
i

sli[t]W
lλl

i, (4)

vl[t] = ml[t]− xl[t], (5)

MTHθ,n(m
l[t], i) =

 0,if λ2n < x < λn

1,elif i = argminp |x− λp|
0,else

.

(6)

Figure 1 shows the dynamics of MT neurons, when n =
1, this model reduces to an IF neuron with an additional
negative threshold. Since only up to one threshold can emit
spike per time-step, and λl can be derived by bit-shifting
θ, we can implement MT neurons by calculating W lλl

i

through the weight W lθl followed by bit-shifting.

3.2. Rate Coding in ANN-to-SNN Conversion

Traditional ANN-to-SNN conversion methods employ rate
coding, which can be mathematically expressed as:

rl[t] =
1

t

t∑
i=1

xl[i], (7)

where xl[i] represents the encoded output of layer l in SNNs
at time-step i, while rl[t] denotes the encoded activation
that aims to map activation value αl from the corresponding
ANN layer. Derived from Equation (2) and (5), we have

vl[t]− vl[t− 1] = xl−1[t]− xl[t], (8)

vl[t]− vl[0] =

t∑
i=1

xl−1[t]−
t∑

i=1

xl[t], (9)

rl[t] =
1

t

t∑
i=1

xl[t] =
1

t

t∑
i=1

xl−1[t]− vl[t]− vl[0]

t

= rl−1[t]− vl[t]− vl[0]

t
.

(10)

3



Differential Coding for Training-Free ANN-to-SNN Conversion

Assuming rl−1[t] = αl−1, and given that αl = αl−1 when
simulating y = x, when t is sufficient large or vl[t] close to
vl[0], the encode value rl[t] in SNNs can approximate the
activation value αl in ANNs:

rl[t] = rl−1[t]− vl[t]− vl[0]

t

≈ rl−1[t] = αl−1 = αl.

(11)

4. Method
In this section, we propose differential coding with graded
units and spiking neurons (DCGS), a training-free theory
for converting ANNs to SNNs. We begin by introducing a
differential coding approach, from which we develop differ-
ential graded units, differential spiking neurons and differ-
ential coding for linear Layer. These enable the conversion
of various network modules. Additionally, we provide the
threshold iteration method to find the optimal threshold of
spiking neurons for converting ReLUs. The overall algo-
rithm can be found in Appendix A. Furthermore, we design
two equivalent implementations of the MT neuron to sup-
port hardware-friendly execution.

4.1. Differential Coding in ANN-to-SNN Conversion

The traditional ANN-to-SNN conversion uses rate coding
to transmit information, where the firing rate rl[t] at each
time-step encodes the activation value. Equation (12) shows
the relationship between the output firing rate rl[t] and
the output signal xl[t]. When layer l consists of spiking
neurons, the state can be described as xl[t] = θlsl[t], where
sl[t] denotes the spike at time-step t and θl represents the
threshold.

rl[t] =
1

t

t∑
i=1

xl[t] =
t− 1

t
rl[t− 1] +

xl[t]

t
. (12)

When the neuron does not emit a spike, the rate update
is the proportion − 1

t r
l[t − 1] of the previous rate, while

when the neuron emits a spike, the rate update increases by
− 1

t r
l[t− 1] + xl[t]

t .

However, the rate coding method has a problem: over time,
the encoded value gradually decays. As the time-step t
increases, the influence of earlier inputs 1

t becomes smaller,
and the system requires more spikes to compensate for this
decay effect, thus increasing the number of spikes required.

To address this issue, we propose a novel encoding scheme,
referred to as differential coding.

Definition 4.1. In differential coding, denote xl[t] as the
actual output of the neuron. Define el[t] as the encoded
output value at time-step t, the encoded activation value
rl[t] as the average of el[t] from time 1 to time-step t. The

relationship between the two is expressed by Equations (13)
and (14), as follows:

el[t] = rl[t− 1] + xl[t], (13)

rl[t] =
1

t

t∑
i=1

el[i] = rl[t− 1] +
xl[t]

t
, (14)

where t starts from 1, rl[0] = 0.

The detailed explanation of Definition 4.1 is provided in
the Appendix B. Comparing Equation (7) with (14), the
key difference is that differential coding only updates the
encoded activation value when an output spike occurs, rather
than decay at each time-step in rate coding. Figure 2 shows
the ideal fitting results of rate coding and differential coding
for Input y = x with T = 3 and thresholds ±1. Differential
coding can represent a wider range of values and achieve
higher precision than rate coding, given the same threshold
and time-steps.

−2 −1 0 1 2

Encoded input rl−1[3]

−2

−1

0

1

2
E

n
co

d
ed

ou
tp

u
t
rl

[3
]

y = x

Rate Coding

Differential Coding

Figure 2. Comparison of ideal fitting results: rate coding vs. dif-
ferential coding for input y = x with T = 3 and thresholds ±1.
Differential coding shows a wider representation range and higher
precision.

4.1.1. DIFFERENTIAL GRADED UNITS

Existing ANN-to-SNN conversion methods struggle with
nonlinear functions such as Gaussian Error Linear Units
(GeLU) (Hendrycks & Gimpel, 2023) and LayerNorm (Lei
Ba et al., 2016). For these nonlinear layers, we utilize
specific neuron dynamic units to implement them. Based on
the expectation compensation idea from (Huang et al., 2024),
we propose introducing differential graded units to replace
those nonlinear modules that cannot be directly converted.

Derived from differential coding scheme in Definition 4.1,
this article proposes two types of differential graded units.
Theorem 4.2 corresponds to nonlinear layers with only one
input xl−1[t], and Theorem 4.3 applies to certain operations
· with two inputs xl−1

A [t] and xl−1
B [t].
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Theorem 4.2. Let F l be a nonlinear layer l with only one
input xl−1[t], such as Gelu, Silu, Maxpool, LayerNorm, or
Softmax. In ANN-to-SNN conversion, the mapping from F
to dynamics of the differential graded unit in differential
coding is given by Equations (15) and (16).

ml[t] = rl−1[t] = ml[t− 1] +
xl−1[t]

t
, (15)

xl[t] = t ∗ (F l(ml[t])− F l(ml[t− 1])), (16)

where ml[t] is the membrane potential at time-step t which
is equal to bl−1 if the previous layer has bias else 0, rl[t] is
the encoded output activation value of the previous t time-
steps. The output of layer l at time-step t, which serves as
the input to layer l + 1, is given by xl[t].

The proof of Theorem 4.2 is detailed in the Appendix C.
From Theorem 4.2, a single-input unit requires two vari-
ables: one to record ml[t] and another to record F (ml[t]),
in order to reduce redundant calculations at each time-step.

Theorem 4.3. Let · be an operation with two inputs, such
as matrix multiplication or element-wise multiplication. In
ANN-to-SNN conversion, the mapping from operation · to
dynamics of the differential graded units in differential cod-
ing is given by Equations (17) to (19).

ml
A[t] = rl−1

A [t] = ml
A[t− 1] +

xl−1
A [t]

t
, (17)

ml
B [t] = rl−1

B [t] = ml
B [t− 1] +

xl−1
B [t]

t
, (18)

xl[t] =
xl−1
A [t] · xl−1

B [t]

t
+ xl−1

A [t] ·ml
B [t] +ml

A[t] · xl−1
B [t],

(19)

where ml
A[t] and ml

B [t] are membrane potential at time-
step t, and rl−1

A [t] and rl−1
B [t] are the encoded activation

values of the previous layers at time-step t. The output of
layer l at time-step t, which serves as the input to layer l+1,
is given by xl[t].

The proof of Theorem 4.3 is detailed in the Appendix D.
From Theorem 4.3, a neuron with two inputs requires two
variables to record ml

A[t] and ml
B [t], respectively. Graded

units provide the ability to integrate information about non-
linear layer changes. This enables the conversion of various
complex networks, including CNNs and Transformers.

4.1.2. DIFFERENTIAL SPIKING NEURONS

Since the majority of computations occur in fully connected
layers, convolutional layers, and matrix multiplication lay-
ers, it is recommended to introduce spiking neuron layers
before these layers, so that the computation is event-driven,
thereby effectively reducing the network’s energy consump-
tion. Theorem 4.4 demonstrates how to convert a spiking

Nonlinear

Full Spiking N
euron

Full Spiking M
atrix Product

Identity Spiking Neuron Identity Spiking Neuron

Identity Spiking Neuron

Linear
Linear

: variables

: float

: spikes

(a)

(b)

Graded Unit

Graded Matrix Product

Figure 3. (a) Conversion of a linear layer followed by a nonlinear
layer in an ANN into SNN modules. (b) Conversion of a matrix
product or element-wise multiplication in the ANN into SNN
modules.

neuron in rate coding into a differential neuron in differential
coding.

Theorem 4.4. In rate coding, the output of the previous
layer, xl−1[t], is directly used as the input current for the
current layer I l[t] = xl−1[t]. In differential coding, the
input current I l[t] can be adjusted as shown in Equation
(20), which converts any spiking neuron into a differential
spiking neuron:

I l[t] = ml
r[t] + xl−1[t], (20)

ml
r[t+ 1] = ml

r[t] +
xl−1[t]

t
− xl[t]

t
, (21)

where ml
r[0] is bl−1 if the previous layer has bias else 0.

The proof of Theorem 4.4 is detailed in the Appendix E. In
contrast to rate coding, which is constrained by a decay that
limits the output range to below the threshold θ, differen-
tial coding allows for adaptive adjustment of the neuron’s
output range by directly modifying the encoded activation
rl[t]. This flexibility is especially beneficial in scenarios
with multiple or dynamically adjustable thresholds, as the
combination of different thresholds enhances the represen-
tation accuracy. So, we employ a differential version of
identity multi-threshold spiking neuron in our experiments.
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4.1.3. DIFFERENTIAL CODING FOR LINEAR LAYER

Theorem 4.5 shows the conversion of linear layers under
differential coding in ANN-to-SNN conversion.
Theorem 4.5. For linear layers, including fully connected
and convolutional layers that can be represented by Equa-
tion (22),

xl = W lxl−1 + bl, (22)

where W l and bl is the weight and bias of layer l. Under
differential coding in SNNs, this is equivalent to eliminating
the bias term bl and initializing the membrane potential of
the subsequent layer with the bias value.

The proof of Theorem 4.5 is detailed in the Appendix F.
Figure 3 shows the overall method to replace ANN modules
by SNN modules under differential coding.

4.2. Optimal Threshold for ReLU

When replacing the ReLU function in CNNs with spiking
neurons, we propose an algorithm called threshold iteration
method for determining the optimal threshold.
Assumption 4.6. According to (de G. Matthews et al.,
2018), assume that the input x to the neuron follows a nor-
mal distribution X with mean µ and variance σ2.

Based on Assumption 4.6, we introduce Definition 4.7 to
define the overall error function, which is obtained by inte-
grating the function error over the distribution of activation
values.
Definition 4.7. In the T time-steps conversion, the quan-
tization and clipping errors of the ReLU function can be
expressed as

QE(θ) =
∫ +∞
−∞ (f(x, θ)−max (x, 0))

2
e−

(x−µ)2

2σ2 dx, (23)

f(x, θ) = θ
N clamp

(
⌊Nx+

θ
2

θ ⌋, 0, N
)
, (24)

where f(x, θ) represents the expected encoded activation
in SNNs for a threshold θ which is proposed by (Bu et al.,
2022a). For an IF neuron, N = T . For a multi-threshold
with n threshold, roughly let N = 2nT .

Finding the optimal threshold by directly differentiating this
function is challenging. However, we can take an alternative
approach by introducing a variable k to help determine the
optimal threshold. We consider two cases: k multiplies
the output threshold amplitude as in Equation (25), and
k multiplies the threshold during spike calculation as in
Equation (28). These cases yield the following two lemmas.
Lemma 4.8.

QE1(θ, k) =
∫ +∞
−∞ (f1(x, θ, k)−max (x, 0))

2
e−

(x−µ)2

2σ2 dx, (25)

f1(x, θ, k) = k θ
N clamp

(
⌊Nx+

θ
2

θ ⌋, 0, N
)
. (26)

When θ is fixed, QE1(θ, k) reaches its minimum value when:

k = k1 =
µ

θ

1−∑n
i=1

1
nerf

(
(2i−1)θ

2n −µ

)
√
2σ


1−∑n

i=1
2i−1
n2 erf

(
(2i−1)θ

2n −µ

)
√
2σ



+
σ√
π
2 θ

∑n
i=1

1
ne

−

 (2i−1)θ
2n −µ

2

2σ2

1−∑n
i=1

2i−1
n2 erf

(
(2i−1)θ

2n −µ

)
√
2σ

 .

(27)

Lemma 4.9.

QE2(θ, k) =
∫ +∞
−∞ (f2(x, θ, k)−max (x, 0))

2
e−

(x−µ)2

2σ2 dx, (28)

f2(x, θ, k) =
θ
N clamp

(
⌊Nx+

kθ
2

kθ ⌋, 0, N
)
. (29)

When θ is fixed, QE2(θ, k) reaches its minimum value when
k = 1.

Algorithm 1 Threshold iteration method to find the best
threshold

1: Input: Pre-trained ANN Model FANN(W ), Dataset D.
2: Initialize: Set θ ← 1 (any positive initial value)
3: Run the model FANN(W ) on dataset D to statically

compute the mean µ and variance σ2 of pre-activations
of each ReLU separately.

4: repeat
5: Update k1 based on µ and σ2 according to Eq (27)
6: Update θ ← k1 · θ
7: until 1− ϵ < k1 < 1 + ϵ, where ϵ tends to 0.
8: Output: Threshold θ

According to Lemma 4.8 and Lemma 4.9, we obtain the
following inequality and Theorem 4.10:

QE(k1θ) < QE2(k1θ,
1
k1
) = QE1(θ, k1) < QE(θ). (30)

Theorem 4.10. Starting from any positive initial value of θ,
the rate of change k1 can be continuously calculated based
on the prior mean µ, variance σ2, and the current threshold
θ using Equation (27). The iteration θ = k1θ continues until
convergence, at which point the global optimal threshold θ
is obtained. The process is guaranteed to converge as long
as the threshold is greater than 0.

The proof of Theorem 4.8, 4.9, and 4.10 are detailed in
the Appendix G, H and I. Therefore, the optimal θ can be
determined by the Theorem 4.10 and Algorithm 1.

4.3. Hardware implementation of MT Neuron

Equation (6) in Section 3.1 is presented for ease of under-
standing. In hardware implementation, the argmin module
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is not used. We develop a hardware-friendly version of the
MT neuron model, which can efficiently map the appropri-
ate threshold using the potential’s sign bit and exponent bits
at an extremely low cost.

Compared with previous ANN2SNN methods, the MT neu-
ron is required to transmit an extra index i for the threshold.
When implementing the MT neuron, two implementations
can be considered:

1. Sent Vth[i] · S[t] to the next layer

2. Add an external threshold dimension with 2n elements
to S[t], set S[t][i] = 1 and S[t][j] = 0 for all j ̸= i. At the
same time, an external threshold dimension is added to the
weight of the next layer, whose elements are the multi-level
thresholds.

For simplicity, we use implementation 1 on GPUs, which
is not pure binary but equivalent to implementation 2 with
binary outputs. The MT neuron is also compatible with
asynchronous computing neuromorphic chips because its
outputs are still sparse events. Take the speck chip (Yao
et al., 2024) as an example. The LIF neuron in the con-
volutional layer in speck chip outputs (c, x, y) to the next
layer. When using the MT neuron, the only modification is
adding a threshold index, i.e., (c, x, y, i). The computations
of the next layer should also be changed by using a bit-shift
operation on the weights, as the threshold is a power of
2 and this allows multiplication to be avoided. After the
above modifications, the computation is still asynchronous
and event-driven. The implementation to avoid argmin in
Equation (6) in hardware can be described in the following
two steps.

Step 1: Get SNN weights by using the weight normalization
strategy (Rueckauer et al., 2017) described by the following
equation.

W l
SNN = W l

ANN
θl

θl+1
, (31)

blSNN =
blANN

θl+1
. (32)

We then set all base thresholds θl = 1, resulting in the
following thresholds for the MT neuron:

λl
i =

{
1

2i−1 , 1 < i ≤ n,
−1

2i−n−1 ,n < i ≤ 2n.
(33)

Step 2: We define 4
3m

l[t] = (−1)S2E(1 +M) with 1 sign
bit (S), 8 exponent bits (E), and 23 mantissa bits (M ).
Since the median of 1

2k−1 and 1
2k

is 3
4

1
2k−1 , we can easily

select the correct threshold index i using E and S of 4
3m

l[t],
without performing 2n subtractions to calculate the argmin
in Equation (6):

MTHθ,n(m
l[t], i) =

1, if

{
i < n, S = 0 and i = 1− E,
i ≥ n, S = 1 and i− n = 1− E,

0, otherwise.
(34)

For differential neurons, the memory overhead compared to
initial neurons, such as IF or MT neurons, only includes an
additional membrane potential. This extra potential is used
to adjust the input current as described in Theorem 4.4.

To enable fast execution on GPU, we also design an efficient
algorithm which is detailed in Appendix P.

5. Experimental Results
In this section, we first evaluate the performance of our pro-
posed method on ImageNet dataset across different models,
comparing our results with state-of-the-art ANN-to-SNN
conversion methods. Then, we compute and analyze the
energy consumption of the converted SNNs. Finally, we con-
duct comparative experiments to validate the effectiveness
of differential coding and the threshold iteration method.

Table 1. Accuracy and energy ratio of DCGS(Ours) of different
converted models on ImageNet Dataset

Model Config Time-step T

Acc/Energy 2 4 8 12 16

ResNet34-4/1, Param:21.8M, Acc:76.42%

Acc 59.71 73.35 76.04 76.26 76.35
Energy ratio 0.14 0.24 0.37 0.46 0.53

VGG16-4/1, Param:138M, Acc:73.25%

Acc 70.69 72.72 73.17 73.23 73.26
Energy ratio 0.10 0.15 0.22 0.26 0.29

ViT-Small-8/4, Param:22.1M, Acc:81.38%

Acc 77.84 81.11 81.43 81.39 81.38
Energy ratio 0.32 0.62 1.05 1.39 1.71

5.1. Comparison with the State-of-the-art ANN-to-SNN
Conversion Methods

We conducted conversion experiments on 11 different CNNs
and Transformers using the Imagenet dataset. We denote the
converted model as model−n/c, where the multi-threshold
neurons have n positive and n opposing negative thresholds,
and the calculated channel-wise thresholds are scaled by a
factor c. Eg., the ResNet34-4/2 model represents the conver-
sion using the ResNet34 model, employing multi-threshold
spiking neurons with 4 positive and 4 negative thresholds,
and the actual thresholds are based on the statistical thresh-
olds multiplied by a factor of 2.

When n = 1, it can be treated as an IF neuron with an
additional negative threshold. Table 2 shows a comparison
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Table 2. Comparison between the proposed method and previous ANN-to-SNN conversion works on ImageNet dataset.

Method Type Arch. Param.(M) ANN Acc(%) T SNN Acc(%)

TS
(Deng & Gu, 2021) CNN-to-SNN VGG-16 138 72.40 64 70.97

SNM
(Wang et al., 2022a) CNN-to-SNN VGG-16 138 73.18 64 71.50

MMSE
(Li et al., 2021) CNN-to-SNN ResNet-34 21.8 75.66 64 71.12

VGG-16 138 75.36 64 70.69

QCFS
(Bu et al., 2022b) CNN-to-SNN ResNet-34 21.8 74.32 64 72.35

VGG-16 138 74.29 64 72.85

SRP
(Hao et al., 2023a) CNN-to-SNN ResNet-34 21.8 74.32 4, 64 66.71, 68.61

VGG-16 138 74.29 4, 64 66.47, 69.43

MST
(Wang et al., 2023) Transformer-to-SNN Swin-T(BN) 28.5 80.51 128, 512 77.88, 78.51

STA
(Jiang et al., 2024) Transformer-to-SNN ViT-B/32 86 83.60 32, 256 78.72, 82.79

SpikeZIP-TF
(kang you et al., 2024) Transformer-to-SNN

SViT-S-32Level 22.05 81.59 64 81.45
SViT-B-32Level 86.57 82.83 64 82.71
SViT-L-32Level 304.33 83.86 64 83.82

ECMT
(Huang et al., 2024) Transformer-to-SNN ViT-S/16 22 78.04 8, 10 76.03, 77.07

EVA-G 1074 89.62 4, 8 88.60, 89.40

DCGS(Ours)

CNN-to-SNN

ResNet18-1/1 11.7 71.49 32, 64 69.89, 71.08
ResNet34-1/1 21.8 76.42 32, 64 58.86, 74.11

VGG-1/1 138 73.25 32, 64 72.04, 73.13
ResNet18-4/1 11.7 71.49 4, 8 70.07, 71.31
ResNet34-4/1 21.8 76.42 4, 8 73.35, 76.04

VGG-4/1 138 73.25 4, 8 72.72, 73.17

Transformer-to-SNN

ViT-S-8/4 22.1 81.38 2, 4 77.84, 81.11
ViT-B-8/4 86.6 84.54 2, 4 80.34, 83.98
ViT-L-8/4 304.3 85.84 2, 4 83.73, 85.45

EVA02-T-8/4 5.8 80.63 2, 4 66.32, 79.56
EVA02-S-8/4 22.1 85.73 2, 4 71.37, 84.70
EVA02-B-8/4 87.1 88.69 2, 4 84.62, 88.16
EVA02-L-8/4 305.1 90.05 2, 4 88.25, 89.72

of our method with other ANN-to-SNN conversion methods,
and detailed results can be found in Appendix K.

In CNNs, when n = 1, our method outperforms the existing
methods on the same structure achieving state-of-the-art
results; and when n > 1, we achieve better performance
with extremely shorter time-steps.

In Transformers, the threshold iteration method is not suit-
able, and using the top 99.9% of activation values does not
optimal thresholds. As a result, achieving high performance
with n = 1 in short time-steps is challenging. Therefore,
we scale the statistical thresholds by c = 4 and setting
n = 8. Our method requires no training and achieves high
performance in extremely short time-steps.

5.2. Energy Estimation and Result Analysis

Based on (Horowitz, 2014), we use Equation (35) to esti-
mate the energy consumption ratio of the converted SNN

relative to the ANN, with EMAC = 4.6pJ and EAC = 0.9pJ.

ESNN

EANN
=

MACsSNN ∗ EMAC +ACsSNN ∗ EAC

MACsANN ∗ EMAC
. (35)

Since most computations in the network occur in the fully
connected, convolutional, and matrix multiplication lay-
ers, which in SNNs are primarily implemented by addi-
tions (with ACsSNN >> MACsSNN), we approximate
MACsSNN ≈ 0. We then use the statistical spike emission
rate η to estimate ACsSNN

MACsANN
, thereby estimating the energy

consumption of the SNN relative to the pre-conversion ANN.
Table 1 presents partial results, and the detailed results for
all converted SNN models can be found in Appendix K.

For CNNs, our method achieves SNN performance compara-
ble to the ANN with low power consumption and extremely
short time-steps. Notably, for the VGG16 model, it achieves
an accuracy of 73.17% with only a 0.08% accuracy loss and
22% power consumption.
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Figure 4. Effective of the differential coding compared to the rate
coding. DC and RC represent Differential Coding and Rate Coding,
respectively.

For Transformers, although our method achieves high accu-
racy with extremely short time-steps and shows a decreasing
energy consumption growth rate, there is still significant
room for further optimization. This is primarily due to
the lack of an optimal threshold calculation method, which
causes inefficient spike firing in the SNNs. This leads to
larger errors when matching the ANN activation values, re-
sulting in more premature spike emissions. This is an area
we aim to improve in future research.

5.3. Effectiveness of the Differential Coding

To validate the effectiveness of the differential coding, we
compared the performance of differential coding and rate
coding using the same model. The partial visualization re-
sults are presented in Figure 4, with a more detailed table
provided in Appendix L. The model using differential cod-
ing not only outperforms the rate coding model in terms of
accuracy, but also consumes less energy. This is because dif-
ferential coding directly updates the current encoding value
based on previous results, avoiding decay. It can represent a
broader range and steadily improve representation accuracy.
Once the representation precision reaches a certain level, no
further spikes are emitted.

5.4. Effectiveness of Threshold Iteration Method

To verify the effectiveness of the threshold iteration method,
we compared the performance of the converted SNNs us-
ing two different methods, threshold iteration method and
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Figure 5. Effectiveness of the threshold iteration method. TI and
LA represent Threshold Iteration Method and 99.9% large activa-
tion method respectively.

the top 99.9% of activation method, with different num-
bers of threshold neurons in ResNet34. Here we set scale
factor c = 2 to prevent the accuracy from being too small
when using the 99.9% large activation method. The partial
visualization results are presented in Figure 5, and more
information can be found in Appendix M. The experimental
results show that the thresholds derived using the thresh-
old iteration method outperform those obtained through the
99.9% large activation method, achieving better accuracy
and lower energy consumption at each time-step.

6. Conclusion
This article introduces a training-free ANN-to-SNN con-
version method based on differential coding. Instead of
directly encoding rate information, it uses spikes to encode
differential information, improving both network accuracy
and energy efficiency. For ReLU conversions, it includes
a threshold iteration method to find the optimal thresholds,
which further enhances the network performance.

However, the proposed method also has some limitations.
Differential coding requires spiking neurons to have at least
one negative threshold to generate negative spikes for er-
ror correction; otherwise, excessive spike errors will ac-
cumulate continuously. Meanwhile, we have not develop
a method to determine the optimal thresholds for Trans-
formers, which limits the conversion performance on Trans-
formers. Future research could focus on addressing this
challenge.
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Differential Coding for Training-Free ANN-to-SNN Conversion

A. Overall Algorithm
Algorithm 2 outlines the whole procedures we adopt.

Algorithm 2 Differential Coding with Graded Units and Spiking Neurons (DCGS) Conversion Method
1: Input: Pre-trained ANN model FANN(W ), Dataset D. Time-step T , or Threshold percentage p and scaling factor c.
2: Output: Converted SNN model FSNN(W ,θ,v)
3: Step 1: Determine the Threshold:
4: if FANN(W ) is a ReLU network then
5: Use the threshold iteration method with T to calculate threshold θ on dataset D
6: else
7: Static threshold θ as the top p% of activation values on dataset D, and multiply by the scaling factor c
8: end if
9: Step 2: Replace Modules:

10: Replace the nonlinear layer with a differential graded unit.
11: Insert a differential identity spiking neuron before each linear layer.
12: Remove the bias b from the linear layer and set the initial potential v = b for the next layer.
13: Return the converted SNN model FSNN(W ,θ,v)

B. Explanation of Definition 4.1
Definition B.1. (Repeated from Definition 4.1) In differential coding, the encoded activation value rl[t] is defined as
shown in Equation (14), where el[t] represents the encoded output value of the neuron at time-step t, and xl[t] represents
the actual output value of the neuron. The relationship between the two is expressed by Equation (13), as follows:

el[t] = rl[t− 1] + xl[t], (36)

rl[t] =
1

t

t∑
i=1

el[i] = rl[t− 1] +
xl[t]

t
, (37)

where t starts from 1, rl[0] = 0.

Proof. In this definition, el[t] is essentially adjusted based on the historical encoded values. If no spike is emitted, then
el[t] = rl[t− 1], ensuring that the encoded value rl[t] = rl[t− 1]. The derivation of Equation (37) can be written as:

rl[t] =
1

t

t∑
i=1

el[i]

=
1

t
(el[t] +

t−1∑
i=1

el[i])

=
1

t
(el[t] + [t− 1]rl[t− 1])

=
1

t
(rl[t− 1] + xl[t] + [t− 1]rl[t− 1])

= rl[t− 1] +
xl[t]

t

(38)

C. Proof of Theorem 4.2
Theorem C.1. (Repeated from Theorem 4.2) Let F l be a nonlinear layer l with only one input xl−1[t], such as Gelu, Silu,
Maxpool, LayerNorm, or Softmax. In ANN-to-SNN conversion, the mapping from F to dynamics of the differential graded
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unit in differential coding is given by Equations (15) and (16).

ml[t] = rl−1[t] = ml[t− 1] +
xl−1[t]

t
, (39)

xl[t] = t ∗ (F l(ml[t])− F l(ml[t− 1])), (40)

where ml[t] is the membrane potential at time-step t which is equal to the encoded input value, rl[t] is the encoded output
activation value of the previous t time-steps. The output of layer l at time-step t, which serves as the input to layer l + 1, is
given by xl[t].

Proof.

ml[t] = rl−1[t] = rl−1[t− 1] +
xl−1[t]

t
= ml[t− 1] +

xl−1[t]

t
(41)

xl[t] = t ∗ (rl[t]− rl[t− 1]) = t ∗ (F (rl−1[t])− F (rl−1[t− 1])) = t ∗ (F (ml[t])− F (ml[t− 1])) (42)

From Theorem 4.2, a single-input unit requires two variables: one to record ml[t] and another to record F (ml[t]), in order
to reduce redundant calculations at each time-step.

D. Proof of Theorem 4.3
Theorem D.1. (Repeated from Theorem 4.3) Let · be an operation with two inputs, such as matrix multiplication or
element-wise multiplication. In ANN-to-SNN conversion, the mapping from operation · to dynamics of the differential graded
unit in differential coding is given by Equations (43) to (45).

ml
A[t] = rl−1

A [t] = ml
A[t− 1] +

xl−1
A [t]

t
, (43)

ml
B [t] = rl−1

B [t] = ml
B [t− 1] +

xl−1
B [t]

t
, (44)

xl[t] =
xl−1
A [t] · xl−1

B [t]

t
+ xl−1

A [t] ·ml
B [t] +ml

A[t] · xl−1
B [t], (45)

where ml
A[t] and ml

B [t] are membrane potential at time-step t, and rl−1
A [t] and rl−1

B [t] are the encoded activation values
of the previous layers at time-step t. The output of layer l at time-step t, which serves as the input to layer l + 1, is given by
xl[t].

Proof.

ml
A[t] = rl−1

A [t] = rl−1
A [t− 1] +

xl−1
A [t]

t
= ml

A[t− 1] +
xl−1
A [t]

t
(46)

ml
B [t] = rl−1

B [t] = rl−1
B [t− 1] +

xl−1
B [t]

t
= ml

B [t− 1] +
xl−1
B [t]

t
(47)

xl[t] = t ∗ (rl[t]− rl[t− 1])

= t ∗ (ml
A[t] ·ml

B [t]−ml
A[t− 1] ·ml

B [t− 1])

= t ∗ ((ml
A[t− 1] +

xl−1
A [t]

t
) · (ml

B [t− 1] +
xl−1
B [t]

t
)−ml

A[t− 1] ·ml
B [t− 1])

=
xl−1
A [t] · xl−1

B [t]

t
+ xl−1

A [t] ·ml
B [t− 1] +ml

A[t− 1] · xl−1
B [t]

(48)

From Theorem 4.3, a neuron with two inputs requires two variables to record ml
A[t] and ml

B [t], respectively.

14



Differential Coding for Training-Free ANN-to-SNN Conversion

E. Proof of Theorem 4.4
Theorem E.1. (Repeated from Theorem 4.4) In rate coding, the output of the previous layer, xl−1[t], is directly used as the
input current for the current layer I l[t] = xl−1[t]. In differential coding, the input current I l[t] can be adjusted as shown in
Equation (49), which converts any spiking neuron into a differential spiking neuron:

I l[t] = ml
r[t] + xl−1[t], (49)

ml
r[t+ 1] = ml

r[t] +
xl−1[t]

t
− xl[t]

t
, (50)

where ml
r[0] is bl−1 if the previous layer has bias else 0.

Proof. Let the expected input encoding value of the differential neuron at the l-th layer at time-step t be rl−1[t], and
the expected output encoding value be rl[t]. Due to soft resetting, the total expected membrane potential change is
ml

r[t] = rl−1[t− 1]− rl[t− 1]. The total input current is then:

I l[t] = rl−1[t− 1]− rl[t− 1] + xl−1[t] = ml
r[t] + xl−1[t] (51)

Since by Definition 4.1:

rl−1[t] = rl−1[t− 1] +
xl−1[t]

t
(52)

rl[t] = rl[t− 1] +
xl[t]

t
(53)

we have:

ml
r[t+ 1] = rl−1[t]− rl[t] (54)

= rl−1[t− 1] +
xl−1[t]

t
− rl[t− 1]− xl[t]

t
(55)

= ml
r[t] +

xl−1[t]

t
− xl[t]

t
. (56)

F. Proof of Theorem 4.5
Theorem F.1. (Repeated from Theorem 4.5) For linear layers, including linear and convolutional layers that can be
represented by Equation (57),

xl = W lxl−1 + bl, (57)

where W l and bl is the weight and bias of layer l.

Under differential coding, this is equivalent to eliminating the bias term bl by initializing the membrane potential of the
subsequent layer with the bias value or adding the bias to the first input current of that layer, and then running the dynamic
process at each time-step according to the following equation:

xl[t] = W lxl−1[t] (58)

Proof. In the context of ANN-to-SNN conversion using rate coding, the output xl[t] of layer l can be expressed as:

xl[t] = W lxl−1[t] + bl, (59)
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Under differential coding as defined in Definition B.1, we have:

el[t] = rl[t− 1] + xl[t], (60)

rl[t] = rl[t− 1] +
xl[t]

t
(61)

rl[0] = 0 (62)

el[t] = W lel−1[t] + bl (63)

rl[t] = W lrl−1[t] + bl (64)

For t > 1, the following transformation holds:

xl[t] = el[t]− rl[t− 1] = t ∗ rl[t]− (t− 1) ∗ rl[t− 1]− rl[t− 1]

= t ∗ (W lrl−1[t] + bl −W lrl−1[t− 1]− bl)

= t ∗W l 1

t
xl−1[t]

= W lxl−1[t]

(65)

when t = 1, we can let rl[0] = bl, and initialize the membrane potential of the subsequent layer with the bias bl or adding
the bias to the first input current of that layer and start running from time-step 1:

xl[t] = el[t]− rl[t− 1] = el[1]− rl[0]

= W lel−1[t] + bl − bl = W lxl−1[t] +W lrl−1[0]

= W lxl−1[t]

(66)

Therefore, for any t > 0 in differential coding, we have:

xl[t] = W lxl−1[t] (67)

G. Proof of Lemma 4.8
We first prove a previous lemma before proving Lemma 4.8.

Lemma G.1.∫ b

a

(c− x)
2
e−

(x−µ)2

2σ2 dx =
√

π
2σ
(
σ2 + µ2 − 2cµ+ c2

)(
erf
(
(b− µ)√

2σ

)
− erf

(
(a− µ)√

2σ

))
+
(
−σ2 (b+ µ− 2c)

)
e−

(b−µ)2

2σ2 +
(
σ2 (a+ µ− 2c)

)
e−

(a−µ)2

2σ2

(68)

Proof. We first calculate
∫ b

a
e−

(x−µ)2

2σ2 dx,
∫ b

a
xe−

(x−µ)2

2σ2 dx and
∫ b

a
x2e−

(x−µ)2

2σ2 dx separately. Since erf (x) =
2√
π

∫ x

0
e−t2dt,

∫ x

0
e−t2dt =

√
π
2 erf (x)∫ b

a

e−
(x−µ)2

2σ2 dx =
√
2σ

∫ b

a

e−
(x−µ)2

2σ2 d
(x− µ)√

2σ
=
√
2σ

√
π
2

(
erf
(
(b− µ)√

2σ

)
− erf

(
(a− µ)√

2σ

))
=
√

π
2σ

(
erf
(
(b− µ)√

2σ

)
− erf

(
(a− µ)√

2σ

)) (69)

∫ b

a

xe−
(x−µ)2

2σ2 dx =

∫ b

a

(x− µ+ µ) e−
(x−µ)2

2σ2 dx = −σ2

∫ b

a

e−
(x−µ)2

2σ2 d

(
− (x− µ)

2

2σ2

)
+ µ

∫ b

a

e−
(x−µ)2

2σ2 dx

= −σ2

(
e−

(b−µ)2

2σ2 − e−
(a−µ)2

2σ2

)
+ µ

√
π
2σ

(
erf
(
(b− µ)√

2σ

)
− erf

(
(a− µ)√

2σ

)) (70)
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a

x2e−
(x−µ)2

2σ2 dx =

∫ b

a

(
(x− µ)

2
+ 2µ (x− µ) + µ2

)
e−

(x−µ)2

2σ2 dx

= −σ2

∫ b

a

(x− µ) de−
(x−µ)2

2σ2 +

∫ b

a

(
2µ (x− µ) + µ2

)
e−

(x−µ)2

2σ2 dx

= −σ2 (b− µ) e−
(b−µ)2

2σ2 + σ2 (a− µ) e−
(a−µ)2

2σ2 + σ2

∫ b

a

e−
(x−µ)2

2σ2 d (x− µ)

− 2σ2µ

(
e−

(b−µ)2

2σ2 − e−
(a−µ)2

2σ2

)
+ µ2

√
π
2σ

(
erf
(
(b− µ)√

2σ

)
− erf

(
(a− µ)√

2σ

))
= −σ2 (b− µ) e−

(b−µ)2

2σ2 + σ2 (a− µ) e−
(a−µ)2

2σ2 + σ2
√

π
2σ

(
erf
(
(b− µ)√

2σ

)
− erf

(
(a− µ)√

2σ

))
− 2σ2µ

(
e−

(b−µ)2

2σ2 − e−
(a−µ)2

2σ2

)
+ µ2

√
π
2σ

(
erf
(
(b− µ)√

2σ

)
− erf

(
(a− µ)√

2σ

))
=
(
−σ2 (b+ µ)

)
e−

(b−µ)2

2σ2 +
(
σ2 (a+ µ)

)
e−

(a−µ)2

2σ2 +
√

π
2σ
(
σ2 + µ2

)(
erf
(
(b− µ)√

2σ

)
− erf

(
(a− µ)√

2σ

))

(71)

Finally, aggregate and calculate the answer:∫ b

a

(c− x)
2
e−

(x−µ)2

2σ2 dx =

∫ b

a

(
x2 − 2cx+ c2

)
e−

(x−µ)2

2σ2 dx

=
(
−σ2 (b+ µ)

)
e−

(b−µ)2

2σ2 +
(
σ2 (a+ µ)

)
e−

(a−µ)2

2σ2 +
√

π
2σ
(
σ2 + µ2

)(
erf
(
(b− µ)√

2σ

)
− erf

(
(a− µ)√

2σ

))
− 2c

(
−σ2

(
e−

(b−µ)2

2σ2 − e−
(a−µ)2

2σ2

)
+ µ

√
π
2σ

(
erf
(
(b− µ)√

2σ

)
− erf

(
(a− µ)√

2σ

)))
+ c2

√
π
2σ

(
erf
(
(b− µ)√

2σ

)
− erf

(
(a− µ)√

2σ

))
=
√

π
2σ
(
σ2 + µ2 − 2cµ+ c2

)(
erf
(
(b− µ)√

2σ

)
− erf

(
(a− µ)√

2σ

))
+
(
−σ2 (b+ µ− 2c)

)
e−

(b−µ)2

2σ2 +
(
σ2 (a+ µ− 2c)

)
e−

(a−µ)2

2σ2

(72)
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Then, we can prove Lemma 4.8 base on Lemma G.1.

Lemma G.2. (Repeated from Lemma 4.8)

QE1(θ, k) =

∫ +∞

−∞
(f1(x, θ, k)−max (x, 0))

2
e−

(x−µ)2

2σ2 dx (73)

f1(x, θ, k) = k
θ

N
clamp

(
⌊Nx+ θ

2

θ
⌋, 0, N

)
(74)

When θ is fixed, QE1(θ, k) reaches its minimum value when:

k = k1 =
µ

θ

1−∑n
i=1

1
nerf

(
(2i−1)θ

2n −µ

)
√
2σ


1−∑n

i=1
2i−1
n2 erf

(
(2i−1)θ

2n −µ

)
√
2σ

 +
σ√
π
2 θ

∑n
i=1

1
ne

−

 (2i−1)θ
2n −µ

2

2σ2

1−∑n
i=1

2i−1
n2 erf

(
(2i−1)θ

2n −µ

)
√
2σ

 (75)

Proof. According to Lemma G.1, we have:

∫ b

a

(c− x)
2
e−

(x−µ)2

2σ2 dx =
√

π
2σ
(
σ2 + µ2 − 2cµ+ c2

)(
erf
(
(b− µ)√

2σ

)
− erf

(
(a− µ)√

2σ

))
+
(
−σ2 (b+ µ− 2c)

)
e−

(b−µ)2

2σ2 +
(
σ2 (a+ µ− 2c)

)
e−

(a−µ)2

2σ2

(76)

Expand the calculation of QE1:

∫ +∞

−∞

(
k
θ

n
clamp

(
⌊nx+ θ

2

θ
⌋, 0, n

)
−max (x, 0)

)2

e−
(x−µ)2

2σ2 dx

=

∫ +∞

0

(
k
θ

n
clamp

(
⌊nx+ θ

2

θ
⌋, 0, n

)
− x

)2

e−
(x−µ)2

2σ2 dx

=

∫ θ
2n

0

(x)
2
e−

(x−µ)2

2σ2 dx+
n−1∑
i=1

∫ (2i+1)θ
2n

(2i−1)θ
2n

(
k
iθ

n
− x

)2

e−
(x−µ)2

2σ2 dx+

∫ +∞

(2n−1)θ
2n

(kθ − x)
2
e−

(x−µ)2

2σ2 dx

=
√

π
2σ
(
σ2 + µ2

)(
erf

((
θ
2n − µ

)
√
2σ

)
− erf

( −µ√
2σ

))
+
(
−σ2

(
θ
2n + µ

))
e−

(
θ
2n−µ

)2

2σ2 +
(
σ2µ

)
e−

µ2

2σ2

+
n−1∑
i=1

√
π
2σ

(
σ2 + µ2 − 2k

iθ

n
µ+

(
k
iθ

n

)2
)erf


(

(2i+1)θ
2n − µ

)
√
2σ

− erf


(

(2i−1)θ
2n − µ

)
√
2σ


+

n−1∑
i=1

(
−σ2

(
(2i+ 1) θ

2n
+ µ− 2k

iθ

n

))
e−

( (2i+1)θ
2n

−µ)
2

2σ2 +
n−1∑
i=1

(
σ2

(
(2i− 1) θ

2n
+ µ− 2k

iθ

n

))
e−

( (2i−1)θ
2n

−µ)
2

2σ2

+
√

π
2σ
(
σ2 + µ2 − 2kθµ+ (kθ)

2
)1− erf


(

(2n−1)θ
2n − µ

)
√
2σ

+
(
σ2
(

(2n−1)θ
2n + µ− 2kθ

))
e−

 (2n−1)θ
2n −µ

2

2σ2

(77)
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=
√

π
2σ
(
σ2 + µ2

)(
erf

((
θ
2n − µ

)
√
2σ

)
− erf

( −µ√
2σ

))
+
(
−σ2

(
θ
2n + µ

))
e−

(
θ
2n−µ

)2

2σ2 +
(
σ2µ

)
e−

µ2

2σ2

+

n∑
i=2

√
π
2σ

(
σ2 + µ2 − 2k

(i− 1) θ

n
µ+ k2

(
(i− 1) θ

n

)2
)
erf


(

(2i−1)θ
2n − µ

)
√
2σ


−

n−1∑
i=1

√
π
2σ

(
σ2 + µ2 − 2k

iθ

n
µ+ k2

(
iθ

n

)2
)
erf


(

(2i−1)θ
2n − µ

)
√
2σ


+

n∑
i=2

(
−σ2

(
(2i− 1) θ

2n
+ µ− 2k

(i− 1) θ

n

))
e−

( (2i−1)θ
2n

−µ)
2

2σ2 +

n−1∑
i=1

(
σ2

(
(2i− 1) θ

2n
+ µ− 2k

iθ

n

))
e−

( (2i−1)θ
2n

−µ)
2

2σ2

+
√

π
2σ
(
σ2 + µ2 − 2kθµ+ (kθ)

2
)1− erf


(

(2n−1)θ
2n − µ

)
√
2σ

+
(
σ2
(

(2n−1)θ
2n + µ− 2kθ

))
e−

 (2n−1)θ
2n −µ

2

2σ2

=
√

π
2σ
(
σ2 + µ2

)(
erf

((
θ
2n − µ

)
√
2σ

)
− erf

( −µ√
2σ

))
+
(
−σ2

(
θ
2n + µ

))
e−

(
θ
2n−µ

)2

2σ2 +
(
σ2µ

)
e−

µ2

2σ2

+
√

π
2σ

(
σ2 + µ2 − 2k

(n− 1) θ

n
µ+ k2

(
(n− 1) θ

n

)2
)
erf


(

(2n−1)θ
2n − µ

)
√
2σ


−
√

π
2σ

(
σ2 + µ2 − 2k

θ

n
µ+ k2

(
θ

n

)2
)
erf

((
θ
2n − µ

)
√
2σ

)

+

(
−σ2

(
(2n− 1) θ

2n
+ µ− 2k

(n− 1) θ

n

))
e−

( (2n−1)θ
2n

−µ)
2

2σ2 +

(
σ2

(
θ

2n
+ µ− 2k

θ

n

))
e−
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2n

−µ)
2

2σ2

+
√

π
2σ
(
σ2 + µ2 − 2kθµ+ (kθ)

2
)1− erf


(

(2n−1)θ
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)
√
2σ

+
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σ2
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(2n−1)θ
2n + µ− 2kθ
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e−

 (2n−1)θ
2n −µ

2

2σ2

+

n−1∑
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√
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2σ

(
σ2 + µ2 − 2k

(i− 1) θ

n
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(
(i− 1) θ

n
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n
µ− k2

(
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n
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)
erf
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(2i−1)θ
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)
√
2σ


+

n−1∑
i=2

(
−σ2

(
(2i− 1) θ

2n
+ µ− 2k

(i− 1) θ

n

)
+ σ2

(
(2i− 1) θ

2n
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iθ

n
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( (2i−1)θ
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√
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+
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√
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+
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√
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√
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√
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Since this is a quadratic function with respect to k, the value of k that minimizes it is:

k = −
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(78)

H. Proof of Lemma 4.9
Lemma H.1. (Repeated from Lemma 4.9)

QE2(θ, k) =

∫ +∞

−∞
(f2(x, θ, k)−max (x, 0))

2
e−

(x−µ)2

2σ2 dx (79)

f2(x, θ, k) =
θ

N
clamp

(
⌊Nx+ kθ

2

kθ
⌋, 0, N

)
(80)

When θ is fixed, QE2(θ, k) reaches its minimum value when k = 1.

Proof. Expand the calculation of QE2:
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=
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(81)
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(
iθ

n

)2
)erf


(

(2i+1)θk
2n − µ

)
√
2σ

− erf


(

(2i−1)θk
2n − µ

)
√
2σ



+
n−1∑
i=1

(
−σ2

(
(2i+1)θk

2n + µ− 2
iθ

n

))
e−

 (2i+1)θk
2n −µ

2

2σ2 +
n−1∑
i=1

(
σ2

(
(2i−1)θk

2n + µ− 2
iθ

n

))
e−

 (2i−1)θk
2n −µ

2

2σ2

+
√

π
2σ
(
σ2 + µ2 − 2θµ+ θ2

)1− erf


(

(2n−1)θk
2n − µ

)
√
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√
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+
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√
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√
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√
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√
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√
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√
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We only need to extract the part containing k, denoted as L, for calculation.
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Since erf′ (x) = 2√
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,
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√
2µe−

 (2i−1)θk
2n −µ

2

2σ2

(
(2i−1)θ

2n√
2σ

)
+
√

π
2

(
− (2i− 1) θ

2n

)
2√
π
e−

 (2i−1)θk
2n −µ

2

2σ2

(
(2i−1)θ

2n√
2σ

)
− σe−

 (2i−1)θk
2n −µ

2

2σ2

−2
(

(2i−1)θk
2n − µ

)
2σ2

 (2i−1)θ
2n



=

n∑
i=1

µ (2i−1)θ
2nσ e−

 (2i−1)θk
2n −µ

2

2σ2 − (2i−1)θ
2nσ

(
(2i− 1) θ

2n

)
e−

 (2i−1)θk
2n −µ

2

2σ2 +
(
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So, the value of k that minimizes the function is k = 1.

I. Proof of Theorem 4.10
Theorem I.1. (Repeated from Theorem 4.10) Starting from any positive initial value of θ, the rate of change k1 can be
continuously calculated based on the prior mean µ, variance σ2, and the current threshold θ using Equation (27). The
iteration θ = k1θ continues until convergence, at which point the global optimal threshold θ is obtained. The process is
guaranteed to converge as long as the threshold is greater than 0.

Proof. Assume the optimal threshold is θ, then according to Lemma 4.8, after one update kθ should be equal to θ, that is
k = 1.

To prove that θ is the optimal value, it is equivalent to proving that the following equation has an unique solution:
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 = 1 (84)

It is equivalent to proving that f (θ) has an unique root.
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f (θ) = µ
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Step 1: Calculate the first derivative of f

Since erf′ (x) = 2√
π
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,
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√
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Step 2: Calculate the second derivative of f

f ′′ (θ) =
2√
π
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Step 3: Analyze the trend of the second derivative f ′′(θ)

To analyze the changing trend of f ′′(x) on the interval from 0 to positive infinity, we start by examining the given expressions:

f ′′(0) =
3√
π

n∑
i=1

2i− 1

n2
e
−
(

µ√
2σ

)2
(

2i− 1

2n
√
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)
> 0 (88)

and

f ′′(+∞) = 0− (89)

The behavior of f ′′(θ) as θ increases from 0 to +∞ depends on two parts: e
−
(
( (2i−1)θ

2n
−µ)

√
2σ

)2

and 3 −

θ

(
( (2i−1)θ

2n −µ)
σ2

)(
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2n

)
. Since e

−
(
( (2i−1)θ

2n
−µ)

√
2σ

)2

> 0, the sign of f ′′(θ) is determined by the second part. This term

decreases from 3 to negative infinity as θ increases.

Thus, f ′′(θ) initially decreases from a positive number to a negative number and then continues to increase within the
negative range.
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Step 4: Analyze the Trend of the First Derivative f ′(θ)

Given:

f ′(0) = −1 + erf

( −µ√
2σ

)
< 0, f ′(+∞) = 0 (90)

Since f ′′(θ) first decreases from a positive number to a negative number and then increases within the negative range, f ′(θ)
will first increase from a negative number to a positive number and then decrease back to zero.

Step 5: Analyze the Trend of the Function f(θ)

Given:

f(0) = µ

(
1−
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1

n
erf
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f(+∞) = µ(1− 1) +
σ√
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1−
n∑
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(
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)
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 = 0 + 0− 0 = 0 (92)

Since f ′(θ) first increases from a negative number to a positive number and then decreases back to zero, f(θ) will first
decrease from a positive number to a minimum value and then increase towards zero.

Therefore, f(θ) has a unique root, which implies that the local optimal threshold θ is the global optimal threshold.

J. The Employed Neuron Model
We use a differential version of the Multi-Threshold (MT) neuron, as introduced in (Huang et al., 2024). The differential MT
neuron is characterized by several parameters, including the base threshold θ, and a total of 2n thresholds, with n positive
and n negative thresholds. The threshold values of the differential MT neuron are indexed by i, where λl

i represents the i-th
threshold value in the layer l:

λl
1 = θl, λl

2 =
θl

2
, ..., λl

n =
θl

2n−1
,

λl
n+1 = −θl, λl

n+2 = −θl

2
, ..., λl

2n = − θl

2n−1
.

(93)

Let variables I l[t], sli[t], x
l[t], ml[t], vl[t], and ml

r[t] represent the input current, output spike of the i − th threshold,
encoded output value, the membrane potential before and after spikes in the l-th layer at time-step t, and another membrane
potential to record encoded input rate information, respectively. The dynamics of the MT neurons are described by the
following equations:

I l[t] = ml
r[t] + xl−1[t] (94)

ml
r[t+ 1] = ml

r[t] +
xl−1[t]

t
− xl[t]

t
(95)

ml[t] = vl[t− 1] + I l[t], (96)

sli[t] = MTHθ,n(m
l[t], i) (97)

xl[t] =
∑
i

sli[t]λ
l
i, (98)

vl[t] = ml[t]− xl[t], (99)

MTHθ,n(m
l[t], i) =

 0,if λ2n < x < λn

1,elif i = argminp |x− λp|
0,else

. (100)

When n = 1, this model reduces to a differential IF neuron with a negative threshold.
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K. Result of Different Models on ImageNet Dataset
Table 3 and 4 present the evaluation results for various CNN-based and Transformer-based models. The variable 2n denotes
the number of positive and negative thresholds in the multi-threshold neurons, where the negative thresholds are the opposite
number of corresponding positive thresholds. The energy ratio is the energy consumption of SNNs divided by that of ANNs.
For the ResNet18, ResNet34, and VGG16 models, the threshold scale is set to 1. For the ViT and EVA02 models, the
threshold scale is 4.

Table 3. Accuracy and Energy Efficiency of DCGS(Ours) on CNN-based models for ImageNet Dataset

Architecture/Parameter(M) Original(ANN)(%) n Accuracy Time-step T

Energy 2 4 8 16 32 64

ResNet18 / 11.7M 71.49

1 Acc 0.10 0.11 1.57 51.89 69.89 71.08
Energy ratio 0.05 0.09 0.18 0.31 0.49 0.76

4 Acc 61.45 70.07 71.31 71.47 71.49 -
Energy ratio 0.14 0.22 0.33 0.46 0.66 -

8 Acc 65.30 70.96 71.40 71.51 - -
Energy ratio 0.17 0.32 0.48 0.63 - -

ResNet34 / 21.8M 76.42

1 Acc 0.10 0.14 0.46 8.76 58.86 74.11
Energy ratio 0.04 0.09 0.19 0.34 0.61 0.97

4 Acc 59.71 73.35 76.04 76.35 76.38 -
Energy ratio 0.14 0.24 0.37 0.53 0.76 -

8 Acc 65.23 74.68 76.17 76.37 - -
Energy ratio 0.18 0.34 0.55 0.75 - -

VGG16 / 138M 73.25

1 Acc 0.08 0.16 1.03 55.48 72.04 73.13
Energy ratio 0.03 0.06 0.13 0.19 0.29 0.40

4 Acc 70.69 72.72 73.17 73.26 73.24 -
Energy ratio 0.10 0.15 0.22 0.29 0.38 -

8 Acc 72.26 73.16 73.22 73.22 - -
Energy ratio 0.15 0.28 0.37 0.45 - -

L. Effectiveness of Differential Coding
Table 5 presents a comparative experiment between differential coding and rate coding. In most cases, differential coding
outperforms rate coding in both accuracy and energy ratio, particularly as n increases.

M. Effectiveness of Threshold Iteration Method
Table 6 presents a comparative experiment between the threshold iteration method and the 99.9% large activation method.
The threshold iteration method outperforms the 99.9% large activation method across different threshold numbers n and
threshold scales.

N. Evaluation results of object detection task on the COCO dataset
We evaluated the performance of our approach for object detection task on the COCO dataset using three different models
provided by torchvision in various parameter settings, along with ablation studies, as shown in Table 7 and 8. The result
shows that both differential coding and Threshold Iteration method improves the network’s performance.
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O. Evaluation results of Semantic segmentation task on the PascalVOC dataset
Additionally, we evaluated our method for semantic segmentation task on the PascalVOC dataset using two different models
provided by torchvision in various parameter settings, also conducting ablation experiments, as presented in Table 9 and 10.
The result shows that both differential coding and Threshold Iteration method improves the network’s performance.

P. Algorithm of MT Neuron on GPU
To enable fast execution on the GPU, we also design an efficient algorithm for each time step, as illustrated in Algorithm 3.
This algorithm leverages the torch.float32 data type and takes advantage of the IEEE 754 single-precision floating-
point format, where the exponential part has a bias value of 127, as an example.

Algorithm 3 Algorithm of MT Neuron on GPU
1: Input: Total input x and membrane potential m of MT neuron, number of thresholds parameter n.
2: Output: Output sum Vth[i] · S[t] which is denote as spike sum
3: Step 1: Add input to membrane potential
4: m = m + x
5: Step 2: Set mantissa to zero
6: int tensor = (m*4/3).view(torch.int32)
7: mantissa mask = (1 << 23) - 1
8: int tensor = int tensor & ˜mantissa mask
9: Step 3: Extract the exponential part of spike

10: exponent mask = 0xFF << 23
11: spike exponent = (int tensor & exponent mask) >> 23
12: Step 4: Find the appropriate threshold to output
13: spike exponent = torch.where(spike exponent - 127 <= -n, torch.tensor(0,),

torch.where(spike exponent - 127 > 0, torch.tensor(127,),spike exponent))
14: Step 5: Construct a new exponential part to construct the spike output sum
15: int tensor = (int tensor & ˜exponent mask) | (spike exponent << 23)
16: spike sum = int tensor.view(torch.float32)
17: Step 6: Reset membrane potential
18: m = m - spike sum

This algorithm leverages the IEEE 754 float32 format to efficiently compute spike outputs in the neuron model. At each
time step, input is added to the membrane potential m, which is then scaled and cast to ‘int32‘ to access the exponent field
directly.

By masking out the mantissa and extracting the exponent, the algorithm quickly determines the magnitude of m. Using the
bias value 127 and a threshold parameter n, it determines which threshold to apply for generating a spike. The exponent is
adjusted accordingly and used to reconstruct ‘spike sum‘ as a float, which is then subtracted from m to complete the reset.

This approach avoids conditional branches and enables efficient bitwise operations and vectorization on the GPU, making it
suitable for high-speed MT neuron simulations.
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Table 4. Accuracy and Energy Efficiency of DCGS(Ours) on Transformer-based models for ImageNet Dataset

Architecture/Parameter(M) Original(ANN)(%) n Accuracy Time-step T

Energy 2 4 8 16 32 64

ViT-Small / 22.1M 81.38

1 Acc 0.1 0.1 0.1 0.11 0.19 64.92
Energy ratio 0.00 0.001 0.008 0.06 0.28 1.34

4 Acc 0.1 0.16 62.76 79.25 80.95 -
Energy ratio 0.03 0.12 0.45 1.06 2.06 -

6 Acc 44.59 78.15 81.02 81.44 - -
Energy ratio 0.20 0.44 0.83 1.44 - -

8 Acc 77.84 81.11 81.43 81.38 - -
Energy ratio 0.32 0.62 1.05 1.71 - -

ViT-Base / 86.6M 84.54

4 Acc 0.10 0.12 29.36 80.78 83.70 -
Energy ratio 0.01 0.05 0.28 0.54 0.74 1.44

6 Acc 0.10 46.03 82.72 84.69 - -
Energy ratio 0.05 0.20 0.52 1.04 - -

8 Acc 80.34 83.98 84.23 84.27 - -
Energy ratio 0.28 0.54 0.92 1.46 - -

ViT-Large / 304.3M 85.84
4 Acc 0.10 0.10 0.18 80.74 85.00 -

Energy ratio 0.00 0.01 0.09 0.45 0.92 -

6 Acc 0.12 78.99 84.76 85.59 - -
Energy ratio 0.06 0.23 0.51 0.94 - -

8 Acc 83.73 85.45 85.68 85.74 - -
Energy ratio 0.24 0.46 0.80 1.33 - -

EVA02-Tiny / 5.8M 80.63

4 Acc 0.09 0.15 0.88 65.75 78.46 -
Energy ratio 0.01 0.05 0.24 0.94 2.30 -

6 Acc 0.32 52.86 77.72 80.04 - -
Energy ratio 0.11 0.34 0.86 1.81 - -

8 Acc 66.32 79.56 80.38 80.578 - -
Energy ratio 0.29 0.66 1.26 2.28 - -

EVA02-Small / 22.1M 85.73

4 Acc 0.09 0.10 0.14 34.86 82.66 -
Energy ratio 0.01 0.04 0.19 0.67 1.98 -

6 Acc 0.14 30.83 82.20 85.48 - -
Energy ratio 0.09 0.29 0.80 1.71 - -

8 Acc 71.37 84.70 85.64 85.72 - -
Energy ratio 0.28 0.63 1.21 2.17 - -

EVA02-Base / 87.1M 88.69
6 Acc 3.25 81.00 87.86 - - -

Energy ratio 0.11 0.36 0.82 - - -

8 Acc 84.62 88.16 88.46 - - -
Energy ratio 0.30 0.64 1.17 - - -

EVA02-Large / 305.1M 90.05
6 Acc 12.41 87.02 89.57 - - -

Energy ratio 0.13 0.39 0.84 - - -

8 Acc 88.25 89.72 89.90 - - -
Energy ratio 0.31 0.64 1.15 - - -
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Table 5. Effective of Differential Coding

Architecture@ Coding Type@ n Accuracy Time-step T

Original(ANN)(%) × Threshold scale Energy 2 4 8 16 32 64

ResNet34@76.42

Differential@×1

1 Acc 0.10 0.14 0.46 8.76 58.86 74.11
Energy ratio 0.04 0.09 0.19 0.34 0.61 0.97

4 Acc 59.71 73.35 76.04 76.35 76.38 -
Energy ratio 0.14 0.24 0.37 0.53 0.76 -

8 Acc 65.23 74.68 76.17 76.37 - -
Energy ratio 0.18 0.34 0.55 0.75 - -

Differential@×2

1 Acc 0.10 0.13 0.31 2.78 46.29 73.07
Energy ratio 0.02 0.05 0.13 0.25 0.46 0.77

4 Acc 46.1 69.53 75.77 76.33 76.43 -
Energy ratio 0.11 0.20 0.32 0.48 0.71 -

8 Acc 72.03 76.24 76.39 76.41 - -
Energy ratio 0.17 0.32 0.50 0.66 - -

Rate@×1

1 Acc 0.11 0.29 11.03 52.78 68.05 71.04
Energy ratio 0.04 0.11 0.26 0.55 1.11 2.22

4 Acc 58.46 68.46 71.20 71.77 71.99 -
Energy ratio 0.15 0.31 0.62 1.22 2.42 -

8 Acc 59.79 68.61 71.1 71.8 - -
Energy ratio 0.19 0.38 0.74 1.45 - -

Rate@×2

1 Acc 0.10 0.10 1.50 41.08 69.78 74.95
Energy ratio 0.02 0.07 0.17 0.38 0.77 1.54

4 Acc 51.34 71.22 75.11 75.78 75.92 -
Energy ratio 0.13 0.26 0.53 1.05 2.09 -

8 Acc 65.26 74.24 75.72 75.96 - -
Energy ratio 0.19 0.46 0.73 1.43 - -

ViT-Small@81.38

Differential@×4

1 Acc 0.1 0.1 0.1 0.11 0.19 64.92
Energy ratio 0.00 0.001 0.008 0.06 0.28 1.34

4 Acc 0.1 0.16 62.76 79.25 80.95 -
Energy ratio 0.03 0.12 0.45 1.06 2.06 -

8 Acc 77.84 81.11 81.43 81.38 - -
Energy ratio 0.32 0.62 1.05 1.71 - -

Rate@×4

1 Acc 0.1 0.1 0.1 0.1 0.12 54.26
Energy ratio 0.00 0.001 0.008 0.05 0.22 1.17

4 Acc 0.1 0.14 51.46 78.07 80.69 -
Energy ratio 0.03 0.12 0.44 1.13 2.47 -

8 Acc 75.64 80.29 81.18 81.36 - -
Energy ratio 0.32 0.67 1.38 2.81 - -
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Table 6. Effective of threshold iteration Method

Architecture@ Find Threshold Method@ n Accuracy Time-step T

Original(ANN)(%) ×Threshold Scale Energy 2 4 8 16 32 64

ResNet34@76.42

threshold iteration@×1

1 Acc 0.10 0.14 0.46 8.76 58.86 74.11
Energy ratio 0.04 0.09 0.19 0.34 0.61 0.97

4 Acc 59.71 73.35 76.04 76.35 76.38 -
Energy ratio 0.14 0.24 0.37 0.53 0.76 -

8 Acc 65.23 74.68 76.17 76.37 - -
Energy ratio 0.18 0.34 0.55 0.75 - -

threshold iteration@×2

1 Acc 0.10 0.13 0.31 2.78 46.29 73.07
Energy ratio 0.02 0.05 0.13 0.25 0.46 0.77

4 Acc 46.1 69.53 75.78 76.33 76.43 -
Energy ratio 0.11 0.20 0.32 0.48 0.71 -

8 Acc 72.03 76.24 76.39 76.41 - -
Energy ratio 0.17 0.32 0.50 0.66 - -

99.9% large activation@×1

1 Acc 0.10 0.14 0.74 7.08 45.68 69.50
Energy ratio 0.04 0.09 0.19 0.35 0.64 1.08

4 Acc 34.08 63.18 74.41 75.82 76.14 -
Energy ratio 0.13 0.24 0.39 0.60 0.91 -

8 Acc 49.60 71.53 75.46 76.02 - -
Energy ratio 0.18 0.33 0.55 0.78 - -

99.9% large activation@×2

1 Acc 0.10 0.10 0.22 0.93 31.32 71.36
Energy ratio 0.02 0.05 0.13 0.25 0.50 0.89

4 Acc 15.74 50.97 73.88 76.12 76.32 -
Energy ratio 0.11 0.20 0.35 0.55 0.86 -

8 Acc 67.92 75.54 76.25 76.40 - -
Energy ratio 0.18 0.32 0.50 0.71 - -

Table 7. Accuracy and energy efficiency of DCGS (Ours) across different models for object detection task on the COCO dataset.

Architecture ANN mAP%[IoU=0.50:0.95] mAP n Time-step T
Energy ratio 2 4 6 8

FCOS ResNet50 39.2 mAP 2 0.0 0.2 1.6 6.3
Energy ratio 0.12 0.24 0.35 0.47

FCOS ResNet50 39.2 mAP% 4 21.0 33.9 36.7 38.2
Energy ratio 0.16 0.31 0.43 0.55

FCOS ResNet50 39.2 mAP% 8 30.5 38.5 39.2 39.2
Energy ratio 0.22 0.42 0.61 0.75

Retinanet ResNet50 36.4 mAP% 8 25.6 33.9 35.8 36.0
Energy ratio 0.23 0.44 0.63 0.78

Retinanet ResNet50 v2 41.5 mAP% 8 19.7 32.6 37.9 39.7
Energy ratio 0.22 0.43 0.64 0.84
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Table 8. Ablation Study of DCGS (Ours) on FCOS ResNet50 model for object detection task on the COCO dataset.

Coding Type Threshold Searching method mAP n Time-step T
Energy ratio 2 4 6 8

Differential Threshold Iteration mAP% 8 30.5 38.5 39.2 39.2
Energy ratio 0.22 0.42 0.61 0.75

Rate Threshold Iteration mAP% 8 21.8 31.5 34.3 35.5
Energy ratio 0.22 0.44 0.66 0.88

Differential 99.9% Large Activation mAP% 8 25.8 36.2 38.4 39.0
Energy ratio 0.22 0.43 0.62 0.78

Table 9. Accuracy and energy efficiency of DCGS (Ours) across different models for semantic segmentation task on the PascalVOC
dataset.

Architecture ANN mIoU% mIoU n Time-step T
Energy ratio 2 4 6 8

FCN ResNet50 64.2 mIoU% 2 4.0 10.1 19.8 36.0
Energy ratio 0.03 0.10 0.15 0.22

FCN ResNet50 64.2 mIoU% 4 51.8 60.5 62.7 64.0
Energy ratio 0.10 0.20 0.27 0.35

FCN ResNet50 64.2 mIoU% 8 61.0 64.3 64.6 64.5
Energy ratio 0.18 0.34 0.50 0.63

Deeplabv3 ResNet50 69.3 mIoU% 8 66.6 69.1 69.3 69.3
Energy ratio 0.08 0.32 0.46 0.58

Table 10. Ablation Study of DCGS (Ours) on FCN ResNet50 model for semantic segmentation task on the PascalVOC dataset.

Coding Type Threshold Searching Method mAP n Time-step T
Energy ratio 2 4 6 8

Differential Threshold Iteration mIoU% 8 61.0 64.3 64.6 64.5
Energy ratio 0.18 0.34 0.50 0.63

Rate Threshold Iteration mIoU% 8 58.2 62.9 63.7 63.9
Energy ratio 0.18 0.37 0.54 0.71

Differential 99.9% Large Activation mIoU% 8 61.2 64.3 64.5 64.4
Energy ratio 0.18 0.35 0.51 0.64
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