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ABSTRACT

The necessity for cooperation among independent intelligent machines has pop-
ularised cooperative multi-agent reinforcement learning (MARL) in the artificial
intelligence (AI) research community. However, many research endeavours have
been focused on developing practical MARL algorithms whose effectiveness has
been studied only empirically, thereby lacking theoretical guarantees. As recent
studies have revealed, MARL methods often achieve performance that is unstable
in terms of reward monotonicity or suboptimal at convergence. To resolve these
issues, in this paper,we introduce a novel framework named Heterogeneous-Agent
Mirror Learning (HAML) that provides a general template for MARL actor-critic
algorithms. We prove that algorithms derived from the HAML template satisfy
the desired properties of the monotonic improvement of the joint reward and the
convergence to Nash equilibrium. We verify the practicality of HAML by prov-
ing that the current state-of-the-art cooperative MARL algorithms, HATRPO and
HAPPO, are in fact HAML instances. Next, as a natural outcome of our theory, we
propose HAML extensions of two well-known RL algorithms, HAA2C (for A2C)
and HADDPG (for DDPG), and demonstrate their effectiveness against strong
baselines on StarCraftII and Multi-Agent MuJoCo tasks.

1 INTRODUCTION

While the policy gradient (PG) formula has been long known in the reinforcement learning (RL)
community (Sutton et al., 2000), it has not been until trust region learning (Schulman et al., 2015a)
that deep RL algorithms started to solve complex tasks such as real-world robotic control successfully.
Nowadays, methods that followed the trust-region framework, including TRPO (Schulman et al.,
2015a), PPO (Schulman et al., 2017) and their extensions (Schulman et al., 2015b; Hsu et al., 2020),
became effective tools for solving challenging AI problems (Berner et al., 2019). It was believed that
the key to their success are the rigorously described stability and the monotonic improvement property
of trust-region learning that they approximate. This reasoning, however, would have been of limited
scope since it failed to explain why some algorithms following it (e.g. PPO-KL) largely underperform
in contrast to success of other ones (e.g. PPO-clip) (Schulman et al., 2017). Furthermore, the trust-
region interpretation of PPO has been formally rejected by recent studies both empirically (Engstrom
et al., 2020) and theoretically (Wang et al., 2020); this revealed that the algorithm violates the
trust-region constraints—it neither constraints the KL-divergence between two consecutive policies,
nor does it bound their likelihood ratios. These findings have suggested that, while the number of
available RL algorithms grows, our understanding of them does not, and the algorithms often come
without theoretical guarantees either.

Only recently, Kuba et al. (2022b) showed that the well-known algorithms, such as PPO, are in
fact instances of the so-called mirror learning framework, within which any induced algorithm is
theoretically sound. On a high level, methods that fall into this class optimise the mirror objective,
which shapes an advantage surrogate by means of a drift functional—a quasi-distance between
policies. Such an update provably leads them to monotonic improvements of the return, as well as
the convergence to the optimal policy. The result of mirror learning offers RL researchers strong
confidence that there exists a connection between an algorithm’s practicality and its theoretical
properties and assures soundness of the common RL practice.

While the problem of the lack of theoretical guarantees has been severe in RL, in multi-agent
reinforcement learning (MARL) it has only been exacerbated. Although the PG theorem has been
successfully extended to the multi-agent PG (MAPG) version (Zhang et al., 2018), it has only recently
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been shown that the variance of MAPG estimators grows linearly with the number of agents (Kuba
et al., 2021). Prior to this, however, a novel paradigm of centralised training for decentralised
execution (CTDE) (Foerster et al., 2018; Lowe et al., 2017b) greatly alleviated the difficulty of
the multi-agent learning by assuming that the global state and opponents’ actions and policies are
accessible during the training phase; this enabled developments of practical MARL methods by
merely extending single-agent algorithms’ implementations to the multi-agent setting. As a result,
direct extensions of TRPO (Li & He, 2020) and PPO (de Witt et al., 2020a; Yu et al., 2021) have
been proposed whose performance, although is impressive in some settings, varies according to the
version used and environment tested against. However, these extensions do not assure the monotonic
improvement property or convergence result of any kind (Kuba et al., 2022a). Importantly, these
methods can be proved to be suboptimal at convergence in the common setting of parameter sharing
(Kuba et al., 2022a) which is considered as default by popular multi-agent algorithms (Yu et al.,
2021) and popular multi-agent benchmarks such as SMAC (Samvelyan et al., 2019) due to the
computational convenience it provides.

In this paper, we resolve these issues by proposing Heterogeneous-Agent Mirror Learning (HAML)—
a template that can induce a continuum of cooperative MARL algorithms with theoretical guarantees
for monotonic improvement as well as Nash equilibrium (NE) convergence. The purpose of HAML
is to endow MARL researchers with a template for rigorous algorithmic design so that having
been granted a method’s correctness upfront, they can focus on other aspects, such as effective
implementation through deep neural networks. We demonstrate the expressive power of the HAML
framework by showing that two of existing state-of-the-art (SOTA) MARL algorithms, HATRPO and
HAPPO (Kuba et al., 2022a), are rigorous instances of HAML. This stands in contrast to viewing
them as merely approximations to provably correct multi-agent trust-region algorithms as which they
were originally considered. Furthermore, although HAML is mainly a theoretical contribution, we
can naturally demonstrate its usefulness by using it to derive two heterogeneous-agent extensions
of successful RL algorithms: HAA2C (for A2C (Mnih et al., 2016)) and HADDPG (for DDPG
(Lillicrap et al., 2015)), whose strength are demonstrated on benchmarks of StarCraftII (SMAC)
(de Witt et al., 2020a) and Multi-Agent MuJoCo (de Witt et al., 2020b) against strong baselines such
as MADDPG (Lowe et al., 2017b) and MAA2C (Papoudakis et al., 2021).

2 PROBLEM FORMULATION

We formulate the cooperative MARL problem as cooperative Markov game (Littman, 1994) defined
by a tuple ⟨N ,S,A, r, P, γ, d⟩. Here, N = {1, . . . , n} is a set of n agents, S is the state space,
A = ×n

i=1Ai is the products of all agents’ action spaces, known as the joint action space. Although
our results hold for general compact state and action spaces, in this paper we assume that they are
finite, for simplicity. Further, r : S ×A → R is the joint reward function, P : S ×A× S → [0, 1]
is the transition probability kernel, γ ∈ [0, 1) is the discount factor, and d ∈ P(S) (where P(X)
denotes the set of probability distributions over a set X) is the positive initial state distribution.
In this work, we will also use the notation P(X) to denote the power set of a set X . At time
step t ∈ N, the agents are at state st (which may not be fully observable); they take independent
actions ait,∀i ∈ N drawn from their policies πi(·i|st) ∈ P(Ai), and equivalently, they take a joint
action at = (a1t , . . . , ant ) drawn from their joint policy π(·|st) =

∏n
i=1 π

i(·i|st) ∈ P(A). We
write Πi ≜ {×s∈Sπ

i(·i|s) |∀s ∈ S, πi(·i|s) ∈ P(Ai)} to denote the policy space of agent i, and
Π ≜ (Π1, . . . ,Πn) to denote the joint policy space. It is important to note that when πi(·i|s) is a
Dirac delta ditribution, the policy is referred to as deterministic (Silver et al., 2014) and we write µi(s)
to refer to its centre. Then, the environment emits the joint reward r(st,at) and moves to the next
state st+1 ∼ P (·|st,at) ∈ P(S). The initial state distribution d, the joint policy π, and the transition
kernel P induce the (improper) marginal state distribution ρπ(s) ≜

∑∞
t=0 γ

tPr(st = s|d,π). The
agents aim to maximise the expected joint return, defined as

J(π) = Es0∼d,a0:∞∼π,s1:∞∼P

[ ∞∑
t=0

γtr(st,at)
]
.

We adopt the most common solution concept for multi-agent problems which is that of Nash equilibria
(Nash, 1951; Yang & Wang, 2020). We say that a joint policy πNE ∈ Π is a NE if none of the agents
can increase the joint return by unilaterally altering its policy. More formally, πNE is a NE if

∀i ∈ N ,∀πi ∈ Πi, J(πi,π−i
NE ) ≤ J(πNE).
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To study the problem of finding a NE, we introduce the following notions. Let i1:m = (i1, . . . , im) ⊆
N be an ordered subset of agents. We write −i1:m to refer to its complement, and i and −i,
respectively, when m = 1. We define the multi-agent state-action value function as

Qi1:m
π (s,ai1:m) ≜ E

a
−i1:m
0 ∼π−i1:m ,s1:∞∼P,a1:∞∼π

[ ∞∑
t=0

γtr(st,at)
∣∣∣ s0 = s,ai1:m

0 = ai1:m
]
.

When m = n (the joint action of all agents is considered), then i1:n ∈ Sym(n), where Sym(n)
denotes the set of permutations of integers 1, . . . , n, known as the symmetric group. In that case we
write Qi1:n

π (s,ai1:n) = Qπ(s,a) which is known as the (joint) state-action value function. On the
other hand, when m = 0, i.e., i1:m = ∅, the function takes the form Vπ(s), known as the state-value
function. Consider two disjoint subsets of agents, j1:k and i1:m. Then, the multi-agent advantage
function of i1:m with respect to j1:k is defined as

Ai1:m
π

(
s,aj1:k ,ai1:m

)
≜ Qj1:k,i1:m

π

(
s,aj1:k ,ai1:m

)
−Qj1:k

π

(
s,aj1:k

)
.

As it has been shown in Kuba et al. (2021), the multi-agent advantage function allows for additive
decomposition of the joint advantge function by the means of the following lemma.
Lemma 1 (Multi-Agent Advantage Decomposition). Let π be a joint policy, and i1, . . . , im be an
arbitrary ordered subset of agents. Then, for any state s and joint action ai1:m ,

Ai1:m
π

(
s,ai1:m

)
=

m∑
j=1

A
ij
π

(
s,ai1:j−1 , aij

)
. (1)

Although the multi-agent advantage function has been discovered only recently and has not been
studied thoroughly, it is this function and the above lemma that builds the foundation for the
development of the HAML theory.

3 THE STATE OF AFFAIRS IN MARL

Before we review existing SOTA algorithms for cooperative MARL, we introduce two settings in
which the algorithms can be implemented. Both of them can be considered appealing depending
on the application, but these pros also come with “traps” which, if not taken care of, may provably
deteriorate an algorithm’s performance.

3.1 HOMOGENEITY vs. HETEROGENEITY

The first setting is that of homogeneous policies, i.e., those where agents all agents share one policy:
πi = π,∀N , so that π = (π, . . . , π) (de Witt et al., 2020a; Yu et al., 2021). This approach enables a
straightforward adoption of an RL algorithm to MARL, and it does not introduce much computational
and sample complexity burden with the increasing number of agents. Nevertheless, sharing one
policy across all agents requires that their action spaces are also the same, i.e., Ai = Aj ,∀i, j ∈ N .
Furthermore, policy sharing prevents agents from learning different skills. This scenario may be
particularly dangerous in games with a large number of agents, as shown in Proposition 1, proved by
Kuba et al. (2022a).
Proposition 1 (Trap of Homogeneity). Let’s consider a fully-cooperative game with an even num-
ber of agents n, one state, and the joint action space {0, 1}n, where the reward is given by
r(0n/2,1n/2) = r(1n/2,0n/2) = 1, and r(a1:n) = 0 for all other joint actions. Let J∗ be the
optimal joint reward, and J∗

share be the optimal joint reward under the shared policy constraint. Then
J∗

share

J∗ =
2

2n
.

A more ambitious approach to MARL is to allow for heterogeneity of policies among agents, i.e.,
to let πi and πj be different functions when i ̸= j ∈ N . This setting has greater applicability as
heterogeneous agents can operate in different action spaces. Furthermore, thanks to this model’s
flexibility they may learn more sophisticated joint behaviours. Lastly, they can recover homogeneous
policies as a result of training, if that is indeed optimal. Nevertheless, training heterogeneous agents
is highly non-trivial. Given a joint reward, an individual agent may not be able to distill its own
contibution to it—a problem known as credit assignment (Foerster et al., 2018). Furthermore, even if
an agent identifies its improvement direction, it may be conflicting with those of other agents, which
then results in performance damage, as we exemplify in Proposition 2, proved in Appendix A.2.
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Proposition 2 (Trap of Heterogeneity). Let’s consider a fully-cooperative game with 2 agents,
one state, and the joint action space {0, 1}2, where the reward is given by r(0, 0) = 0, r(0, 1) =
r(1, 0) = 2, and r(1, 1) = −1. Suppose that πi

old(0) > 0.6 for i = 1, 2. Then, if agents i update
their policies by

πi
new = argmax

πi

Eai∼πi,a−i∼π−i
old

[
Aπold(a

i, a−i)
]
,∀i ∈ N ,

then the resulting policy will yield a lower return,

J(πold) > J(πnew) = min
π

J(π).

Consequently, these facts imply that homogeneous algorithms should not be applied to complex
problems, but they also highlight that heterogeneous algorithms should be developed with extra
cares. In the next subsection, we describe existing SOTA actor-critic algorithms which, while often
performing greatly, are still not impeccable, as they fall into one of the above two traps.

3.2 A SECOND LOOK AT SOTA MARL ALGORITHMS

Multi-Agent Advantage Actor-Critic MAA2C (Papoudakis et al., 2021) extends the A2C (Mnih
et al., 2016) algorithm to MARL by replacing the RL optimisation (single-agent policy) objective
with the MARL one (joint policy),

LMAA2C(π) ≜ Es∼π,a∼π

[
Aπold(s,a)

]
, (2)

which computes the gradient with respect to every agent i’s policy parameters, and performs a
gradient-ascent update for each agent. This algorithm is straightforward to implement and is capable
of solving simple multi-agent problems (Papoudakis et al., 2021). We point out, however, that by
simply following their own MAPG, the agents perform uncoordinated updates, thus getting caught
by Proposition 2. Furthermore, MAPG estimates suffer from large variance which grows linearly
with the number of agents (Kuba et al., 2021), thus making the algorithm unstable. To assure greater
stability, the following MARL extensions of stable RL approaches have been developed.

Multi-Agent Deep Deterministic Policy Gradient MADDPG (Lowe et al., 2017a) is a MARL
extension of the popular DDPG algorithm (Lillicrap et al., 2015). At every iteration, every agent i
updates its deterministic policy by maximising the following objective

LMADDPG
i (µi) ≜ Es∼βµold

[
Qi

µold

(
s, µi(s)

)]
= Es∼βµold

[
Qi

µold

(
s, µi,µ−i

old (s)
)]
, (3)

where βµold is a state distribution that is not necessarily equivalent to ρµold , thus allowing for off-
policy training. In practice, MADDPG maximises Equation (3) by a few steps of gradient ascent.
The main advantages of MADDPG include small variance of its MAPG estimates—a property
granted by deterministic policies (Silver et al., 2014), as well as low sample complexity due to
learning from off-policy data. Such a combination gives the algorithm a strong performance in
continuous-action tasks (Lowe et al., 2017a; Kuba et al., 2022a). However, this method’s strengths
also constitute its limitations—it is applicable to continuous problems only (discrete problems require
categorical-distribution policies), and relies on large memory capacity to store the off-policy data.

Multi-Agent PPO MAPPO (Yu et al., 2021) is a relatively straightforward extension of PPO
(Schulman et al., 2017) to MARL. In its default formulation, the agents employ the trick of policy
sharing described in the previous subsection. As such, the policy is updated to maximise

LMAPPO(π) ≜ Es∼ρπold ,a∼πold

[
n∑

i=1

min
( π(ai|s)
πold(ai|s)

Aπold(s,a), clip
( π(ai|s)
πold(ai|s)

, 1± ϵ
)
Aπold(s,a)

)]
, (4)

where the clip(·, 1± ϵ) operator clips the input to 1− ϵ/1 + ϵ if it is below/above this value. Such an
operation removes the incentive for agents to make large policy updates, thus stabilising the training
effectively. Indeed, the algorithm’s performance on the StarCraftII benchmark is remarkable, and it
is accomplished by using only on-policy data. Nevertheless, the policy-sharing strategy limits the
algorithm’s applicability and leads to its suboptimality, as we discussed in Proposition 1. Trying to
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avoid this issue, one can implement the algorithm without policy sharing, thus making the agents
simply take simultaneous PPO updates meanwhile employing a joint advantage estimator. In this
case, the updates are not coordinated, making MAPPO fall into the trap of Proposition 2.

In summary, all these algorithms do not possess performance guarantees. Altering their implementa-
tion settings to escape one of the traps from Subsection 3.1 makes them, at best, fall into another. This
shows that the MARL problem introduces additional complexity into the single-agent RL setting, and
needs additional care to be rigorously solved. With this motivation, in the next section, we develop a
theoretical framework for development of MARL algorithms with correctness guarantees.

4 HETEROGENEOUS-AGENT MIRROR LEARNING

In this section, we introduce heterogeneous-agent mirror learning (HAML)—a template that includes
a continuum of MARL algorithms which we prove to solve cooperative problems with correctness
guarantees. HAML is designed for the general and expressive setting of heterogeneous agents, thus
avoiding Proposition 1, and it is capable of coordinating their updates, leaving Proposition 2 behind.

4.1 SETTING UP HAML

We begin by introducing the necessary definitions of HAML attributes: the drift functional.
Definition 1. Let i ∈ N , a heterogeneous-agent drift functional (HADF) Di,ν of i consists of a
map, which is defined as

Di : Π×Π× P(−i)× S → {Di
π(·|s, π̄j1:m) : P(Ai) → R},

such that for all arguments, under notation Di
π

(
π̂i|s, π̄j1:m

)
≜ Di

π

(
π̂i(·i|s)|π̄j1:m , s

)
,

1. Di
π

(
π̂i|s, π̄j1:m

)
≥ Di

π

(
πi|s, π̄j1:m

)
= 0 (non-negativity),

2. Di
π

(
π̂i|s, π̄j1:m

)
has all Gâteaux derivatives zero at π̂i = πi (zero gradient),

and a probability distribution νiπ,π̂i ∈ P(S) over states that can (but does not have to) depend on π

and π̂i, and such that the drift Di,ν of π̂i from πi with respect to π̄j1:m , defined as

Di,ν
π (π̂i|π̄j1:m) ≜ Es∼νi

π,π̂i

[
Di

π

(
π̂i|s, π̄j1:m

)]
,

is continuous with respect to π, π̄j1:m , and π̂i. We say that the HADF is positive if Di,ν
π (π̂i|π̄j1:m) = 0

implies π̂i = πi, and trivial if Di,ν
π (π̂i|π̄j1:m) = 0 for all π, π̄j1:m , and π̂i, .

Intuitively, the drift Di,ν
π (π̂i|π̄j1:m) is a notion of distance between πi and π̂i, given that agents j1:m

just updated to π̄j1:m . We highlight that, under this conditionality, the same update (from πi to π̂i)
can have different sizes—this will later enable HAML agents to softly constraint their learning steps
in a coordinated way. Before that, we introduce a notion that renders hard constraints, which may be
a part of an algorithm design, or an inherrent limitation.
Definition 2. Let i ∈ N . We say that, U i : Π×Πi → P(Πi) is a neighbourhood operator if ∀πi ∈ Πi,
U i
π(π

i) contains a closed ball, i.e., there exists a state-wise monotonically non-decreasing metric
χ : Πi×Πi → R such that ∀πi ∈ Πi there exists δi > 0 such that χ(πi, π̄i) ≤ δi =⇒ π̄i ∈ U i

π(π
i).

Throughout this work, for every joint policy π, we will associate it with its sampling distribution—a
positive state distribution βπ ∈ P(S) that is continuous in π (Kuba et al., 2022b). With these notions
defined, we introduce the main definition of the paper.
Definition 3. Let i ∈ N , j1:m ∈ P(−i), and Di,ν be a HADF of agent i. The heterogeneous-agent
mirror operator (HAMO) integrates the advantage function as

[
M(π̂i)

Di,ν ,π̄j1:m
Aπ

]
(s) ≜ Eaj1:m∼π̄j1:m ,ai∼π̂i

[
Ai

π(s,a
j1:m , ai)

]
−

νi
π,π̂i(s)

βπ(s)
Di

π

(
π̂i
∣∣s, π̄j1:m

)
.

We note two important facts. First, when νiπ,π̂i = βπ, the fraction from the front of the HADF in
HAMO disappears, making it only a difference between the advantage and the HADF’s evaluation.
Second, when π̂i = πi, HAMO evaluates to zero. Therefore, as the HADF is non-negative, a policy
π̂i that improves HAMO must make it positive, and thus leads to the improvement of the multi-agent
advantage of agent i. In the next subsection, we study the properties of HAMO in more details, as
well as use it to construct HAML—a general framework for MARL algorithm design.
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4.2 THEORETICAL PROPERTIES OF HAML

It turns out that, under certain configuration, agents’ local improvements result in the joint improve-
ment of all agents, as described by the lemma below.
Lemma 2 (HAMO Is All You Need). Let πold and πnew be joint policies and let i1:n ∈ Sym(n) be
an agent permutation. Suppose that, for every state s ∈ S and every m = 1, . . . , n,[

M(πim
new )

Dim,ν ,π
i1:m−1
new

Aπold

]
(s) ≥

[
M(π

im
old )

Dim,ν ,π
i1:m−1
new

Aπold

]
(s). (5)

Then, πnew is jointly better than πold, so that for every state s,

Vπnew(s) ≥ Vπold(s).

Subsequently, the monotonic improvement property of the joint return follows naturally, as

J(πnew) = Es∼d

[
Vπnew(s)

]
≥ Es∼d

[
Vπold(s)

]
= J(πold).

However, the conditions of the lemma require every agent to solve |S| instances of Inequality
(5), which may be an intractable problem. We shall design a single optimisation objective whose
solution satisfies those inequalities instead. Furthermore, to have a practical application to large-scale
problems, such an objective should be estimatable via sampling. To handle these challenges, we
introduce the following Algorithm Template 1 which generates a continuum of HAML algorithms.

Algorithm Template 1: Heterogeneous-Agent Mirror Learning

Initialise a joint policy π0 = (π1
0 , . . . , π

n
0 );

for k = 0, 1, . . . do
Compute the advantage function Aπk

(s,a) for all state-(joint)action pairs (s,a);
Draw a permutaion i1:n of agents at random \\from a positive distribution p ∈ P(Sym(n));
for m = 1 : n do

Make an update πim
k+1 = argmax

πim∈Uim
πk

(πim
k )

Es∼βπk

[[
M(πim )

Dim,ν ,π
i1:m−1
k+1

Aπk

]
(s)

]
;

Output :A limit-point joint policy π∞

Based on Lemma 2 and the fact that πi ∈ U i
π(π

i),∀i ∈ N , πi ∈ Πi, we can know any HAML
algorithm (weakly) improves the joint return at every iteration. In practical settings, such as deep
MARL, the maximisation step of a HAML method can be performed by a few steps of gradient
ascent on a sample average of HAMO (see Definition 1). We also highlight that if the neighbourhood
operators U i can be chosen so that they produce small policy-space subsets, then the resulting updates
will be not only improving but also small. This, again, is a desirable property while optimising
neural-network policies, as it helps stabilise the algorithm. One may wonder why the order of agents
in HAML updates is randomised at every iteration; this condition has been necessary to establish
convergence to NE, which is intuitively comprehendable: fixed-point joint policies of this randomised
procedure assure that none of the agents is incentivised to make an update, namely reaching a NE.
We provide the full list of the most fundamental HAML properties in Theorem 1 which shows that
any method derived from Algorithm Template 1 solves the cooperative MARL problem.
Theorem 1 (The Fundamental Theorem of Heterogeneous-Agent Mirror Learning). Let, for every
agent i ∈ N , Di,ν be a HADF, U i be a neighbourhood operator, and let the sampling distributions
βπ depend continuously on π. Let π0 ∈ Π, and the sequence of joint policies (πk)

∞
k=0 be obtained

by a HAML algorithm induced by Di,ν ,U i,∀i ∈ N , and βπ . Then, the joint policies induced by the
algorithm enjoy the following list of properties

1. Attain the monotonic improvement property,

J(πk+1) ≥ J(πk),

2. Their value functions converge to a Nash value function V NE

lim
k→∞

Vπk
= V NE,
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3. Their expected returns converge to a Nash return,

lim
k→∞

J(πk) = JNE,

4. Their ω-limit set consists of Nash equilibria.

See the proof in Appendix C. With the above theorem, we can conclude that HAML provides a
template for generating theoretically sound, stable, monotonically improving algorithms that enable
agents to learn solving multi-agent cooperation tasks.

4.3 EXISTING HAML INSTANCES: HATRPO AND HAPPO

As a sanity check for its practicality, we show that two SOTA MARL methods—HATRPO and
HAPPO (Kuba et al., 2022a)—are valid instances of HAML, which also provides an explanation for
their excellent empirical performance.

We begin with an intuitive example of HATRPO, where agent im (the permutation i1:n is drawn from
the uniform distribution) updates its policy so as to maximise (in π̄im )

E
s∼ρπold ,a

i1:m−1∼π
i1:m−1
new ,aim∼π̄im

[
Aim

πold(s,a
i1:m−1 , aim)

]
, subject to DKL(π

im
old , π̄

im) ≤ δ.

This optimisation objective can be casted as a HAMO with the trivial HADF Dim,ν ≡ 0, and the
KL-divergence neighbourhood operator

U im
π (πim) =

{
π̄im

∣∣∣ Es∼ρπ

[
KL

(
πim(·im |s), π̄im(·im |s)

)]
≤ δ

}
.

The sampling distribution used in HATRPO is βπ = ρπ . Lastly, as the agents update their policies in
a random loop, the algorithm is an instance of HAML. Hence, it is monotonically improving and
converges to a Nash equilibrium set.

In HAPPO, the update rule of agent im is changes with respect to HATRPO as

E
s∼ρπold ,a

i1:m−1∼π
i1:m−1
new ,aim∼π

im
old

[
min

(
r(π̄im)Ai1:m

πold (s,ai1:m), clip
(
r(π̄im), 1± ϵ

)
Ai1:m

πold (s,ai1:m)
)]
,

where r(π̄i) = π̄i(ai|s)
πi

old(ai|s) . We show in Appendix D that this optimisation objective is equivalent to

Es∼ρπold

[
E
a
i1:m−1∼π

i1:m−1
new ,aim∼π̄im

[
Aim

πold(s,a
i1:m−1 , aim)

]
− E

ai1:m∼π
i1:m
old

[
ReLU

([
r(π̄im)− clip

(
r(π̄im), 1± ϵ

)]
Ai1:m

πold (s,ai1:m)
)]]

.

The purple term is clearly non-negative due to the presence of the ReLU funciton. Furthermore,
for policies π̄im sufficiently close to πim

old , the clip operator does not activate, thus rendering r(π̄im)

unchanged. Therefore, the purple term is zero at and in a region around π̄im = πim
old , which also

implies that its Gâteaux derivatives are zero. Hence, it evaluates a HADF for agent im, thus making
HAPPO a valid HAML instance.

Finally, we would like to highlight that these results about HATRPO and HAPPO significantly
strengthen the work originally by Kuba et al. (2022a) who only derived these learning protocols
as approximations to a theoretically sound algorithm (see Algorithm 1 in Kuba et al. (2022a)), yet
without such level of insights.

4.4 NEW HAML INSTANCES: HAA2C AND HADDPG

In this subsection, we exemplify how HAML can be used for derivation of principled MARL
algorithms, and introduce heterogeneous-agent extensions of A2C and DDPG, different from those in
Subsection 3.2. Our goal is not to refresh new SOTA performance on challenging tasks, but rather to
verify the correctness of our theory, as well as deliver more robust versions of multi-agent extensions
of popular RL algorithms such as A2C and DDPG.
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Figure 1: Comparison between HAA2C (yellow) vs MAA2C-S (blue) and MAA2C-NS (pink) in SMAC.

HAA2C intends to optimise the policy for the joint advantage function at every iteration, and similar
to A2C, does not impose any penalties or constraints on that procedure. This learning procedure is
accomplished by, first, drawing a random permutation of agents i1:n, and then performing a few steps
of gradient ascent on the objective of

E
s∼ρπold ,a

i1:m∼π
i1:m
old

[πi1:m−1
new (ai1:m−1 |s)πim(aim |s)

π
i1:m−1

old (ai1:m−1 |s)πim
old (aim |s)

Aim
πold(s,a

i1:m−1 , aim)
]
, (6)

with respect to πim parameters, for each agent im in the permutation, sequentially. In practice,
we replace the multi-agent advantage Aim

πold(s,a
i1:m−1 , aim) with the joint advantage estimate which,

thanks to the joint importance sampling in Equation (6), poses the same objective on the agent (see
Appendix E for full pseudocode).
HADDPG aims to maximise the state-action value function off-policy. As it is a deterministic-
action method, and thus importance sampling in its case translates to replacement of the old action
inputs to the critic with the new ones. Namely, agent im in a random permutation i1:n maximises

Es∼βµold

[
Qi1:m

µold

(
s,µi1:m−1

new (s), µim(s)
)]
, (7)

with respect to µim , also with a few steps of gradient ascent. Similar to HAA2C, optimising the
state-action value function (with the old action replacement) is equivalent to the original multi-agent
value (see Appendix E for full pseudocode).

We are fully aware that none of these two methods exploits the entire abundance of the HAML
framework—they do not possess HADFs or neighbourhood operators, as oppose to HATRPO or
HAPPO. Thus, we speculate that the range of opportunities for HAML algorithm design is yet to be
discovered with more future work. Nevertheless, we begin this search from these two straightforward
methods, and analyse their performance in the next section.

5 EXPERIMENTS AND RESULTS

In this section(1), we challenge the capabilities of HAML in practice by testing HAA2C and HADDPG
on the most challenging MARL benchmarks—we use StarCraft Multi-Agent Challenge (Samvelyan
et al., 2019) and Multi-Agent MuJoCo (Peng et al., 2020), for discrete (only HAA2C) and continuous
action settings, respectively.

We begin by demonstrating the performance of HAA2C. As a baseline, we use its “naive” predecessor,
MAA2C, in both policy-sharing (MAA2C-S) and heterogeneous (MAA2C-NS) versions. Results on
Figures 1 & 2 show that HAA2C generally achieves higher rewards in SMAC than both versions of
MAA2C, while maintaining lower variance. The performance gap increases in MAMuJoCo, where the

(1)Our code is available at https://github.com/anonymouswater/HAML
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Figure 2: Comparison between HAA2C (yellow) vs MAA2C-S (blue) and MAA2C-NS (pink) in MAMuJoCo.
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Figure 3: Comparison between HADDPG (yellow) and MADDPG (pink) in MAMuJoCo.

agents must learn diverse policies to master complex movements (Kuba et al., 2022a). Here, echoing
Proposition 1, the homogeneous MAA2C-S fails completely, and conventional, heterogeneous
MAA2C-NS underperforms by a significant margin (recall Proposition 2).

As HADDPG is a continuous-action method, we test it only on MAMuJoCo (precisely 6 tasks) and
compare it to MADDPG. Figure 3 revelas that HADDPG achieves higher reward than MADDPG,
while sometimes displaying significantly lower variance (e.g in Reacher-2x1 and Swimmer-2x1).
Hence, we conclude that HADDPG performs better.

6 CONCLUSION

In this paper, we described and addressed the problem of lacking principled treatments for cooperative
MARL tasks. Our main contribution is the development of heterogeneous-agent mirror learning
(HAML), a class of provably correct MARL algorithms, whose properties are rigorously profiled.
We verified the correctness and the practicality of HAML by interpreting current SOTA methods—
HATRPO and HAPPO—as HAML instances and also by deriving and testing heterogeneous-agent
extensions of successful RL algorithms, named as HAA2C and HADDPG. We expect HAML to help
create a template for designing both principled and practical MARL algorithms hereafter.
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A PROOFS OF PRELIMINARY RESULTS

A.1 PROOF OF LEMMA 1

Lemma 1 (Multi-Agent Advantage Decomposition). Let π be a joint policy, and i1, . . . , im be an
arbitrary ordered subset of agents. Then, for any state s and joint action ai1:m ,

Ai1:m
π

(
s,ai1:m

)
=

m∑
j=1

A
ij
π

(
s,ai1:j−1 , aij

)
. (1)

Proof. (We quote the proof from (Kuba et al., 2022a).) We start as expressing the multi-agent
advantage as a telescoping sum, and then rewrite it using the definition of multi-agent advantage,

Ai1:m
π (s,ai1:m) = Qi1:m

π (s,ai1:m)− Vπ(s)

=

m∑
j=1

[
Q

i1:j
π (s,ai1:j )−Q

i1:j−1
π (s,ai1:j−1)

]
=

m∑
j=1

A
ij
π (s,a

i1:j−1 , aij ).

A.2 PROOF OF PROPOSITION 2

Proposition 2 (Trap of Heterogeneity). Let’s consider a fully-cooperative game with 2 agents,
one state, and the joint action space {0, 1}2, where the reward is given by r(0, 0) = 0, r(0, 1) =
r(1, 0) = 2, and r(1, 1) = −1. Suppose that πi

old(0) > 0.6 for i = 1, 2. Then, if agents i update
their policies by

πi
new = argmax

πi

Eai∼πi,a−i∼π−i
old

[
Aπold(a

i, a−i)
]
,∀i ∈ N ,

then the resulting policy will yield a lower return,

J(πold) > J(πnew) = min
π

J(π).

As there is only one state, we can ignore the infinite horizon and the discount factor γ, thus making
the state-action value and the reward functions equivalent, Q ≡ r.

Let us, for brevity, define πi = πi
old(0) > 0.6, for i = 1, 2. We have

J(πold) = Pr(a1 = a2 = 0)r(0, 0) +
(
1− Pr(a1 = a2 = 0)

)
E[r(a1, a2)|(a1, a2) ̸= (0, 0)]

> 0.62 × 0− (1− 0.62) = −0.64.

The update rule stated in the proposition can be equivalently written as

πi
new = argmax

πi

Eai∼πi,a−i∼π−i
old

[
Qπold(a

i, a−i)
]
. (8)

We have

Ea−i∼π−i
old

[
Qπold(0, a−i)

]
= π−iQ(0, 0) + (1− π−i)Q(0, 1) = π−ir(0, 0) + (1− π−i)r(0, 1) = 2(1− π−i),

and similarly

Ea−i∼π−i
old

[
Qπold(1, a−i)

]
= π−ir(1, 0) + (1− π−i)r(1, 1) = 2π−i − (1− π−i) = 3π−i − 1.

Hence, if π−i > 0.6, then

Ea−i∼π−i
old

[
Qπold(1, a−i)

]
= 3π−i − 1 > 3× 0.6− 1 = 0.8 > 2− 2π−i = Ea−i∼π−i

old

[
Qπold(0, a−i)

]
.

Therefore, for every i, the solution to Equation (8) is the greedy policy πi
new(1) = 1. Therefore,

J(πnew) = Q(1, 1) = r(1, 1) = −1,

which finishes the proof.
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B PROOF OF HAMO Is All You Need LEMMA

Lemma 2 (HAMO Is All You Need). Let πold and πnew be joint policies and let i1:n ∈ Sym(n) be
an agent permutation. Suppose that, for every state s ∈ S and every m = 1, . . . , n,

[
M(πim

new )

Dim,ν ,π
i1:m−1
new

Aπold

]
(s) ≥

[
M(π

im
old )

Dim,ν ,π
i1:m−1
new

Aπold

]
(s). (5)

Then, πnew is jointly better than πold, so that for every state s,

Vπnew(s) ≥ Vπold(s).

Proof. Let D̃πold(πnew|s) ≜
∑n

m=1

νim
πold,π̂

im
(s)

βπold (s)
Dim

πold
(πim

new|s,π
i1:m−1
new ). Combining this with Lemma

1 gives

Ea∼πnew

[
Aπold(s,a)

]
− D̃πold(πnew|s)

=

n∑
m=1

E
ai1:m−1∼π

i1:m−1
new ,aim∼πim

new

[
Aim

πold
(s,ai1:m−1 , aim)−

νim
πold,π

im
new

(s)

βπold(s)
Dim

πold
(πim

new|s,π
i1:m−1
new )

]
by Inequality (5)

≥
n∑

m=1

E
ai1:m−1∼π

i1:m−1
new ,aim∼πim

old

[
Aim

πold
(s,ai1:m−1 , aim)−

νim
πold,π

im
old

(s)

βπold(s)
Dim

πold
(πim

old |s,π
i1:m−1
new )

]
= Ea∼πold

[
Aπold(s,a)

]
− D̃πold(πold|s).

The resulting inequality can be equivalently rewritten as

Ea∼πnew

[
Qπold(s,a)

]
− D̃πold(πnew|s) ≥ Ea∼πold

[
Qπold(s,a)

]
− D̃πold(πold|s),∀s ∈ S. (9)

We use it to prove the claim as follows,

Vπnew(s) = Ea∼πnew

[
Qπnew(s,a)

]
= Ea∼πnew

[
Qπold(s,a)

]
− D̃πold(πnew|s)

+ D̃πold(πnew|s) + Ea∼πnew

[
Qπnew(s,a)−Qπold(s,a)

]
,

by Inequality (9)

≥ Ea∼πold

[
Qπold(s,a)

]
− D̃πold(πold|s)

+ D̃πold(πnew|s) + Ea∼πnew

[
Qπnew(s,a)−Qπold(s,a)

]
,

= Vπold(s) + D̃πold(πnew|s) + Ea∼πnew

[
Qπnew(s,a)−Qπold(s,a)

]
= Vπold(s) + D̃πold(πnew|s) + Ea∼πnew,s′∼P

[
r(s,a) + γVπnew(s

′)− r(s,a)− γVπold(s
′)
]

= Vπold(s) + D̃πold(πnew|s) + γEa∼πnew,s′∼P

[
Vπnew(s

′)− Vπold(s
′)
]

≥ Vπold(s) + γ inf
s′

[
Vπnew(s

′)− Vπold(s
′)
]
.

Hence Vπnew(s)− Vπold(s) ≥ γ inf
s′

[
Vπnew(s

′)− Vπold(s
′)
]
.

Taking infimum over s and simplifying

(1− γ) inf
s

[
Vπnew(s)− Vπold(s)

]
≥ 0.

Therefore, infs
[
Vπnew(s)− Vπold(s)

]
≥ 0, which proves the lemma.
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C PROOF OF THEOREM 1

Lemma 3. Suppose an agent im maximises the expected HAMO

πim
new = argmax

πim∈Uim
πold (π

im
old )

Es∼βπold

[[
M(πim )

Dim,ν ,π
i1:m−1
new

Aπold

]
(s)

]
. (10)

Then, for every state s ∈ S[
M(πim

new )

Dim,ν ,π
i1:m−1
new

Aπold

]
(s) ≥

[
M(πim

old )

Dim,ν ,π
i1:m−1
new

Aπold

]
(s).

Proof. We will prove this statement by contradiction. Suppose that there exists s0 ∈ S such that[
M(πim

new )

Dim,ν ,π
i1:m−1
new

Aπold

]
(s0) <

[
M(πim

old )

Dim,ν ,π
i1:m−1
new

Aπold

]
(s0). (11)

Let us define the following policy π̂im .

π̂im(·im |s) =
{
πim

old (·im |s), at s = s0
πim

new(·im |s), at s ̸= s0

Note that π̂im is (weakly) closer to πim
old than πim

new at s0, and at the same distance at other states.
Together with πim

new ∈ U im
πold

(πim
old ), this implies that π̂im ∈ U im

πold
(πim

old ). Further,

Es∼βπold

[[
M(π̂im )

Dim,ν ,π
i1:m−1
new

Aπold

]
(s)

]
− Es∼βπold

[[
M(πim

new )

Dim,ν ,π
i1:m−1
new

Aπold

]
(s)

]
βπold(s0)

([
M(π̂im )

Dim,ν ,π
i1:m−1
new

Aπold

]
(s0)−

[
M(π̂im )

Dim,ν ,π
i1:m−1
new

Aπold

]
(s0)

)
> 0.

The above contradicts πim
new as being the argmax of Inequality (11), as π̂im is strictly better. The

contradiciton finishes the proof.

Theorem 1 (The Fundamental Theorem of Heterogeneous-Agent Mirror Learning). Let, for every
agent i ∈ N , Di,ν be a HADF, U i be a neighbourhood operator, and let the sampling distributions
βπ depend continuously on π. Let π0 ∈ Π, and the sequence of joint policies (πk)

∞
k=0 be obtained

by a HAML algorithm induced by Di,ν ,U i,∀i ∈ N , and βπ . Then, the joint policies induced by the
algorithm enjoy the following list of properties

1. Attain the monotonic improvement property,

J(πk+1) ≥ J(πk),

2. Their value functions converge to a Nash value function V NE

lim
k→∞

Vπk
= V NE,

3. Their expected returns converge to a Nash return,

lim
k→∞

J(πk) = JNE,

4. Their ω-limit set consists of Nash equilibria.

Proof. Proof of Property 1.
It follows from combining Lemmas 2 & 3.

Proof of Properties 2, 3 & 4.
Step 1: convergence of the value function. By Lemma 2, we have that Vπk

(s) ≤ Vπk+1
(s), ∀s ∈ S ,

and that the value function is upper-bounded by Vmax. Hence, the sequence of value functions
(Vπk

)k∈N converges. We denote its limit by V .

Step 2: characterisation of limit points. As the joint policy space Π is bounded, by Bolzano-
Weierstrass theorem, we know that the sequence (πk)k∈N has a convergent subsequence. Therefore,
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it has at least one limit point policy. Let π̄ be such a limit point. We introduce an auxiliary notation:
for a joint policy π and a permutation i1:n, let HU(π, i1:n) be a joint policy obtained by a HAML
update from π along the permutation i1:n.

Claim: For any permutation z1:n ∈ Sym(n),

π̄ = HU(π̄, z1:n). (12)

Proof of Claim. Let π̂ = HU(π̄, z1:n) ̸= π̄ and (πkr )r∈N be a subsequence converging to π̄. Let us
recall that the limit value function is unique and denoted as V . Writing Ei0:∞1:n

[·] for the expectation
operator under the stochastic process (ik1:n)k∈N of update orders, for a state s ∈ S, we have

0 = lim
r→∞

Ei0:∞1:n

[
Vπkr+1

(s)− Vπkr
(s)

]
as every choice of permutation improves the value function

≥ lim
r→∞

P(ikr
1:n = z1:n)

[
VHU(πkr ,z1:n)

(s)− Vπkr
(s)

]
= p(z1:n) lim

r→∞

[
VHU(πkr ,z1:n)

(s)− Vπkr
(s)

]
.

By the continuity of the expected HAMO (following from the continuity of the value function (Kuba
et al., 2022a, Appendix A), HADFs, neighbourhood operators, and the sampling distribution) we
obtain that the first component of HU(πkr

, z1:n), which is πz1
kr+1, is continuous in πkr

by Berge’s
Maximum Theorem (Ausubel & Deneckere, 1993). Applying this argument recursively for z2, . . . , zn,
we have that HU(πkr , z1:n) is continuous in πkr . Hence, as πkr converges to π̄, its HU converges to
the HU of π̄, which is π̂. Hence, we continue wiriting the above derivation as

= p(z1:n)
[
Vπ̂(s)− Vπ̄(s)

]
≥ 0, by Lemma 2.

As s was arbitrary, the state-value function of π̂ is the same as that of π: Vπ̂ = Vπ , by the Bellman
equation (Sutton & Barto, 2018): Q(s,a) = r(s,a)+γEV (s′), this also implies that their state-value
and advantage functions are the same: Qπ̂ = Qπ̄ and Aπ̂ = Aπ̄ . Let m be the smallest integer such
that π̂zm ̸= π̄zm . This means that π̂zm achieves a greater expected HAMO than π̄zm , for which it is
zero. Hence,

0 < Es∼βπ

[[
M(π̂zm )

Dz,ν ,π̄z1:m−1Aπ̄

]
(s)

]
= Es∼βπ

[
Eaz1:m∼π̄z1:m−1 ,azm∼π̂zm

[
Azm

π̄ (s,az1:m−1 , azm)
]
−

νzmπ̄,π̂zm (s)

βπ̄(s)
Dzm

π (π̂zm |s, π̄z1:m−1)
]

= Es∼βπ

[
Eaz1:m∼π̄z1:m−1 ,azm∼π̂zm

[
Azm

π̂ (s,az1:m−1 , azm)
]
−

νzmπ̄,π̂zm (s)

βπ̄(s)
Dzm

π (π̂zm |s, π̄z1:m−1)
]

and as the expected value of the multi-agent advantage function is zero

= Es∼βπ

[
−

νzmπ̄,π̂zm (s)

βπ̄(s)
Dzm

π (π̂zm |s, π̄z1:m−1)
]
≤ 0.

This is a contradiction, and so the claim in Equation (12) is proved, and the Step 2 is finished.

Step 3: dropping the HADF. Consider an arbitrary limit point joint policy π̄. By Step 2, for any
permutation i1:n, considering the first component of the HU, and writing νi = νiπ̄,πi ,

π̄i1 = max
πi1∈Ui1

π (πi1 )

Es∼βπ̄

[[
M(πi1 )

Di1,νAπ̄

]
(s)

]
(13)

= max
πi1∈Ui1

π (πi1 )

Es∼βπ̄

[
Eai1∼πi1

[
Aπ̄(s, ai1)

]
− νi1(s)

βπ̄(s)
Di1

π̄ (πi1 |s)
]
.

As the HADF is non-negative, and at πi1 = π̄i1 its value and of its all Gâteaux derivatives are zero, it
follows by Step 3 of Theorem 1 of (Kuba et al., 2022b) that for every s ∈ S,

π̄i1(·im |s) = argmax
πi1∈P(Ai1 )

Eai1∼πi1

[
Qi1

π̄ (s, ai1)
]
.
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Step 4: Nash equilibrium. We have proved that π̄ satisfies

π̄i(·i|s) = argmax
πi(·i|s)∈P(Ai)

Eai∼πi

[
Qi

π̄(s, ai)
]

= argmax
πi(·i|s)∈P(Ai)

Eai∼πi,a−i∼π̄−i

[
Qπ̄(s,a)

]
, ∀i ∈ N , s ∈ S.

Hence, by considering π̄−i fixed, we see that π̄i satisfies the condition for the optimal policy (Sutton
& Barto, 2018), and hence

π̄i = argmax
πi∈Πi

J(πi, π̄−i).

Thus, π̄ is a Nash equilibrium. Lastly, this implies that the value function corresponds to a Nash
value function V NE, the return corresponds to a Nash return JNE.
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D CASTING HAPPO AS HAML

The maximisation objective of agent im in HAPPO is

E
s∼ρπold ,a

i1:m−1∼π
i1:m−1
new ,aim∼πim

old

[
min

(
r(π̄im)Ai1:m

πold
(s,ai1:m), clip

(
r(π̄im), 1± ϵ

)
Ai1:m

πold
(s,ai1:m)

)]
.

Fixing s and ai1:m−1 , we can rewrite it as

Eaim∼π̄im

[
Ai1:m

πold
(s,ai1:m−1 , aim)

]
− Eaim∼πim

old

[
r(π̄im)Ai1:m

πold
(s,ai1:m−1 , aim)

−min
(

r(π̄im)Ai1:m
πold

(s,ai1:m−1 , aim), clip
(
r(π̄im), 1± ϵ

)
Ai1:m

πold
(s,ai1:m−1 , aim)

)]
.

By the multi-agent advantage decomposition,

Eaim∼π̄im

[
Ai1:m

πold
(s,ai1:m−1 , aim)

]
= Ai1:m−1

πold
(s,ai1:m−1) + Eaim∼π̄im

[
Aim

πold
(s,ai1:m−1 , aim)

]
.

Hence, the presence of the joint advantage of agents i1:m is equivalent to the multi-agent advantage
of im given ai1:m−1 that appears in HAMO. Hence, we only need to show that that the subtracted
term is an HADF. Firstly, we change min into max with the identity −min f(x) = max[−f(x)].

Eaim∼πim
old

[
r(π̄im)Ai1:m

πold
(s,ai1:m−1 , aim)

+ max
(
− r(π̄im)Ai1:m

πold
(s,ai1:m−1 , aim),−clip

(
r(π̄im), 1± ϵ

)
Ai1:m

πold
(s,ai1:m−1 , aim)

)]
which we then simplify

Eaim∼πim
old

[
max

(
0,
[
r(π̄im)− clip

(
r(π̄im), 1± ϵ

)]
Ai1:m

πold
(s,ai1:m−1 , aim)

)]
= Eaim∼πim

old

[
ReLU

([
r(π̄im)− clip

(
r(π̄im), 1± ϵ

)]
Ai1:m

πold
(s,ai1:m−1 , aim)

)]
.

As discussed in the main body of the paper, this is an HADF.
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E ALGORITHMS

Algorithm 2: HAA2C
Input: stepsize α, batch size B, number of: agents n, episodes K, steps per episode T ,

mini-epochs e;
Initialize: the critic network: ϕ, the policy networks: {θi}i∈N , replay buffer B;
for k = 0, 1, . . . ,K − 1 do

Collect a set of trajectories by letting the agents act according their policies, ai ∼ πi
θi(·i|oi);

Push transitions {(oi
t, ait, oit+1, rt),∀i ∈ N , t ∈ T} into B;

Sample a random minibatch of B transitions from B;
Estimate the returns R and the advantage function, Â(s,a), using V̂ϕ and GAE;
Draw a permutation of agents i1:n at random;
Set M i1(s,a) = Â(s,a);
for agent im = i1, . . . , in do

Set πim
0 (aim |oim) = πim

θim (aim |oim);
for mini-epoch= 1, . . . , e do

Compute agent im’s policy gradient

gim = ∇θi
1
B

B∑
b=1

M im(sb,ab)
πim
θim

(aimb |oimb )

πim
0 (aimb |oimb )

.

Update agent im’s policy by
θim = θim + αgim .

Compute M im+1(s,a) =
πim
θim

(aim |oim )

πim
0 (aim |oim )

M im(s,a) //unless m = n;

Update the critic by gradient descent on
1
B

∑
s

(
V̂ϕ(sb)−Rb

)2
.

Discard ϕ. Deploy {θi}i∈N in execution;
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Algorithm 3: HADDPG
Input: stepsize α, Polyak coefficient τ , batch size B, number of: agents n, episodes K, steps per

episode T , mini-epochs e;
Initialize: the critic networks: ϕ and ϕ′ and policy networks: {θi}i∈N , replay buffer B, random

processes {X i}i∈N for exploration;
for k = 0, 1, . . . ,K − 1 do

Collect a set of transitions by letting the agents act according to their deterministic policies
with the exploratory noise

ai = µi
θi(oi) + X i

t .

Push transitions {(oi
t, ait, oit+1, rt),∀i ∈ N , t ∈ T} into B;

Sample a random minibatch of B transitions from B;
Compute the critic targets

yt = rt + γQϕ′(st+1,at+1).
Update the critic by minimising the loss

ϕ = argminϕ
1
B

∑
t

(
yt −Qϕ(st,at)

)2
.

Draw a permutation of agents i1:n at random;
for agent im = i1, . . . , in do

Update agent im by solving

θim = argmaxθ̂im
1
B

∑
t Qϕ

(
st, µ

i1:m−1

θi1:m−1
(o

i1:m−1

t ), µim
θ̂im

(oimt ),a
im+1:n

t

)
.

with e mini-epochs of deterministic policy gradient ascent;
Update the target critic network smoothly

ϕ′ = τϕ+ (1− τ)ϕ′.

Discard ϕ. Deploy {θi}i∈N in execution;
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F EXPERIMENTS

F.1 COMPUTE RESOURCES

For compute resources, We used one internal compute servers which consists consisting of 6x RTX
3090 cards and 112 CPUs, however each model is trained on at most 1 card.

F.2 HYPERPARAMETERS

We implement the MAA2C and HAA2C based on HAPPO/HATRPO (Kuba et al., 2022a). We offer
the hyperparameter we use for SMAC in table 1 and for Mujoco in table 2.

Table 1: Common hyperparameters used in the SMAC domain.

hyperparameters value hyperparameters value hyperparameters value
critic lr 5e-4 optimizer Adam stacked-frames 1
gamma 0.99 optim eps 1e− 5 batch size 3200

gain 0.01 hidden layer 1 training threads 64
actor network mlp num mini-batch 1 rollout threads 8

hypernet embed 64 max grad norm 10 episode length 400
activation ReLU hidden layer dim 64 use huber loss True

Table 2: Common hyperparameters used for MAA2C-NS, MAA2C-S and HAA2C in the Multi-Agent MuJoCo.

hyperparameters value hyperparameters value hyperparameters value
critic lr 1e− 3 optimizer Adam num mini-batch 1
gamma 0.99 optim eps 1e− 5 batch size 4000

gain 0.01 hidden layer 1 training threads 8
std y coef 0.5 actor network mlp rollout threads 4
std x coef 1 max grad norm 10 episode length 1000
activation ReLU hidden layer dim 64 eval episode 32

In addition to those common hyperparameters, we set the mini-epoch for HAA2C as 5. For actor
learning rate, we set it as 2e-4 for HalfCheetah and Ant while 1e-4 for Walker2d.

We implement the MADDPG and HADDPG based on the Tianshou framework (Weng et al., 2021).
We offer the hyperparameter we use in table 3 and 4.

Table 3: Hyper-parameter used for MADDPG/HADDPG in the Multi-Agent MuJoCo domain

hyperparameters value hyperparameters value hyperparameters value
actor lr 3e− 4 optimizer Adam replay buffer size 1e6
critic lr 1e− 3 exploration noise 0.1 batch size 1000
gamma 0.99 step-per-epoch 50000 training num 20

tau 0.1 step-per-collector 2000 test num 10
start-timesteps 25000 update-per-step 0.025 epoch 200
hidden-sizes [64, 64] episode length 1000

Table 4: Parameter n-step used for MADDPG/HADDPG in the Multi-Agent MuJoCo

task value task value task value
Reacher (2× 1) 5 Hopper (3× 1) 20 Walker (3× 2) 5

Ant (4× 2) 20 Swimmer (2× 1) 5 Humanoid (9|8) 5

20


	Introduction
	Problem Formulation
	The State of Affairs in MARL
	Homogeneity vs. Heterogeneity
	A Second Look at SOTA MARL Algorithms

	Heterogeneous-Agent Mirror Learning
	Setting up HAML
	Theoretical Properties of HAML
	Existing HAML Instances: HATRPO and HAPPO
	New HAML Instances: HAA2C and HADDPG

	Experiments and Results
	Conclusion
	Proofs of Preliminary Results
	Proof of Lemma 1
	Proof of Proposition 2

	Proof of HAMO Is All You Need Lemma
	Proof of Theorem 1
	Casting HAPPO as HAML
	Algorithms
	Experiments
	Compute resources
	Hyperparameters


