

000 001 RNAGenScape: PROPERTY-GUIDED OPTIMIZATION 002 AND INTERPOLATION OF mRNA SEQUENCES WITH 003 MANIFOLD LANGEVIN DYNAMICS 004 005

006 **Anonymous authors**
007 Paper under double-blind review
008
009
010

011 ABSTRACT 012

013 mRNA design and optimization are important in synthetic biology and
014 therapeutic development, but remain understudied in machine learning.
015 Systematic optimization of mRNAs is hindered by the scarce and imbalanced
016 data as well as complex sequence-function relationships. We present
017 RNAGenScape, a property-guided manifold Langevin dynamics framework
018 that iteratively updates mRNA sequences within a learned latent manifold.
019 RNAGenScape combines an *organized autoencoder*, which structures the
020 latent space by target properties for efficient and biologically plausible
021 exploration, with a *manifold projector* that contracts each step of update
022 back to the manifold. RNAGenScape supports property-guided optimization
023 and smooth interpolation between sequences, while remaining robust
024 under scarce and undersampled data, and ensuring that intermediate
025 products are close to the viable mRNA manifold. Across three real mRNA
026 datasets, RNAGenScape improves the target properties with high success rates
027 and efficiency, outperforming various generative or optimization methods
028 developed for proteins or non-biological data. By providing continuous, data-
029 aligned trajectories that reveal how edits influence function, RNAGenScape
030 establishes a scalable paradigm for controllable mRNA design and latent
031 space exploration in mRNA sequence modeling.

032 1 INTRODUCTION 033

034 Messenger ribonucleic acids (mRNAs) design and optimization are important (Qin et al.,
035 2022; Metkar et al., 2024) but remain understudied in machine learning (Castillo-Hair &
036 Seelig, 2021; Schlusser et al., 2024). Even small edits to mRNA sequences can strongly affect
037 their stability, translation efficiency, and eventual protein output (Zhang et al., 2023; Li
038 et al., 2025). For instance, modifying the non-coding 5' untranslated region (UTR) can tune
039 the degradation rate of transcripts and therefore regulate protein production (Castillo-Hair
040 et al., 2024; Ma et al., 2024). Such guided controls are directly relevant to applications such
041 as mRNA vaccines (Pardi et al., 2018; Chaudhary et al., 2021) and protein replacement
042 therapies (Qin et al., 2022; Vavilis et al., 2023), where improving translation efficiency
043 or stability can improve efficacy and reduce dosage. However, systematic optimization
044 in the mRNA space remains an open challenge, because (1) viable mRNAs occupy only
045 a narrow subset of the vast ambient design space (Zhang et al., 2023; Calvanese et al.,
046 2024), (2) data collected in this field are scarce and imbalanced, with many regions sparse
047 or undersampled (Taubert et al., 2023; Asim et al., 2025), and (3) the sequence-function
048 relationships are highly complex (Licatalosi & Darnell, 2010; Weinreb et al., 2016).

049 We present RNAGenScape, a property-guided Manifold Langevin dynamics framework
050 dedicated for mRNA sequence design and optimization. RNAGenScape consists of two
051 core modules: ① an organized autoencoder (OAE) that learns the manifold of mRNA
052 sequences and organizes the space by the target property, enabling efficient exploration
053 within a biologically plausible subspace rather than the ambient sequence space; and ② a
manifold projector that contracts each update back onto the learned manifold, preserving
biological plausibility. By preprocessing the data with SUGAR (Lindenbaum et al., 2018)

054 to augment undersampled regions by filling “holes” in the manifold, we ensure that the
 055 manifold projector remains effective even under sparse training conditions (e.g., as few as
 056 2,000 data points in one dataset), addressing a common challenge in mRNA data.

057 By operating directly on the latent manifold rather than in the ambient sequence space,
 058 **RNAGenScape** is able to optimize target properties of the mRNAs, smoothly interpolate
 059 between sequences, and ensure that all intermediate results remain close to the viable mRNA
 060 manifold. Across three real-world mRNA datasets that span two orders of magnitude in size,
 061 **RNAGenScape** consistently improved target properties with high success rates and efficiency,
 062 outperforming existing approaches originally developed for proteins or generic sequence data.
 063

064 In summary, our main contributions are as follows.

- 065 **Framework:** We propose **RNAGenScape**, a manifold Langevin dynamics framework that
 066 enables interpolation and continuous property-guided optimization of mRNA sequences
 067 starting from real data points, offering biologically grounded sequence modeling.
- 068 **Manifold constraint:** We introduce a learned manifold projector that ensures biological
 069 plausibility throughout optimization trajectories.
- 070 **Efficiency:** Unlike diffusion-based models which typically start from Gaussian noise and
 071 explore the entire Euclidean space, we restrict our exploration to the manifold and start
 072 from existing sequences, allowing faster training and inference.
- 073 **Empirical validation:** We provide results on three real mRNA datasets, demonstrating
 074 that our method improves target properties while maintaining manifold fidelity,
 075 outperforming various optimization and generation methods.

077 2 PRELIMINARIES

078 2.1 MANIFOLD HYPOTHESIS AND MANIFOLD LEARNING

079 The **manifold hypothesis** (Cayton et al., 2008; Narayanan & Mitter, 2010; Fefferman et al.,
 080 2016) posits that high-dimensional data lie near a low-dimensional manifold embedded in
 081 the ambient space. Formally, each observation $x_i \in \mathbb{R}^n$ arises from a smooth nonlinear map
 082 $\mathbf{f} : \mathcal{M}^d \rightarrow \mathbb{R}^n$ applied to a latent variable $z_i \in \mathcal{M}^d$, where $d \ll n$.

083 **Manifold learning** methods seek to recover this latent structure by constructing
 084 representations that preserve intrinsic geometry (Van Dijk et al., 2018; Moon et al., 2019;
 085 Burkhardt et al., 2021; Liu et al., 2024; Liao et al., 2024; Liu et al., 2025a;b; Sun et al., 2025).
 086 Diffusion geometry (Coifman & Lafon, 2006; Van Dijk et al., 2018; Lindenbaum et al., 2018)
 087 provides one such paradigm, where local similarities are defined via an anisotropic kernel
 088 on the pairwise similarities, and a Markov transition probability matrix is obtained by row
 089 normalization. This diffusion process encodes the intrinsic geometry of the data.

090 A point is considered *on-manifold* if it lies within the range of the nonlinear map \mathbf{f} , while
 091 *off-manifold* points deviate from this structure and may correspond to invalid or adversarial
 092 samples (Rifai et al., 2011; Li et al., 2023). Thus, projecting updated points back to the
 093 manifold is critical for robustness and geometry-aware optimization (He et al., 2023b).

094 **Stochastic gradient descent (SGD) on Riemannian manifolds** (Bonnabel, 2013)
 095 extends classical SGD by computing updates in the tangent space and mapping them back to
 096 the manifold via exponential maps or retractions. However, such methods assume an analytic
 097 form of the manifold. In contrast, the manifold underlying biological sequence space is not
 098 known in a closed form. **RNAGenScape** addresses this by directly *learning* the projection
 099 operator, enabling optimization on data manifolds without requiring analytic solutions.

100 2.2 LANGEVIN-DYNAMICS AND BEYOND

101 **Diffusion Models** (Ho et al., 2020) are generative frameworks that learn a data distribution
 102 $p(x)$ by reversing a fixed Markov diffusion process of length T . Starting from Gaussian noise,
 103 they are trained to iteratively denoise samples through a sequence of learned denoising
 104 functions over T steps. The training objective $\mathcal{L}_{\text{DM}} := \mathbb{E}_{x, \epsilon \sim \mathcal{N}(0, 1), t} [\|\epsilon - \epsilon_{\theta}(x_t, t)\|_2^2]$
 105 is a reweighted form of the variational lower bound, closely related to denoising score
 106 matching (Song et al., 2021).

108 **Latent Diffusion Models** (Rombach et al., 2022) present an extension of the concept.
 109 Instead of performing the reverse diffusion process in the data space, they operate in a latent
 110 space after embedding the data with an encoder \mathcal{E} , where $z = \mathcal{E}(x)$. The modified objective
 111 is given by $\mathcal{L}_{\text{LDM}} := \mathbb{E}_{z, \epsilon \sim \mathcal{N}(0, 1), t} [\|\epsilon - \epsilon_\theta(z_t, t)\|_2^2]$.
 112

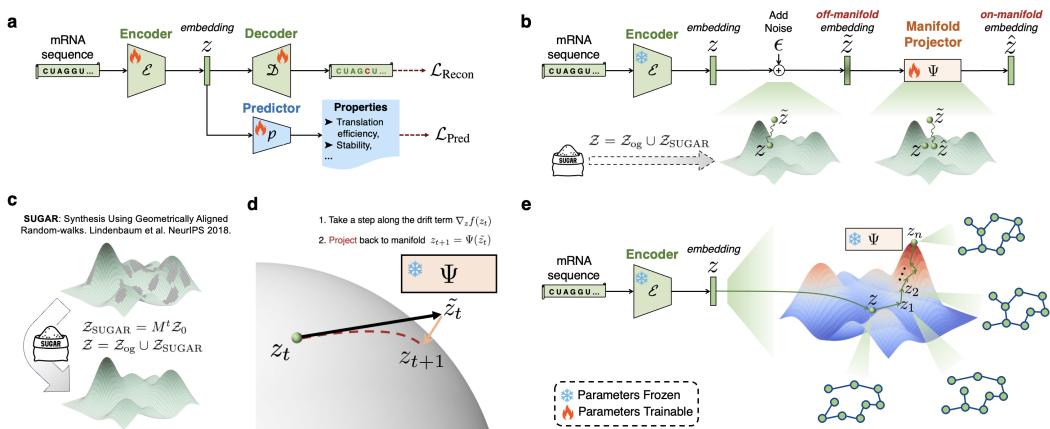
113 **Langevin Dynamics** (Song & Ermon, 2019) has been employed in generative models to
 114 sample from high-dimensional data distributions using only an estimate of the score function
 115 $\nabla_x \log p(x)$. In particular, it first trains a neural network s_θ to approximate the score
 116 function of data injected with Gaussian noise. Sampling is then performed via annealed
 117 Langevin dynamics, given by $\tilde{x}_t = \tilde{x}_{t-1} + \frac{\eta_i}{2} s_\theta(\tilde{x}_{t-1}, \sigma_i) + \sqrt{\eta_i} \mathbf{z}_t$. Here, $s_\theta(\tilde{x}_{t-1}, \sigma_i)$ is the
 118 learned score function at noise level σ_i , and η_i is the step size at that level. By gradually
 119 annealing from high to low noise, this procedure enables generation of high-quality samples
 120 without an explicit likelihood or energy model.
 121

122 **Neural Stochastic Differential Equations (neural SDEs)** (Kidger et al., 2021), are
 123 differential equations simultaneously modeling two terms: a drift term $f(\cdot)$ depicting the true
 124 time-varying dynamics of the variable, and a diffusion term $g(\cdot)$ representing stochasticity
 125 using the Brownian motion W_t . The update rule is given by $dX_t = f(t, X_t)dt + g(t, X_t) \circ dW_t$.
 126 From a high level, Langevin dynamics is a special case of neural SDEs after discretization.
 127

3 RNAGENSCAPE

128 The key components of our framework are **① OAE**: an autoencoder module whose latent
 129 space is organized by the target property (Section 3.1, Figure 1a), **② Manifold Projector**:
 130 a module that brings the updated latent embeddings back to the learned data manifold during
 131 each step of optimization/interpolation (Section 3.2, Figure 1b & 1d), and **③ Property-
 132 guided manifold Langevin dynamics**, a procedure that integrates the two aforementioned
 133 modules to enable property optimization and interpolation (Section 3.3 & 3.4, Figure 1e).
 134

135 Once trained, these components allows RNAGenScape to optimize the target property of a
 136 given sequence (Section 4.3) and interpolate between existing sequences (Section 4.5).
 137



138
 139 Figure 1: Schematic of RNAGenScape. **(a)** We first train an organized latent space for
 140 mRNA sequences by jointly optimizing reconstruction and property prediction objectives.
 141 **(b)** We then train a manifold projector while the encoder’s weights are frozen. **(c)** For
 142 undersampled mRNA manifolds, we use SUGAR to learn key dimensions in the manifold
 143 and fill undersampled regions. **(d)** During optimization, the manifold projector brings
 144 off-manifold points back to the manifold. **(e)** We can use the encoder and the manifold
 145 projector to optimize the properties of given input mRNA sequences or interpolate between
 146 sequences. Notably, the intermediate products can also be decoded. Best viewed zoomed in.
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161

162
163

3.1 LEARNING A LATENT SPACE ORGANIZED BY PROPERTY

164
165
166
167
168
169

We begin by training an **organized autoencoder (OAE)**, where the latent space is implicitly structured via supervision from a property prediction task (Figure 1a). Similar to a vanilla autoencoder (Hinton & Salakhutdinov, 2006), the encoder \mathcal{E} maps the input mRNA sequence x to a latent representation z , which is decoded by \mathcal{D} back to the sequence space. In addition to this standard architecture, a predictor \mathcal{P} infers properties \hat{y} from the embedding z . Formally, $z_i = \mathcal{E}(x_i)$, $\hat{x}_i = \mathcal{D}(z_i)$, $\hat{y}_i = \mathcal{P}(z_i)$.

170
171
172
173
174
175

The latent space \mathcal{Z} is thus shaped by jointly optimizing the reconstruction loss and the prediction loss (equation 1), encouraging it to learn sequence-relevant information while being organized by the target properties. λ_{Pred} and λ_{Recon} are hyperparameters that balance between organizing the property landscape and capturing sequence information. They are empirically set to 1 and 5 in all experiments. Here, $x_i \in \mathbb{R}^V$ is the ground truth one-hot encoding of the nucleotide at position i in sequence x with an mRNA vocabulary of size V .

176
177
178
179

3.2 TRAINING A MANIFOLD PROJECTOR

180
181
182
183
184
185
186
187
188

Learning the data manifold mRNA datasets are typically scarce, undersampled, and biased toward specific experimental conditions, which makes it difficult to learn a faithful latent manifold directly from the train data. To address this, we adopt SUGAR (Lindenbaum et al., 2018), a diffusion geometry-based generative method that learns the geometry of the data and samples the manifold uniformly. This augmentation enriches the latent space with geometry-preserving samples, helping the model better approximate the underlying mRNA manifold even in sparse regions.

189
190
191
192

Specifically, this preprocessing step yields an expanded latent set: $\mathcal{Z} = \mathcal{Z}_{\text{og}} \cup \mathcal{Z}_{\text{SUGAR}}$, $\mathcal{Z}_{\text{SUGAR}} = M^t \mathcal{Z}_0$, where \mathcal{Z}_{og} are the original latent embeddings, \mathcal{Z}_0 are locally-sampled neighbors, and M^t is the sparsity-corrected Markov diffusion transition matrix applied for t steps.

193
194
195
196
197
198
199

Learning the Manifold Projection To keep the generated trajectories aligned with the latent data manifold, we introduce a manifold projector Ψ . As illustrated in Figure 1b and magnified in Figure 1d, Ψ takes in a noisy optimized point \tilde{z} and projects it back onto or near the manifold.

200
201
202
203
204
205
206
207
208
209

To train Ψ , we adopt a denoising objective that contracts noisy samples back towards the clean points on the latent manifold. Given a clean latent embedding z , we construct a short corruption chain $\tilde{z}^{(0)} = z$, $\tilde{z}^{(k)} \sim C(\tilde{z}^{(k-1)}, \sigma_k)$, $k = 1, \dots, K$, where $C(\cdot, \sigma_k)$ denotes Gaussian corruption with noise level σ_k . The projector is trained to reverse each step by predicting $\tilde{z}^{(k-1)}$ from $\tilde{z}^{(k)}$, yielding the objective in equation 2.

210
211
212

$$\mathcal{L}_\Psi = \mathbb{E}_{z \sim p_{\text{data}}} \sum_{k=1}^K \mathbb{E}_{\tilde{z}^{(k)} \sim C(\cdot | \tilde{z}^{(k-1)}, \sigma_k)} \left[\|\Psi(\tilde{z}^{(k)}) - \tilde{z}^{(k-1)}\|_2^2 \right] \quad (2)$$

213
214
215

When $K = 1$, this reduces to the standard denoising autoencoder loss (Vincent et al., 2008). In practice, we keep K small (e.g. 1-3) to capture *local updates near the data manifold*, rather than simulating long diffusion chains from Gaussian noise. As a result, our algorithm is fast during training and inference.

$$\mathcal{L}_{\text{OAE}} = \lambda_{\text{Pred}} \mathcal{L}_{\text{Pred}} + \lambda_{\text{Recon}} \mathcal{L}_{\text{Recon}} = \lambda_{\text{Pred}} \underbrace{\mathbb{E}_{(x,y) \sim p_{\text{data}}} \|\hat{y}_i - y_i\|_2^2}_{\text{optimize } \mathcal{P} \text{ with MSE}} - \lambda_{\text{Recon}} \underbrace{\mathbb{E}_{x \sim p_{\text{data}}} \log \frac{\exp(\hat{x}_{i,x_i})}{\sum_{v=1}^V \exp(\hat{x}_{i,v})}}_{\text{optimize } \mathcal{E} \text{ and } \mathcal{D} \text{ with CrossEntropy}} \quad (1)$$

Algorithm 1 Manifold Projector

Input: Dataset $\mathcal{Z} = \{z_i\}_{i=1}^N$, denoiser Ψ , noise levels $\{\sigma_1, \dots, \sigma_K\}$, denoising steps K , learning rate η
for each z_i in minibatch $\{z_i\}_{i=1}^B \subset \mathcal{Z}$
do
 Initialize $\tilde{z}^{(0)} \leftarrow z_i$
 for $k = 1$ to K **do**
 $\tilde{z}^{(k)} \sim C(\tilde{z}^{(k-1)}, \sigma_k)$
 $\mathcal{L}^{(k)} = \|\Psi(\tilde{z}^{(k)}) - \tilde{z}^{(k-1)}\|_2^2$
 end for
 $\mathcal{L}_i = \sum_{k=1}^K \mathcal{L}^{(k)}$
 $\Psi \leftarrow \Psi - \eta \nabla_\Psi \left(\frac{1}{B} \sum_{i=1}^B \mathcal{L}_i \right)$
end for

216 3.3 PROPERTY-GUIDED MANIFOLD LANGEVIN DYNAMICS
217

218 Next, we introduce a novel property-guided manifold Langevin-dynamics framework.

219 Given a trained encoder \mathcal{E} , a property predictor \mathcal{P} , and a manifold projector Ψ , our Langevin-
220 dynamics framework optimizes sequences for a target property. Starting from the latent
221 embedding $z = \mathcal{E}(x)$ of a sequence x , we iteratively update it using a gradient-based drift term
222 $\nabla_z f(z)$, inject Gaussian noise ϵ , and apply a manifold projection $\Psi(\cdot)$ to ensure biological
223 plausibility and interpretability. We define the update rule as described in equation 3.

$$224 z_{t+1} = \Psi(z_t + dz_t), \quad dz_t = \frac{\eta}{\tau} \nabla_z f(z_t) + \sqrt{2\eta} \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, I) \quad (3)$$

225 Here, η is the step size, τ is the temperature hyperparameter, and $\nabla_z f(z)$ denotes the
226 property gradient given by the predictor \mathcal{P} . A smaller τ emphasizes focused updates along
227 the gradient, while a larger τ encourages more diverse exploration. When $\tau \rightarrow \infty$, the
228 property guidance vanishes and the update rule is dominated by the stochastic term, which
229 becomes similar to generative modeling with the walkback algorithm (Bengio et al., 2013).

230 The manifold projector Ψ , analogous to the retraction in Riemannian SGD (Bonnabel, 2013),
231 is applied after each update to ensure that each step remains near the biologically valid
232 latent manifold, enabling interpretable and controllable generation trajectories.

233 With the trained components \mathcal{E} , \mathcal{P} and Ψ , we can optimize the target property of any given
234 sequence. Notably, optimization entails both maximization and minimization: users can
235 choose to increase or decrease the target property, depending on the application.

236 3.4 INTERPOLATING BETWEEN SEQUENCES
237

238 Beyond property optimization, our framework also enables *interpolation* between existing
239 mRNA sequences by guiding the latent embedding of one sequence toward that of another.
240 Specifically, given a source sequence x_{source} and a target sequence x_{target} , we first obtain
241 their latent embeddings via the encoder: $z_{\text{source}} = \mathcal{E}(x_{\text{source}})$ and $z_{\text{target}} = \mathcal{E}(x_{\text{target}})$.

242 Starting from $z = z_{\text{source}}$, we run property-guided manifold Langevin dynamics with an
243 additional force term that pulls the latent toward z_{target} . The interpolation force is defined
244 as $f_{\text{interp}}(z, z_{\text{target}}) = -\frac{z - z_{\text{target}}}{\|z - z_{\text{target}}\|_2}$, which provides a normalized directional bias toward the
245 target point. Incorporating this into the Langevin update changes the drift term while all
246 other components remain intact, as described in equation 4.

$$247 dz_t = \frac{\eta}{\tau} f_{\text{interp}}(z_t, z_{\text{target}}) + \sqrt{2\eta} \epsilon_t \quad (4)$$

248 This modification steers the latent trajectory smoothly toward the target, enabling
249 interpretable interpolations between biological sequences.

250 4 EMPIRICAL RESULTS
251

252 In this section, we demonstrate the effectiveness of **RNAGenScape** on two key tasks: (1) mRNA
253 sequence optimization and (2) mRNA sequence interpolation. The first task is broadly
254 relevant to applications in therapeutics and synthetic biology. For example, enhancing the
255 translation efficiency and stability of an mRNA vaccine can increase its protein yield and
256 persistence, thereby boosting therapeutic efficacy while reducing the required dose. The
257 second task facilitates the exploration of intermediate variants. This can provide insights
258 into the functional landscape of regulatory elements within mRNAs of interest.

259 4.1 EXPERIMENTAL SETTINGS
260

261 **Datasets and tasks** We evaluate **RNAGenScape** on three mRNA datasets that capture
262 diverse contexts and experimental designs. The optimization objectives are underlined.

- 263 1. **Zebrafish** includes five subsets of zebrafish 5' UTR, experimentally measured using
264 nascent protein-transducing ribosome affinity purification (Strayer et al., 2023), a
265 massively parallel reporter assay to quantify translation control. It spans various stages
266 and conditions of development, and each subset contains approximately 11,000 5' UTR
267 sequences each with 124 nucleotides along with annotations on translation efficiency.

270 2. OpenVaccine contains 2,400 mRNA sequences devised for COVID-19 mRNA vaccines,
 271 each with 107 nucleotides (Das et al., 2020). They are collected with degradation profiles
 272 under multiple conditions, quantified to mRNA stability relevant to vaccine design.
 273 3. Ribosome-loading is a large-scale library of approximately 260,000 5' UTR sequences
 274 each with 50 nucleotides (Sample et al., 2019), paired with pseudouridine-modified
 275 coding sequences of enhanced green fluorescent protein. The sequences are annotated on
 276 mean ribosome load, a property that reflects translation efficiency.

277 **Baselines** We compared our method with a range of popular *de novo* generative modeling
 278 approaches, including variational autoencoder (VAE) (Kingma et al., 2013), Wasserstein
 279 generative adversarial network with gradient penalty regularization (WGAN-GP) (Gulrajani
 280 et al., 2017), denoising diffusion probabilistic model (DDPM) (Ho et al., 2020), latent
 281 diffusion model (LDM) (Rombach et al., 2022), and flow matching (FM) (Rombach et al.,
 282 2022). We also included classic optimization methods, including gradient ascent (Williams,
 283 1992; Zinkevich, 2003), Markov chain Monte Carlo (MCMC) (Brooks, 1998; Andrieu et al.,
 284 2003), and hill climbing (Selman & Gomes, 2006). All classic optimization baselines were
 285 GPU-compatible adaptions from the implementation in (Castro et al., 2022). Lastly, we
 286 benchmarked against optimization methods originally designed for proteins, DiffAb (Luo
 287 et al., 2022), IgLM (Shuai et al., 2023), and NOS (Gruver et al., 2023).

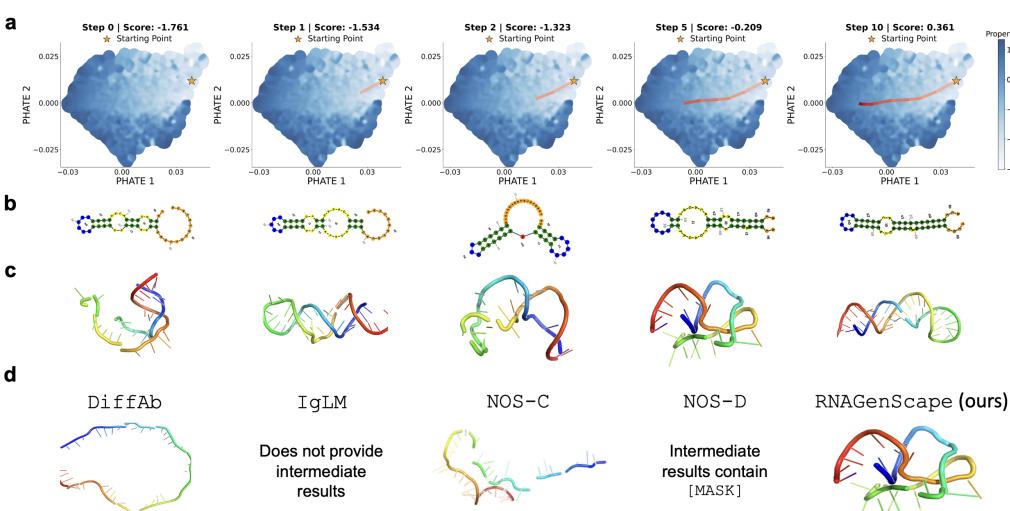
288 **Evaluation** Since the optimization process could and should result in mRNA sequences
 289 not covered by the dataset, to quantify their properties, we trained a separate property
 290 prediction model $P_{\text{oracle}}(x)$ to serve as a proxy of the ground truth. $P_{\text{oracle}}(x)$ is used for
 291 evaluation only, and is *strictly invisible during inference to avoid circular dependency*.

292 **Reproducibility** All experiments were performed under 5 random seeds and the average
 293 results are reported. Hyperparameters and hardware used are summarized in Appendix A.

294 4.2 RNAGENSCAPE PRODUCES STRUCTURED, DATA-ALIGNED TRAJECTORIES

295 RNAGenScape operates within a learned latent space that reflects the manifold of real biological
 296 sequences. To illustrate this behavior, we visualize individual optimization runs in Figure 2.
 297 The trajectory exhibits monotonic increases in the target property, while remaining near
 298 regions populated by real sequences. See Appendix D for more examples. These trajectories
 299 are direct consequences of the manifold-constrained dynamics, which guided each step toward
 300 high-property regions while staying on the manifold.

302 Importantly, all intermediate steps during optimization can be decoded into mRNA sequences,
 303 allowing researchers to examine how sequences evolve step by step as specific properties are



321 Figure 2: Latent space trajectories of RNAGenScape over 10 optimization steps. The
 322 trajectories follow smooth and reasonable paths with steady improvement in the target
 323 property. (a) Trajectories in the PHATE space. (b) 2D structures. (c) 3D structures.
 324 (d) Intermediate products of various methods midway through optimization (5th step).

324
 325 Table 1: Our proposed **RNAGenScape** achieves superior property optimization while also being
 326 inference-efficient. Top performers among property optimization methods are bolded. For *de*
 327 *novo* generative models, the optimization columns are grayed out, as they cannot explicitly
 328 steer properties; reported values instead reflect their learned distributions. Δ denotes the
 329 median change in property. % denotes success rate (the percentage of mRNAs improved).
 330

Methods	Inference Speed ms/sample ↓	Zebrafish (n≈55k) property = translation efficiency				OpenVaccine (n≈2k) property = stability				Ribosome-loading (n≈260k) property = mean ribosome load			
		+property		-property		+property		-property		+property		-property	
		$\Delta \uparrow$	% \uparrow	$\Delta \downarrow$	% \uparrow	$\Delta \uparrow$	% \uparrow	$\Delta \downarrow$	% \uparrow	$\Delta \uparrow$	% \uparrow	$\Delta \downarrow$	% \uparrow
<i>de novo</i> generative models													
VAE (Kingma et al., 2013)	0.13	0.80	67.7	0.80	32.3	-0.41	40.0	-0.41	60.0	-0.37	38.3	-0.37	61.7
WGAN-GP (Gulrajani et al., 2017)	0.07	-1.23	16.4	-1.23	83.6	-0.02	47.9	-0.02	53.1	-1.16	22.5	-1.16	77.5
DDPM (Ho et al., 2020)	0.91	0.16	55.4	0.16	44.6	0.28	64.6	0.28	35.4	-0.28	40.4	-0.28	59.6
LDM (Rombach et al., 2022)	0.74	-0.43	36.5	-0.43	63.5	1.38	78.0	1.38	21.0	-1.11	46.0	-1.11	54.0
FM (Lipman et al., 2022)	5.82	0.17	55.6	0.17	44.4	0.20	62.9	0.20	37.1	-0.25	41.9	-0.25	58.1
property optimization methods													
DiffAb (Luo et al., 2022)	41.04	0.20	62.4	0.17	41.1	0.37	73.8	0.40	26.2	-1.0	41.5	-0.16	60.8
IgLM (Shuai et al., 2023)	157.57	0.07	52.9	0.01	49.3	0.07	54.8	0.06	64.7	0.42	69.6	-1.28	80.6
NOS-C (Gruver et al., 2023)	0.99	-0.03	48.6	-0.66	70.4	0.96	90.0	-0.05	52.1	-0.21	42.6	-0.26	59.0
NOS-D (Gruver et al., 2023)	0.96	0.22	57.1	0.20	42.7	0.46	71.8	0.25	36.2	-0.25	41.3	-0.26	59.3
Sequence-space MCMC	3.84	-0.53	33.5	-0.54	67.1	-0.13	41.8	-0.18	58.7	-1.02	25.0	-1.56	83.8
OAE + Gradient Ascent	0.50	-0.51	33.9	-0.44	63.8	0.31	66.3	-0.19	61.3	-0.47	34.7	-1.60	84.0
OAE + MCMC	10.93	-0.43	35.8	-0.44	64.2	0.17	40.0	-0.17	60.0	-1.41	18.7	-1.42	81.3
OAE + Hill Climbing	81.52	-0.52	33.6	-0.56	67.5	0.16	40.8	-0.16	60.0	-1.38	19.0	-1.39	81.0
OAE + Stochastic Hill Climbing	99.66	-0.51	33.5	-0.56	67.9	0.11	43.1	-0.15	60.0	-1.40	20.0	-1.41	80.4
RNAGenScape without SUGAR (ours) ¹	0.57	1.19	89.3	-0.83	74.2	1.39	95.2	-0.33	65.2	0.46	72.4	-1.66	87.3
RNAGenScape (ours)	0.57	1.48	94.0	-1.32	85.6	1.33	93.5	-0.87	86.9	0.46	72.4	-1.66	87.3

343
 344 optimized. As a qualitative illustration of biological plausibility, we show that intermediate
 345 results can be properly folded by ViennaRNA (Lorenz et al., 2011) and RhoFold (Shen et al.,
 346 2024) into 2D and 3D structures (Figure 2b-c). In contrast, folding intermediate products of
 347 several other methods lead to failure, as indicated by the broken structures (Figure 2d).

4.3 RNAGenScape achieves superior property optimization

348
 349 We quantitatively compare **RNAGenScape** against a range of *de novo* generative models and
 350 optimization baselines (Table 1). Although *de novo* approaches are effective in modeling the
 351 data distribution, they offer limited to no control over the target properties. As a result,
 352 their performance in property optimization is unfavorable.

353
 354 Among property optimization methods, **RNAGenScape** consistently delivers the strongest
 355 results, achieving the highest median property change and the highest success rate in both the
 356 positive and negative directions. In particular, its median improvement is nearly twice that
 357 of the next-best method in several cases, and its success rate exceeds all other approaches.

358
 359 In addition to being successful in optimizing
 360 properties, **RNAGenScape** also achieves the best
 361 manifold fidelity, as shown in Table 2. See
 362 Appendix B for more details on the evaluations.

4.4 Efficiency and Scalability

363
 364 In addition to its strong property control,
 365 **RNAGenScape** is also highly efficient at inference
 366 time. As reported in Table 1, it achieves
 367 an inference speed of 0.57 ms/sample, nearly
 368 matching the fastest method (gradient ascent
 369 at 0.50 ms/sample) and substantially faster
 370 than many other property optimization methods
 371 (such as hill climbing at 81.53 ms/sample,
 372 DiffAb at 41.04 ms/sample, and IgLM at 157.57
 373 ms/sample). This efficiency makes **RNAGenScape**
 374 well suited for large-scale or iterative design
 375 workflows where fast feedback is essential.

366 Table 2: Manifold fidelity, represented
 367 by the average ℓ_2 distance between the
 368 generated or optimized sequences to the
 369 data manifold. Results are averaged over
 370 all datasets.

Methods	latent space distance ↓
VAE	0.737
WGAN-GP	1.729
DDPM	0.254
LDM	0.584
FM	0.259
DiffAb	0.237
IgLM	0.740
NOS-C	0.539
NOS-D	0.260
Sequence-space MCMC	0.292
OAE + Gradient Ascent	0.460
OAE + MCMC	0.297
OAE + Hill Climbing	0.300
OAE + Stochastic Hill Climbing	0.288
RNAGenScape without SUGAR (ours)	0.233
RNAGenScape (ours)	0.235

366
 367 ¹The optimal SUGAR upsampling ratio is 0 for **Ribosome-loading**, and hence we have identical
 368 performance with and without SUGAR in that dataset. See ablation studies (Section 4.6).

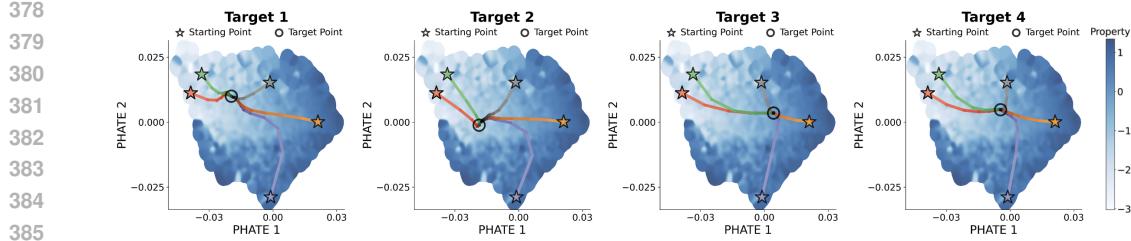


Figure 3: Latent space interpolation trajectories from 5 sources to 4 targets. Each trajectory is shown as a line fading from bright to dark in a consistent color. RNAGenScape produces smooth and coherent paths on the manifold between arbitrary input-target mRNA pairs.

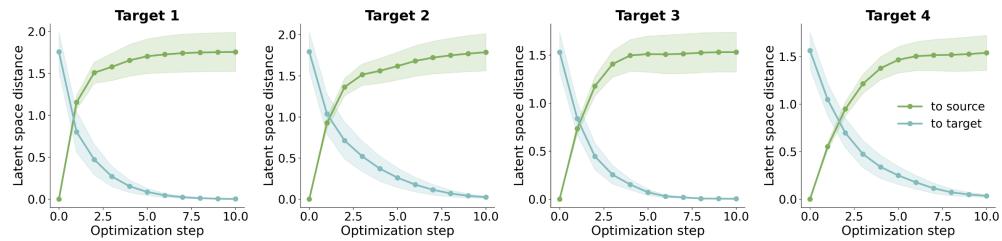


Figure 4: Latent space ℓ_2 distances during interpolation show smooth and monotonic transition from the source to the target. Results are averaged over all data samples.

4.5 INTERPOLATING BETWEEN ARBITRARY SEQUENCES

RNAGenScape enables interpolation between arbitrary sequences using the directional drift term (equation 4). Guided by a directional force toward a specified target, RNAGenScape generates smooth and coherent trajectories on the learned manifold while preserving biological plausibility and continuity (Figure 3). These trajectories connect arbitrary input-target sequence pairs in a structured manner, reflecting semantically meaningful transitions.

The distances from each intermediate point to the source and target quantitatively demonstrate the monotonicity and smoothness of the interpolation (Figure 4).

4.6 ABLATION STUDIES

Manifold projector Our first ablation shows that the manifold projector Ψ , a core contribution of RNAGenScape, is essential for its performance (Table 3). Without Ψ , the method completely fails at property optimization. This outcome is expected: following the property gradient without projecting back to the manifold causes trajectories to drift away, as reflected in the tripled latent space distance in Table 3.

Optimization steps Next, we analyze how sensitive RNAGenScape is to the number of optimization steps. The results in Figure 5 show that our method is able to converge quickly and remains stable over a range of Langevin dynamics steps.

SUGAR To assess the necessity to enrich the latent space using SUGAR, we performed an ablation study to test whether and how much these geometry-preserving samples facilitate RNAGenScape. The experiments are summarized in Table S2. As expected, smaller datasets benefit from more aggressive manifold sampling (best ratio = 0.1 for *Zebrafish* ($n \approx 55k$), 1.0 for *OpenVaccine* ($n \approx 2k$), and 0.0 for *Ribosome-loading* ($n \approx 260k$)).

Table 3: Manifold projector Ψ is critical.

Ψ	+property		-property		latent space distance \downarrow
	$\Delta \uparrow$	$\% \uparrow$	$\Delta \downarrow$	$\% \uparrow$	
✗	-0.17	45.1	0.13	47.0	0.355
✓	0.46	72.4	-1.66	87.3	0.120

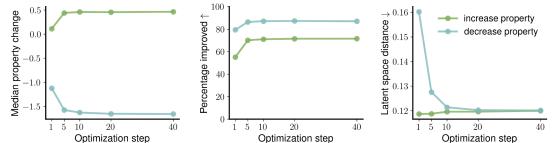


Figure 5: RNAGenScape optimization is step-efficient and remains stable over a range of optimization steps.

432 5 CONCLUSION

434 We introduced RNAGenScape, a property-guided manifold Langevin dynamics framework
 435 dedicated for mRNA design and optimization. By combining an organized autoencoder
 436 that aligns the latent space with target properties and a denoising-based manifold projector,
 437 RNAGenScape steers existing sequences along smooth, manifold-aligned trajectories that both
 438 improve target properties and preserve biological plausibility. Empirically, RNAGenScape
 439 outperforms various generative and optimization methods in property control and manifold
 440 fidelity, while matching or exceeding their inference efficiency. It also shows promises in
 441 faithfully interpolating between real biological sequences. With this work, we also hope to
 442 shift the paradigm of biological sequence design from unconstrained generation to guided
 443 optimization, and shine more light on mRNA sequence design as a critical yet understudied
 444 frontier in computational biology.

445 6 LIMITATIONS AND FUTURE WORK

446 One limitation of our approach is its dependence on the fidelity of the organized latent
 447 space: if the organized autoencoder fails to capture critical sequence constraints, manifold
 448 projections may permit small but functionally invalid drifts. Additionally, our current
 449 formulation optimizes a single scalar property; extending RNAGenScape to multi-objective
 450 settings would broaden its applicability. Finally, while we have demonstrated compelling in
 451 silico gains, integrating real-world experimental feedback remains an important avenue to
 452 validate and refine the learned manifold.

453 In future work, We will study the possibility to perform sequence-structure joint modeling
 454 and optimization. Beyond mRNA, we plan to extend RNAGenScape to other modalities such
 455 as protein sequences and regulatory elements, and integrate active learning frameworks that
 456 guide wet lab experimentation. By grounding sequence optimization in the manifold of real
 457 data, we aim to provide a versatile platform for interpretable and high-throughput design in
 458 synthetic biology.

459 7 RELATED WORKS

461 Machine learning is becoming increasingly popular for optimizing biological sequences such
 462 as DNA, RNA, and proteins. This section reviews recent advances in sequence modeling and
 463 optimization, with an emphasis on mRNAs.

464 Current machine learning
 465 approaches for sequence design
 466 can be grouped into three
 467 main paradigms, but each
 468 addresses only part of the
 469 challenge (Table 4).

470 *De novo* generative models excel
 471 at creating novel sequences,
 472 but fundamentally operate by
 473 generating from scratch rather
 474 than refining existing functional
 475 sequences (Prykhodko et al., 2019; Méndez-Lucio et al., 2020; Dauparas et al., 2022; Wu et al.,
 476 2021; Madani et al., 2023; Watson et al., 2023). Classic optimization strategies (Williams,
 477 1992; Zinkevich, 2003; Brooks, 1998; Andrieu et al., 2003; Selman & Gomes, 2006) are capable
 478 of improving known sequences, but typically lack mechanisms to ensure that intermediate
 479 variants remain consistent with the underlying biological distribution. More recent deep
 480 learning methods for sequence generation and optimization (Luo et al., 2022; Shuai et al.,
 481 2023; Gruver et al., 2023) aim to combine generative modeling with property-driven objectives,
 482 but their optimization trajectories remain opaque, offering limited interpretability of which
 483 sequence changes drive functional improvements. Furthermore, existing methods cannot
 484 interpolate between sequences. Consequently, a framework that enables biologically-grounded
 485 sequence engineering remains needed (Wu et al., 2019).

An extended related works section can be found in Appendix E.

486 REFERENCES
487

488 Arman Afrasiyabi, Jake Kovalic, Chen Liu, Egbert Castro, Alexis Weinreb, Erdem Varol,
489 David Miller, Marc Hammarlund, and Smita Krishnaswamy. Cellsplenet: Interpretable
490 multimodal modeling of alternative splicing across neurons in *c. elegans*. *bioRxiv*, pp.
491 2025–06, 2025.

492 Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I Jordan. An
493 introduction to mcmc for machine learning. *Machine learning*, 50:5–43, 2003.
494

495 Muhammad Nabeel Asim, Muhammad Ali Ibrahim, Tayyaba Asif, and Andreas Dengel. Rna
496 sequence analysis landscape: A comprehensive review of task types, databases, datasets,
497 word embedding methods, and language models. *Helicon*, 11(2), 2025.

498 Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Generalized denoising auto-
499 encoders as generative models, 2013. URL <https://arxiv.org/abs/1305.6663>.
500

501 Silvere Bonnabel. Stochastic gradient descent on riemannian manifolds. *IEEE Transactions
502 on Automatic Control*, 58(9):2217–2229, September 2013. ISSN 1558-2523. doi: 10.1109/
503 tac.2013.2254619. URL <http://dx.doi.org/10.1109/TAC.2013.2254619>.

504 Stephen Brooks. Markov chain monte carlo method and its application. *Journal of the royal
505 statistical society: series D (the Statistician)*, 47(1):69–100, 1998.

506 Daniel B Burkhardt, Jay S Stanley III, Alexander Tong, Ana Luisa Perdigoto, Scott A
507 Gigante, Kevan C Herold, Guy Wolf, Antonio J Giraldez, David van Dijk, and Smita
508 Krishnaswamy. Quantifying the effect of experimental perturbations at single-cell resolution.
509 *Nature biotechnology*, 39(5):619–629, 2021.

510 Francesco Calvanese, Camille N Lambert, Philippe Nghe, Francesco Zamponi, and Martin
511 Weigt. Towards parsimonious generative modeling of rna families. *Nucleic Acids Research*,
512 52(10):5465–5477, 2024.

513 Sebastian Castillo-Hair, Stephen Fedak, Ban Wang, Johannes Linder, Kyle Havens, Michael
514 Certo, and Georg Seelig. Optimizing 5’utrs for mrna-delivered gene editing using deep
515 learning. *Nature Communications*, 15(1):5284, 2024.

516 Sebastian M Castillo-Hair and Georg Seelig. Machine learning for designing next-generation
517 mrna therapeutics. *Accounts of chemical research*, 55(1):24–34, 2021.

518 Egbert Castro, Abhinav Godavarthi, Julian Rubinfien, Kevin Givechian, Dhananjay Bhaskar,
519 and Smita Krishnaswamy. Transformer-based protein generation with regularized latent
520 space optimization. *Nature Machine Intelligence*, 4(10):840–851, 2022.

521 Lawrence Cayton et al. *Algorithms for manifold learning*. eScholarship, University of
522 California, 2008.

523 Namit Chaudhary, Drew Weissman, and Kathryn A Whitehead. mrna vaccines for infectious
524 diseases: principles, delivery and clinical translation. *Nature reviews Drug discovery*, 20
525 (11):817–838, 2021.

526 Yifan Chen, Zhenya Du, Xuanbai Ren, Chu Pan, Yangbin Zhu, Zhen Li, Tao Meng, and
527 Xiaojun Yao. mrna-cla: An interpretable deep learning approach for predicting mrna
528 subcellular localization. *Methods*, 227:17–26, 2024.

529 Ronald R Coifman and Stéphane Lafon. Diffusion maps. *Applied and computational harmonic
530 analysis*, 21(1):5–30, 2006.

531 Rhiju Das, H Wayment-Steele, Christian Choe Do Soon Kim, Bojan Tunguz, Walter Reade,
532 and Maggie Demkin. Openvaccine: Covid-19 mrna vaccine degradation prediction, 2020.
533 URL <https://kaggle.com/competitions/stanford-covid-vaccine>, 2020.

540 Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F
 541 Milles, Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust
 542 deep learning-based protein sequence design using proteinmpnn. *Science*, 378(6615):49–56,
 543 2022.

544 Peter Eastman, Jade Shi, Bharath Ramsundar, and Vijay S Pande. Solving the rna design
 545 problem with reinforcement learning. *PLoS computational biology*, 14(6):e1006176, 2018.

546 Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis.
 547 *Journal of the American Mathematical Society*, 29(4):983–1049, 2016.

548 Kevin Bijan Givechian, João Felipe Rocha, Edward Yang, Chen Liu, Kerrie Greene, Rex Ying,
 549 Etienne Caron, Akiko Iwasaki, and Smita Krishnaswamy. Immunostruct: a multimodal
 550 neural network framework for immunogenicity prediction from peptide-mhc sequence,
 551 structure, and biochemical properties. *bioRxiv*, pp. 2024–11, 2025.

552 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
 553 Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.
 554 *Communications of the ACM*, 63(11):139–144, 2020.

555 Nate Gruver, Samuel Stanton, Nathan Frey, Tim GJ Rudner, Isidro Hotzel, Julien Lafrance-
 556 Vanasse, Arvind Rajpal, Kyunghyun Cho, and Andrew G Wilson. Protein design with
 557 guided discrete diffusion. *Advances in neural information processing systems*, 36:12489–
 558 12517, 2023.

559 Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
 560 Improved training of wasserstein gans. *Advances in neural information processing systems*,
 561 30, 2017.

562 Shujun He, Baizhen Gao, Rushant Sabnis, and Qing Sun. Rnadeformer: accurate prediction
 563 of mrna degradation at nucleotide resolution with deep learning. *Briefings in Bioinformatics*,
 564 24(1):bbac581, 2023a.

565 Yutong He, Naoki Murata, Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Dongjun Kim,
 566 Wei-Hsiang Liao, Yuki Mitsuishi, J Zico Kolter, Ruslan Salakhutdinov, et al. Manifold
 567 preserving guided diffusion. *arXiv preprint arXiv:2311.16424*, 2023b.

568 Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with
 569 neural networks. *science*, 313(5786):504–507, 2006.

570 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
 571 *Advances in neural information processing systems*, 33:6840–6851, 2020.

572 Patrick Kidger, James Foster, Xuechen Li, and Terry J Lyons. Neural sdes as infinite-
 573 dimensional gans. In *International conference on machine learning*, pp. 5453–5463. PMLR,
 574 2021.

575 Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

576 Qian Li, Yuxiao Hu, Ye Liu, Dongxiao Zhang, Xin Jin, and Yuntian Chen. Discrete point-wise
 577 attack is not enough: Generalized manifold adversarial attack for face recognition. In
 578 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 579 20575–20584, 2023.

580 Ting Li, Gangfeng Liu, Guolong Bu, Yien Xu, Caiyun He, and Gexin Zhao. Optimizing
 581 mrna translation efficiency through rational 5' utr and 3' utr combinatorial design. *Gene*,
 582 942:149254, 2025.

583 Danqi Liao, Chen Liu, Benjamin W Christensen, Alexander Tong, Guillaume Huguet, Guy
 584 Wolf, Maximilian Nickel, Ian Adelstein, and Smita Krishnaswamy. Assessing neural
 585 network representations during training using noise-resilient diffusion spectral entropy.
 586 In *2024 58th Annual Conference on Information Sciences and Systems (CISS)*, pp. 1–6.
 587 IEEE, 2024.

594 Donny D Licatalosi and Robert B Darnell. Resolving rna complexity to decipher regulatory
 595 rules governing biological networks. *Nature Reviews. Genetics*, 11(1):75, 2010.
 596

597 Ofir Lindenbaum, Jay S. Stanley III, Guy Wolf, and Smita Krishnaswamy. Geometry-based
 598 data generation, 2018. URL <https://arxiv.org/abs/1802.04927>.
 599

600 Johannes Linder and Georg Seelig. Fast activation maximization for molecular sequence
 601 design. *BMC bioinformatics*, 22:1–20, 2021.
 602

603 Johannes Linder, Nicholas Bogard, Alexander B Rosenberg, and Georg Seelig. Deep
 604 exploration networks for rapid engineering of functional dna sequences. *BioRxiv*, pp.
 605 864363, 2019.
 606

607 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
 608 matching for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.
 609

610 Chen Liu, Matthew Amodio, Liangbo L. Shen, Feng Gao, Arman Avesta, Sanjay Aneja,
 611 Jay C. Wang, Lucian V. Del Priore, and Smita Krishnaswamy. CUTS: A Deep Learning
 612 and Topological Framework for Multigranular Unsupervised Medical Image Segmentation .
 613 In *proceedings of Medical Image Computing and Computer Assisted Intervention – MICCAI*
 614 2024, volume LNCS 15008. Springer Nature Switzerland, October 2024.
 615

616 Chen Liu, Danqi Liao, Alejandro Parada-Mayorga, Alejandro Ribeiro, Marcello DiStasio, and
 617 Smita Krishnaswamy. Diffkillr: Killing and recreating diffeomorphisms for cell annotation
 618 in dense microscopy images. In *ICASSP 2025-2025 IEEE International Conference on*
 619 *Acoustics, Speech and Signal Processing (ICASSP)*. IEEE, 2025a.
 620

621 Chen Liu, Ke Xu, Liangbo L Shen, Guillaume Huguet, Zilong Wang, Alexander Tong,
 622 Danilo Bzdok, Jay Stewart, Jay C Wang, Lucian V Del Priore, and Smita Krishnaswamy.
 623 Imageflownet: Forecasting multiscale trajectories of disease progression with irregularly-
 624 sampled longitudinal medical images. In *ICASSP 2025-2025 IEEE International Conference*
 625 *on Acoustics, Speech and Signal Processing (ICASSP)*. IEEE, 2025b.
 626

627 Ronny Lorenz, Stephan H Bernhart, Christian Höner zu Siederdissen, Hakim Tafer, Christoph
 628 Flamm, Peter F Stadler, and Ivo L Hofacker. Viennarna package 2.0. *Algorithms for*
 629 *molecular biology*, 6(1):26, 2011.
 630

631 Shitong Luo, Yufeng Su, Xingang Peng, Sheng Wang, Jian Peng, and Jianzhu Ma. Antigen-
 632 specific antibody design and optimization with diffusion-based generative models for
 633 protein structures. *Advances in Neural Information Processing Systems*, 35:9754–9767,
 634 2022.
 635

636 Qi Ma, Xiaoguang Zhang, Jing Yang, Hongxia Li, Yanzhe Hao, and Xia Feng. Optimization
 637 of the 5' untranslated region of mrna vaccines. *Scientific Reports*, 14(1):19845, 2024.
 638

639 Ali Madani, Ben Krause, Eric R Greene, Subu Subramanian, Benjamin P Mohr, James M
 640 Holton, Jose Luis Olmos Jr, Caiming Xiong, Zachary Z Sun, Richard Socher, et al. Large
 641 language models generate functional protein sequences across diverse families. *Nature*
 642 *biotechnology*, 41(8):1099–1106, 2023.
 643

644 Oscar Méndez-Lucio, Benoit Baillif, Djork-Arné Clevert, David Rouquié, and Joerg Wichard.
 645 De novo generation of hit-like molecules from gene expression signatures using artificial
 646 intelligence. *Nature communications*, 11(1):10, 2020.
 647

648 Mihir Metkar, Christopher S Pepin, and Melissa J Moore. Tailor made: the art of therapeutic
 649 mrna design. *Nature Reviews Drug Discovery*, 23(1):67–83, 2024.
 650

651 Kevin R Moon, David van Dijk, Zheng Wang, Scott Gigante, Daniel B Burkhardt, William S
 652 Chen, Kristina Yim, Antonia van den Elzen, Matthew J Hirn, Ronald R Coifman,
 653 et al. Visualizing structure and transitions in high-dimensional biological data. *Nature*
 654 *biotechnology*, 37(12):1482–1492, 2019.
 655

656 Hariharan Narayanan and Sanjoy Mitter. Sample complexity of testing the manifold
 657 hypothesis. *Advances in neural information processing systems*, 23, 2010.
 658

648 Stephen G Oliver. From dna sequence to biological function. *Nature*, 379(6566):597–600,
 649 1996.

650 Norbert Pardi, Michael J Hogan, Frederick W Porter, and Drew Weissman. mrna vaccines—a
 651 new era in vaccinology. *Nature reviews Drug discovery*, 17(4):261–279, 2018.

652 Oleksii Prykhodko, Simon Viet Johansson, Panagiotis-Christos Kotsias, Josep Arús-Pous,
 653 Esben Jannik Bjerrum, Ola Engkvist, and Hongming Chen. A de novo molecular
 654 generation method using latent vector based generative adversarial network. *Journal of
 655 cheminformatics*, 11(1):74, 2019.

656 Shugang Qin, Xiaoshan Tang, Yuting Chen, Kepan Chen, Na Fan, Wen Xiao, Qian Zheng,
 657 Guohong Li, Yuqing Teng, Min Wu, et al. mrna-based therapeutics: powerful and versatile
 658 tools to combat diseases. *Signal transduction and targeted therapy*, 7(1):166, 2022.

659 Salah Rifai, Yann N Dauphin, Pascal Vincent, Yoshua Bengio, and Xavier Muller. The
 660 manifold tangent classifier. *Advances in neural information processing systems*, 24, 2011.

661 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
 662 High-resolution image synthesis with latent diffusion models. In *Proceedings of the
 663 IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.

664 Paul J Sample, Ban Wang, David W Reid, Vlad Presnyak, Iain J McFadyen, David R Morris,
 665 and Georg Seelig. Human 5' utr design and variant effect prediction from a massively
 666 parallel translation assay. *Nature biotechnology*, 37(7):803–809, 2019.

667 Niels Schlusser, Asier González, Muskan Pandey, and Mihaela Zavolan. Current limitations
 668 in predicting mrna translation with deep learning models. *Genome Biology*, 25(1):227,
 669 2024.

670 Bart Selman and Carla P Gomes. Hill-climbing search. *Encyclopedia of cognitive science*, 81
 671 (333–335):10, 2006.

672 Tao Shen, Zhihang Hu, Siqi Sun, Di Liu, Felix Wong, Jiuming Wang, Jiayang Chen, Yixuan
 673 Wang, Liang Hong, Jin Xiao, et al. Accurate rna 3d structure prediction using a language
 674 model-based deep learning approach. *Nature Methods*, 21(12):2287–2298, 2024.

675 Richard W Shuai, Jeffrey A Ruffolo, and Jeffrey J Gray. Iglm: Infilling language modeling
 676 for antibody sequence design. *Cell Systems*, 14(11):979–989, 2023.

677 Sam Sinai, Eric Kelsic, George M Church, and Martin A Nowak. Variational auto-encoding
 678 of protein sequences. *arXiv preprint arXiv:1712.03346*, 2017.

679 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
 680 distribution. *Advances in neural information processing systems*, 32, 2019.

681 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon,
 682 and Ben Poole. Score-based generative modeling through stochastic differential equations.
 683 In *International Conference on Learning Representations*, 2021.

684 Samuel Stanton, Wesley Maddox, Nate Gruver, Phillip Maffettone, Emily Delaney, Peyton
 685 Greenside, and Andrew Gordon Wilson. Accelerating bayesian optimization for biological
 686 sequence design with denoising autoencoders. In *International conference on machine
 687 learning*, pp. 20459–20478. PMLR, 2022.

688 Ethan C Strayer, Srikanth Krishna, Haejeong Lee, Charles Vejnar, Jean-Denis Beaudoin,
 689 and Antonio J Giraldez. Nap-trap, a novel massively parallel reporter assay to quantify
 690 translation control. *bioRxiv*, pp. 2023–11, 2023.

691 Xingzhi Sun, Danqi Liao, Kincaid MacDonald, Yanlei Zhang, Chen Liu, Guillaume Huguet,
 692 Guy Wolf, Ian Adelstein, Tim GJ Rudner, and Smita Krishnaswamy. Geometry-aware
 693 generative autoencoders for warped riemannian metric learning and generative modeling
 694 on data manifolds. In *International Conference on Artificial Intelligence and Statistics*.
 695 PMLR, 2025.

702 Oskar Taubert, Fabrice von der Lehr, Alina Bazarova, Christian Faber, Philipp Knechtges,
 703 Marie Weiel, Charlotte Debus, Daniel Coquelin, Achim Basermann, Achim Streit, et al.
 704 Rna contact prediction by data efficient deep learning. *Communications biology*, 6(1):913,
 705 2023.

706 Eeshit Dhaval Vaishnav, Carl G de Boer, Jennifer Molinet, Moran Yassour, Lin Fan, Xian
 707 Adiconis, Dawn A Thompson, Joshua Z Levin, Francisco A Cubillos, and Aviv Regev.
 708 The evolution, evolvability and engineering of gene regulatory dna. *Nature*, 603(7901):
 709 455–463, 2022.

710 David Van Dijk, Roshan Sharma, Juozas Nainys, Kristina Yim, Pooja Kathail, Ambrose J
 711 Carr, Cassandra Burdziak, Kevin R Moon, Christine L Chaffer, Diwakar Patabiraman,
 712 et al. Recovering gene interactions from single-cell data using data diffusion. *Cell*, 174(3):
 713 716–729, 2018.

714 Theofanis Vavilis, Eleni Stamoula, Alexandra Ainatzoglou, Athanasios Sachinidis,
 715 Malamatenia Lamprinou, Ioannis Dardalas, and Ioannis S Vizirianakis. mrna in the
 716 context of protein replacement therapy. *Pharmaceutics*, 15(1):166, 2023.

717 Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting
 718 and composing robust features with denoising autoencoders. In *Proceedings of the 25th
 719 international conference on Machine learning*, pp. 1096–1103, 2008.

720 Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E
 721 Eisenach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo
 722 design of protein structure and function with rfdiffusion. *Nature*, 620(7976):1089–1100,
 723 2023.

724 Hannah K Wayment-Steele, Wipapat Kladwang, Alexandra I Strom, Jeehyung Lee, Adrien
 725 Treuille, Alex Becka, Eterna Participants, and Rhiju Das. Rna secondary structure
 726 packages evaluated and improved by high-throughput experiments. *Nature methods*, 19
 727 (10):1234–1242, 2022.

728 Caleb Weinreb, Adam J Riesselman, John B Ingraham, Torsten Gross, Chris Sander, and
 729 Debora S Marks. 3d rna and functional interactions from evolutionary couplings. *Cell*,
 730 165(4):963–975, 2016.

731 Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
 732 reinforcement learning. *Machine learning*, 8(3):229–256, 1992.

733 Tomasz Wirecki, Grzegorz Lach, Farhang Jaryani, Nagendar Goud Badepally, S Naeim
 734 Moafinejad, Gaja Klaudel, and Janusz M Bujnicki. Desirna: structure-based design of rna
 735 sequences with a monte carlo approach. *bioRxiv*, pp. 2023–06, 2023.

736 Zachary Wu, SB Jennifer Kan, Russell D Lewis, Bruce J Wittmann, and Frances H
 737 Arnold. Machine learning-assisted directed protein evolution with combinatorial libraries.
 738 *Proceedings of the National Academy of Sciences*, 116(18):8852–8858, 2019.

739 Zachary Wu, Kadina E Johnston, Frances H Arnold, and Kevin K Yang. Protein sequence
 740 design with deep generative models. *Current opinion in chemical biology*, 65:18–27, 2021.

741 Kai Yi, Bingxin Zhou, Yiqing Shen, Pietro Liò, and Yuguang Wang. Graph denoising
 742 diffusion for inverse protein folding. *Advances in Neural Information Processing Systems*,
 743 36:10238–10257, 2023.

744 He Zhang, Liang Zhang, Ang Lin, Congcong Xu, Ziyu Li, Kaibo Liu, Boxiang Liu, Xiaopin
 745 Ma, Fanfan Zhao, Huiling Jiang, et al. Algorithm for optimized mrna design improves
 746 stability and immunogenicity. *Nature*, 621(7978):396–403, 2023.

747 Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
 748 In *Proceedings of the 20th international conference on machine learning (icml-03)*, pp.
 749 928–936, 2003.

756

757

758

759

760

761

762

763

764

765

766

767

Technical Appendices for RNAGenScape: Property-guided Optimization and Interpolation of mRNA Sequences with Manifold Langevin Dynamics

A HYPERPARAMETERS AND ARCHITECTURE

Learning the manifold with SUGAR To learn the manifold with SUGAR, we used the k -NN mode for estimating degrees (and thus sparsity) of latent points. We employed an α -decay kernel with $\alpha = 2$ and an adaptive bandwidth determined from the distance to the 5 nearest neighbors. The diffusion time was set to $t = 1$.

Training the organized autoencoder (OAE) We trained the OAE using the AdamW optimizer with an initial learning rate of 10^{-2} , together with a linear warmup cosine annealing scheduler. The learning rate was linearly increased from 10^{-4} (i.e., $0.01 \times$ the base learning rate) to the target value during the first 10% of training epochs (warmup), and then annealed to zero following a cosine decay schedule over the remaining epochs. We used a batch size of 128, a maximum of 200 epochs, and early stopping with a patience of 20 epochs based on the validation loss.

Training the manifold projector We trained the manifold projector Ψ using the AdamW optimizer with a learning rate of 10^{-4} . We used a batch size of 256, a maximum of 200 epochs, and applied early stopping with a patience of 20 epochs based on the validation loss.

Table S1: Hyperparameters used for different datasets.

Dataset	$\lambda_{\text{Recon}} / \lambda_{\text{Pred}}$	Noise levels	Langevin (step size, temperature)
Zebrafish	5.0 / 1.0	{1.0, 0.8, 0.5}	$1 \times 10^{-2}, 8 \times 10^{-3}$
OpenVaccine	1.0 / 1.0	{1.0, 0.5}	$1 \times 10^{-2}, 1 \times 10^{-2}$
Ribosome-loading	1.0 / 1.0	{0.3}	$5 \times 10^{-3}, 1 \times 10^{-2}$

Organized Autoencoder (OAE) The organized autoencoder (OAE) maps mRNA sequences $x \in \mathbb{R}^{L \times V}$ to a compact latent $z \in \mathbb{R}^d$. Our latent dimension is 320 across all datasets.

For encoder, we apply three 1D convolutional blocks with GroupNorm, GELU, and channel squeeze-excitation (SE), followed by adaptive average pooling to length 8 and a linear projection. The property head is a three-layer MLP with GELU and dropout rate set to 0.3.

For decoding, a progressive 1D decoder upsamples structure gradually: we first expand z to a 128×8 seed map, then apply a stack of UpsampleBlock modules composed of upsampling and two residual convolutional blocks until reaching $\geq L$ positions; we then refine the output with two residue convolutional blocks to produce the final predicted logits. Weights are Kaiming/Xavier initialized; GroupNorm scales are set to 1 and biases to 0.

mRNA sequence vocabulary Although mRNA sequences naturally consist of the nucleotides A, U, G, and C, some experimental datasets represent U as T (borrowing the DNA alphabet). To handle this heterogeneity consistently, we define a unified vocabulary of size $V = 7$: <pad>, A, U, T, G, C, and N. Here, N denotes an unknown nucleotide during sequencing, and both U and T tokens are retained to ensure compatibility across datasets.

Hardware The evaluations were performed on a single NVIDIA A100 GPU. However, RNAGenScape can be run efficiently on more modest hardware.

809

810 **B EVALUATION METRICS**
811

812 **Property Optimization** To quantify the effectiveness of property optimization of different
813 models, we measure both the median improvement and the fraction of sequences that are
814 successfully optimized.

815 Specifically, given a test set of mRNA sequences X_{test} with predicted properties $\mathcal{P}_{\text{oracle}}(X_{\text{test}})$
816 and their optimized counterparts \tilde{X}_{test} with properties $\mathcal{P}_{\text{oracle}}(\tilde{X}_{\text{test}})$, we compute:

817
$$\Delta_{\text{median}} = \text{median} (\mathcal{P}_{\text{oracle}}(\tilde{x}) - \mathcal{P}_{\text{oracle}}(x)), \quad x \in X_{\text{test}}, \quad (5)$$

818 and
819

820
$$\%_{\text{success}} = \frac{1}{|X_{\text{test}}|} \sum_{x \in X_{\text{test}}} \mathbb{1} [\mathcal{P}_{\text{oracle}}(\tilde{x}) > \mathcal{P}_{\text{oracle}}(x)]. \quad (6)$$

821 Here, Δ_{median} measures the improvement in the target property across the test set, while
822 $\%_{\text{success}}$ reports the percentage of sequences that improve after optimization.

823 For models that cannot refine existing sequences (e.g., pure *de novo* generators), we assign a
824 random pairing between initial and final sequences to enable a fair comparison.

825 **Manifold Fidelity** Given a property prediction model $\mathcal{P}_{\text{oracle}}$ with an encoder $\mathcal{E}_{\text{oracle}}$, a
826 test set of mRNA sequences X_{test} , and generated or optimized sequences \tilde{X}_{test} , we quantify
827 manifold fidelity as the average minimum ℓ_2 distance in the latent space of $\mathcal{E}_{\text{oracle}}$ between
828 each new sample and the test data:

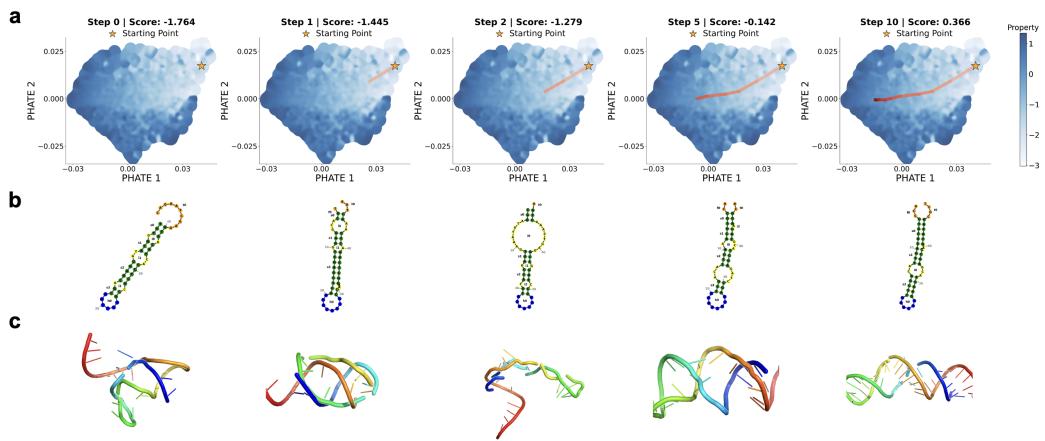
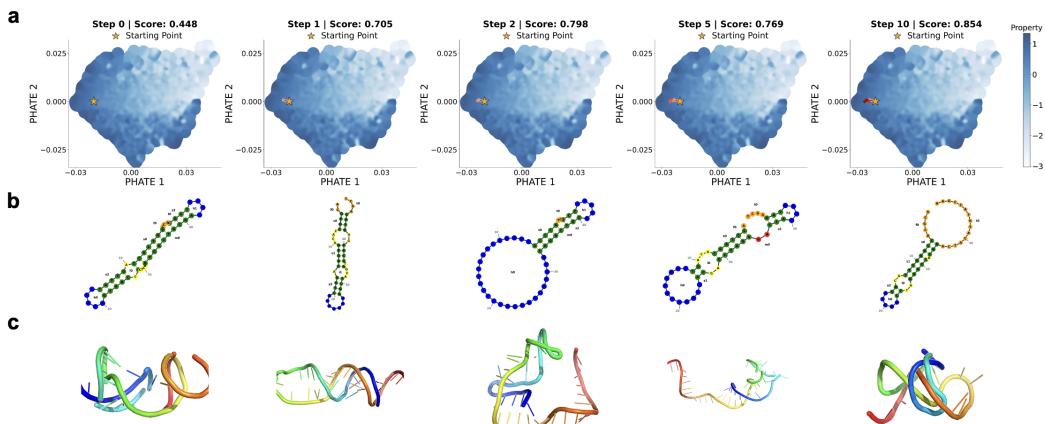
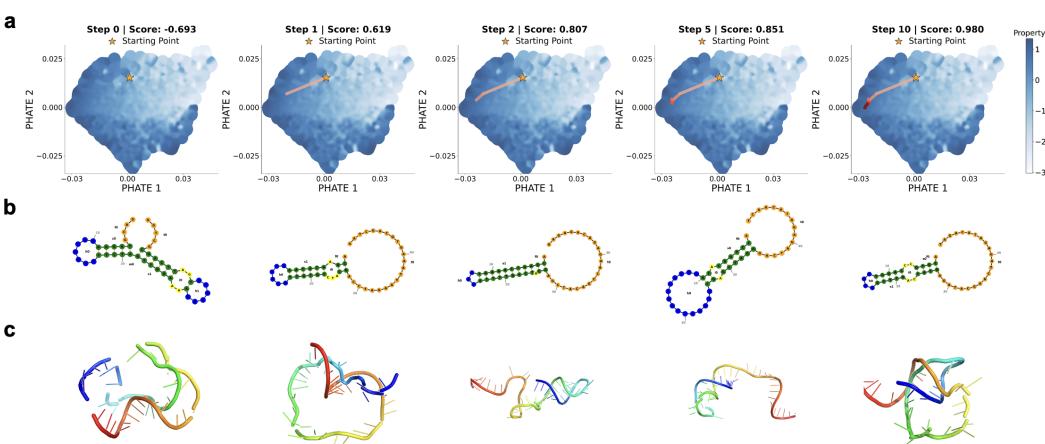
829
$$\mathcal{M}_{\text{fidelity}} = \mathbb{E}_{\tilde{x} \sim \tilde{X}_{\text{test}}} \left[\min_{x \in X_{\text{test}}} \left\| \mathcal{E}_{\text{oracle}}(\tilde{x}) - \mathcal{E}_{\text{oracle}}(x) \right\|_2 \right]. \quad (7)$$

830 This metric captures how closely the generated or optimized sequences remain to the empirical
831 data manifold defined by X_{test} .

832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 C ABLATION ON SUGAR
865866 We performed ablation on the upsampling ration in SUGAR and the results are summarized
867 in Table S2. In theory, SUGAR is most helpful in datasets that show greater sparsity and
868 more undersampled regions on the data manifold.869 In our ablation studies, we observe that different datasets require different ideal SUGAR ratios.
870 In general, smaller datasets need higher upsampling to achieve the optimal performance.
871 While dataset size not necessarily reflect the density or sparsity of the data manifold, in
872 general they seem to be positively correlated. In future practice, we suggest using higher
873 SUGAR upsampling ratio when working with smaller datasets, which is very common in the
874 world of mRNA design.875
876 Table S2: Ablation on SUGAR.877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

SUGAR ratio	Zebrafish (n≈55k)				OpenVaccine (n≈2k)				Ribosome-loading (n≈260k)			
	+property		-property		+property		-property		+property		-property	
	Δ ↑	% ↑	Δ ↓	% ↑	Δ ↑	% ↑	Δ ↓	% ↑	Δ ↑	% ↑	Δ ↓	% ↑
0	1.19	89.3	-0.83	74.2	1.39	95.2	-0.33	65.2	0.46	72.4	-1.66	87.3
0.01	0.98	83.8	-0.65	70.9	-0.30	32.1	-0.49	76.5	0.30	62.8	-1.54	84.7
0.05	1.35	94.0	-1.12	81.4	1.39	95.2	-0.42	69.6	0.52	73.4	-1.27	79.7
0.1	1.48	94.0	-1.32	85.6	-0.06	48.9	-0.44	72.7	0.42	67.6	-1.42	82.5
0.5	0.51	70.3	-0.89	75.1	0.13	58.1	-0.38	72.5	0.21	58.5	-1.33	81.0
1.0	0.73	77.6	-0.66	69.3	1.33	93.5	-0.87	86.9	0.44	68.9	-1.61	85.5

918 D ADDITIONAL OPTIMIZATION TRAJECTORIES
919
920935 Figure S1: More examples of latent space trajectories. (a) Trajectories in the PHATE space.
936 (b) 2D structures. (c) 3D structures.
937935 Figure S2: More examples of latent space trajectories. (a) Trajectories in the PHATE space.
936 (b) 2D structures. (c) 3D structures.
937935 Figure S3: More examples of latent space trajectories. (a) Trajectories in the PHATE space.
936 (b) 2D structures. (c) 3D structures.
937

972 E EXTENDED RELATED WORKS
973

974 **Sequence-to-function modeling** A central goal in biological sequence modeling is
975 predicting quantitative properties (e.g., expression level, stability) directly from the
976 sequence (Oliver, 1996). Recent deep learning models trained on high-throughput
977 experimental data have demonstrated strong performance in this setting, particularly for
978 regulatory regions such as 5' UTRs and promoters (Sample et al., 2019; Vaishnav et al.,
979 2022). Models such as ConvNets (Chen et al., 2024) and Transformers (He et al., 2023a)
980 have been used to capture complex dependencies in mRNA space, and form the basis for
981 downstream prediction of properties.
982

983 **Generative models for design** Generative models enable sampling of novel sequences
984 enriched for desired traits. Variational autoencoders (VAEs) (Kingma et al., 2013) have
985 been applied to proteins to learn smooth latent spaces that are amenable to gradient-based
986 optimization (Sinai et al., 2017; Castillo-Hair et al., 2024). ProteinMPNN (Dauparas et al.,
987 2022), although described as a message-passing neural network by the authors, shares core
988 design principles with autoencoders. Generative adversarial networks (Goodfellow et al.,
989 2020) such as Méndez-Lucio et al. (Méndez-Lucio et al., 2020) or ProteinGAN (Wu et al.,
990 2021) and autoregressive language models such as ProGen (Madani et al., 2023) have also
991 been used to generate diverse protein sequences. More recently, diffusion models (Ho et al.,
992 2020) have shown promise in discrete domains. For example, RFdiffusion (Watson et al.,
993 2023) generates proteins unconditionally or conditioned on structural constraints. These
994 methods can be readily adapted to mRNA design.
995

996 **Optimization of biological sequences** Sequence optimization can be framed as a black-
997 box search or a differentiable surrogate-guided process. Several approaches relax discrete
998 inputs for gradient-based updates, such as using straight-through estimators (Linder et al.,
999 2019). ReLSO learns a continuous latent space and performs gradient ascent (Castro
1000 et al., 2022). Others apply reinforcement learning (Eastman et al., 2018) or Monte
1001 Carlo algorithm (Wirecki et al., 2023) for sequence optimization. Methods such as Fast
1002 SeqProp (Linder & Seelig, 2021) and LaMBO (Stanton et al., 2022) have demonstrated
1003 success in optimizing sequences under multi-objective constraints.
1004

1005 **Integration of structural context** While the present work strictly focuses on the
1006 mRNA sequence, many successful models incorporate inductive biases from the structures.
1007 ProteinMPNN (Dauparas et al., 2022) and diffusion-based inverse folding (Yi et al., 2023)
1008 condition sequence generation on 3D structures. ImmunoStruct (Givechian et al., 2025) jointly
1009 models protein sequence, structure, and biochemical properties to predict immunogenicity.
1010 CellSpliceNet (Afrasiyabi et al., 2025) integrates long-range sequence, local regions of interest,
1011 secondary structure, and gene expression to predict alternative slicing. EternaFold (Wayment-
1012 Steele et al., 2022) incorporate predicted secondary structures to improve fitness prediction.
1013 Although in our work we did not incorporate mRNA structures, extending RNAGenScape to
1014 sequence-structure joint modeling and optimization could be a promising direction.
1015

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025