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Abstract

mRNA design and optimization are important in synthetic biology and
therapeutic development, but remain understudied in machine learning.
Systematic optimization of mRNAs is hindered by the scarce and imbalanced
data as well as complex sequence-function relationships. We present
RNAGenScape, a property-guided manifold Langevin dynamics framework
that iteratively updates mRNA sequences within a learned latent manifold.
RNAGenScape combines an organized autoencoder, which structures the
latent space by target properties for efficient and biologically plausible
exploration, with a manifold projector that contracts each step of update
back to the manifold. RNAGenScape supports property-guided optimization
and smooth interpolation between sequences, while remaining robust
under scarce and undersampled data, and ensuring that intermediate
products are close to the viable mRNA manifold. Across three real mRNA
datasets, RNAGenScape improves the target properties with high success rates
and efficiency, outperforming various generative or optimization methods
developed for proteins or non-biological data. By providing continuous, data-
aligned trajectories that reveal how edits influence function, RNAGenScape
establishes a scalable paradigm for controllable mRNA design and latent
space exploration in mRNA sequence modeling.

1 Introduction

Messenger ribonucleic acids (mRNAs) design and optimization are important (Qin et al.,
2022; Metkar et al., 2024) but remain understudied in machine learning (Castillo-Hair &
Seelig, 2021; Schlusser et al., 2024). Even small edits to mRNA sequences can strongly affect
their stability, translation efficiency, and eventual protein output (Zhang et al., 2023; Li
et al., 2025). For instance, modifying the non-coding 5’ untranslated region (UTR) can tune
the degradation rate of transcripts and therefore regulate protein production (Castillo-Hair
et al., 2024; Ma et al., 2024). Such guided controls are directly relevant to applications such
as mRNA vaccines (Pardi et al., 2018; Chaudhary et al., 2021) and protein replacement
therapies (Qin et al., 2022; Vavilis et al., 2023), where improving translation efficiency
or stability can improve efficacy and reduce dosage. However, systematic optimization
in the mRNA space remains an open challenge, because (1) viable mRNAs occupy only
a narrow subset of the vast ambient design space (Zhang et al., 2023; Calvanese et al.,
2024), (2) data collected in this field are scarce and imbalanced, with many regions sparse
or undersampled (Taubert et al., 2023; Asim et al., 2025), and (3) the sequence-function
relationships are highly complex (Licatalosi & Darnell, 2010; Weinreb et al., 2016).

We present RNAGenScape, a property-guided Manifold Langevin dynamics framework
dedicated for mRNA sequence design and optimization. RNAGenScape consists of two
core modules: 1 an organized autoencoder (OAE) that learns the manifold of mRNA
sequences and organizes the space by the target property, enabling efficient exploration
within a biologically plausible subspace rather than the ambient sequence space; and 2 a
manifold projector that contracts each update back onto the learned manifold, preserving
biological plausibility. By preprocessing the data with SUGAR (Lindenbaum et al., 2018)
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to augment undersampled regions by filling “holes” in the manifold, we ensure that the
manifold projector remains effective even under sparse training conditions (e.g., as few as
2,000 data points in one dataset), addressing a common challenge in mRNA data.

By operating directly on the latent manifold rather than in the ambient sequence space,
RNAGenScape is able to optimize target properties of the mRNAs, smoothly interpolate
between sequences, and ensure that all intermediate results remain close to the viable mRNA
manifold. Across three real-world mRNA datasets that span two orders of magnitude in size,
RNAGenScape consistently improved target properties with high success rates and efficiency,
outperforming existing approaches originally developed for proteins or generic sequence data.

In summary, our main contributions are as follows.

1. Framework: We propose RNAGenScape, a manifold Langevin dynamics framework that
enables interpolation and continuous property-guided optimization of mRNA sequences
starting from real data points, offering biologically grounded sequence modeling.

2. Manifold constraint: We introduce a learned manifold projector that ensures biological
plausibility throughout optimization trajectories.

3. Efficiency: Unlike diffusion-based models which typically start from Gaussian noise and
explore the entire Euclidean space, we restrict our exploration to the manifold and start
from existing sequences, allowing faster training and inference.

4. Empirical validation: We provide results on three real mRNA datasets, demonstrating
that our method improves target properties while maintaining manifold fidelity,
outperforming various optimization and generation methods.

2 Preliminaries

2.1 Manifold hypothesis and manifold learning

The manifold hypothesis (Cayton et al., 2008; Narayanan & Mitter, 2010; Fefferman et al.,
2016) posits that high-dimensional data lie near a low-dimensional manifold embedded in
the ambient space. Formally, each observation xi ∈ Rn arises from a smooth nonlinear map
f :Md → Rn applied to a latent variable zi ∈Md, where d≪ n.

Manifold learning methods seek to recover this latent structure by constructing
representations that preserve intrinsic geometry (Van Dijk et al., 2018; Moon et al., 2019;
Burkhardt et al., 2021; Liu et al., 2024; Liao et al., 2024; Liu et al., 2025a;b; Sun et al., 2025).
Diffusion geometry (Coifman & Lafon, 2006; Van Dijk et al., 2018; Lindenbaum et al., 2018)
provides one such paradigm, where local similarities are defined via an anisotropic kernel
on the pairwise similarities, and a Markov transition probability matrix is obtained by row
normalization. This diffusion process encodes the intrinsic geometry of the data.

A point is considered on-manifold if it lies within the range of the nonlinear map f , while
off-manifold points deviate from this structure and may correspond to invalid or adversarial
samples (Rifai et al., 2011; Li et al., 2023). Thus, projecting updated points back to the
manifold is critical for robustness and geometry-aware optimization (He et al., 2023b).

Stochastic gradient descent (SGD) on Riemannian manifolds (Bonnabel, 2013)
extends classical SGD by computing updates in the tangent space and mapping them back to
the manifold via exponential maps or retractions. However, such methods assume an analytic
form of the manifold. In contrast, the manifold underlying biological sequence space is not
known in a closed form. RNAGenScape addresses this by directly learning the projection
operator, enabling optimization on data manifolds without requiring analytic solutions.

2.2 Langevin-dynamics and beyond

Diffusion Models (Ho et al., 2020) are generative frameworks that learn a data distribution
p(x) by reversing a fixed Markov diffusion process of length T . Starting from Gaussian noise,
they are trained to iteratively denoise samples through a sequence of learned denoising
functions over T steps. The training objective LDM := Ex,ϵ∼N (0,1),t

[
||ϵ− ϵθ(xt, t)||22

]
is a reweighted form of the variational lower bound, closely related to denoising score
matching (Song et al., 2021).
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Latent Diffusion Models (Rombach et al., 2022) present an extension of the concept.
Instead of performing the reverse diffusion process in the data space, they operate in a latent
space after embedding the data with an encoder E , where z = E(x). The modified objective
is given by LLDM := Ez,ϵ∼N (0,1),t

[
||ϵ− ϵθ(zt, t)||22

]
.

Langevin Dynamics (Song & Ermon, 2019) has been employed in generative models to
sample from high-dimensional data distributions using only an estimate of the score function
∇x log p(x). In particular, it first trains a neural network sθ to approximate the score
function of data injected with Gaussian noise. Sampling is then performed via annealed
Langevin dynamics, given by x̃t = x̃t−1 +

ηi

2 sθ(x̃t−1, σi) +
√
ηizt. Here, sθ(x̃t−1, σi) is the

learned score function at noise level σi, and ηi is the step size at that level. By gradually
annealing from high to low noise, this procedure enables generation of high-quality samples
without an explicit likelihood or energy model.

Neural Stochastic Differential Equations (neural SDEs) (Kidger et al., 2021), are
differential equations simultaneously modeling two terms: a drift term f(·) depicting the true
time-varying dynamics of the variable, and a diffusion term g(·) representing stochasticity
using the Brownian motion Wt. The update rule is given by dXt = f(t,Xt)dt+g(t,Xt)◦dWt.
From a high level, Langevin dynamics is a special case of neural SDEs after discretization.

3 RNAGenScape

The key components of our framework are 1 OAE: an autoencoder module whose latent
space is organized by the target property (Section 3.1, Figure 1a), 2 Manifold Projector:
a module that brings the updated latent embeddings back to the learned data manifold during
each step of optimization/interpolation (Section 3.2, Figure 1b & 1d), and 3 Property-
guided manifold Langevin dynamics, a procedure that integrates the two aforementioned
modules to enable property optimization and interpolation (Section 3.3 & 3.4, Figure 1e).

Once trained, these components allows RNAGenScape to optimize the target property of a
given sequence (Section 4.3) and interpolate between existing sequences (Section 4.5).

Figure 1: Schematic of RNAGenScape. (a) We first train an organized latent space for
mRNA sequences by jointly optimizing reconstruction and property prediction objectives.
(b) We then train a manifold projector while the encoder’s weights are frozen. (c) For
undersampled mRNA manifolds, we use SUGAR to learn key dimensions in the manifold
and fill undersampled regions. (d) During optimization, the manifold projector brings
off-manifold points back to the manifold. (e) We can use the encoder and the manifold
projector to optimize the properties of given input mRNA sequences or interpolate between
sequences. Notably, the intermediate products can also be decoded. Best viewed zoomed in.
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3.1 Learning a latent space organized by property

We begin by training an organized autoencoder (OAE), where the latent space is
implicitly structured via supervision from a property prediction task (Figure 1a). Similar
to a vanilla autoencoder (Hinton & Salakhutdinov, 2006), the encoder E maps the input
mRNA sequence x to a latent representation z, which is decoded by D back to the sequence
space. In addition to this standard architecture, a predictor P infers properties ŷ from the
embedding z. Formally, zi = E(xi), x̂i = D(zi), ŷi = P(zi).
The latent space Z is thus shaped by jointly optimizing the reconstruction loss and the
prediction loss (equation 1), encouraging it to learn sequence-relevant information while
being organized by the target properties. λPred and λRecon are hyperparameters that balance
between organizing the property landscape and capturing sequence information. They are
empirically set to 1 and 5 in all experiments. Here, xi ∈ RV is the ground truth one-hot
encoding of the nucleotide at position i in sequence x with an mRNA vocabulary of size V .

LOAE = λPredLPred + λReconLRecon =

optimize P with MSE︷ ︸︸ ︷
λPred E(x,y)∼pdata

||ŷi − yi||22

optimize E and D with CrossEntropy︷ ︸︸ ︷
−λRecon Ex∼pdata

log
exp(x̂i,xi

)∑V
v=1 exp(x̂i,v)

(1)

3.2 Training a manifold projector

Learning the data manifold mRNA datasets are typically scarce, undersampled, and
biased toward specific experimental conditions, which makes it difficult to learn a faithful
latent manifold directly from the train data. To address this, we adopt SUGAR (Lindenbaum
et al., 2018), a diffusion geometry-based generative method that learns the geometry of the
data and samples the manifold uniformly. This augmentation enriches the latent space with
geometry-preserving samples, helping the model better approximate the underlying mRNA
manifold even in sparse regions.

Specifically, this preprocessing step yields an expanded latent set: Z = Zog ∪
ZSUGAR, ZSUGAR = M tZ0, where Zog are the original latent embeddings, Z0 are locally-
sampled neighbors, and M t is the sparsity-corrected Markov diffusion transition matrix
applied for t steps.

Algorithm 1 Manifold Projector

Input: Dataset Z = {zi}Ni=1, denoiser
Ψ, noise levels {σ1, . . . , σK}, denoising
steps K, learning rate η
for each zi in minibatch {zi}Bi=1 ⊂ Z
do

Initialize z̃(0) ← zi
for k = 1 to K do
z̃(k) ∼ C(Z̃|Z̃(k−1), σk)
L(k) = ∥Ψ(z̃(k))− z̃(k−1)∥22

end for
Li =

∑K
k=1 L(k)

Ψ← Ψ− η∇Ψ

(
1
B

∑B
i=1 Li

)
end for

Learning the Manifold Projection To keep
the generated trajectories aligned with the latent
data manifold, we introduce a manifold projector
Ψ. As illustrated in Figure 1b and magnified in
Figure 1d, Ψ takes in a noisy optimized point z̃
and projects it back onto or near the manifold.

To train Ψ, we adopt a denoising objective
that contracts noisy samples back towards the
clean points on the latent manifold. Given
a clean latent embedding z, we construct a
short corruption chain z̃(0) = z, z̃(k) ∼
C(Z̃|Z̃(k−1), σk), k = 1, . . . ,K, where C(·, σk)
denotes Gaussian corruption with noise level σk.
The projector is trained to reverse each step by
predicting z̃(k−1) from z̃(k), yielding the objective
in equation 2.

LΨ = Ez∼pdata

K∑
k=1

Ez̃(k)∼C(·|z̃(k−1),σk)

[
∥Ψ(z̃(k))− z̃(k−1)∥22

]
(2)

When K = 1, this reduces to the standard denoising autoencoder loss (Vincent et al., 2008).
In practice, we keep K small (e.g. 1-3) to capture local updates near the data manifold, rather
than simulating long diffusion chains from Gaussian noise. As a result, our algorithm is fast
during training and inference.
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3.3 Property-guided manifold Langevin dynamics

Next, we introduce a novel property-guided manifold Langevin-dynamics framework.

Given a trained encoder E , a property predictor P , and a manifold projector Ψ, our Langevin-
dynamics framework optimizes sequences for a target property. Starting from the latent
embedding z = E(x) of a sequence x, we iteratively update it using a gradient-based drift term
∇zf(z), inject Gaussian noise ϵ, and apply a manifold projection Ψ(·) to ensure biological
plausibility and interpretability. We define the update rule as described in equation 3.

zt+1 = Ψ(zt + dzt) , dzt =
η
τ∇zf(zt) +

√
2η ϵt, ϵt ∼ N (0, I) (3)

Here, η is the step size, τ is the temperature hyperparameter, and ∇zf(z) denotes the
property gradient given by the predictor P. A smaller τ emphasizes focused updates along
the gradient, while a larger τ encourages more diverse exploration. When τ → ∞, the
property guidance vanishes and the update rule is dominated by the stochastic term, which
becomes similar to generative modeling with the walkback algorithm (Bengio et al., 2013).

The manifold projector Ψ, analogous to the retraction in Riemannian SGD (Bonnabel, 2013),
is applied after each update to ensure that each step remains near the biologically valid
latent manifold, enabling interpretable and controllable generation trajectories.

With the trained components E , P and Ψ, we can optimize the target property of any given
sequence. Notably, optimization entails both maximization and minimization: users can
choose to increase or decrease the target property, depending on the application.

3.4 Interpolating between sequences

Beyond property optimization, our framework also enables interpolation between existing
mRNA sequences by guiding the latent embedding of one sequence toward that of another.
Specifically, given a source sequence xsource and a target sequence xtarget, we first obtain
their latent embeddings via the encoder: zsource = E(xsource) and ztarget = E(xtarget).

Starting from z = zsource, we run property-guided manifold Langevin dynamics with an
additional force term that pulls the latent toward ztarget. The interpolation force is defined

as finterp(z, ztarget) = − z−ztarget
∥z−ztarget∥2

, which provides a normalized directional bias toward the

target point. Incorporating this into the Langevin update changes the drift term while all
other components remain intact, as described in equation 4.

dzt =
η

τ
finterp(zt, ztarget) +

√
2η ϵt (4)

This modification steers the latent trajectory smoothly toward the target, enabling
interpretable interpolations between biological sequences.

4 Empirical Results

In this section, we demonstrate the effectiveness of RNAGenScape on two key tasks: (1) mRNA
sequence optimization and (2) mRNA sequence interpolation. The first task is broadly
relevant to applications in therapeutics and synthetic biology. For example, enhancing the
translation efficiency and stability of an mRNA vaccine can increase its protein yield and
persistence, thereby boosting therapeutic efficacy while reducing the required dose. The
second task facilitates the exploration of intermediate variants. This can provide insights
into the functional landscape of regulatory elements within mRNAs of interest.

4.1 Experimental Settings

Datasets and tasks We evaluate RNAGenScape on three mRNA datasets that capture
diverse contexts and experimental designs. The optimization objectives are underlined.

1. Zebrafish includes five subsets of zebrafish 5’ UTR, experimentally measured using
nascent protein-transducing ribosome affinity purification (Strayer et al., 2023), a
massively parallel reporter assay to quantify translation control. It spans various stages
and conditions of development, and each subset contains approximately 11,000 5’ UTR
sequences each with 124 nucleotides along with annotations on translation efficiency.
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2. OpenVaccine contains 2,400 mRNA sequences devised for COVID-19 mRNA vaccines,
each with 107 nucleotides (Das et al., 2020). They are collected with degradation profiles
under multiple conditions, quantified to mRNA stability relevant to vaccine design.

3. Ribosome-loading is a large-scale library of approximately 260,000 5’ UTR sequences
each with 50 nucleotides (Sample et al., 2019), paired with pseudouridine-modified
coding sequences of enhanced green fluorescent protein. The sequences are annotated on
mean ribosome load, a property that reflects translation efficiency.

Baselines We compared our method with a range of popular de novo generative modeling
approaches, including variational autoencoder (VAE) (Kingma et al., 2013), Wasserstein
generative adversarial network with gradient penalty regularization (WGAN-GP) (Gulrajani
et al., 2017), denoising diffusion probabilistic model (DDPM) (Ho et al., 2020), latent
diffusion model (LDM) (Rombach et al., 2022), and flow matching (FM) (Rombach et al.,
2022). We also included classic optimization methods, including gradient ascent (Williams,
1992; Zinkevich, 2003), Markov chain Monte Carlo (MCMC) (Brooks, 1998; Andrieu et al.,
2003), and hill climbing (Selman & Gomes, 2006). All classic optimization baselines were
GPU-compatible adaptions from the implementation in (Castro et al., 2022). Lastly, we
benchmarked against optimization methods originally designed for proteins, DiffAb (Luo
et al., 2022), IgLM (Shuai et al., 2023), and NOS (Gruver et al., 2023).

Evaluation Since the optimization process could and should result in mRNA sequences
not covered by the dataset, to quantify their properties, we trained a separate property
prediction model Poracle(x) to serve as a proxy of the ground truth. Poracle(x) is used for
evaluation only, and is strictly invisible during inference to avoid circular dependency.

Reproducibility All experiments were performed under 5 random seeds and the average
results are reported. Hyperparameters and hardware used are summarized in Appendix A.

4.2 RNAGenScape produces structured, data-aligned trajectories

RNAGenScape operates within a learned latent space that reflects the manifold of real biological
sequences. To illustrate this behavior, we visualize individual optimization runs in Figure 2.
The trajectory exhibits monotonic increases in the target property, while remaining near
regions populated by real sequences. See Appendix D for more examples. These trajectories
are direct consequences of the manifold-constrained dynamics, which guided each step toward
high-property regions while staying on the manifold.

Importantly, all intermediate steps during optimization can be decoded into mRNA sequences,
allowing researchers to examine how sequences evolve step by step as specific properties are

Figure 2: Latent space trajectories of RNAGenScape over 10 optimization steps. The
trajectories follow smooth and reasonable paths with steady improvement in the target
property. (a) Trajectories in the PHATE space. (b) 2D structures. (c) 3D structures.
(d) Intermediate products of various methods midway through optimization (5th step).
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Table 1: Our proposed RNAGenScape achieves superior property optimization while also being
inference-efficient. Top performers among property optimization methods are bolded. For de
novo generative models, the optimization columns are grayed out, as they cannot explicitly
steer properties; reported values instead reflect their learned distributions. ∆ denotes the
median change in property. % denotes success rate (the percentage of mRNAs improved).

Methods

Zebrafish (n≈55k)
property = translation efficiency

OpenVaccine (n≈2k)
property = stability

Ribosome-loading (n≈260k)
property = mean ribosome load

Inference Speed +property −property +property −property +property −property
ms/sample ↓ ∆ ↑ % ↑ ∆ ↓ % ↑ ∆ ↑ % ↑ ∆ ↓ % ↑ ∆ ↑ % ↑ ∆ ↓ % ↑

de novo generative models

VAE (Kingma et al., 2013) 0.13 0.80 67.7 0.80 32.3 -0.41 40.0 -0.41 60.0 -0.37 38.3 -0.37 61.7
WGAN-GP (Gulrajani et al., 2017) 0.07 -1.23 16.4 -1.23 83.6 -0.02 47.9 -0.02 53.1 -1.16 22.5 -1.16 77.5
DDPM (Ho et al., 2020) 0.91 0.16 55.4 0.16 44.6 0.28 64.6 0.28 35.4 -0.28 40.4 -0.28 59.6
LDM (Rombach et al., 2022) 0.74 -0.43 36.5 -0.43 63.5 1.38 78.0 1.38 21.0 -1.11 46.0 -1.11 54.0
FM (Lipman et al., 2022) 5.82 0.17 55.6 0.17 44.4 0.20 62.9 0.20 37.1 -0.25 41.9 -0.25 58.1

property optimization methods

DiffAb (Luo et al., 2022) 41.04 0.20 62.4 0.17 41.1 0.37 73.8 0.40 26.2 -1.0 41.5 -0.16 60.8
IgLM (Shuai et al., 2023) 157.57 0.07 52.9 0.01 49.3 0.07 54.8 0.06 64.7 0.42 69.6 -1.28 80.6
NOS-C (Gruver et al., 2023) 0.99 -0.03 48.6 -0.66 70.4 0.96 90.0 -0.05 52.1 -0.21 42.6 -0.26 59.0
NOS-D (Gruver et al., 2023) 0.96 0.22 57.1 0.20 42.7 0.46 71.8 0.25 36.2 -0.25 41.3 -0.26 59.3

Sequence-space MCMC 3.84 -0.53 33.5 -0.54 67.1 -0.13 41.8 -0.18 58.7 -1.02 25.0 -1.56 83.8
OAE + Gradient Ascent 0.50 -0.51 33.9 -0.44 63.8 0.31 66.3 -0.19 61.3 -0.47 34.7 -1.60 84.0
OAE + MCMC 10.93 -0.43 35.8 -0.44 64.2 0.17 40.0 -0.17 60.0 -1.41 18.7 -1.42 81.3
OAE + Hill Climbing 81.52 -0.52 33.6 -0.56 67.5 0.16 40.8 -0.16 60.0 -1.38 19.0 -1.39 81.0
OAE + Stochastic Hill Climbing 99.66 -0.51 33.5 -0.56 67.9 0.11 43.1 -0.15 60.0 -1.40 20.0 -1.41 80.4

RNAGenScape without SUGAR (ours)1 0.57 1.19 89.3 -0.83 74.2 1.39 95.2 -0.33 65.2 0.46 72.4 -1.66 87.3
RNAGenScape (ours) 0.57 1.48 94.0 -1.32 85.6 1.33 93.5 -0.87 86.9 0.46 72.4 -1.66 87.3

optimized. As a qualitative illustration of biological plausibility, we show that intermediate
results can be properly folded by ViennaRNA (Lorenz et al., 2011) and RhoFold (Shen et al.,
2024) into 2D and 3D structures (Figure 2b-c). In contrast, folding intermediate products of
several other methods lead to failure, as indicated by the broken structures (Figure 2d).

4.3 RNAGenScape achieves superior property optimization

We quantitatively compare RNAGenScape against a range of de novo generative models and
optimization baselines (Table 1). Although de novo approaches are effective in modeling the
data distribution, they offer limited to no control over the target properties. As a result,
their performance in property optimization is unfavorable.

Among property optimization methods, RNAGenScape consistently delivers the strongest
results, achieving the highest median property change and the highest success rate in both the
positive and negative directions. In particular, its median improvement is nearly twice that
of the next-best method in several cases, and its success rate exceeds all other approaches.

Table 2: Manifold fidelity, represented
by the average ℓ2 distance between the
generated or optimized sequences to the
data manifold. Results are averaged over
all datasets.

Methods
latent space
distance ↓

VAE 0.737
WGAN-GP 1.729
DDPM 0.254
LDM 0.584
FM 0.259
DiffAb 0.237
IgLM 0.740
NOS-C 0.539
NOS-D 0.260
Sequence-space MCMC 0.292
OAE + Gradient Ascent 0.460
OAE + MCMC 0.297
OAE + Hill Climbing 0.300
OAE + Stochastic Hill Climbing 0.288
RNAGenScape without SUGAR (ours) 0.233
RNAGenScape (ours) 0.235

In addition to being successful in optimizing
properties, RNAGenScape also achieves the best
manifold fidelity, as shown in Table 2. See
Appendix B for more details on the evaluations.

4.4 Efficiency and scalability

In addition to its strong property control,
RNAGenScape is also highly efficient at inference
time. As reported in Table 1, it achieves
an inference speed of 0.57 ms/sample, nearly
matching the fastest method (gradient ascent
at 0.50 ms/sample) and substantially faster
than many other property optimization methods
(such as hill climbing at 81.53 ms/sample,
DiffAb at 41.04 ms/sample, and IgLM at 157.57
ms/sample). This efficiency makes RNAGenScape
well suited for large-scale or iterative design
workflows where fast feedback is essential.

1The optimal SUGAR upsampling ratio is 0 for Ribosome-loading, and hence we have identical
performance with and without SUGAR in that dataset. See ablation studies (Section 4.6).
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Figure 3: Latent space interpolation trajectories from 5 sources to 4 targets. Each trajectory
is shown as a line fading from bright to dark in a consistent color. RNAGenScape produces
smooth and coherent paths on the manifold between arbitrary input-target mRNA pairs.

Figure 4: Latent space ℓ2 distances during interpolation show smooth and monotonic
transition from the source to the target. Results are averaged over all data samples.

4.5 Interpolating between arbitrary sequences

RNAGenScape enables interpolation between arbitrary sequences using the directional drift
term (equation 4). Guided by a directional force toward a specified target, RNAGenScape
generates smooth and coherent trajectories on the learned manifold while preserving biological
plausibility and continuity (Figure 3). These trajectories connect arbitrary input-target
sequence pairs in a structured manner, reflecting semantically meaningful transitions.

The distances from each intermediate point to the source and target quantitatively
demonstrate the monotonicity and smoothness of the interpolation (Figure 4).

4.6 Ablation studies

Table 3: Manifold projector Ψ is critical.

+property −property latent space
distance ↓Ψ ∆ ↑ % ↑ ∆ ↓ % ↑

✗ -0.17 45.1 0.13 47.0 0.355
✓ 0.46 72.4 -1.66 87.3 0.120

Manifold projector Our first ablation
shows that the manifold projector Ψ,
a core contribution of RNAGenScape, is
essential for its performance (Table 3).
Without Ψ, the method completely fails
at property optimization. This outcome is
expected: following the property gradient without projecting back to the manifold causes
trajectories to drift away, as reflected in the tripled latent space distance in Table 3.

Figure 5: RNAGenScape optimization is step-
efficient and remains stable over a range of
optimization steps.

Optimization steps Next, we analyze
how sensitive RNAGenScape is to the
number of optimization steps. The results
in Figure 5 show that our method is able to
converge quickly and remains stable over
a range of Langevin dynamics steps.

SUGAR To assess the necessity to
enrich the latent space using SUGAR, we
performed an ablation study to test whether and how much these geometry-preserving samples
facilitate RNAGenScape. The experiments are summarized in Table S2. As expected, smaller
datasets benefit from more aggressive manifold sampling (best ratio = 0.1 for Zebrafish
(n≈55k), 1.0 for OpenVaccine (n≈2k), and 0.0 for Ribosome-loading (n≈260k)).
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5 Conclusion

We introduced RNAGenScape, a property-guided manifold Langevin dynamics framework
dedicated for mRNA design and optimization. By combining an organized autoencoder
that aligns the latent space with target properties and a denoising-based manifold projector,
RNAGenScape steers existing sequences along smooth, manifold-aligned trajectories that both
improve target properties and preserve biological plausibility. Empirically, RNAGenScape
outperforms various generative and optimization methods in property control and manifold
fidelity, while matching or exceeding their inference efficiency. It also shows promises in
faithfully interpolating between real biological sequences. With this work, we also hope to
shift the paradigm of biological sequence design from unconstrained generation to guided
optimization, and shine more light on mRNA sequence design as a critical yet understudied
frontier in computational biology.

6 Limitations and Future Work

One limitation of our approach is its dependence on the fidelity of the organized latent
space: if the organized autoencoder fails to capture critical sequence constraints, manifold
projections may permit small but functionally invalid drifts. Additionally, our current
formulation optimizes a single scalar property; extending RNAGenScape to multi-objective
settings would broaden its applicability. Finally, while we have demonstrated compelling in
silico gains, integrating real-world experimental feedback remains an important avenue to
validate and refine the learned manifold.

In future work, We will study the possibility to perform sequence-structure joint modeling
and optimization. Beyond mRNA, we plan to extend RNAGenScape to other modalities such
as protein sequences and regulatory elements, and integrate active learning frameworks that
guide wet lab experimentation. By grounding sequence optimization in the manifold of real
data, we aim to provide a versatile platform for interpretable and high-throughput design in
synthetic biology.

7 Related Works

Machine learning is becoming increasingly popular for optimizing biological sequences such
as DNA, RNA, and proteins. This section reviews recent advances in sequence modeling and
optimization, with an emphasis on mRNAs.

Table 4: Characteristics of the models: whether they can
perform (1) generation, (2) optimization, (3) interpolation,
and (4) whether they produce optimization trajectories.

Method Gen. Opt. Interp. Traj.

de novo generative models ✓ ✗/✓ ✗ ✗
classic optimization methods ✗/✓ ✓ ✗ ✓
DiffAb (Luo et al., 2022) ✓ ✓ ✗ ✓
IgLM (Shuai et al., 2023) ✓ ✓ ✗ ✗
NOS (Gruver et al., 2023) ✓ ✓ ✗ ✗
RNAGenScape (ours) ✓ ✓ ✓ ✓

Current machine learning
approaches for sequence design
can be grouped into three
main paradigms, but each
addresses only part of the
challenge (Table 4).

De novo generative models excel
at creating novel sequences,
but fundamentally operate by
generating from scratch rather
than refining existing functional
sequences (Prykhodko et al., 2019; Méndez-Lucio et al., 2020; Dauparas et al., 2022; Wu et al.,
2021; Madani et al., 2023; Watson et al., 2023). Classic optimization strategies (Williams,
1992; Zinkevich, 2003; Brooks, 1998; Andrieu et al., 2003; Selman & Gomes, 2006) are capable
of improving known sequences, but typically lack mechanisms to ensure that intermediate
variants remain consistent with the underlying biological distribution. More recent deep
learning methods for sequence generation and optimization (Luo et al., 2022; Shuai et al.,
2023; Gruver et al., 2023) aim to combine generative modeling with property-driven objectives,
but their optimization trajectories remain opaque, offering limited interpretability of which
sequence changes drive functional improvements. Furthermore, existing methods cannot
interpolate between sequences. Consequently, a framework that enables biologically-grounded
sequence engineering remains needed (Wu et al., 2019).

An extended related works section can be found in Appendix E.
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Technical Appendices for
RNAGenScape: Property-guided Optimization
and Interpolation of mRNA Sequences with

Manifold Langevin Dynamics

A Hyperparameters and Architecture

Learning the manifold with SUGAR To learn the manifold with SUGAR, we used the
k-NN mode for estimating degrees (and thus sparsity) of latent points. We employed an
α-decay kernel with α = 2 and an adaptive bandwidth determined from the distance to the
5 nearest neighbors. The diffusion time was set to t = 1.

Training the organized autoencoder (OAE) We trained the OAE using the AdamW
optimizer with an initial learning rate of 10−2, together with a linear warmup cosine annealing
scheduler. The learning rate was linearly increased from 10−4 (i.e., 0.01× the base learning
rate) to the target value during the first 10% of training epochs (warmup), and then annealed
to zero following a cosine decay schedule over the remaining epochs. We used a batch size of
128, a maximum of 200 epochs, and early stopping with a patience of 20 epochs based on
the validation loss.

Training the manifold projector We trained the manifold projector Ψ using the AdamW
optimizer with a learning rate of 10−4. We used a batch size of 256, a maximum of 200
epochs, and applied early stopping with a patience of 20 epochs based on the validation loss.

Table S1: Hyperparameters used for different datasets.

Dataset λRecon / λPred Noise levels Langevin (step size, temperature)

Zebrafish 5.0 / 1.0 {1.0, 0.8, 0.5} 1× 10−2, 8× 10−3

OpenVaccine 1.0 / 1.0 {1.0, 0.5} 1× 10−2, 1× 10−2

Ribosome-loading 1.0 / 1.0 {0.3} 5× 10−3, 1× 10−2

Organized Autoencoder (OAE) The organized autoencoder (OAE) maps mRNA
sequences x ∈ RL×V to a compact latent z ∈ Rd. Our latent dimension is 320 across all
datasets.

For encoder, we apply three 1D convolutional blocks with GroupNorm, GELU, and channel
squeeze-excitation (SE), followed by adaptive average pooling to length 8 and a linear
projection. The property head is a three-layer MLP with GELU and dropout rate set to 0.3.

For decoding, a progressive 1D decoder upsamples structure gradually: we first expand z to
a 128× 8 seed map, then apply a stack of UpsampleBlock modules composed of upsampling
and two residual convolutional blocks until reaching ≥ L positions; we then refine the output
with two residue convolutional blocks to produce the final predicted logits. Weights are
Kaiming/Xavier initialized; GroupNorm scales are set to 1 and biases to 0.

mRNA sequence vocabulary Although mRNA sequences naturally consist of the
nucleotides A, U, G, and C, some experimental datasets represent U as T (borrowing the DNA
alphabet). To handle this heterogeneity consistently, we define a unified vocabulary of size
V = 7: <pad>, A, U, T, G, C, and N. Here, N denotes an unknown nucleotide during sequencing,
and both U and T tokens are retained to ensure compatibility across datasets.

Hardware The evaluations were performed on a single NVIDIA A100 GPU. However,
RNAGenScape can be run efficiently on more modest hardware.
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B Evaluation Metrics

Property Optimization To quantify the effectiveness of property optimization of different
models, we measure both the median improvement and the fraction of sequences that are
successfully optimized.

Specifically, given a test set of mRNA sequences Xtest with predicted properties Poracle(Xtest)

and their optimized counterparts X̃test with properties Poracle(X̃test), we compute:

∆median = median
(
Poracle(x̃)− Poracle(x)

)
, x ∈ Xtest, (5)

and

%success =
1

|Xtest|
∑

x∈Xtest

1
[
Poracle(x̃) > Poracle(x)

]
. (6)

Here, ∆median measures the improvement in the target property across the test set, while
%success reports the percentage of sequences that improve after optimization.

For models that cannot refine existing sequences (e.g., pure de novo generators), we assign a
random pairing between initial and final sequences to enable a fair comparison.

Manifold Fidelity Given a property prediction model Poracle with an encoder Eoracle, a
test set of mRNA sequences Xtest, and generated or optimized sequences X̃test, we quantify
manifold fidelity as the average minimum ℓ2 distance in the latent space of Eoracle between
each new sample and the test data:

Mfidelity = Ex̃∼X̃test

[
min

x∈Xtest

∥∥Eoracle(x̃)− Eoracle(x)∥∥2] . (7)

This metric captures how closely the generated or optimized sequences remain to the empirical
data manifold defined by Xtest.
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C Ablation on SUGAR

We performed ablation on the upsampling ration in SUGAR and the results are summarized
in Table S2. In theory, SUGAR is most helpful in datasets that show greater sparsity and
more undersampled regions on the data manifold.

In our ablation studies, we observe that different datasets require different ideal SUGAR ratios.
In general, smaller datasets need higher upsampling to achieve the optimal performance.
While dataset size not necessarily reflect the density or sparsity of the data manifold, in
general they seem to be positively correlated. In future practice, we suggest using higher
SUGAR upsampling ratio when working with smaller datasets, which is very common in the
world of mRNA design.

Table S2: Ablation on SUGAR.

Zebrafish (n≈55k) OpenVaccine (n≈2k) Ribosome-loading (n≈260k)
+property −property +property −property +property −property

SUGAR ratio ∆ ↑ % ↑ ∆ ↓ % ↑ ∆ ↑ % ↑ ∆ ↓ % ↑ ∆ ↑ % ↑ ∆ ↓ % ↑
0 1.19 89.3 -0.83 74.2 1.39 95.2 -0.33 65.2 0.46 72.4 -1.66 87.3
0.01 0.98 83.8 -0.65 70.9 -0.30 32.1 -0.49 76.5 0.30 62.8 -1.54 84.7
0.05 1.35 94.0 -1.12 81.4 1.39 95.2 -0.42 69.6 0.52 73.4 -1.27 79.7
0.1 1.48 94.0 -1.32 85.6 -0.06 48.9 -0.44 72.7 0.42 67.6 -1.42 82.5
0.5 0.51 70.3 -0.89 75.1 0.13 58.1 -0.38 72.5 0.21 58.5 -1.33 81.0
1.0 0.73 77.6 -0.66 69.3 1.33 93.5 -0.87 86.9 0.44 68.9 -1.61 85.5
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D Additional optimization trajectories

Figure S1: More examples of latent space trajectories. (a) Trajectories in the PHATE space.
(b) 2D structures. (c) 3D structures.

Figure S2: More examples of latent space trajectories. (a) Trajectories in the PHATE space.
(b) 2D structures. (c) 3D structures.

Figure S3: More examples of latent space trajectories. (a) Trajectories in the PHATE space.
(b) 2D structures. (c) 3D structures.
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E Extended Related Works

Sequence-to-function modeling A central goal in biological sequence modeling is
predicting quantitative properties (e.g., expression level, stability) directly from the
sequence (Oliver, 1996). Recent deep learning models trained on high-throughput
experimental data have demonstrated strong performance in this setting, particularly for
regulatory regions such as 5’ UTRs and promoters (Sample et al., 2019; Vaishnav et al.,
2022). Models such as ConvNets (Chen et al., 2024) and Transformers (He et al., 2023a)
have been used to capture complex dependencies in mRNA space, and form the basis for
downstream prediction of properties.

Generative models for design Generative models enable sampling of novel sequences
enriched for desired traits. Variational autoencoders (VAEs) (Kingma et al., 2013) have
been applied to proteins to learn smooth latent spaces that are amenable to gradient-based
optimization (Sinai et al., 2017; Castillo-Hair et al., 2024). ProteinMPNN (Dauparas et al.,
2022), although described as a message-passing neural network by the authors, shares core
design principles with autoencoders. Generative adversarial networks (Goodfellow et al.,
2020) such as Méndez-Lucio et al. (Méndez-Lucio et al., 2020) or ProteinGAN (Wu et al.,
2021) and autoregressive language models such as ProGen (Madani et al., 2023) have also
been used to generate diverse protein sequences. More recently, diffusion models (Ho et al.,
2020) have shown promise in discrete domains. For example, RFdiffusion (Watson et al.,
2023) generates proteins unconditionally or conditioned on structural constraints. These
methods can be readily adapted to mRNA design.

Optimization of biological sequences Sequence optimization can be framed as a black-
box search or a differentiable surrogate-guided process. Several approaches relax discrete
inputs for gradient-based updates, such as using straight-through estimators (Linder et al.,
2019). ReLSO learns a continuous latent space and performs gradient ascent (Castro
et al., 2022). Others apply reinforcement learning (Eastman et al., 2018) or Monte
Carlo algorithm (Wirecki et al., 2023) for sequence optimization. Methods such as Fast
SeqProp (Linder & Seelig, 2021) and LaMBO (Stanton et al., 2022) have demonstrated
success in optimizing sequences under multi-objective constraints.

Integration of structural context While the present work strictly focuses on the
mRNA sequence, many successful models incorporate inductive biases from the structures.
ProteinMPNN (Dauparas et al., 2022) and diffusion-based inverse folding (Yi et al., 2023)
condition sequence generation on 3D structures. ImmunoStruct (Givechian et al., 2025) jointly
models protein sequence, structure, and biochemical properties to predict immunogenicity.
CellSpliceNet (Afrasiyabi et al., 2025) integrates long-range sequence, local regions of interest,
secondary structure, and gene expression to predict alternative slicing. EternaFold (Wayment-
Steele et al., 2022) incorporate predicted secondary structures to improve fitness prediction.
Although in our work we did not incorporate mRNA structures, extending RNAGenScape to
sequence-structure joint modeling and optimization could be a promising direction.
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