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TIME-TO-MOVE: TRAINING-FREE MOTION CON-
TROLLED VIDEO GENERATION VIA DUAL-CLOCK
DENOISING
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Figure 1: Qualitative results of Time-to-Move on various tasks.

ABSTRACT

Diffusion-based video generation can create realistic videos, yet existing image-
and text-based conditioning fails to offer precise motion control. Prior methods
for motion control typically rely on displacement-based conditioning and require
model-specific fine-tuning, which is computationally expensive and restrictive.
We introduce Time-to-Move (TTM), a training-free, plug-and-play framework for
motion- and appearance-controlled video generation with image-to-video (I2V)
diffusion models. Our key insight is to use crude reference animations, obtained
through user-friendly manipulations such as cut-and-drag or depth-based reprojec-
tion, as direct motion guidance, analogous to using coarse layout input in image
editing. To integrate these signals, we adapt SDEdit to the video domain while an-
choring the appearance with image conditioning. We further propose dual-clock
denoising, a region-dependent strategy that enforces strong alignment in motion-
specified regions and grants flexibility elsewhere, balancing fidelity to user intent
with natural dynamics. This lightweight modification of the sampling process in-
curs no additional training or runtime cost and is compatible with any backbone.
Extensive experiments on object and camera motion benchmarks show that TTM
matches or exceeds existing training-based baselines in realism and motion con-
trol. Beyond this, TTM introduces a unique capability: precise appearance con-
trol through pixel-level conditioning, exceeding the limits of text-only prompting.
Please visit our anonymous demo page.
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1 INTRODUCTION

Diffusion-based video generators have recently achieved remarkable visual quality, yet their control-
lability remains limited. Image-to-video (I2V) models partially alleviate this limitation by condition-
ing on a single input frame, which gives users direct control over the appearance of the generated
video. However, motion control remains largely prompt-driven which is often unreliable, coarse, and
insufficiently fine-grained for interactive use. To address this gap, a practical generative video sys-
tem should provide an interface that defines both what moves and where it moves, ensuring realistic,
temporally coherent motion while preserving the appearance of the input image. Such fine-grained
control would enable interactive content authoring, post-production, and animation prototyping,
where creators require precise, local adjustments with fast feedback. Existing approaches for con-
trollable motion in generation typically encode user intent through auxiliary control signals such as
optical flow and then heavily fine-tune a generator to ingest this motion conditioning (Burgert et al.,
2025; Geng et al., 2025). Such methods are computationally expensive to train, often compromise
the quality of the original model, and remain model-specific, requiring architectural modifications
to incorporate the controls. This motivates a framework that can be applied to off-the-shelf video
diffusion backbones without expensive tuning or additional data.

We introduce Time-to-Move (TTM), a training-free, architecture-agnostic, plug-and-play inference
procedure for video diffusion models that matches the speed of standard generation. We observe that
crude animation inputs, for instance, created by simple cut-and-drag manipulation or by straightfor-
ward reprojection of the image into novel views using estimated depth, can serve as a useful proxy
for the intended target. Such references capture coarse structure and convey the desired motion,
while remaining easy to generate and flexible enough to be made as specific or detailed as the user
wishes. To transform these crude signals into realistic videos, we draw on SDEdit (Meng et al.,
2021), which shows that coarse structure can be imposed by adding noise to the timestep where
the layout is determined. By analogy, we hypothesize that noising the synthetic reference video to
the point where motion is established by the video diffusion model can embed the intended dynam-
ics. Indeed, this strategy successfully injects motion, but at this noise level fidelity to the reference
appearance is lost. To mitigate this, we turn to image-conditioned video diffusion models, which
preserve the identity and scene details of the initial frame and thereby maintain appearance consis-
tency throughout the generated sequence.

Even with appearance preserved, motion cues remain uneven across regions. In the synthetic guiding
reference video, some regions, such as dragged objects, may contain strong user-specified dynamics,
while others remain unspecified. These unconstrained regions are not meant to stay static, but rather
to adapt naturally in support of the intended movement. This allows the model to adhere closely
to a specified motion where it exists while allowing greater freedom to invent plausible dynamics
elsewhere. To this end, we introduce a novel region-dependent dual-clock denoising process, which
assigns one of two distinct SDE timesteps to different regions across frames: strong alignment for
user-specified motion and weaker alignment for unconstrained areas, thus allowing spatially varying
conditioning strength. To realize this effect without retraining the model, we employ a simple yet
effective diffusion blending strategy akin to (Avrahami et al., 2022; Lugmayr et al., 2022).

Unlike prior approaches that rely solely on (either sparse or dense) displacement fields as a guiding
signal, our method is conditioned directly on the reference video itself. This provides a richer super-
visory signal: In regions where alignment is strongly enforced, we not only constrain motion, but
can also dictate appearance attributes such as color, shape, or style. As a result, TTM enables joint
control of motion and appearance, extending the conditioning space beyond flow-only interfaces.
We exploit this capability to support appearance-sensitive prompting in tandem with motion control,
for example, animating an object along a user-specified trajectory while simultaneously changing its
color (See Figure 7). In summary, our work makes the following contributions:

• Training-free motion control with crude animation. Simple user-provided animations (e.g.,
cut-and-drag or depth reprojection) act as effective motion proxies. Adapting SDEdit-style noise
injection to video diffusion, and anchoring appearance with image conditioning, transforms these
coarse signals into realistic motion without training.

• Region-dependent dual-clock denoising. We introduce a denoising process with two noise
schedules: strong alignment in motion-specified regions and weaker alignment elsewhere. This
dual-clock design provides spatially varying conditioning without retraining.
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• Joint motion–appearance control. Conditioning on full reference frames, rather than motion
trajectories alone, enables simultaneous control of motion and appearance, a capability previously
limited to ambiguous text prompting.

Extensive experiments show that TTM consistently ranks among the best performing methods on
both object and camera motion benchmarks, outperforming even training-based baselines. Our ap-
proach is training-free and plug-and-play, validated across three different I2V backbones, and is as
efficient as standard video sampling.

2 RELATED WORK

Learning Motion Control in Video Generation. A common strategy in motion control is to learn
a trajectory-conditioned representation and fuse it throughout the network. Concretely, methods in-
ject user trajectories via multi-scale fusion of trajectory maps in U-Net blocks (Yin et al., 2023),
parameter-efficient LoRA modules that decouple camera and object motion (Li et al., 2025b), or
motion-patch tokens integrated across transformer blocks (Zhang et al., 2025a); ATI encodes point
tracks as Gaussian-weighted latent features (Wang et al., 2025), TrackGo inserts auxiliary branches
into SVD’s temporal self-attention (Zhou et al., 2025; Blattmann et al., 2023), and MotionPro uses
region-wise trajectories plus a motion mask to distinguish object vs. camera motion (Zhang et al.,
2025b). Other methods, like ours, incorporate explicit motion-based cues rather than relying solely
on learned injection. DragAnything extracts entity representations from first-frame diffusion fea-
tures and injects trajectory conditioning via a ControlNet-style branch. Go-with-the-Flow (Burgert
et al., 2025), aligned with our architecture-agnostic aim, warps diffusion noise with optical flow;
unlike our method (and the approaches above), it additionally fine-tunes the base model so that
temporally correlated noise yields controllable motion.

Training-free motion-controllable video generation. Several approaches avoid additional train-
ing by reusing pretrained models. Recent text-to-video (T2V) attempts manipulate attention, Trail-
Blazer edits spatial and temporal attention early in denoising (Ma et al., 2024); PEEKABOO gates
regions with masked spatio-temporal attention (Jain et al., 2024); and FreeTraj adds low-frequency
noise shaping with attention biases to follow boxes (Qiu et al., 2024). However, these T2V methods
bind boxes to text, which cannot specify fine part-level motion, and do not allow precise appearance
control or in-place animation of a given image. Video-MSG (Li et al., 2025a) proposes a training-
free guidance scheme where an MLLM-generated video sketch is inverted to initialize the noise
of a T2V backbone, which is then denoised into the final video. Like TTM, it is training-free and
backbone-agnostic, but Video-MSG operates in a text-to-video setting, requires inversion, and uses
a single globally structured noise field shared across all spatial regions. In parallel to these ap-
proaches, motion transfer methods generate a video by applying motion from a driving sequence to
a still image, but require a suitable reference video (Jeong et al., 2024; Yatim et al., 2024; Pondaven
et al., 2025). Targeting I2V without reference videos, SG-I2V (Namekata et al., 2024) enforces
cross-frame consistency by replacing each frame’s spatial self-attention keys/values with those of
the first, then optimizes the latent with a box-restricted similarity loss, and re-injects high-frequency
detail via an FFT. Although zero-shot and conceptually aligned with our concept of aligning moved
objects to their first-frame representation, This method is demonstrated on SVD-specific layers, so
generality for other backbones is unclear; moreover, as shown in Sec. 4.1, it often induces un-
intended camera motion. Finally, (Yu et al., 2024) proposes a training-free trajectory-guided I2V
using gated self-attention for layout-conditioned control, temporal attention for propagation, and a
Motion Afterimage Suppression step. Its modular inpainting design inherits limitations—fidelity
tied to T2I inpainting and grounding tokens, heuristic handling of large displacements, while also
being designed for a specific video generation model.

Heterogeneous Denoising. Selective or asynchronous denoising has been explored in several
contexts. Kim et al. (2025) reformulate inpainting with element-wise noise schedules and spatial
timestep embedding, enabling region-asynchronous denoising while adapting a pretrained model
via LoRA. SVNR (Pearl et al., 2023) addresses spatially variant sensor noise by training with per-
pixel timesteps and starting the reverse process directly from the noisy input. Diffusion Forcing (DF)
introduces temporal heterogeneity by assigning each token (e.g., a video frame) its own noise level
during training, and at sampling uses a 2D scheduling matrix over time and noise levels so tokens
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Figure 2: Overview of Time-to-Move. Given an input image and a motion instruction, a mask
marks the region under strong control. A motion signal is then generated automatically and, together
with the image, conditions an image-to-video (I2V) diffusion model. During sampling, denoising
starts at different noise levels—lower inside the mask to enforce the specified motion, and higher
outside to allow natural deviations in the (typically static) background. Joint sampling then yields a
realistic video that preserves input details while accurately following the motion control.

are denoised at different rates (Chen et al., 2024). In contrast to RAD, SVNR, and DF, our approach
is training-free: We impose region-specific schedules directly at inference. RePaint (Lugmayr et al.,
2022) is also training-free, but repeatedly re-noises unmasked regions and denoises solely the mask,
so only part of the image is actively denoised. Our method heterogeneously denoises the entire
image, eliminating RePaint’s resampling loops since no region is excluded.

3 METHOD

Our goal is to enable precise motion control in generative video models. Inspired by SDEdit,
which injects coarse edits into images via noising and denoising, we treat a crude warped anima-
tion (Sec. 3.1) as the video analogue of such edits and adapt SDEdit to inject intended motion into
video diffusion (Sec. 3.2). To avoid the loss of identity that occurs when noising alone drives the
process, we opt for image conditioning, anchoring the generation to the clean first frame so that the
appearance is preserved throughout the sequence. Building on these foundations, we introduce a
novel dual-clock denoising process (Sec. 3.3) that assigns different noise levels to distinct regions,
allowing spatially varying motion guidance. An overview of these components is shown in Fig. 2.
Finally, our procedure naturally extends to appearance control, allowing simultaneous specification
of both dynamic and visual attributes.

Problem Formulation. Our method takes as input (i) a single image I ∈ R3×H×W , (ii) a coarse,
user-specified warped reference video with F frames, V w ∈ RF×3×H×W , and (iii) a binary mask
video M ∈ {0, 1}F×H×W indicating, for each frame, the regions where stronger appearance and
motion guidance are desired. The objective is to generate a realistic video x0 ∈ RF×3×H×W that
maintains fidelity to the input image while accurately following the prescribed motion.

3.1 MOTION SIGNAL

We begin by describing how the motion signal V w is generated. To facilitate user-friendly interac-
tion, the user selects a region in the first frame to produce an initial binary mask M0, then specifies
a coarse motion by dragging this region along a trajectory, yielding the sequence M . This defines a
piecewise-smooth displacement field within the masked region, which induces per-frame warps of
the input image. The warped video V w is obtained by warping I , with identity mapping outside the
mask, with further details explained in Sec. 5.1. Although presented here as dragging, both V wand
M can be constructed in multiple ways. For example, in Sec. 4.2 we show that V w can also be
produced by pixel-wise warping of the input image according to monocular depth estimation. As
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Figure 3: Region-dependent denoising strategies. SDEdit (single clock): low noise levels over-
constrain the video, suppressing non-masked region dynamics; high noise levels improve realism but
drift from the prescribed motion. RePaint (foreground override): motion is enforced in the object,
but uncontrolled regions exhibit artifacts such as duplication. Dual-clock (ours): masked regions
follow the intended motion with strong fidelity, while the background denoises more freely, yielding
realistic dynamics without artifacts.

demonstrated in our demo page, we support additional interactions, such as rotation and scaling
of the selected region, which integrate seamlessly into the same formulation. While such warped
animations are visually unrealistic, they faithfully capture the user-intended object placement and
temporal structure. We exploit these properties by using them as a guiding signal for the video dif-
fusion model during generation, and note that V w can also encode appearance modifications, such
as color changes, within the same framework.

3.2 SDEDIT ADAPTATION FOR MOTION INJECTION

A key observation of our approach is that unlike prior methods, which extract only flow fields from
warped videos (Burgert et al., 2025), we treat the warped video itself as the guiding signal. Inspired
by the role of strokes in image SDEdit (Meng et al., 2021), these crude animations provide a coarse
but explicit user instruction for motion. We therefore adapt SDEdit to the video setting by directly
using the warped animation V w as the guiding input. We initialize sampling from a noisy version
of the warped reference, xt∗ ∼ q(xt∗ | V w), Previous publication (Shaulov et al., 2025) shows that
coarse motion is determined early in the denoising trajectory; By noising V w to t∗, the intended dy-
namics are injected at precisely this stage. If we were to apply this procedure in a text-conditioned
video diffusion model, the fidelity to the input image would be quickly lost: The model’s only
knowledge of appearance comes from the noised V w, so fine details cannot be preserved. To over-
come this limitation, we instead opt for an image-conditioned video diffusion model, which anchors
generation to the clean first frame I . The resulting sampling process, x0 ∼ pθ(x0 | xt∗ , I), faith-
fully integrates the motion guidance from V w while preserving identity and appearance throughout
the generated sequence.

3.3 REGION-DEPENDENT DUAL-CLOCK DENOISING

SDEdit employs a single noising timestep t∗ to corrupt the reference signal before denoising. In our
setting, this creates a trade-off. The warped video V w contains regions where motion is explicitly
specified (masked areas), alongside regions without explicit instruction. For the masked regions, we
want the generated video to closely follow the prescribed motion. In unmasked areas, we do not
want them to stay static; instead, they should adapt naturally to support the motion. For example, in
Fig. 3, when the boat is cut and dragged to follow a trajectory, the wake of the boat should modify
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First
Frame

Last
Frame

Warped Ours (SVD) Drag Anything SGI2V MotionPro

Figure 4: Qualitative comparison on MC-Bench Competing methods exhibit artifacts (red),
whereas TTM achieves clean placement and appearance consistency.

Method Training
Free? CTD↓

BG–Obj
CTD↑

Dynamic
Degree↑

Subject
Consistency↑

Background
Consistency↑

Motion
Smoothness↑

Aesthetic
Quality↑

Imaging
Quality↑

SVD-Based Models

DragAnything ✗ 10.645 50.885 0.981 0.956 0.942 0.983 0.531 0.554
SG-I2V∗ ✓ 5.796 12.042 0.803 0.976 0.953 0.991 0.553 0.621
MotionPro ✗ 8.685 24.485 0.422 0.979 0.975 0.993 0.559 0.617
Ours ✓ 7.967 35.340 0.427 0.979 0.967 0.993 0.548 0.617

CogVideoX-Based Models with Longer Generated Videos

GWTFγ=0.7 ✗ 32.548 86.614 0.736 0.963 0.965 0.989 0.517 0.539
GWTFγ=0.5 ✗ 27.844 87.708 0.764 0.958 0.963 0.988 0.513 0.539
Ours ✓ 13.665 70.608 0.357 0.980 0.977 0.995 0.531 0.579

Table 1: Quantitative results on MC-Bench object motion control.

accordingly, even though it was not directly manipulated. With a single timestep, SDEdit cannot
accommodate this asymmetry. If t∗ is small, the denoised video adheres closely to the warped signal
but inherits artifacts such as frozen backgrounds (top row). If t∗ is large, the results look realistic but
drift away from the intended motion (second row). We therefore conjecture that different regions
require different effective noising levels: masked regions demand strong adherence to the motion
signal, achieved with less noising (tstrong), while unmasked regions benefit from weaker enforcement,
achieved with increased noising (tweak).

The challenge is that standard pretrained diffusion models assume inputs corrupted by a single uni-
form noise level cannot directly accommodate region-dependent noising, shifting the input distri-
bution off-manifold. To overcome this, we propose dual-clock denoising. Given a mask M , we
noise the warped video reference V w to timestep tweak and initialize the denoising process. At each
denoising step t with tstrong ≤ t < tweak, we override the masked region with the corresponding re-
gion of the warped video noised to t− 1. This constrains the masked regions to follow the intended
trajectory, while the background is free to denoise more aggressively and achieve realism. Once
t = tstrong, we stop overriding and continue the standard sampling process, allowing the model to re-
fine both regions for a coherent result. Let xt denote the noisy sample at timestep t, and x̂t−1(xt, t)
the denoiser prediction. T he update rule is

xt−1 ← (1−M)⊙ x̂t−1(xt, t, I) + M ⊙ xw
t−1,

where xw
t−1 is the warped reference video noised to timestep t− 1.

Efficiency and Applicability. Our method is a lightweight modification to standard sampling that
adds no extra computation over regular video diffusion and is in fact computationally faster than
vanilla inference, since TTM runs the core denoising process only up to tweak < T instead of all T
steps, while the remaining motion and masking operations incur negligible overhead. It is entirely
training-free and plug-and-play for image-conditioned I2V models; In experiments, it integrates
with three backbones, demonstrating broad applicability.
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Figure 5: Comparison on a challenging cut-and-drag example. GWTF exhibits strong artifacts
under large motion (right); TTM follows the prescribed motion realistically across various models.

Method MSE↓ FID↓ LPIPS↓ SSIM↑
CLIP

Cons.↑
Optical
flow↓

GWTFγ=0.5 0.033 25.990 0.371 0.526 0.981 76.714
GWTFγ=0.7 0.042 28.483 0.370 0.410 0.985 81.738
Warped 0.025 33.443 0.339 0.560 0.981 65.494
Ours 0.022 21.966 0.332 0.586 0.983 60.558

Table 2: Quantitative results on DL3DV camera motion control.

4 EXPERIMENTS

We evaluated TTM in three complementary settings: single-object motion control (Sec. 4.1), camera
motion control (Sec. 4.2), and joint motion–appearance editing (Sec. 4.3). These cover the primary
modes of user intent: animating a selected object, inducing global motion via viewpoint changes, and
modifying the appearance of scene elements. For the first two, we report quantitative benchmarks
and qualitative comparisons against state-of-the-art training-based and training-free baselines. For
appearance editing, where no standard benchmark exists, we present qualitative results highlighting
capabilities unique to our approach. We also demonstrate plug-and-play generality across multiple
I2V backbones (Sec. 4.4) and analyze the dual-clock schedule via ablations (App. A). Demonstra-
tions are included in anonymous demo page.

4.1 OBJECT MOTION CONTROL

We evaluate TTM for object-level motion control. The inputs are a single source image, a binary
mask of the target object, and a 2D trajectory defining the desired motion. We benchmark on MC-
Bench (Zhang et al., 2025b) under its official protocol. Notably, the benchmark masks are coarse
human-annotated brush regions rather than pixel-accurate segmentations, effectively simulating re-
alistic and noisy user-provided inputs. Further details of the evaluation protocol and implementation
are provided in App. D.1.

Baselines. We compare against both training-based methods—DragAnything (Wu et al., 2024),
MotionPro (Zhang et al., 2025b), and Go-With-the-Flow (GWTF) (Burgert et al., 2025)—and the
training-free SG-I2V (Namekata et al., 2024). Results are grouped by backbone: SVD (hybrid
conv/attention, ∼1.5B parameters) and CogVideoX (Diffusion Transformer, 5B parameters). We
apply our backbone-agnostic method to both architectures, denoting them as TTMSVD and TTMCog.
For fairness, we report GWTF with both recommended noise-degradation values (γ ∈ {0.5, 0.7}).
Metrics. We evaluate motion adherence and perceptual quality. For adherence, we use MC-Bench’s
CoTracker Distance (CTD) for object trajectories and BG–Obj CTD to detect unintended back-
ground co-motion. For perceptual quality, we adopt VBench (Huang et al., 2024), a reference-free
suite of automated video metrics. See App. D.1 for more details.

Results. Tab. 1 summarizes the results. Across both backbones, TTM attains the lowest CoTracker
distance (best adherence to the prescribed motion), excluding SG-I2V. On SVD, our VBench qual-
ity matches MotionPro, with minor metric trade-offs, and surpasses DragAnything and SG-I2V on
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Figure 6: Qualitative comparison of camera-motion control. GWTF drifts from the target camera
path, while TTM leverages the warped reference to enforce motion, yielding smooth, artifact-free
results beyond simple depth warping.

most measures. TTM’s dynamic degree is lower than DragAnything and SG-I2V: we attribute this
to DragAnything often inducing unintended scene motion and local deformations (Fig. 4), whereas
SG-I2V frequently triggers camera co-motion, moving the whole scene rather than just the object
(e.g., a rightward pan in the same figure, where the camera shifts right and the moon exits the
frame). This effect—also noted by Burgert et al. (2025)—is reflected in SG-I2V’s substantially
lower BG–Obj CTD, indicating strong object–background co-motion. On the CogVideoX back-
bone, TTM achieves substantially stronger adherence to motion conditioning and higher scores on
nearly all video-quality metrics compared to GWTF. The only exception is the “dynamic” score,
where GWTF reports higher values; however, these gains often come at the cost of scene defor-
mations and inconsistencies, as evident from the background- and subject-consistency metrics in
Tab. 1 and in Fig. 5. Overall, TTM exceeds the performance of both training-based and training-free
baselines on most metrics, while remaining entirely training-free.

Qualitative Examples. In Fig. 4, we present a representative example from the MC-Bench bench-
mark, using SVD as the common I2V backbone. Competing methods introduce noticeable artifacts
(highlighted in red), while our TTM produces clean foreground placement at the intended location
and preserves fidelity to the first-frame appearance. Additional videos and benchmark results are
provided in Fig. 5, in App. E and in our anonymous demo page.

4.2 CAMERA MOTION CONTROL

We evaluate TTM on synthesizing realistic videos from a single image under prescribed camera
motion. Following GWTF, we use a subset of DL3DV-10K (Ling et al., 2024), which contains
static-scene videos with per-frame camera annotations. From the first frame, we estimate metric
depth with DepthPro (Bochkovskii et al., 2025), back-project to a 3D point cloud, and reproject
along the prescribed motion to construct a reference video. Pixels that are not assigned a value by
the warp (i.e., holes) are filled by copying the color of the nearest valid warped pixel. The collection
of these inpainted pixels constitutes the mask M . We evaluate 150 sequences with 49 target views
each, comparing generated results against the original frames at the same viewpoints. Further details
appear in App. D.

Baselines. We benchmark against GWTF, the leading prior method for camera-motion control.
The protocol for constructing depth-based warped videos is identical to that used in our approach;
however, GWTF further extracts optical flow from them to synthesize noise warping.

Metrics. With ground-truth videos available, we evaluate frame-level alignment using MSE,
LPIPS (Zhang et al., 2018), and SSIM (Wang et al., 2004). Motion consistency is assessed by the
MSE between RAFT-estimated optical flows (Teed & Deng, 2020) of generated and ground-truth
videos. Distributional similarity is assessed with FID (Heusel et al., 2017) between all generated
and original frames. Temporal consistency is measured as the average CLIP (Radford et al., 2021)
cosine similarity between consecutive generated frames.

Results. We compare against baselines in Tab. 2, Fig. 6 and on our project webpage. Our method
delivers the best camera-motion control, outperforming baselines in motion fidelity and pixel qual-
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Object Addition

Warped Video Ours GWTF Warped Video Ours

Input Image

Warped Video Ours

Motion & Shape
Control

Input ImageMotion & Appearance
Control

Input Image

Figure 7: Joint motion and appearance control. TTM leverages a user-provided warped reference
to control both motion and per-pixel appearance in diverse tasks, with per-task details given in 4.3.

ity: vs. the best GWTF variant, pixel MSE drops by 33% and FID by 15.5%; optical-flow MSE
also decreases, indicating better temporal alignment across the scene.

Qualitative Examples. Fig. 6 compares TTM with GWTF on an input images and user-specified
camera trajectories. GWTF struggles with long motions as it relies on noise warping for scene con-
sistency and either drifts from the prescribed path. In contrast, TTM precisely follows the target
camera motion and preserves identity across frames, yielding smooth, realistic sequences. Depth
warping is shown as coarse guidance; TTM removes its tearing and holes while retaining the in-
tended motion. Additional results appear in App. E.2 and anonymous demo page.

4.3 APPEARANCE CONTROL

Beyond motion, TTM enables pixel-level appearance specification across the scene. By conditioning
on full reference frames, the crude animation constrains both where objects move and how they look.
Users can guide motion and evolving appearance jointly, without retraining or additional cost. In
contrast, prior methods rely on trajectories and text alone, limiting them to ambiguous appearance
changes. In Fig. 7 we illustrate three setups: (i) Motion and appearance control: a chameleon
follows a user-drawn trajectory while changing from green to purple. For comparison, GWTF is run
with optical flow and a text prompt describing the desired color (see App. D.3); our method preserves
both motion and appearance, whereas GWTF fails to satisfy both constraints. (ii) Object insertion:
conditioning on full frames allows adding new objects. We place a hat on a cowboy looking in a
mirror; the hat blends naturally into the scene and appears consistently in the reflection. (iii) Joint
motion and shape control: TTM preserves the intended graphic deformations while harmonizing
appearance with the scene as clouds are revealed.

4.4 PLUG-AND-PLAY MODEL ADAPTATION

With video generators evolving rapidly and parameter counts rising, adding motion control without
retraining becomes especially valuable. Beyond SVD and CogVideoX, TTM applies as is to any
image-to-video diffusion model. We demonstrate this on the recently released WAN 2.21 (14B
parameters) (Wan et al., 2025): with only a brief adaptation, TTM enables both local object control
and explicit camera-motion conditioning. In Figs. 1, 5, and 6, as well as on the demo page, we
present a set of challenging examples. By contrast, GWTF achieves motion control only after fine-
tuning CogVideoX-5B with warped-noise training, requiring ∼7,680 A100-80GB GPU-hours.

5 CUT-AND-DRAG GUI

To make Time-to-Move accessible beyond scripted experiments, we provide a lightweight “cut-and-
drag” user interface that, given an input image, creates the warped reference video and the mask

1https://github.com/Wan-Video/Wan2.2?tab=readme-ov-file
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video annotated by the user. Given an input frame, the user selects one or more objects by drawing
polygons around them, or by using a single click with Segment Anything (SAM) (Kirillov et al.,
2023) for automatic full-object masks. Each selected region can then be dragged over time in a
sequence of segments, with per-segment controls for rotation, uniform scaling, and simple hue-
based recoloring. The GUI interpolates these user-defined key poses into a crude warped animation
and automatically builds the corresponding binary mask sequence. External images can also be
imported and animated with the same cut-and-drag operations, enabling object insertion. Fig. 8
provides an illustration of the GUI’s workflow.

5.1 WARPING

We parameterize the motion in a forward manner, while rendering the warped video with standard
backward warping. Let M0 ∈ {0, 1}H×W be the initial object mask, either defined by the user using
the interactive GUI or taken directly from MC-Bench. The dragging interaction induces, for each
frame t ∈ {0, . . . , F − 1}, a 2D transform ϕt acting on pixel coordinates x ∈ R2. In the MC-Bench
setting this transform reduces to a pure translation with displacement ∆t ∈ R2,

ϕt(x) = x+∆t.

The warped guidance video is then obtained by sampling from the input image at inverse-
transformed coordinates,

V w
t (x) = I

(
ϕ−1
t (x)

)
,

for pixels belonging to the moving foreground, while background pixels retain their original value.
To handle occlusions and disocclusions, we remove the masked region from I and fill it once using
a simple nearest-neighbour inpainting procedure that propagates nearby background colors. The
moving foreground “sprite” extracted from I is then rendered at each frame t using ϕt and compos-
ited onto this background. For general interactive use, the same mechanism extends beyond pure
translation: rotation and uniform scaling correspond to using ϕt as a similarity transform rather than
just a shift, but the backward-warp-and-composite procedure remains unchanged. In practice, the
user specifies only a few key poses in the GUI, and the intermediate transforms ϕt are interpolated
so that the sprite motion and the resulting warped video evolve gradually.

6 CONCLUSIONS, LIMITATIONS AND FUTURE DIRECTIONS

We introduced a training-free framework for motion and appearance control in I2V diffusion mod-
els. By extending the SDEdit principle to videos, we treat warped reference animations as direct
motion guidance, while image conditioning preserves fidelity to the input. To balance strict ad-
herence in user-specified regions while enabling natural adaptation in the remaining regions, we
proposed region-dependent dual-clock denoising, a plug-and-play strategy that produces realistic
and faithful generations. Our method has several limitations. Although our framework adapts seam-
lessly to different I2V backbones, the dual-clock scheme still requires tuning of (tweak, tstrong) for
each model. Identity preservation is restricted to content visible in the first frame; objects entering
later cannot be anchored beyond what is implicitly recovered during denoising. Finally, our frame-
work requires full object masks when specifying motion, unlike some motion-prompting methods
that are explicitly trained to operate from partial markings. Nevertheless, our method remains ro-
bust to imperfect masks, as demonstrated in MC-Bench. For camera-motion control, as in other
recent free-form motion-control methods, our setup relies on an off-the-shelf monocular depth esti-
mator to successfully construct the crude 3D animation. Our framework accommodates extensions
beyond our current implementation. In particular, the dual-clock scheme could be generalized to
support multiple regions, soft masks, or smoother noise schedules, offering more fine-grained con-
trol. We leave richer appearance edits (e.g., stylistic transformations), exploration of alternative
warping schemes, articulated motion, and long-horizon video generation for future work.

7 ETHICS STATEMENT

We affirm adherence to the ICLR Code of Ethics. Our work uses publicly available benchmarks (e.g.,
MC-Bench, DL3DV) and author-crafted synthetic examples that were released for research; we did
not collect new personal data. Where underlying datasets may include human subjects, consent
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and licensing follow the original publications. We will release code and configuration sufficient to
reproduce results without redistributing third-party imagery.

Because our method enables fine-grained motion and appearance control, it could be misused to cre-
ate misleading or harmful content (e.g., deepfakes). We caution that deployments should follow eth-
ical standards and applicable laws, and we recommend safeguards such as provenance/watermarking
hooks, content filtering, and clear usage guidelines that prohibit impersonation and privacy viola-
tions. Outputs may reflect biases in upstream backbones and prompts; we avoid sensitive-attribute
claims and encourage task-specific bias checks before high-stakes use. The authors report no con-
flicts of interest. In the process of writing this paper, we used the aid of Large Language Models
(LLMs) to assist and polish writing.

8 REPRODUCIBILITY STATEMENT.

This work is fully reproducible. Our method is fully specified in Sec. 3, with evaluation protocols
in Sec. 4 and implementation details in App. D.1. We provide an anonymized code release for
the WAN 2.2 implementation in the supplementary materials, together with exemplar configuration
files. For SVD, CogVideoX, and other baselines we rely on publicly available checkpoints.
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A ABLATION STUDY: DUAL-CLOCK DENOISING

First
tick
(t1)

Second
tick
(t2)

CoTracker
distance

Dynamic
degree

Imaging
quality

tweak tweak 27.316 0.265 0.623
tstrong tstrong 5.528 0.353 0.620

T 0 2.954 0.411 0.578
tweak 0 2.923 0.404 0.576
tstrong 0 2.942 0.353 0.579

T tweak 29.399 0.254 0.622
T tstrong 9.228 0.430 0.615

tweak tstrong 7.967 0.427 0.617

Table 3: Dual-Clock Ablation.

We ablate the dual-clock denoising scheme, presented in
3.3, using the same evaluation protocol described in 4.1.
In TTM, the first tick tweak sets the initialization noise level
for sampling, while the second tick tstrong sets when we
stop overriding the masked part with the noisy warped ref-
erence; after this point, all pixels denoise together. For
this section, we evaluate this procedure under different set-
tings. In these experiments, we use different timing ticks,
denoting the first as t1 and the second as t2

The resulting behaviors under different settings, together
with their quantitative outcomes, are summarized below
and in Table 3:

Single-clock baseline (t1 = t2). This implies apply-
ing SDEdit on the warped video (tweak = tstrong). When
t1 = t2 = tweak, too little conditioning is induced: the Co-
Tracker distance is high, reflecting poor motion adherence.
When t1 = t2 = tstrong, non-masked regions become over-constrained to unintended motion, sup-
pressing dynamics (e.g., the background freezes); see Fig. 3, where the boat’s foam remains static
although the boat moves.

RePaint-style (t2 = 0). Here denoising occurs only outside the masked reference (equivalent to
RePaint). As expected, for any t1 the CoTracker distance drops sharply, since the warped masked
region is injected throughout denoising. However, this comes at the cost of Imaging quality: the
videos appear nearly perfect in motion adherence but unnatural overall, due to the lack of flexibility
inside the mask region.

Unconstrained background (t1 = T ). No constraint is applied to non-masked regions. For
t2 = tweak, motion is not enforced and the model tends to generate overly static videos. For
t2 = tstrong, performance improves, but tracking error remains unsatisfactory; in practice, this setup
often produces duplicate copies of the source object, which harms adherence.

Dual clock (ours). t1 = tweak, t2 = tstrong. This setting achieves the best overall trade-off, com-
bining strong motion-conditioning adherence (low CoTracker distance) with higher dynamic degree
and robust visual quality.

B ABLATION STUDY: MASK PERTURBATIONS

Morpholigcal
Operation

Kernel
Size

CoTracker
distance

Dynamic
degree

Imaging
quality

- - 7.967 0.427 0.617

Dilate 3 8.059 0.435 0.618
Dilate 5 8.527 0.425 0.618
Dilate 7 7.898 0.438 0.617

Erode 3 8.499 0.416 0.618
Erode 5 8.276 0.430 0.617
Erode 7 9.125 0.433 0.617

Table 4: Mask Perturbations Ablation.

Our object-control evaluation on MC-Bench in
Sec.4 implicitly measures robustness to inaccu-
rate masks: the dataset provides human-annotated
brush masks that are coarse, include background
regions, and often miss fine object details, rather
than pixel-accurate segmentations. To further vali-
date this, we add an experiment that explicitly per-
turbs the input masks and reports the resulting per-
formance, complementing the Sec. 4.1. We follow
the same experimental setup, but apply morpholog-
ical erosion and dilation with varying kernel sizes to
the MC-Bench masks, simulating under- and over-
segmented masks with different boundary charac-
teristics. As shown in Tab. 4, these perturbations
lead to only minor changes in all metrics, indicat-
ing that our method is robust to mask inaccuracies.
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C ABLATION STUDY: TIMESTEP SENSITIVITY

tweak tstrong
CoTracker
distance

Dynamic
degree

Imaging
quality

38 27 11.571 0.419 0.620
36 27 10.596 0.454 0.619
34 27 9.546 0.416 0.619
38 25 8.576 0.433 0.617

36 25 7.967 0.427 0.617

34 25 8.031 0.419 0.618
38 23 6.500 0.438 0.612
36 23 6.757 0.419 0.612
34 23 6.130 0.414 0.615

Table 5: Timestep Sensitivity Ablation.
The original experiment used tweak = 36 and
tstrong = 25

Tuning a small set of inference-time parameters is
a common requirement in diffusion-based meth-
ods, analogous to adjusting the guidance scale
in classifier-free guidance (CFG) (Ho & Sali-
mans, 2022) or selecting a timestep schedule in
SDEdit. To characterize the sensitivity of TTM to
its timestep parameters, we perform an ablation in
which we vary tweak and tstrong around their default
values on MC-Bench and measure the resulting per-
formance. As summarized in Tab. 5, smaller tstrong
values increase motion adherence and reduce the
CoTracker distance, but slightly degrade imaging
quality, as the object becomes more rigid and less
free to adapt. Conversely, larger tweak values (i.e.,
more initial noise) generally lead to a higher dy-
namic degree. Overall, the trends are smooth, and
our default settings lie in a stable operating regime
that provides a favorable trade-off between motion
control and visual fidelity.

D IMPLEMENTATION DETAILS

D.1 OBJECT MOTION CONTROL

This subsection complements Sec. 4.1 with concise protocol and implementation details:

• Single-Trajectory. To avoid ambiguity stemming from masks linked to multiple ob-
jects/trajectories in the original MC-Bench dataset, we restrict evaluation to single-
trajectory cases (over 91% of the dataset).

• Input handling. Inputs are resized to each model’s native size and padded to match as-
pect ratio; after generation, padding is removed and outputs are resized back. Exceptions:
MotionPro uses its original benchmark pipeline; DragAnything is run with its default input
handling (we observed best results without external resizing).

• Trajectory scaling: the 2D trajectory points are affinely transformed with the same resize-
and-pad mapping applied to the frames. After generation, we remove padding and invert
the scaling when mapping tracks back for evaluation, ensuring geometric consistency.

• Clip length. Standardized to 16 frames for SVD-based methods (as Zhang et al.
(2025b)) and 49 frames for CogVideoX-based methods. Concretely, SVD emits 14 or 25
frames—thus TTMSVD generates 25 and keeps the first 16; DragAnything emits 20 and we
keep the first 16; SG-I2V produces 14 and we evaluate the native 14-frame output, which
may be slightly favorable to its metrics. If the output has more frames than the provided
trajectory, we trim the trajectory to the target length.

• Pre/post-processing and prompts. SG-I2V is conditioned on bounding boxes rather than
masks, unlike the other methods. Therefore, following Burgert et al. (2025), we supply the
tight bounding box of the provided mask. For prompts, SVD-based methods are text-free,
while CogVideoX-based methods use the MC-Bench prompts.

• Mask resizing: Since both SVD and CogVideoX operate in a downsampled latent space,
we project the binary masks to the latent resolution with nearest-neighbor interpolation.
For SVD this is spatial-only; for CogVideoX also subsample in time to match temporal
compression (nearest-neighbor in time).

• Hyperparameters. All methods use T=50 denoising steps. For TTMSVD set
(tweak, tstrong) = (36, 25) and fix MotionPro’s motion bucket to 17 (as in their release).
For TTMCog use (46, 41). Other run-time settings follow each method’s defaults.
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• VBench. For CogVideoX-based 49-frame models, we use the long benchmark variant2.

• Dynamic Degree. VBench flags a clip as dynamic when the mean of the top 5% RAFT flow
magnitudes in a frame exceeds a resolution-scaled threshold α · min(H,W )

256 in at least 25% of
sampled frames. The default α=6.0, tuned for VBench’s source videos, is too strict for our
MC-Bench setting—predominantly static camera with small, localized motions—so nearly
all clips are marked static. We therefore set α = 3.5 (keeping the 25% rule unchanged),
which yields a more meaningful separation of dynamic vs. static.

• Background–Object CoTracker Distance (BG–Obj CTD). This metric measures
whether the background unintentionally moves together with the controlled object. We
run CoTracker on the generated video for both (i) the tracked object trajectory and (ii) a
uniform 16×16 grid of points sampled in the first frame. Let ot ∈ R2 denote the object’s
tracked position at frame t, and pj,t ∈ R2 the tracked position of grid point j at frame t.
We convert all tracks to displacements from frame 1: ∆ot = ot − o1, ∆pj,t = pj,t − pj,1.
For each frame t ≥ 2 and grid point j, we compute dj,t = ∥∆pj,t −∆ot∥2 (pixels). The
BG–Obj CTD is then the average over frames and grid points:

BG–Obj CTD =
1

(T − 1)J

T∑
t=2

J∑
j=1

dj,t.

Higher values indicate stronger object–background disentanglement (less co-motion).

D.2 CAMERA CONTROL ON DL3DV

This subsection provides additional details for Sec. 4.2. For our camera control experiments, we
use a subset of the DL3DV-10K dataset. The reference warped videos are created at a resolution of
960p using PyTorch3D.

We utilize the official DL3DV camera transition data and align the coordinate systems with a sign
flip of the z-axis and a flip of the camera pitch due to convention differences between PyTorch3D and
NerfStudio, which was used to create the DL3DV dataset. The point cloud is generated in the origi-
nal camera frame, with the camera extrinsics derived from parameter estimations and the estimated
transition of the first frame. To resolve the inherent depth ambiguity, we perform a binary search to
find the transition scale that maximizes the MSE alignment between the warped and original videos.
This aligns the transitions to a metric scale consistent with the output of DepthPro.

To select a robust subset for evaluation, we first filter out videos from the 10K subset with an es-
timated scale of less than 0.3, as these were found to exhibit minimal real camera movement. We
then select the 150 scenes with the lowest MSE loss between the warped and ground truth videos.
The masks used for the TTM process are generated by first marking pixels with no point cloud
contribution as regions denoised freely from tweak and all other pixels are regions denoised freely
from tstrong. To ensure only regions with dense point cloud data are used for guidance, we apply
a morphological ”open” operation to the mask using an kernel size of 5. This operation serves to
remove isolated noise and expand the non-guidance areas, resulting in a cleaner, more reliable mask.
For text guidance, we automatically generate a text prompt for each scene using GPT-4o (OpenAI,
2024), following CogVideoX’s protocol3.

D.3 APPEARANCE CONTROL

For the chameleon example demonstrating joint motion and appearance control, we use the prompt:
“A realistic video of a four-legged chameleon walking slowly and naturally from left to right along
a thick, textured vine in a lush jungle. Its limbs move in a coordinated, controlled reptilian gait as
it adjusts its body to the curve of the vine. The chameleon gradually changes color from green to
purple.”

2https://github.com/Vchitect/VBench/tree/master/vbench2_beta_long
3https://github.com/zai-org/CogVideo/blob/main/inference/convert_demo.

py
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E EXTRA QUALITATIVE COMPARISONS

For the video versions of the comparisons in this paper, as well as additional results, please visit our
anonymous demo page.

E.1 QUALITATIVE COMPARISONS FROM MC-BENCH

Following the experiment described in Sec. 4.1, we present additional results beyond those shown in
Fig. 4, further illustrating our method’s performance against leading approaches on the MC-Bench
dataset using the SVD backbone.
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E.2 QUALITATIVE COMPARISONS FROM DL3DV

Following the experiment described in Sec. 4.2, we present qualitative results for camera-motion
control on the DL3DV benchmark, comparing our method with GWTF given an input image, its
monocular depth estimate, and a depth-warped video. These examples demonstrate superior perfor-
mance in maintaining the intended camera motion and overall visual fidelity.
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F CHALLENGING USER-CREATED EXAMPLES

Generation. To produce the examples shown in Fig. 5, Fig. 6, and on the demo page, we collected
53 test cases, hand-crafted by users, spanning both object-motion and camera-motion control. For
each case, the initial reference frame was generated with Gemini (Comanici et al., 2025), and object-
control inputs were specified via a GUI adapted from the interface introduced in (Burgert et al.,
2025). We will publicly release these examples at a later date.

Additional Results As explained in Sec. 4.4, we leverage the plug-and-play nature of our method
to run on the recently released WAN2.2. Below we present additional “cut-and-drag” examples that
complement Fig. 5. These real-world cases illustrate scenarios in which the current state-of-the-art
baseline, GWTF, often struggles to produce coherent results.
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(1) Choose Image (2) Mark Polygong

(3) Drag (4) Rotate (5) Scale

(6) Final Crude Video

Figure 8: Example interaction with our cut-and-drag GUI. (1) The user selects an input image. (2)
A region (e.g., the monkey) is defined via a polygon. (3) The object is dragged to define a motion
segment. The final key pose is then refined by applying controls for (4) rotation and (5) uniform
scaling. (6) The GUI interpolates these key poses, automatically generating the warped video and
corresponding mask sequence, where the object gradually moves, rotates, and scales to its final
position; these serve as the final motion signal for the TTM framework.
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