

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TIME-TO-MOVE: TRAINING-FREE MOTION CONTROLLED VIDEO GENERATION VIA DUAL-CLOCK DENOISING

Anonymous authors

Paper under double-blind review

Figure 1: Qualitative results of Time-to-Move on various tasks.

ABSTRACT

Diffusion-based video generation can create realistic videos, yet existing image- and text-based conditioning fails to offer precise motion control. Prior methods for motion control typically rely on displacement-based conditioning and require model-specific fine-tuning, which is computationally expensive and restrictive. We introduce Time-to-Move (TTM), a training-free, plug-and-play framework for motion- and appearance-controlled video generation with image-to-video (I2V) diffusion models. Our key insight is to use crude reference animations, obtained through user-friendly manipulations such as cut-and-drag or depth-based reprojection, as direct motion guidance, analogous to using coarse layout input in image editing. To integrate these signals, we adapt SDEdit to the video domain while anchoring the appearance with image conditioning. We further propose *dual-clock denoising*, a region-dependent strategy that enforces strong alignment in motion-specified regions and grants flexibility elsewhere, balancing fidelity to user intent with natural dynamics. This lightweight modification of the sampling process incurs no additional training or runtime cost and is compatible with any backbone. Extensive experiments on object and camera motion benchmarks show that TTM matches or exceeds existing training-based baselines in realism and motion control. Beyond this, TTM introduces a unique capability: precise appearance control through pixel-level conditioning, exceeding the limits of text-only prompting. Please visit our [anonymous demo page](#).

054 1 INTRODUCTION

056 Diffusion-based video generators have recently achieved remarkable visual quality, yet their control-
 057 lability remains limited. Image-to-video (I2V) models partially alleviate this limitation by condition-
 058 ing on a single input frame, which gives users direct control over the appearance of the generated
 059 video. However, *motion* control remains largely prompt-driven which is often unreliable, coarse, and
 060 insufficiently fine-grained for interactive use. To address this gap, a practical generative video sys-
 061 tem should provide an interface that defines both *what* moves and *where* it moves, ensuring realistic,
 062 temporally coherent motion while preserving the appearance of the input image. Such fine-grained
 063 control would enable interactive content authoring, post-production, and animation prototyping,
 064 where creators require precise, local adjustments with fast feedback. Existing approaches for con-
 065 trollable motion in generation typically encode user intent through auxiliary control signals such as
 066 optical flow and then *heavily fine-tune* a generator to ingest this motion conditioning (Burgert et al.,
 067 2025; Geng et al., 2025). Such methods are computationally expensive to train, often compromise
 068 the quality of the original model, and remain model-specific, requiring architectural modifications
 069 to incorporate the controls. This motivates a framework that can be applied to *off-the-shelf* video
 070 diffusion backbones without expensive tuning or additional data.

071 We introduce Time-to-Move (TTM), a *training-free*, architecture-agnostic, plug-and-play inference
 072 procedure for video diffusion models that matches the speed of standard generation. We observe that
 073 crude animation inputs, for instance, created by simple cut-and-drag manipulation or by straightfor-
 074 ward reprojection of the image into novel views using estimated depth, can serve as a useful proxy
 075 for the intended target. Such references capture coarse structure and convey the desired motion,
 076 while remaining easy to generate and flexible enough to be made as specific or detailed as the user
 077 wishes. To transform these crude signals into realistic videos, we draw on *SDEdit* (Meng et al.,
 078 2021), which shows that coarse structure can be imposed by adding noise to the timestep where
 079 the layout is determined. By analogy, we hypothesize that noising the synthetic reference video to
 080 the point where *motion* is established by the video diffusion model can embed the intended dynam-
 081 ics. Indeed, this strategy successfully injects motion, but at this noise level fidelity to the reference
 082 appearance is lost. To mitigate this, we turn to *image*-conditioned video diffusion models, which
 083 preserve the identity and scene details of the initial frame and thereby maintain appearance consis-
 084 tency throughout the generated sequence.

084 Even with appearance preserved, motion cues remain uneven across regions. In the synthetic guiding
 085 reference video, some regions, such as dragged objects, may contain strong user-specified dynamics,
 086 while others remain unspecified. These unconstrained regions are not meant to stay static, but rather
 087 to adapt naturally in support of the intended movement. This allows the model to adhere closely
 088 to a specified motion where it exists while allowing greater freedom to invent plausible dynamics
 089 elsewhere. To this end, we introduce a novel *region-dependent dual-clock denoising process*, which
 090 assigns one of two distinct SDE timesteps to different regions across frames: strong alignment for
 091 user-specified motion and weaker alignment for unconstrained areas, thus allowing spatially varying
 092 conditioning strength. To realize this effect without retraining the model, we employ a simple yet
 093 effective diffusion blending strategy akin to (Avrahami et al., 2022; Lugmayr et al., 2022).

094 Unlike prior approaches that rely solely on (either sparse or dense) displacement fields as a guiding
 095 signal, our method is conditioned directly on the reference video itself. This provides a richer super-
 096 visory signal: In regions where alignment is strongly enforced, we not only constrain motion, but
 097 can also dictate appearance attributes such as color, shape, or style. As a result, TTM enables *joint*
 098 *control of motion and appearance*, extending the conditioning space beyond flow-only interfaces.
 099 We exploit this capability to support appearance-sensitive prompting in tandem with motion control,
 100 for example, animating an object along a user-specified trajectory while simultaneously changing its
 101 color (See Figure 7). In summary, our work makes the following contributions:

- 102 • **Training-free motion control with crude animation.** Simple user-provided animations (e.g.,
 103 cut-and-drag or depth reprojection) act as effective motion proxies. Adapting SDEdit-style noise
 104 injection to video diffusion, and anchoring appearance with image conditioning, transforms these
 105 coarse signals into realistic motion without training.
- 106 • **Region-dependent dual-clock denoising.** We introduce a denoising process with two noise
 107 schedules: strong alignment in motion-specified regions and weaker alignment elsewhere. This
 108 dual-clock design provides spatially varying conditioning without retraining.

108 • **Joint motion–appearance control.** Conditioning on full reference frames, rather than motion
 109 trajectories alone, enables simultaneous control of motion and appearance, a capability previously
 110 limited to ambiguous text prompting.

111 Extensive experiments show that TTM consistently ranks among the best performing methods on
 112 both object and camera motion benchmarks, outperforming even training-based baselines. Our
 113 approach is training-free and plug-and-play, validated across three different I2V backbones, and is as
 114 efficient as standard video sampling.

117 2 RELATED WORK

119 **Learning Motion Control in Video Generation.** A common strategy in motion control is to *learn*
 120 a trajectory-conditioned representation and fuse it throughout the network. Concretely, methods in-
 121 ject user trajectories via multi-scale fusion of trajectory maps in U-Net blocks (Yin et al., 2023),
 122 parameter-efficient LoRA modules that decouple camera and object motion (Li et al., 2025b), or
 123 motion-patch tokens integrated across transformer blocks (Zhang et al., 2025a); ATI encodes point
 124 tracks as Gaussian-weighted latent features (Wang et al., 2025), TrackGo inserts auxiliary branches
 125 into SVD’s temporal self-attention (Zhou et al., 2025; Blattmann et al., 2023), and MotionPro uses
 126 region-wise trajectories plus a motion mask to distinguish object vs. camera motion (Zhang et al.,
 127 2025b). Other methods, like ours, incorporate explicit motion-based cues rather than relying solely
 128 on learned injection. DragAnything extracts entity representations from first-frame diffusion fea-
 129 tures and injects trajectory conditioning via a ControlNet-style branch. Go-with-the-Flow (Burkart
 130 et al., 2025), aligned with our architecture-agnostic aim, warps diffusion noise with optical flow;
 131 unlike our method (and the approaches above), it additionally fine-tunes the base model so that
 132 temporally correlated noise yields controllable motion.

133 **Training-free motion-controllable video generation.** Several approaches avoid additional training
 134 by reusing pretrained models. Recent *text-to-video* (T2V) attempts manipulate attention, Trail-
 135 Blazer edits spatial and temporal attention early in denoising (Ma et al., 2024); PEEKABOO gates
 136 regions with masked spatio-temporal attention (Jain et al., 2024); and FreeTraj adds low-frequency
 137 noise shaping with attention biases to follow boxes (Qiu et al., 2024). However, these T2V methods
 138 bind boxes to text, which cannot specify fine part-level motion, and do not allow precise appearance
 139 control or in-place animation of a given image. **Video-MSG** (Li et al., 2025a) proposes a *training-
 140 free guidance scheme where an MLLM-generated video sketch is inverted to initialize the noise
 141 of a T2V backbone, which is then denoised into the final video. Like TTM, it is training-free and
 142 backbone-agnostic, but Video-MSG operates in a text-to-video setting, requires inversion, and uses
 143 a single globally structured noise field shared across all spatial regions.* In parallel to these ap-
 144 proaches, motion *transfer* methods generate a video by applying motion from a driving sequence to
 145 a still image, but require a suitable reference video (Jeong et al., 2024; Yatim et al., 2024; Pondaven
 146 et al., 2025). Targeting I2V without reference videos, SG-I2V (Namekata et al., 2024) enforces
 147 cross-frame consistency by replacing each frame’s spatial self-attention keys/values with those of
 148 the first, then optimizes the latent with a box-restricted similarity loss, and re-injects high-frequency
 149 detail via an FFT. Although zero-shot and conceptually aligned with our concept of aligning moved
 150 objects to their first-frame representation, This method is demonstrated on SVD-specific layers, so
 151 generality for other backbones is unclear; moreover, as shown in Sec. 4.1, it often induces un-
 152 intended camera motion. Finally, (Yu et al., 2024) proposes a training-free trajectory-guided I2V
 153 using gated self-attention for layout-conditioned control, temporal attention for propagation, and a
 154 Motion Afterimage Suppression step. Its modular inpainting design inherits limitations—fidelity
 155 tied to T2I inpainting and grounding tokens, heuristic handling of large displacements, while also
 156 being designed for a specific video generation model.

157 **Heterogeneous Denoising.** Selective or asynchronous denoising has been explored in several
 158 contexts. Kim et al. (2025) reformulate inpainting with element-wise noise schedules and spatial
 159 timestep embedding, enabling region-asynchronous denoising while adapting a pretrained model
 160 via LoRA. SVNR (Pearl et al., 2023) addresses spatially variant sensor noise by training with per-
 161 pixel timesteps and starting the reverse process directly from the noisy input. Diffusion Forcing (DF)
 162 introduces temporal heterogeneity by assigning each token (e.g., a video frame) its own noise level
 163 during training, and at sampling uses a 2D scheduling matrix over time and noise levels so tokens

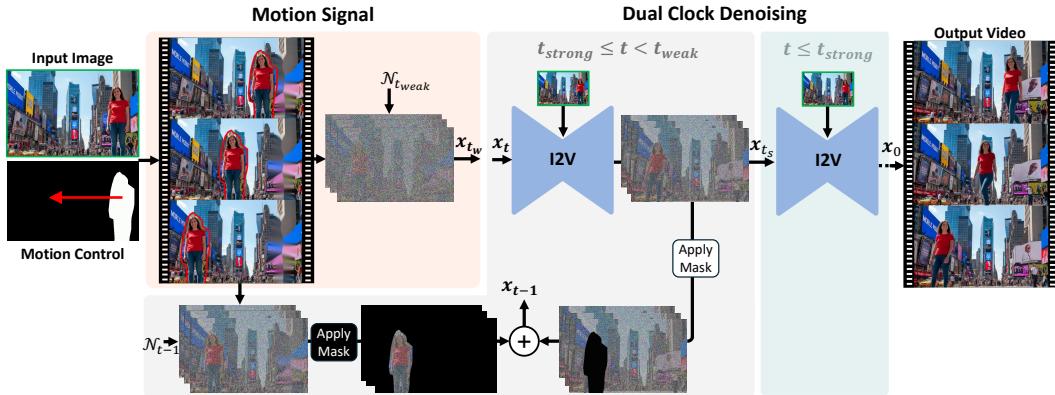


Figure 2: **Overview of Time-to-Move.** Given an input image and a motion instruction, a mask marks the region under strong control. A motion signal is then generated automatically and, together with the image, conditions an image-to-video (I2V) diffusion model. During sampling, denoising starts at different noise levels—lower inside the mask to enforce the specified motion, and higher outside to allow natural deviations in the (typically static) background. Joint sampling then yields a realistic video that preserves input details while accurately following the motion control.

are denoised at different rates (Chen et al., 2024). In contrast to RAD, SVNR, and DF, our approach is training-free: We impose region-specific schedules directly at inference. RePaint (Lugmayr et al., 2022) is also training-free, but repeatedly re-noises unmasked regions and denoises solely the mask, so only part of the image is actively denoised. Our method heterogeneously denoises the entire image, eliminating RePaint’s resampling loops since no region is excluded.

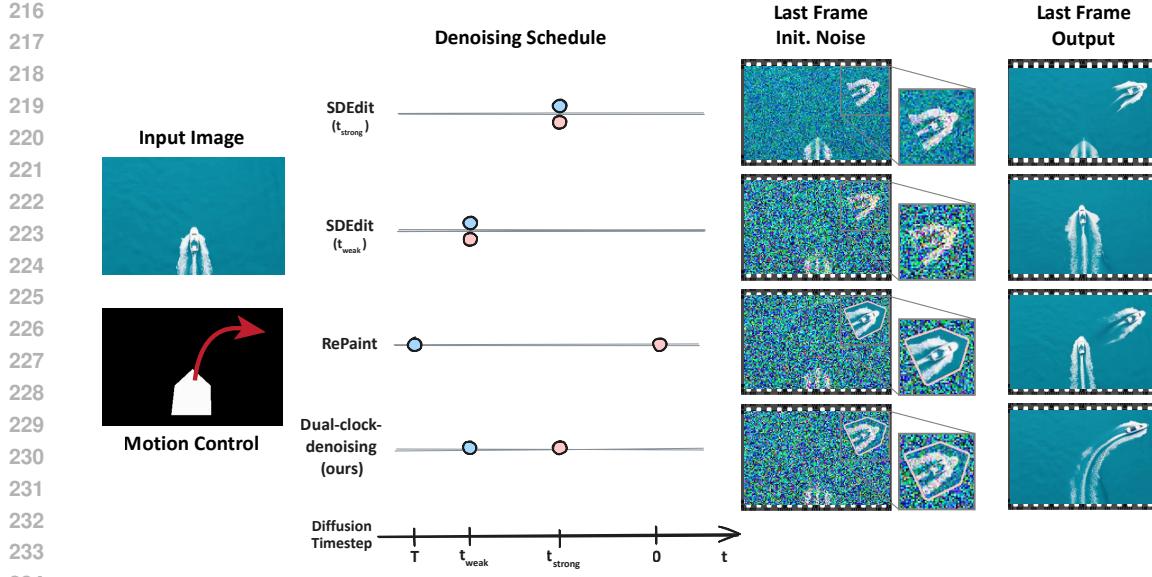
3 METHOD

Our goal is to enable precise motion control in generative video models. Inspired by *SDEdit*, which injects coarse edits into images via noising and denoising, we treat a crude warped animation (Sec. 3.1) as the video analogue of such edits and adapt *SDEdit* to inject intended motion into video diffusion (Sec. 3.2). To avoid the loss of identity that occurs when noising alone drives the process, we opt for *image conditioning*, anchoring the generation to the clean first frame so that the appearance is preserved throughout the sequence. Building on these foundations, we introduce a novel dual-clock denoising process (Sec. 3.3) that assigns different noise levels to distinct regions, allowing spatially varying motion guidance. An overview of these components is shown in Fig. 2. Finally, our procedure naturally extends to appearance control, allowing simultaneous specification of both dynamic and visual attributes.

Problem Formulation. Our method takes as input (i) a single image $I \in \mathbb{R}^{3 \times H \times W}$, (ii) a coarse, user-specified warped reference video with F frames, $V^w \in \mathbb{R}^{F \times 3 \times H \times W}$, and (iii) a binary mask video $M \in \{0, 1\}^{F \times H \times W}$ indicating, for each frame, the regions where stronger appearance and motion guidance are desired. The objective is to generate a realistic video $x_0 \in \mathbb{R}^{F \times 3 \times H \times W}$ that maintains fidelity to the input image while accurately following the prescribed motion.

3.1 MOTION SIGNAL

We begin by describing how the motion signal V^w is generated. To facilitate user-friendly interaction, the user selects a region in the first frame to produce an initial binary mask M_0 , then specifies a coarse motion by dragging this region along a trajectory, yielding the sequence M . This defines a piecewise-smooth displacement field within the masked region, which induces per-frame warps of the input image. The warped video V^w is obtained by warping I , with identity mapping outside the mask, **with further details explained in Sec. 5.1**. Although presented here as dragging, both V^w and M can be constructed in multiple ways. For example, in Sec. 4.2 we show that V^w can also be produced by pixel-wise warping of the input image according to monocular depth estimation. As



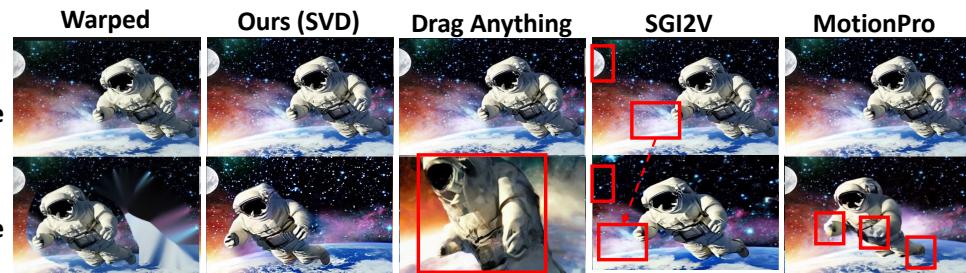


Figure 4: **Qualitative comparison on MC-Bench** Competing methods exhibit artifacts (red), whereas TTM achieves clean placement and appearance consistency.

Method	Training Free?	CTD _↓	BG-Obj CTD _↑	Dynamic Degree _↑	Subject Consistency _↑	Background Consistency _↑	Motion Smoothness _↑	Aesthetic Quality _↑	Imaging Quality _↑
<i>SVD-Based Models</i>									
DragAnything	✗	10.645	50.885	0.981	0.956	0.942	0.983	0.531	0.554
SG-I2V*	✓	5.796	12.042	0.803	0.976	0.953	0.991	0.553	0.621
MotionPro	✗	8.685	24.485	0.422	0.979	0.975	0.993	0.559	0.617
Ours	✓	7.967	35.340	0.427	0.979	0.967	0.993	0.548	0.617
<i>CogVideoX-Based Models with Longer Generated Videos</i>									
GWTF _{γ=0.7}	✗	32.548	86.614	0.736	0.963	0.965	0.989	0.517	0.539
GWTF _{γ=0.5}	✗	27.844	87.708	0.764	0.958	0.963	0.988	0.513	0.539
Ours	✓	13.665	70.608	0.357	0.980	0.977	0.995	0.531	0.579

Table 1: **Quantitative results on MC-Bench object motion control.**

accordingly, even though it was not directly manipulated. With a single timestep, SDEdit cannot accommodate this asymmetry. If t^* is small, the denoised video adheres closely to the warped signal but inherits artifacts such as frozen backgrounds (top row). If t^* is large, the results look realistic but drift away from the intended motion (second row). We therefore conjecture that different regions require different effective noising levels: masked regions demand *strong adherence* to the motion signal, achieved with less noising (t_{strong}), while unmasked regions benefit from *weaker enforcement*, achieved with increased noising (t_{weak}).

The challenge is that standard pretrained diffusion models assume inputs corrupted by a single uniform noise level cannot directly accommodate region-dependent noising, shifting the input distribution off-manifold. To overcome this, we propose *dual-clock denoising*. Given a mask M , we noise the warped video reference V^w to timestep t_{weak} and initialize the denoising process. At each denoising step t with $t_{\text{strong}} \leq t < t_{\text{weak}}$, we override the masked region with the corresponding region of the warped video noised to $t - 1$. This constrains the masked regions to follow the intended trajectory, while the background is free to denoise more aggressively and achieve realism. Once $t = t_{\text{strong}}$, we stop overriding and continue the standard sampling process, allowing the model to refine both regions for a coherent result. Let x_t denote the noisy sample at timestep t , and $\hat{x}_{t-1}(x_t, t)$ the denoiser prediction. The update rule is

$$x_{t-1} \leftarrow (1 - M) \odot \hat{x}_{t-1}(x_t, t, I) + M \odot x_{t-1}^w,$$

where x_{t-1}^w is the warped reference video noised to timestep $t - 1$.

Efficiency and Applicability. Our method is a lightweight modification to standard sampling that adds no extra computation over regular video diffusion and is in fact computationally faster than vanilla inference, since TTM runs the core denoising process only up to $t_{\text{weak}} < T$ instead of all T steps, while the remaining motion and masking operations incur negligible overhead. It is entirely training-free and plug-and-play for image-conditioned I2V models; In experiments, it integrates with three backbones, demonstrating broad applicability.

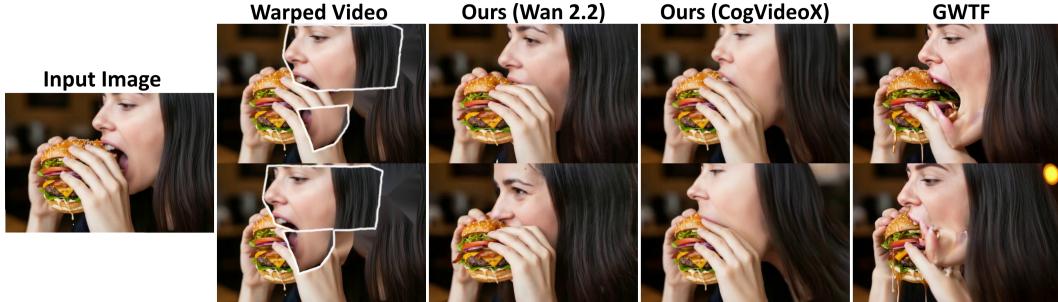


Figure 5: **Comparison on a challenging cut-and-drag example.** GWTF exhibits strong artifacts under large motion (right); TTM follows the prescribed motion realistically across various models.

Method	MSE \downarrow	FID \downarrow	LPIPS \downarrow	SSIM \uparrow	CLIP Cons. \uparrow	Optical flow \downarrow
GWTF $_{\gamma=0.5}$	0.033	25.990	0.371	0.526	0.981	76.714
GWTF $_{\gamma=0.7}$	0.042	28.483	0.370	0.410	0.985	81.738
Warped	0.025	33.443	0.339	0.560	0.981	65.494
Ours	0.022	21.966	0.332	0.586	0.983	60.558

Table 2: **Quantitative results on DL3DV camera motion control.**

4 EXPERIMENTS

We evaluated TTM in three complementary settings: single-object motion control (Sec. 4.1), camera motion control (Sec. 4.2), and joint motion–appearance editing (Sec. 4.3). These cover the primary modes of user intent: animating a selected object, inducing global motion via viewpoint changes, and modifying the appearance of scene elements. For the first two, we report quantitative benchmarks and qualitative comparisons against state-of-the-art training-based and training-free baselines. For appearance editing, where no standard benchmark exists, we present qualitative results highlighting capabilities unique to our approach. We also demonstrate plug-and-play generality across multiple I2V backbones (Sec. 4.4) and analyze the dual-clock schedule via ablations (App. A). Demonstrations are included in [anonymous demo page](#).

4.1 OBJECT MOTION CONTROL

We evaluate TTM for object-level motion control. The inputs are a single source image, a binary mask of the target object, and a 2D trajectory defining the desired motion. We benchmark on MC-Bench (Zhang et al., 2025b) under its official protocol. **Notably, the benchmark masks are coarse human-annotated brush regions rather than pixel-accurate segmentations, effectively simulating realistic and noisy user-provided inputs.** Further details of the evaluation protocol and implementation are provided in App. D.1.

Baselines. We compare against both training-based methods—DragAnything (Wu et al., 2024), MotionPro (Zhang et al., 2025b), and Go-With-the-Flow (GWTF) (Burgert et al., 2025)—and the training-free SG-I2V (Namekata et al., 2024). Results are grouped by backbone: SVD (hybrid conv/attention, ~ 1.5 B parameters) and CogVideoX (Diffusion Transformer, 5B parameters). We apply our backbone-agnostic method to both architectures, denoting them as TTM_{SVD} and TTM_{Cog}. For fairness, we report GWTF with both recommended noise-degradation values ($\gamma \in \{0.5, 0.7\}$).

Metrics. We evaluate motion adherence and perceptual quality. For adherence, we use MC-Bench’s CoTracker Distance (CTD) for object trajectories and BG–Obj CTD to detect unintended background co-motion. For perceptual quality, we adopt VBench (Huang et al., 2024), a reference-free suite of automated video metrics. See App. D.1 for more details.

Results. Tab. 1 summarizes the results. Across both backbones, TTM attains the lowest CoTracker distance (best adherence to the prescribed motion), excluding SG-I2V. On SVD, our VBench quality matches MotionPro, with minor metric trade-offs, and surpasses DragAnything and SG-I2V on

Figure 6: **Qualitative comparison of camera-motion control.** GWTF drifts from the target camera path, while TTM leverages the warped reference to enforce motion, yielding smooth, artifact-free results beyond simple depth warping.

most measures. TTM’s dynamic degree is lower than DragAnything and SG-I2V: we attribute this to DragAnything often inducing unintended scene motion and local deformations (Fig. 4), whereas SG-I2V frequently triggers camera co-motion, moving the whole scene rather than just the object (e.g., a rightward pan in the same figure, where the camera shifts right and the moon exits the frame). This effect—also noted by Burgert et al. (2025)—is reflected in SG-I2V’s substantially lower BG-Obj CTD, indicating strong object–background co-motion. On the CogVideoX backbone, TTM achieves substantially stronger adherence to motion conditioning and higher scores on nearly all video-quality metrics compared to GWTF. The only exception is the “dynamic” score, where GWTF reports higher values; however, these gains often come at the cost of scene deformations and inconsistencies, as evident from the background- and subject-consistency metrics in Tab. 1 and in Fig. 5. Overall, TTM exceeds the performance of both training-based and training-free baselines on most metrics, while remaining entirely training-free.

Qualitative Examples. In Fig. 4, we present a representative example from the MC-Bench benchmark, using SVD as the common I2V backbone. Competing methods introduce noticeable artifacts (highlighted in red), while our TTM produces clean foreground placement at the intended location and preserves fidelity to the first-frame appearance. Additional videos and benchmark results are provided in Fig. 5, in App. E and in our [anonymous demo page](#).

4.2 CAMERA MOTION CONTROL

We evaluate TTM on synthesizing realistic videos from a single image under prescribed camera motion. Following GWTF, we use a subset of DL3DV-10K (Ling et al., 2024), which contains static-scene videos with per-frame camera annotations. From the first frame, we estimate metric depth with DepthPro (Bochkovskii et al., 2025), back-project to a 3D point cloud, and reproject along the prescribed motion to construct a reference video. **Pixels that are not assigned a value by the warp (i.e., holes) are filled by copying the color of the nearest valid warped pixel. The collection of these inpainted pixels constitutes the mask M .** We evaluate 150 sequences with 49 target views each, comparing generated results against the original frames at the same viewpoints. Further details appear in App. D.

Baselines. We benchmark against GWTF, the leading prior method for camera-motion control. The protocol for constructing depth-based warped videos is identical to that used in our approach; however, GWTF further extracts optical flow from them to synthesize noise warping.

Metrics. With ground-truth videos available, we evaluate frame-level alignment using MSE, LPIPS (Zhang et al., 2018), and SSIM (Wang et al., 2004). Motion consistency is assessed by the MSE between RAFT-estimated optical flows (Teed & Deng, 2020) of generated and ground-truth videos. Distributional similarity is assessed with FID (Heusel et al., 2017) between all generated and original frames. Temporal consistency is measured as the average CLIP (Radford et al., 2021) cosine similarity between consecutive generated frames.

Results. We compare against baselines in Tab. 2, Fig. 6 and on our project webpage. Our method delivers the best camera-motion control, outperforming baselines in motion fidelity and pixel qual-

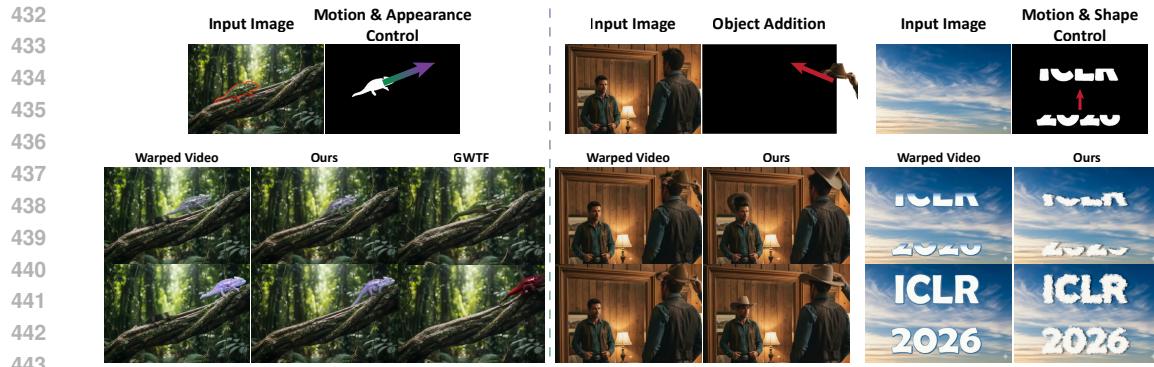


Figure 7: **Joint motion and appearance control.** TTM leverages a user-provided warped reference to control both motion and per-pixel appearance in diverse tasks, with per-task details given in 4.3.

ity: vs. the best GWTF variant, pixel MSE drops by **33%** and FID by **15.5%**; optical-flow MSE also decreases, indicating better temporal alignment across the scene.

Qualitative Examples. Fig. 6 compares TTM with GWTF on an input images and user-specified camera trajectories. GWTF struggles with long motions as it relies on noise warping for scene consistency and either drifts from the prescribed path. In contrast, TTM precisely follows the target camera motion and preserves identity across frames, yielding smooth, realistic sequences. Depth warping is shown as coarse guidance; TTM removes its tearing and holes while retaining the intended motion. Additional results appear in App. E.2 and [anonymous demo page](#).

4.3 APPEARANCE CONTROL

Beyond motion, TTM enables pixel-level appearance specification across the scene. By conditioning on full reference frames, the crude animation constrains both *where* objects move and *how* they look. Users can guide motion and evolving appearance jointly, without retraining or additional cost. In contrast, prior methods rely on trajectories and text alone, limiting them to ambiguous appearance changes. In Fig. 7 we illustrate three setups: (i) *Motion and appearance control*: a chameleon follows a user-drawn trajectory while changing from green to purple. For comparison, GWTF is run with optical flow and a text prompt describing the desired color (see App. D.3); our method preserves both motion and appearance, whereas GWTF fails to satisfy both constraints. (ii) *Object insertion*: conditioning on full frames allows adding new objects. We place a hat on a cowboy looking in a mirror; the hat blends naturally into the scene and appears consistently in the reflection. (iii) *Joint motion and shape control*: TTM preserves the intended graphic deformations while harmonizing appearance with the scene as clouds are revealed.

4.4 PLUG-AND-PLAY MODEL ADAPTATION

With video generators evolving rapidly and parameter counts rising, adding motion control *without retraining* becomes especially valuable. Beyond SVD and CogVideoX, TTM applies *as is* to any image-to-video diffusion model. We demonstrate this on the recently released WAN 2.2¹ (14B parameters) (Wan et al., 2025): with only a brief adaptation, TTM enables both local object control and explicit camera-motion conditioning. In Figs. 1, 5, and 6, as well as on the [demo page](#), we present a set of challenging examples. By contrast, GWTF achieves motion control only after fine-tuning CogVideoX-5B with warped-noise training, requiring $\sim 7,680$ A100-80GB GPU-hours.

5 CUT-AND-DRAG GUI

To make Time-to-Move accessible beyond scripted experiments, we provide a lightweight “cut-and-drag” user interface that, given an input image, creates the warped reference video and the mask

¹<https://github.com/Wan-Video/Wan2.2?tab=readme-ov-file>

486 video annotated by the user. Given an input frame, the user selects one or more objects by drawing
 487 polygons around them, or by using a single click with Segment Anything (SAM) (Kirillov et al.,
 488 2023) for automatic full-object masks. Each selected region can then be dragged over time in a
 489 sequence of segments, with per-segment controls for rotation, uniform scaling, and simple hue-
 490 based recoloring. The GUI interpolates these user-defined key poses into a crude warped animation
 491 and automatically builds the corresponding binary mask sequence. External images can also be
 492 imported and animated with the same cut-and-drag operations, enabling object insertion. Fig. 8
 493 provides an illustration of the GUI’s workflow.

494

495 5.1 WARPING

496

497 We parameterize the motion in a forward manner, while rendering the warped video with standard
 498 backward warping. Let $M_0 \in \{0, 1\}^{H \times W}$ be the initial object mask, either defined by the user using
 499 the interactive GUI or taken directly from MC-Bench. The dragging interaction induces, for each
 500 frame $t \in \{0, \dots, F-1\}$, a 2D transform ϕ_t acting on pixel coordinates $x \in \mathbb{R}^2$. In the MC-Bench
 501 setting this transform reduces to a pure translation with displacement $\Delta_t \in \mathbb{R}^2$,

502

$$\phi_t(x) = x + \Delta_t.$$

503

The warped guidance video is then obtained by sampling from the input image at inverse-
 504 transformed coordinates,

505

$$V_t^w(x) = I(\phi_t^{-1}(x)),$$

506

507 for pixels belonging to the moving foreground, while background pixels retain their original value.
 508 To handle occlusions and disocclusions, we remove the masked region from I and fill it once using
 509 a simple nearest-neighbour inpainting procedure that propagates nearby background colors. The
 510 moving foreground “sprite” extracted from I is then rendered at each frame t using ϕ_t and compos-
 511 ed onto this background. For general interactive use, the same mechanism extends beyond pure
 512 translation: rotation and uniform scaling correspond to using ϕ_t as a similarity transform rather than
 513 just a shift, but the backward-warp-and-composite procedure remains unchanged. In practice, the
 514 user specifies only a few key poses in the GUI, and the intermediate transforms ϕ_t are interpolated
 515 so that the sprite motion and the resulting warped video evolve gradually.

516

556 6 CONCLUSIONS, LIMITATIONS AND FUTURE DIRECTIONS

567

We introduced a training-free framework for motion and appearance control in I2V diffusion models. By extending the SDEdit principle to videos, we treat warped reference animations as direct motion guidance, while image conditioning preserves fidelity to the input. To balance strict adherence in user-specified regions while enabling natural adaptation in the remaining regions, we proposed region-dependent dual-clock denoising, a plug-and-play strategy that produces realistic and faithful generations. Our method has several limitations. Although our framework adapts seamlessly to different I2V backbones, the dual-clock scheme still requires tuning of $(t_{\text{weak}}, t_{\text{strong}})$ for each model. Identity preservation is restricted to content visible in the first frame; objects entering later cannot be anchored beyond what is implicitly recovered during denoising. Finally, our framework requires full object masks when specifying motion, unlike some motion-prompting methods that are explicitly trained to operate from partial markings. Nevertheless, our method remains robust to imperfect masks, as demonstrated in MC-Bench. For camera-motion control, as in other recent free-form motion-control methods, our setup relies on an off-the-shelf monocular depth estimator to successfully construct the crude 3D animation. Our framework accommodates extensions beyond our current implementation. In particular, the dual-clock scheme could be generalized to support multiple regions, soft masks, or smoother noise schedules, offering more fine-grained control. We leave richer appearance edits (e.g., stylistic transformations), exploration of alternative warping schemes, articulated motion, and long-horizon video generation for future work.

588

589 7 ETHICS STATEMENT

590

We affirm adherence to the ICLR Code of Ethics. Our work uses publicly available benchmarks (e.g., MC-Bench, DL3DV) and author-crafted synthetic examples that were released for research; we did not collect new personal data. Where underlying datasets may include human subjects, consent

540 and licensing follow the original publications. We will release code and configuration sufficient to
 541 reproduce results without redistributing third-party imagery.
 542

543 Because our method enables fine-grained motion and appearance control, it could be misused to create
 544 misleading or harmful content (e.g., deepfakes). We caution that deployments should follow ethical
 545 standards and applicable laws, and we recommend safeguards such as provenance/watermarking
 546 hooks, content filtering, and clear usage guidelines that prohibit impersonation and privacy violations.
 547 Outputs may reflect biases in upstream backbones and prompts; we avoid sensitive-attribute
 548 claims and encourage task-specific bias checks before high-stakes use. The authors report no con-
 549 flicts of interest. In the process of writing this paper, we used the aid of Large Language Models
 550 (LLMs) to assist and polish writing.
 551

552 8 REPRODUCIBILITY STATEMENT.

553 This work is fully reproducible. Our method is fully specified in Sec. 3, with evaluation protocols
 554 in Sec. 4 and implementation details in App. D.1. We provide an anonymized code release for
 555 the WAN 2.2 implementation in the supplementary materials, together with exemplar configuration
 556 files. For SVD, CogVideoX, and other baselines we rely on publicly available checkpoints.
 557

558 REFERENCES

559 Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended diffusion for text-driven editing of
 560 natural images. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 561 *recognition*, pp. 18208–18218, 2022.

562 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
 563 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
 564 latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.

565 Aleksei Bochkovskii, Amaël Delaunoy, Hugo Germain, Marcel Santos, Yichao Zhou, Stephan R.
 566 Richter, and Vladlen Koltun. Depth pro: Sharp monocular metric depth in less than a second. In
 567 *International Conference on Learning Representations*, 2025. URL <https://arxiv.org/abs/2410.02073>.

568 Ryan Burgert, Yuancheng Xu, Wenqi Xian, Oliver Pilarski, Pascal Clausen, Mingming He, Li Ma,
 569 Yitong Deng, Lingxiao Li, Mohsen Mousavi, et al. Go-with-the-flow: Motion-controllable video
 570 diffusion models using real-time warped noise. In *Proceedings of the Computer Vision and Pattern*
 571 *Recognition Conference*, pp. 13–23, 2025.

572 Boyuan Chen, Diego Martí Monsó, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitz-
 573 mann. Diffusion forcing: Next-token prediction meets full-sequence diffusion. *Advances in*
 574 *Neural Information Processing Systems*, 37:24081–24125, 2024.

575 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 576 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 577 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 578 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

579 Daniel Geng, Charles Herrmann, Junhwa Hur, Forrester Cole, Serena Zhang, Tobias Pfaff, Tatiana
 580 Lopez-Guevara, Yusuf Aytar, Michael Rubinstein, Chen Sun, et al. Motion prompting: Control-
 581 ling video generation with motion trajectories. In *Proceedings of the Computer Vision and Pattern*
 582 *Recognition Conference*, pp. 1–12, 2025.

583 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 584 Gans trained by a two time-scale update rule converge to a local nash equilibrium. In *Proceedings*
 585 *of the 31st International Conference on Neural Information Processing Systems*, NIPS’17, pp.
 586 6629–6640, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

587 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint*
 588 *arXiv:2207.12598*, 2022.

594 Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
 595 ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for
 596 video generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 597 *Pattern Recognition*, pp. 21807–21818, 2024.

598

599 Yash Jain, Anshul Nasery, Vibhav Vineet, and Harkirat Behl. Peekaboo: Interactive video generation
 600 via masked-diffusion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 601 *Pattern Recognition*, pp. 8079–8088, 2024.

602 Hyeonho Jeong, Geon Yeong Park, and Jong Chul Ye. Vmc: Video motion customization using
 603 temporal attention adaption for text-to-video diffusion models. In *Proceedings of the IEEE/CVF*
 604 *Conference on Computer Vision and Pattern Recognition*, pp. 9212–9221, 2024.

605

606 Sora Kim, Sungho Suh, and Minsik Lee. Rad: Region-aware diffusion models for image inpainting.
 607 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 2439–2448,
 608 2025.

609

610 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 611 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceed-
 612 ings of the IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.

613 Jialu Li, Shoubin Yu, Han Lin, Jaemin Cho, Jaehong Yoon, and Mohit Bansal. Training-free guid-
 614 ance in text-to-video generation via multimodal planning and structured noise initialization. *arXiv
 615 preprint arXiv:2504.08641*, 2025a.

616

617 Yaowei Li, Xintao Wang, Zhaoyang Zhang, Zhouxia Wang, Ziyang Yuan, Liangbin Xie, Ying Shan,
 618 and Yuexian Zou. Image conductor: Precision control for interactive video synthesis. In *Proceed-
 619 ings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 5031–5038, 2025b.

620 Lu Ling, Yichen Sheng, Zhi Tu, Wentian Zhao, Cheng Xin, Kun Wan, Lantao Yu, Qianyu Guo,
 621 Zixun Yu, Yawen Lu, et al. Dl3dv-10k: A large-scale scene dataset for deep learning-based 3d
 622 vision. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 623 pp. 22160–22169, 2024.

624

625 Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
 626 Repaint: Inpainting using denoising diffusion probabilistic models. In *Proceedings of the
 627 IEEE/CVF conference on computer vision and pattern recognition*, pp. 11461–11471, 2022.

628

629 Wan-Duo Kurt Ma, John P Lewis, and W Bastiaan Kleijn. Traillblazer: Trajectory control for
 630 diffusion-based video generation. In *SIGGRAPH Asia 2024 Conference Papers*, pp. 1–11, 2024.

631

632 Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
 633 Sdedit: Guided image synthesis and editing with stochastic differential equations. *arXiv preprint
 arXiv:2108.01073*, 2021.

634

635 Koichi Namekata, Sherwin Bahmani, Ziyi Wu, Yash Kant, Igor Gilitschenski, and David B Lin-
 636 dell. Sg-i2v: Self-guided trajectory control in image-to-video generation. *arXiv preprint
 arXiv:2411.04989*, 2024.

637

638 OpenAI. Gpt-4o system card, 2024. URL <https://arxiv.org/abs/2410.21276>.

639

640 Naama Pearl, Yaron Brodsky, Dana Berman, Assaf Zomet, Alex Rav Acha, Daniel Cohen-Or, and
 641 Dani Lischinski. Svn: Spatially-variant noise removal with denoising diffusion. *arXiv preprint
 arXiv:2306.16052*, 2023.

642

643 Alexander Pongdaven, Aliaksandr Siarohin, Sergey Tulyakov, Philip Torr, and Fabio Pizzati. Video
 644 motion transfer with diffusion transformers. In *Proceedings of the Computer Vision and Pattern
 645 Recognition Conference*, pp. 22911–22921, 2025.

646

647 Haonan Qiu, Zhaoxi Chen, Zhouxia Wang, Yingqing He, Menghan Xia, and Ziwei Liu. Freetraj:
 648 Tuning-free trajectory control in video diffusion models. *arXiv preprint arXiv:2406.16863*, 2024.

648 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 649 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 650 models from natural language supervision. In *International conference on machine learning*, pp.
 651 8748–8763. PMLR, 2021.

652 Ariel Shulov, Itay Hazan, Lior Wolf, and Hila Chefer. Flowmo: Variance-based flow guidance for
 653 coherent motion in video generation. *arXiv preprint arXiv:2506.01144*, 2025.

654 Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In *European
 655 conference on computer vision*, pp. 402–419. Springer, 2020.

656 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 657 Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative
 658 models. *arXiv preprint arXiv:2503.20314*, 2025.

659 Angtian Wang, Haibin Huang, Jacob Zhiyuan Fang, Yiding Yang, and Chongyang Ma. Ati: Any
 660 trajectory instruction for controllable video generation. *arXiv preprint arXiv:2505.22944*, 2025.

661 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 662 from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–
 663 612, 2004.

664 Weijia Wu, Zhuang Li, Yuchao Gu, Rui Zhao, Yefei He, David Junhao Zhang, Mike Zheng Shou,
 665 Yan Li, Tingting Gao, and Di Zhang. Draganything: Motion control for anything using entity
 666 representation. In *European Conference on Computer Vision*, pp. 331–348. Springer, 2024.

667 Danah Yatim, Rafail Fridman, Omer Bar-Tal, Yoni Kasten, and Tali Dekel. Space-time diffusion
 668 features for zero-shot text-driven motion transfer. In *Proceedings of the IEEE/CVF Conference
 669 on Computer Vision and Pattern Recognition*, pp. 8466–8476, 2024.

670 Shengming Yin, Chenfei Wu, Jian Liang, Jie Shi, Houqiang Li, Gong Ming, and Nan Duan. Drag-
 671 nuwa: Fine-grained control in video generation by integrating text, image, and trajectory. *arXiv
 672 preprint arXiv:2308.08089*, 2023.

673 Shoubin Yu, Jacob Zhiyuan Fang, Jian Zheng, Gunnar Sigurdsson, Vicente Ordonez, Robinson Pira-
 674 muthu, and Mohit Bansal. Zero-shot controllable image-to-video animation via motion decompo-
 675 sition. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 3332–3341,
 676 2024.

677 Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The Unrea-
 678 sonable Effectiveness of Deep Features as a Perceptual Metric . In *2018 IEEE/CVF Confer-
 679 ence on Computer Vision and Pattern Recognition (CVPR)*, pp. 586–595, Los Alamitos, CA,
 680 USA, June 2018. IEEE Computer Society. doi: 10.1109/CVPR.2018.00068. URL <https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00068>.

681 Zhenghao Zhang, Junchao Liao, Menghao Li, Zuozhuo Dai, Bingxue Qiu, Siyu Zhu, Long Qin, and
 682 Weizhi Wang. Tora: Trajectory-oriented diffusion transformer for video generation. In *Proceed-
 683 ings of the Computer Vision and Pattern Recognition Conference*, pp. 2063–2073, 2025a.

684 Zhongwei Zhang, Fuchen Long, Zhaofan Qiu, Yingwei Pan, Wu Liu, Ting Yao, and Tao Mei. Mo-
 685 tionpro: A precise motion controller for image-to-video generation. In *Proceedings of the Com-
 686 puter Vision and Pattern Recognition Conference*, pp. 27957–27967, 2025b.

687 Haitao Zhou, Chuang Wang, Rui Nie, Jinlin Liu, Dongdong Yu, Qian Yu, and Changhu Wang.
 688 Trackgo: A flexible and efficient method for controllable video generation. In *Proceedings of the
 689 AAAI Conference on Artificial Intelligence*, volume 39, pp. 10743–10751, 2025.

690

691

692

693

694

695

696

697

698

699

700

701

702
703
704

A ABLATION STUDY: DUAL-CLOCK DENOISING

705 We ablate the dual-clock denoising scheme, presented in
 706 3.3, using the same evaluation protocol described in 4.1.
 707 In TTM, the *first tick* t_{weak} sets the initialization noise level
 708 for sampling, while the *second tick* t_{strong} sets when we
 709 stop overriding the masked part with the noisy warped ref-
 710 erence; after this point, all pixels denoise together. For
 711 this section, we evaluate this procedure under different set-
 712 tings. In these experiments, we use different timing ticks,
 713 denoting the first as t_1 and the second as t_2

714 The resulting behaviors under different settings, together
 715 with their quantitative outcomes, are summarized below
 and in Table 3:

716 **Single-clock baseline** ($t_1 = t_2$). This implies applying
 717 SDEdit on the warped video ($t_{\text{weak}} = t_{\text{strong}}$). When
 718 $t_1 = t_2 = t_{\text{weak}}$, too little conditioning is induced: the Co-
 719 Tracker distance is high, reflecting poor motion adherence.
 720 When $t_1 = t_2 = t_{\text{strong}}$, non-masked regions become over-constrained to unintended motion, sup-
 721 pressing dynamics (e.g., the background freezes); see Fig. 3, where the boat’s foam remains static
 722 although the boat moves.

723 **RePaint-style** ($t_2 = 0$). Here denoising occurs only outside the masked reference (equivalent to
 724 RePaint). As expected, for any t_1 the CoTracker distance drops sharply, since the warped masked
 725 region is injected throughout denoising. However, this comes at the cost of Imaging quality: the
 726 videos appear nearly perfect in motion adherence but unnatural overall, due to the lack of flexibility
 727 inside the mask region.

728 **Unconstrained background** ($t_1 = T$). No constraint is applied to non-masked regions. For
 729 $t_2 = t_{\text{weak}}$, motion is not enforced and the model tends to generate overly static videos. For
 730 $t_2 = t_{\text{strong}}$, performance improves, but tracking error remains unsatisfactory; in practice, this setup
 731 often produces duplicate copies of the source object, which harms adherence.

732 **Dual clock (ours).** $t_1 = t_{\text{weak}}$, $t_2 = t_{\text{strong}}$. This setting achieves the best overall trade-off, com-
 733 bining strong motion-conditioning adherence (low CoTracker distance) with higher dynamic degree
 734 and robust visual quality.

735
736
737
738

B ABLATION STUDY: MASK PERTURBATIONS

739 Our object-control evaluation on MC-Bench in
 740 Sec.4 implicitly measures robustness to inac-
 741 curate masks: the dataset provides human-annotated
 742 brush masks that are coarse, include background
 743 regions, and often miss fine object details, rather
 744 than pixel-accurate segmentations. To further vali-
 745 date this, we add an experiment that explicitly per-
 746 turbs the input masks and reports the resulting per-
 747 formance, complementing the Sec. 4.1. We follow
 748 the same experimental setup, but apply morpholog-
 749 ical erosion and dilation with varying kernel sizes to
 750 the MC-Bench masks, simulating under- and over-
 751 segmented masks with different boundary charac-
 752 teristics. As shown in Tab. 4, these perturbations
 753 lead to only minor changes in all metrics, indicat-
 754 ing that our method is robust to mask inaccuracies.

First tick (t_1)	Second tick (t_2)	CoTracker distance	Dynamic degree	Imaging quality
t_{weak}	t_{weak}	27.316	0.265	0.623
t_{strong}	t_{strong}	5.528	0.353	0.620
T	0	2.954	0.411	0.578
t_{weak}	0	2.923	0.404	0.576
t_{strong}	0	2.942	0.353	0.579
T	t_{weak}	29.399	0.254	0.622
T	t_{strong}	9.228	0.430	0.615
t_{weak}	t_{strong}	7.967	0.427	0.617

713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
Table 3: **Dual-Clock Ablation.**

Morphological Operation	Kernel Size	CoTracker distance	Dynamic degree	Imaging quality
-	-	7.967	0.427	0.617
Dilate	3	8.059	0.435	0.618
Dilate	5	8.527	0.425	0.618
Dilate	7	7.898	0.438	0.617
Erode	3	8.499	0.416	0.618
Erode	5	8.276	0.430	0.617
Erode	7	9.125	0.433	0.617

740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
Table 4: **Mask Perturbations Ablation.**

756 C ABLATION STUDY: Timestep Sensitivity

759 Tuning a small set of inference-time parameters is
 760 a common requirement in diffusion-based meth-
 761 ods, analogous to adjusting the guidance scale
 762 in classifier-free guidance (CFG) (Ho & Sal-
 763 manns, 2022) or selecting a timestep schedule in
 764 SDEdit. To characterize the sensitivity of TTM to
 765 its timestep parameters, we perform an ablation in
 766 which we vary t_{weak} and t_{strong} around their default
 767 values on MC-Bench and measure the resulting per-
 768 formance. As summarized in Tab. 5, smaller t_{strong}
 769 values increase motion adherence and reduce the
 770 CoTracker distance, but slightly degrade imaging
 771 quality, as the object becomes more rigid and less
 772 free to adapt. Conversely, larger t_{weak} values (i.e.,
 773 more initial noise) generally lead to a higher dy-
 774 namic degree. Overall, the trends are smooth, and
 775 our default settings lie in a stable operating regime
 776 that provides a favorable trade-off between motion
 777 control and visual fidelity.

777 D IMPLEMENTATION DETAILS

779 D.1 OBJECT MOTION CONTROL

781 This subsection complements Sec. 4.1 with concise protocol and implementation details:

- 783 • **Single-Trajectory.** To avoid ambiguity stemming from masks linked to multiple ob-
 784 jects/trajectories in the original MC-Bench dataset, we restrict evaluation to single-
 785 trajectory cases (over 91% of the dataset).
- 786 • **Input handling.** Inputs are resized to each model’s native size and padded to match as-
 787 pect ratio; after generation, padding is removed and outputs are resized back. Exceptions:
 788 MotionPro uses its original benchmark pipeline; DragAnything is run with its default input
 789 handling (we observed best results without external resizing).
- 790 • **Trajectory scaling:** the 2D trajectory points are affinely transformed with the *same* resize-
 791 and-pad mapping applied to the frames. After generation, we remove padding and invert
 792 the scaling when mapping tracks back for evaluation, ensuring geometric consistency.
- 793 • **Clip length.** Standardized to 16 frames for SVD-based methods (as Zhang et al.
 794 (2025b)) and 49 frames for CogVideoX-based methods. Concretely, SVD emits 14 or 25
 795 frames—thus TTM_{SVD} generates 25 and keeps the first 16; DragAnything emits 20 and we
 796 keep the first 16; SG-I2V produces 14 and we evaluate the native 14-frame output, which
 797 may be slightly favorable to its metrics. If the output has more frames than the provided
 798 trajectory, we trim the trajectory to the target length.
- 799 • **Pre/post-processing and prompts.** SG-I2V is conditioned on bounding boxes rather than
 800 masks, unlike the other methods. Therefore, following Burgert et al. (2025), we supply the
 801 tight bounding box of the provided mask. For prompts, SVD-based methods are text-free,
 802 while CogVideoX-based methods use the MC-Bench prompts.
- 803 • **Mask resizing:** Since both SVD and CogVideoX operate in a downsampled latent space,
 804 we project the binary masks to the latent resolution with nearest-neighbor interpolation.
 805 For SVD this is spatial-only; for CogVideoX also subsample in time to match temporal
 806 compression (nearest-neighbor in time).
- 807 • **Hyperparameters.** All methods use $T=50$ denoising steps. For TTM_{SVD} set
 808 $(t_{\text{weak}}, t_{\text{strong}}) = (36, 25)$ and fix MotionPro’s motion bucket to 17 (as in their release).
 809 For TTM_{Cog} use $(46, 41)$. Other run-time settings follow each method’s defaults.

t_{weak}	t_{strong}	CoTracker distance	Dynamic degree	Imaging quality
38	27	11.571	0.419	0.620
36	27	10.596	0.454	0.619
34	27	9.546	0.416	0.619
38	25	8.576	0.433	0.617
36	25	7.967	0.427	0.617
34	25	8.031	0.419	0.618
38	23	6.500	0.438	0.612
36	23	6.757	0.419	0.612
34	23	6.130	0.414	0.615

5 Table 5: **Timestep Sensitivity Ablation.**
 The original experiment used $t_{\text{weak}} = 36$ and
 $t_{\text{strong}} = 25$

- **VBench.** For CogVideoX-based 49-frame models, we use the long benchmark variant².
- **Dynamic Degree.** VBench flags a clip as *dynamic* when the mean of the top 5% RAFT flow magnitudes in a frame exceeds a resolution-scaled threshold $\alpha \cdot \frac{\min(H, W)}{256}$ in at least 25% of sampled frames. The default $\alpha = 6.0$, tuned for VBench’s source videos, is too strict for our MC-Bench setting—predominantly static camera with small, localized motions—so nearly all clips are marked static. We therefore set $\alpha = 3.5$ (keeping the 25% rule unchanged), which yields a more meaningful separation of dynamic vs. static.
- **Background–Object CoTracker Distance (BG–Obj CTD).** This metric measures whether the background unintentionally moves together with the controlled object. We run CoTracker on the generated video for both (i) the tracked object trajectory and (ii) a uniform 16×16 grid of points sampled in the first frame. Let $o_t \in \mathbb{R}^2$ denote the object’s tracked position at frame t , and $p_{j,t} \in \mathbb{R}^2$ the tracked position of grid point j at frame t . We convert all tracks to displacements from frame 1: $\Delta o_t = o_t - o_1$, $\Delta p_{j,t} = p_{j,t} - p_{j,1}$. For each frame $t \geq 2$ and grid point j , we compute $d_{j,t} = \|\Delta p_{j,t} - \Delta o_t\|_2$ (pixels). The BG–Obj CTD is then the average over frames and grid points:

$$\text{BG-Obj CTD} = \frac{1}{(T-1)J} \sum_{t=2}^T \sum_{j=1}^J d_{j,t}.$$

Higher values indicate stronger object–background disentanglement (less co-motion).

D.2 CAMERA CONTROL ON DL3DV

This subsection provides additional details for Sec. 4.2. For our camera control experiments, we use a subset of the DL3DV-10K dataset. The reference warped videos are created at a resolution of 960p using PyTorch3D.

We utilize the official DL3DV camera transition data and align the coordinate systems with a sign flip of the z-axis and a flip of the camera pitch due to convention differences between PyTorch3D and NerfStudio, which was used to create the DL3DV dataset. The point cloud is generated in the original camera frame, with the camera extrinsics derived from parameter estimations and the estimated transition of the first frame. To resolve the inherent depth ambiguity, we perform a binary search to find the transition scale that maximizes the MSE alignment between the warped and original videos. This aligns the transitions to a metric scale consistent with the output of DepthPro.

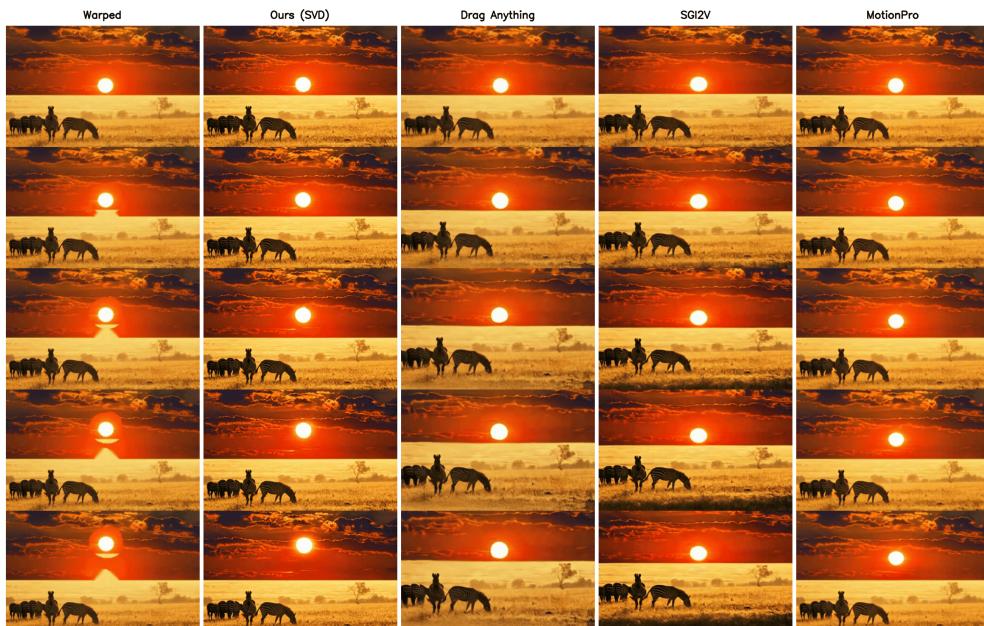
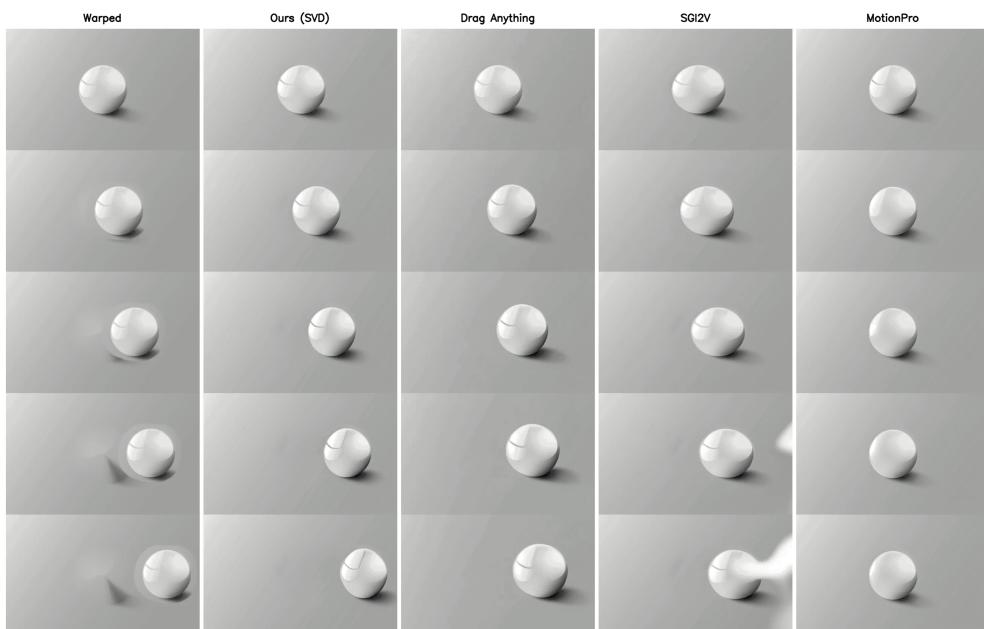
To select a robust subset for evaluation, we first filter out videos from the 10K subset with an estimated scale of less than 0.3, as these were found to exhibit minimal real camera movement. We then select the 150 scenes with the lowest MSE loss between the warped and ground truth videos. **The masks used for the TTM process are generated by first marking pixels with no point cloud contribution as regions denoised freely from t_{weak} and all other pixels are regions denoised freely from t_{strong} .** To ensure only regions with dense point cloud data are used for guidance, we apply a morphological “open” operation to the mask using a kernel size of 5. This operation serves to remove isolated noise and expand the non-guidance areas, resulting in a cleaner, more reliable mask. For text guidance, we automatically generate a text prompt for each scene using GPT-4o (OpenAI, 2024), following CogVideoX’s protocol³.

D.3 APPEARANCE CONTROL

For the chameleon example demonstrating joint motion and appearance control, we use the prompt: “A realistic video of a four-legged chameleon walking slowly and naturally from left to right along a thick, textured vine in a lush jungle. Its limbs move in a coordinated, controlled reptilian gait as it adjusts its body to the curve of the vine. The chameleon gradually changes color from green to purple.”

²https://github.com/Vchitect/VBench/tree/master/vbench2_beta_long

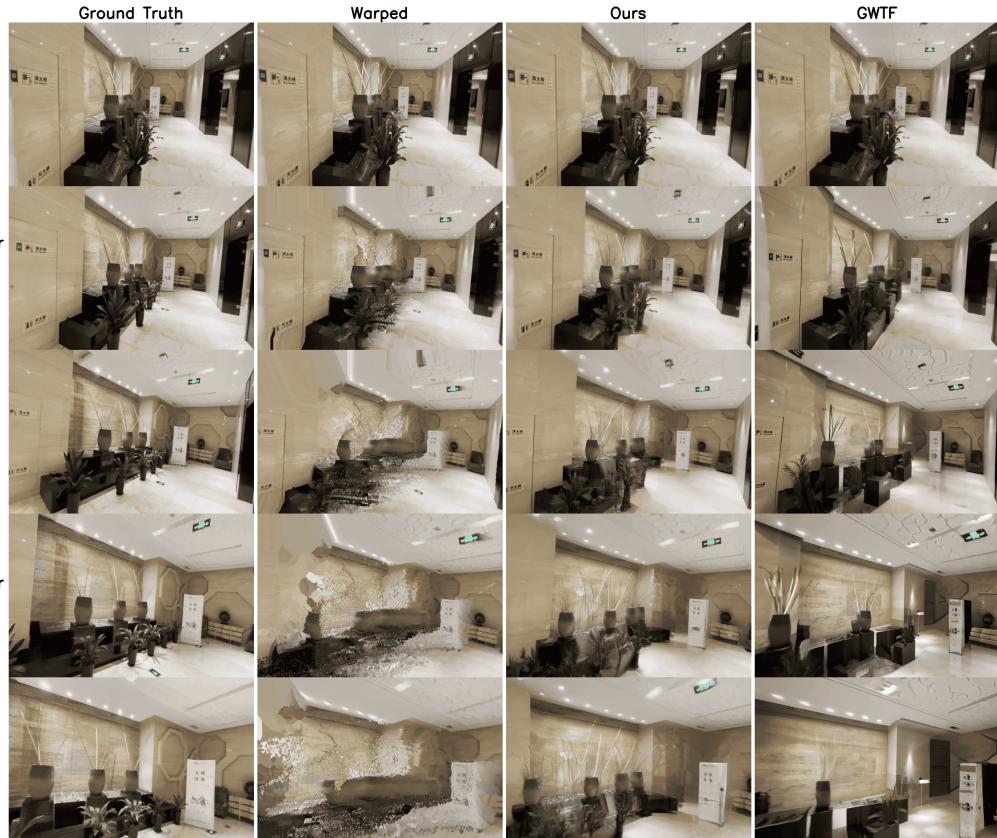
³https://github.com/zai-org/CogVideo/blob/main/inference/convert_demo.py

864 E EXTRA QUALITATIVE COMPARISONS
865866 For the video versions of the comparisons in this paper, as well as additional results, please visit our
867 [anonymous demo page](#).
868869 E.1 QUALITATIVE COMPARISONS FROM MC-BENCH
870871 Following the experiment described in Sec. 4.1, we present additional results beyond those shown in
872 Fig. 4, further illustrating our method’s performance against leading approaches on the MC-Bench
873 dataset using the SVD backbone.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 E.2 QUALITATIVE COMPARISONS FROM DL3DV
973

974 Following the experiment described in Sec. 4.2, we present qualitative results for camera-motion
975 control on the DL3DV benchmark, comparing our method with GWTF given an input image, its
976 monocular depth estimate, and a depth-warped video. These examples demonstrate superior perfor-
977 mance in maintaining the intended camera motion and overall visual fidelity.



978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

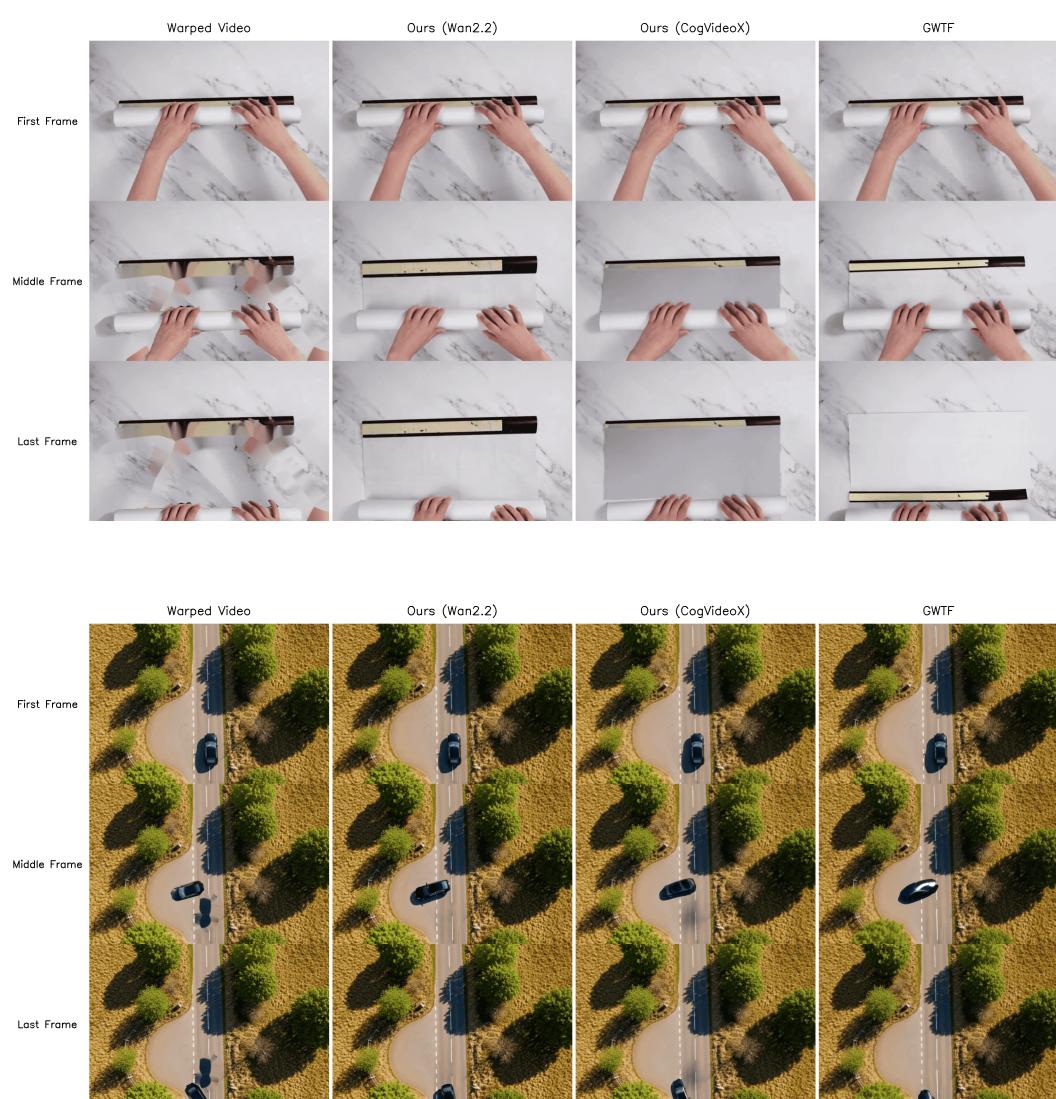
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134 F CHALLENGING USER-CREATED EXAMPLES
1135

1136 **Generation.** To produce the examples shown in Fig. 5, Fig. 6, and on the demo page, we collected
1137 53 test cases, hand-crafted by users, spanning both object-motion and camera-motion control. For
1138 each case, the initial reference frame was generated with Gemini (Comanici et al., 2025), and object-
1139 control inputs were specified via a GUI adapted from the interface introduced in (Burkart et al.,
1140 2025). We will publicly release these examples at a later date.

1141
1142 **Additional Results** As explained in Sec. 4.4, we leverage the plug-and-play nature of our method
1143 to run on the recently released WAN2.2. Below we present additional “cut-and-drag” examples that
1144 complement Fig. 5. These real-world cases illustrate scenarios in which the current state-of-the-art
1145 baseline, GWTF, often struggles to produce coherent results.



1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

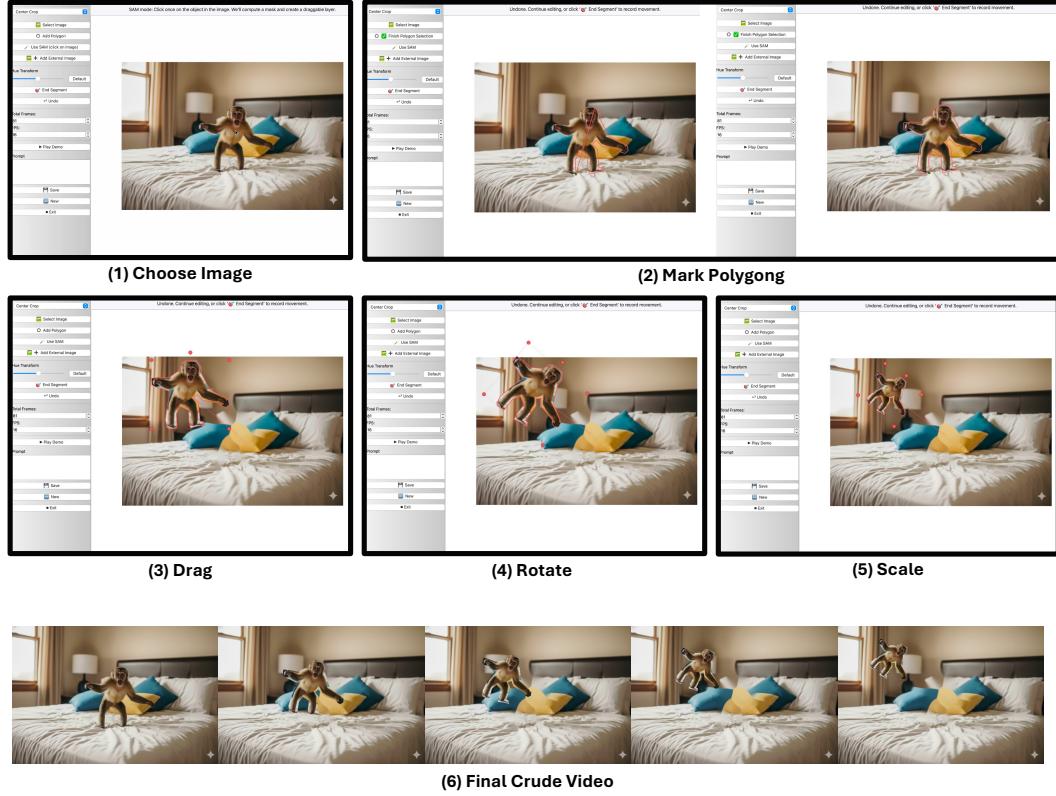


Figure 8: Example interaction with our cut-and-drag GUI. (1) The user selects an input image. (2) A region (e.g., the monkey) is defined via a polygon. (3) The object is dragged to define a motion segment. The final key pose is then refined by applying controls for (4) rotation and (5) uniform scaling. (6) The GUI interpolates these key poses, automatically generating the warped video and corresponding mask sequence, where the object gradually moves, rotates, and scales to its final position; these serve as the final motion signal for the TTM framework.

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295