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Abstract: Robot learning has proven to be a general and effective approach for
programming manipulators. Imitation learning is able to teach robots solely from
human demonstrations but is bottlenecked by the capabilities of the demonstra-
tions. Reinforcement learning uses exploration to discover better behaviors; how-
ever, the space of possible improvements can be too large to start from scratch.
And for both approaches, the learning difficulty increases exponentially to the
length of the manipulation task. Accounting for this, we propose SPIRE, a sys-
tem that first uses Task and Motion Planning (TAMP) to decompose tasks into
smaller learning subproblems and second combines imitation and reinforcement
learning to maximize their strengths. We develop novel strategies to train learning
agents when deployed in the context of a planning system. We evaluate SPIRE
on a suite of long-horizon and contact-rich robot manipulation problems. We find
that SPIRE outperforms prior approaches that integrate imitation learning, rein-
forcement learning, and planning by 35% to 50% in average task performance, is 6
times more data efficient in the number of human demonstrations needed to train
proficient agents, and learns to complete tasks nearly twice as efficiently. View
https://sites.google.com/view/spire-corl-2024 for more details.
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1 Introduction

Reinforcement Learning (RL) is a powerful tool that has been widely deployed to solve robot ma-
nipulation tasks [1, 2, 3, 4]. The RL trial-and-error process allows an agent to automatically discover
solutions to a task and improve its behavior over time. However, in practice, it often relies on care-
ful reward engineering to guide the exploration process [5, 6]. The exploration burden and reward
engineering problem is even more challenging to overcome for long-horizon tasks, where an agent
must complete several subtasks in sequence in order to solve the task [7].

Imitation Learning (IL) from human demonstrations [8, 9] is a popular alternative to reinforcement
learning. Here, humans teleoperate robot arms to collect task demonstrations. Then, policies are
trained using the data. This alleviates the burden of reward engineering, since correct behaviors are
directly specified through demonstrations. This paradigm has recently been scaled up by collecting
large datasets with teams of human operators and robots and shown to be effective for different
real-world manipulation tasks [10, 11, 12]. While these agents can be effective, they typically are
imperfect, with respect to both success rates and control cost, and not robust to different deployment
conditions, especially when it comes to long-horizon tasks [13].

One way to integrate the benefits of both IL and RL is to first train an agent with IL and then finetune
it with RL. This can help improve the IL agent and make it robust through trial-and-error , while also
alleviating the need for reward engineering due to the presence of the demonstrations. Several works
have used this paradigm successfully, but long-horizon manipulation still remains challenging due
to the burden of exploration and long-term credit assignment [7].

One effective approach for long-horizon manipulation is to leverage a hybrid control paradigm,
where the agent is only responsible for local manipulation skills, instead of the full task [14, 15].
An example is the HITL-TAMP system [14], where an agent is trained with IL on small contact-
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Figure 1: SPIRE Overview. (Left) SPIRE first attempts to solve the task with a TAMP system. When the
TAMP planner encounters an action deemed too hard to plan, it then enters the handoff section and delegates
the action to a human teleoperator to manually complete it. We record the trajectories from the human operators
to build a demonstration dataset and train an IL policy with it. Finally, we train an RL policy to fine-tune the IL
policy via warmstarting and deviation constraining. (Right) A preview of the four handoff sections in Coffee
Preparation task.

rich segments of each tasks, and the rest of the task is performed using Task and Motion Planning
(TAMP) [16]. Another related approach is PSL [15], which learns an agent using RL instead of IL on
small segments, and uses motion planning to sequence the learned skills together. These approaches
are effective for challenging long-horizon manipulation tasks, but they still often do not train perfect
policies, suffering from some of the pitfalls of IL and RL. In this paper, we take inspiration from
these approaches and create a hybrid control learning framework that allows for efficient imitation
learning and RL-based finetuning of agents to address long-horizon manipulation tasks.

We introduce Synergistic Planning Imitation and REinforcement (SPIRE), a system for solving
challenging long-horizon manipulation tasks through efficient imitation learning and RL-based fine-
tuning. SPIRE decomposes each task into local manipulation segments that are learned with a
policy and segments handled by a TAMP system. The manipulation segments are first trained via
imitation learning and then finetuned with reinforcement learning. Our approach on 9 challeng-
ing manipulation tasks reaches an average success rate of 87.8%, vastly outperforms TAMP-gated
IL [14] (52.9%) and RL [15] (37.6%). In the subset of tasks where SPIRE and IL both reach a high
success rate, our method only uses 59% of the steps required by IL to complete the task. In Tool
Hang, SPIRE fine-tunes an IL policy with only 10% success rate to 94%. We perform a thorough
analysis of our method and also show that in many cases, a handful of demonstrations suffice for
learning challenging tasks. Compared with IL, SPIRE improves the overall demo efficiency by 5.8
times in the evaluated subset of tasks.

Our contributions are as follows:
•We propose SPIRE, a hybrid learning-planning system that synergistically integrates the strengths
of behavior cloning, reinforcement learning, and manipulation planning. SPIRE first learns a
TAMP-gated policy with BC and then improves it with RL.
• We introduce key insights to enable RL-based finetuning with sparse rewards in this regime, in-
cluding a mechanism to warmstart the RL process using the trained BC policy, a way to constrain
exploration to be close to the BC agent behavior, and a multi-worker TAMP framework to optimize
the throughput of SPIRE’s RL process.
• We evaluate SPIRE on a suite of long-horizon contact-rich tasks and find that it outperforms
prior hybrid learning-planning approaches success rate averaged across tasks (87.8%, compared
to 52.9% and 37.6%), execution efficiency (episodes are only 59% the length of the BC agent), and
human demonstration efficiency (6 times less data required than BC to train similar agents).

2 Related Work

Hierarchical approaches for long-horizon tasks. Hierarchical approaches decompose the chal-
lenging long-horizon tasks into easier-to-solve subtasks. RL based methods explore the division of
sub-tasks with reusable skills [17, 18, 19, 20, 21]. [22, 23, 24, 25, 26] build hierarchical RL solutions
with subpolicies and metacontrollers. Our work instead leverages a planner that provides guidance
on which policies to learn as well as initial and terminal state distributions of tasks, compared to
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bottom-up HiRL methods, which tend to be data inefficient. Notably this top-down breakdown may
also be achieved with a Language Model which can provide a plan composed of steps and sub-goal
targets [27, 28, 29, 30, 31, 15]

Robot manipulation with demonstrations. Behavior cloning (BC) [32] learn a policy by directly
mapping observations to actions, and is typically trained end-to-end using pre-collected pairs of
observation and behavior data. While this is seemingly a supervised learning problem, yet in the
context of robotics , it adds challenges. BC datasets tend to contain data sampled from multimodal
distributions, due to intra-expert variations. Recent work address this problem implicit models in-
cluding those derived from energy-based models [33, 34] or diffusion models [35, 36, 37, 38, 39].
Moreover, transformer based BC models that transformer-based categorical policies in carefully dis-
cretized action spaces do a good job handling multimodal demonstrator distributions [40, 41, 42].
Another challenge is the correlation in sequential data, which can lead to policies which are sus-
ceptible to temporally correlated confounders [43]. Recently several works have set out to handle
this by predicting action chunks. For example, the Action Chunking Transformer (ACT) line of
work [44, 45] shows that a transformer trained as a CVAE [46] to output chunks of actions performs
well for a wide variety of manipulation tasks, and diffusion policy [35] shows across the board im-
provements when predicting action chunks. While, BC based methods combined with high-capacity
models enable complex robotics tasks from demonstrations, yet challenges in robustness, and long-
horizon generalization remain.

RL with experts. Experts and their demonstrations can be used to improve RL learning in multiple
ways, including acting as task specifications, improving exploration, and augmenting data. Inverse
RL [47, 48, 49] learns a reward model for RL from demonstrations; [50] discuss the use of demon-
strations to bootstrap the learning process, followed by reinforcement learning to refine the policy;
[51] warmstarts RL with a Behavior Cloning policy and grounds the Q values of non-expert actions
to reduce over-optimistic estimations; [52] augments the RL replay buffer with demonstrations;[53]
uses state matching for reward computation in RL. [54] shares a similar setup with ours, where they
also warmstart RL with a BC policy and use a masked BC loss the constrain the RL policy from
deviating. [55, 56] propose to fine-tune a semi-expert initial policy by training a residual policy on
top of it with RL. However most of these works were limited in evaluation in either low-dimensional
state/action or single-stage MDP settings, while we focus on building image-based agents in multi-
stage sequential robotic manipulation tasks, which poses a qualitatively different challenge.

3 Method

Our approach Synergistic Planning Imitation and REinforcement (SPIRE) learns and deploys
closed-loop visuomotor skills within a TAMP system (see Fig. 1). First we frame our problem
as a policy learning problem across a sequence of Markov Decision Processes (Sec. 3.1). Next, we
describe our approach for incorporating both classical and learned robot skills into TAMP (Sec. 3.2)
to enable TAMP-gated learning. Next, we describe how we train an initial agent with TAMP-gated
Behavioral Cloning (BC) (Sec. 3.3). We then propose an RL-based finetuning algorithm to improve
the BC agent with RL (Sec. 3.4). Finally, we introduce a parallelized training scheduler that is able
to intelligently manage dependencies among stages when conducting RL in our setting (Sec. 3.5).

3.1 Problem Formulation

In our setup, each robot manipulation task can be decomposed into a series of alternating TAMP
sections and handoff sections, where TAMP delegates control to a trained agent π. These sections
are TAMP-gated [14], as they are chosen at the discretion of the TAMP system, and typically involve
skills that are difficult to automate with model-based planning. We wish to train an agent π to
complete these handoff sections efficiently and reliably. We model our TAMP-gated policy learning
problem as a series of Markov Decision Processes (MDPs), M := (S,A, T, {ri}, {pi0}, γ)Ni=1,
where N is the number of MDPs (each corresponds to a TAMP handoff section), S and A are the
state and action space, T is the transition dynamics, ri(s) and pi0 are the i-th reward function and
initial state distribution, and γ is the discount factor. The start and end of each handoff section is
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chosen by TAMP, consequently, TAMP determines the initial state distribution pi0 for each handoff
section, and the reward function ri(s), which is a sparse 0-1 success reward based on the successful
completion of the section. Our goal is to train a stochastic policy π : S → ∆A that maximizes the
expected return J(π) := E(i,τ)∼π

[∑
t=0 γ

trit
]
. We next describe the TAMP system.

3.2 TAMP with Learned Skills

Task and Motion Planning (TAMP) [16] is a model-based approach for synthesizing long-horizon
robot behavior. TAMP integrates discrete (symbolic) planning with continuous (motion) planning
to plan hybrid discrete-continuous manipulation actions. Essential to TAMP is a model of the ac-
tions that a planner can apply and how these actions modify the current state. From such a model,
TAMP solvers can search over the space of plans to find a sequence of actions and their associated
parameters that satisfies the task.

In SPIRE, we seek to implicitly learn a select set of TAMP actions that are impractical to manually
model and then combine them with traditional actions through planning. In essence, our strategy is
to learn policies π that control the system from TAMP precondition states to postcondition states
(typically described by effects). We adopt the modeling strategy introduced by Mandlekar et al.
[14] and deploy PDDLStream [57] to solve each TAMP problem. See Appendix G for a summary
of our planning model. Fig. 2 visualizes an interleaved execution of TAMP trajectory control and
RL-learned policy control in the Tool Hang domain. Here, the planning model explicitly models the
pick as well as intermediate move actions but defers the insert and hang actions to the RL agent.

Algorithm 1 describes the SPIRE policy at test time. It begins by observing the state. If the state sat-
isfies the task’s goal conditions, SPIRE terminates successfully. Otherwise, SPIRE invokes TAMP
to plan a sequence of traditional and learned actions. SPIRE executes the trajectory associated
with each traditional action until it reaches the first learned action. At that time, SPIRE executes
the closed-loop policy associated with the learned action until it achieves its subgoal condition. To
account for the stochastic outcome of the policy, SPIRE replans and repeats this process.

3.3 TAMP-Gated Imitation Learning

Algorithm 1 SPIRE
1: procedure SPIRE(G)
2: while True do
3: s← OBSERVE()
4: if s ∈ G then
5: return True
6: a⃗← PLAN-TAMP(s,G)
7: for a ∈ a⃗ do
8: if a.type = “RL” then
9: π ← a.policy
10: EXECUTE-POLICY(π)
11: break
12: else
13: τ ← a.trajectory
14: EXECUTE-TRAJECTORY(τ)

TAMP-Gated Data Collection. We collect an initial dataset
of human demonstrations through TAMP-gated human tele-
operation, where the human operator collects demonstrations
for handoff sections when prompted by TAMP, to form the
demonstration dataset D = {{(st, at)Hi

t=1, gi}}, where st ∈ S,
at ∈ A and Hi is the horizon, and gi is the handoff section of
the i-th trajectory. To improve the data collection efficiency,
we replicate the task queuing system from [14].

TAMP-Gated Behavioral Cloning. Given the dataset D, we
train a Behavioral Cloning (BC) policy parameterized by ϕ to
minimize the negative log-likelihood loss over the demonstra-
tion dataset: ϕ∗=argminϕ E(s,a)∼D[− log πϕ(a|s)]. The trained BC agent πϕ may have substantial
room for improvement, depending on the complexity of the task, and the number of demonstrations
available for training. We next describe our RL-based finetuning procedure (Sec. 3.4) that allows
this agent to be improved through reinforcement learning.

3.4 RL Finetuning

Given a trained BC agent πϕ, we wish to train an RL agent πθ to improve performance further. To
avoid reward engineering, we only assume access to sparse 0-1 completion rewards for each hand-
off section provided by TAMP (Sec. 3.1). However, exploration in sparse-reward settings has been
shown to be challenging [58, 59, 60, 61], especially in continuous state and action spaces. Fortu-
nately, we can use the BC policy trained in the previous section as a reference point for exploration
– we want to restrict the behavior of the RL policy to be in a neighborhood of the BC policy. This
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Figure 2: SPIRE execution. SPIRE computes a TAMP plan but defers execution of certain contact-rich
skills, such as insert and hang, to learned agents – we call these handoff sections. The preconditions of each
handoff section define the initial state distribution of the agent, and the postconditions of each action correspond
to the termination states of the corresponding MDP for the handoff section.

is achieved by a) warmstarting the RL policy optimization using the BC policy, and b) enforcing a
constraint on the deviation between the RL policy and the BC policy.

Warmstarting RL optimization with BC. We tested two ways to warmstart the RL agent. Ini-
tialization. One method is to initialize the weights of the RL agent with those of the trained BC
agent, θ ← ϕ∗, where ϕ∗ = argminϕ LBC(ϕ), and subsequently finetune the weights with online
RL objectives. Despite being easy to implement, this can be less flexible since it requires the agent
structure of the RL and BC policies to match. Furthermore, researchers have found that retraining
neural networks with different objectives can cause the network to lose plasticity [62], which can
make the policy harder to optimize because of the objective shift from BC to RL. Residual Policy.
An alternative way is to fix the BC policy as a reference policy and train a residual policy on top of
it. Let the residual policy be π+

θ (s). The residual policy shares the same action space as the normal
policy but is initialized to close to zero. The final action is defined as a summation of the reference
action a ∼ πϕ∗(s) and the residual action a+ ∼ π+

θ (s). In practice, we only add the mean of the
reference policy to the residual action instead of sampling the reference action.

Constraining Deviation between BC and RL agents. The sparsity of reward signals produces
high-variance optimization objectives, which can lead the RL policy to quickly drift away from BC
and lose the exploration bonus from warmstarting. Therefore, it is critical to constrain the policy
output to be close to the BC agent throughout the training process. We achieve this by imposing a
KL-divergence penalty. We conclude our RL optimization objective as follows: JFT (θ) := J(πθ)−
αDKL(πθ∥πϕ∗), where DKL(p∥q) := E(s,a)∼p

[
log p(a|s)

q(a|s)

]
and α is the weight for the penalty term.

3.5 Multi-Worker Scheduling Framework

Making our TAMP-gated framework compatible with modern reinforcement learning procedures
requires addressing several challenges. First, TAMP can take dozens of seconds for a single rollout,
which severely lowers the throughput of RL exploration. Second, the TAMP pipeline executes each
section sequentially, which means that later handoff segments can only be sampled when previous
handoff segments are completed successfully. This leads to an imbalance of episodes for the differ-
ent handoff segments, and is potentially problematic for the RL agent. We propose a multi-worker
TAMP scheduling framework to integrate TAMP into RL fine-tuning. The framework consists of
three components – a group of TAMP workers that run planning in parallel, a status pool that stores
the progress of the workers, and a scheduler that distributes tasks to the workers and balances the
initial states. We further describe how the framework allows for curriculum learning, and how the
framework accelerates learning efficiency for RL training. See Appendix H for more details.

TAMP workers. Each TAMP worker has an environment instance and repeatedly runs a TAMP
planner. Upon reset, the TAMP worker initiates TAMP until a handoff section has been reached.
It then sends a pair (#worker, #section) representing its ID and which handoff section it has
entered to the status queue, indicating that it is ready to take RL agent actions. The worker then
enters an idle state until it receives a command from the scheduler. Depending on the command,
the worker either resets itself or starts interacting with the environment by exchanging actions and
states with the scheduler. If the current section has been solved, the worker sends a success signal
to the scheduler and runs TAMP until it reaches the next handoff section.
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Episode Duration: BC [14] RL [15] Ours

Square 18.1 8.3 11.6
Square Broad 24.5 8.4 13.6
Coffee 63.1 15.0 38.4
Coffee Broad 80.6 25.7 61.3
Coffee Preparation 193.3 - 168.5
Three Piece 58.7 - 34.0
Three Piece Broad 62.2 - 38.1
Tool Hang 81.8 - 61.7
Tool Hang Broad 130.5 - 109.8

Figure 3: Full evaluation. Comparing the success rates (left) and the average duration (right) of successful
rollouts of HITL-TAMP-BC (BC), TAMP-gated Plan-Seq-Learn (RL), and SPIRE (Ours) across all 9 tasks.
Each datapoint is chosen from the best run out of 5 seeds and is averaged from 50 rollouts. SPIRE improves
the BC policy in terms of both success rate and average duration in all 9 tasks and reaches 80% success rate in
8. RL has an advantage in average duration in the easier set of tasks but fails to learn anything in the rest.Algorithm 2 Scheduler

1: procedure SCHEDULER(WORKERS, STATUSQUEUE, POLICY,
STRATEGY)

2: while True do
3: i, j ← STATUSQUEUE.pop()
4: if STRATEGY.accepts(j) then
5: while not WORKERS[i].done() do
6: sobs ← WORKERS[i].observe()
7: a← POLICY.act(sobs)
8: WORKERS[i].step(a)

9: else
10: WORKERS[i].reset()

Scheduler. (Algorithm 2) The scheduler is a
centralized component that manages the TAMP
workers. It also provides an environment ab-
straction to the single-threaded RL process.
The scheduler is configured with a sampling
strategy. Upon initialization, it first pops an
item from the status queue. According to the
sampling strategy, the scheduler either rejects
this section, in which case it sends a resetting signal to the corresponding worker; or starts a new
episode and interacts with the worker. The status queue is a FIFO queue that stores the availabilities
of the TAMP workers. It supports single-thread reading from the scheduler and multi-thread writing
from the TAMP workers through a simple locking mechanism.

Curriculum Learning. The behavior of the scheduler depends on a sampling strategy, allowing
it to function as a curriculum for the RL agent. We consider two strategies: permissive is the
default strategy that allows all sections through, while sequential only accepts a section when the
success rate of passing all the previous sections reaches a threshold. sequential allows controlling
the initial state distribution during the early stages of training, to ensure the RL agent achieves
proficience in each section sequentially before continuing onto the next section.

Remarks on Efficiency. Suppose a TAMP planning process takes at most T seconds over the
episode; each environment interaction step, counting communication latency, takes at least t sec-
onds; and each handoff section is at least H steps. If the number of TAMP workers n ≥ T

tH , the
proposed multi-worker TAMP scheduling framework reaches a throughput of at least 1/t frames per
second. In comparison, the single-worker counterpart has a worst-case throughput of H

T+tH frames
per second. Suppose that the planning process is slower than the handoff sections by a factor k (e.g.
T = k · tH), then our framework is faster than the single-worker alternative by a factor of k + 1.

4 Experiments

Tasks. For evaluation, we follow [14] and choose a set of long-horizon manipulation tasks, namely
Square, Coffee, Three Piece, and Tool Hang. We also include the broad variants of those tasks,
where we use a broad object initialization region, and Coffee Preparation, which has the longest
horizon with four handoff sections. See the appendix for more details.

Environment Details. Observation space. For most tasks, we use a single 84 × 84 RGB image
from the wrist-view camera. For Tool Hang, we use the front-view camera instead since the wrist-
view is mostly occluded. For Tool Hang Broad and Coffee Preparation, we use both wrist-view
and front-view cameras, as well as proprioception state (end-effector pose and gripper finger width).
Action space. Actions are 7-dimensional (3-dim delta end-effector position, 3-dim delta end-effector
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(a) Naive RL agent (b) SPIRE agent

Figure 4: Qualitative comparison. Rollouts of vanilla RL vs our method. The first agent attempts to close the
lid by knocking the coffee machine, while our agent follows the demonstrations and closes the lid with fingers.

rotation, 1-dim gripper actuation). Horizon. Each handoff section is limited to 100 steps (5 seconds
with 20Hz control frequency) for all tasks, except for Tool Hang Broad, where the limit is 200 steps.

Baselines. We compare our method with two baselines: HITL-TAMP-BC (BC), which is adapted
from [14] to match our network structure; and TAMP-gated Plan-Seq-Learn (RL), which is adapted
from [15] by replacing the LLM-based planning system with our TAMP system for fair comparison.
We collected 200 human demonstrations for each task to train the behavior cloning policy. For RL,
we use DrQ-v2 [63] as the base algorithm. See the appendix for more details.

Evaluation. We evaluate each trained agent for 50 rollouts and report the success rate and average
completion steps in the successful rollouts. We train 5 seeds for each algorithm and report the best-
performing agent (success rate-wise, tie-breaking with average steps) unless otherwise specified.

4.1 Results

SPIRE outperforms both TAMP-gated BC and RL. We compare our method with the TAMP-
gated BC [14] and RL [15] baselines across all 9 tasks (see Fig. 3). SPIRE reaches 80% success
rate in 8 out of 9 tasks, while BC and RL only reach 80% in 3 tasks each. In Tool Hang, our
method reaches 94% success rate despite the BC counterpart only having 10%, which is over 9-times
improvement. Remarkably, this low-performing BC agent is enough to help address the exploration
burden (unlike RL, 0% success) and train a near-perfect agent. Across all 9 tasks, SPIRE averages
a 87.8% success rate, while BC and RL only average 52.9% and 37.6% respectively.

SPIRE produces more efficient agents than BC through RL fine-tuning. SPIRE agents have
lower average completion times than their BC and RL counterparts (Fig. 3, right). Even in tasks
such as Square, Square Broad, Coffee, Three Piece, where BC policies already have high success
rates, our method improves the efficiency by only using an average of 59% completion time.

SPIRE’s use of the BC agent helps address the RL exploration burden on challenging long-
horizon tasks. Exploration in RL with sparse rewards is extremely challenging, especially for robot
manipulation tasks for their continuous and high-dimensional observation and action space. Our
method solves the initial exploration problem by anchoring policy learning around the BC agent.
As shown in Figure 3, RL policies without utilizing BC only reach nonzero success rates in Square,
Coffee and their Broad variants, all of which have only one handoff section and relatively shorter
horizons. Even in Coffee Broad, RL encounters exploration difficulties due to the broader object
distribution, resulting in only partially solving the task.

Qualitatively, SPIRE can improve agent behavior without introducing undesirable behavior,
unlike RL. Safety awareness has always been a critical matter in robotics learning. Safety con-
straints can be hard to define with numerical values, which adds to the challenges of realizing safety
in RL. We notice that in Coffee, RL policy has a much shorter completion time than our method.
This is at the cost of ignoring safety concerns. We compare two rollouts of RL and our method
in Figure 4. The RL-trained policy attempts to close the lid by knocking the coffee machine with
the arm, which can potentially damage the robot and the coffee machine and even cause danger to
humans; while our method preserves safety awareness by following the demonstration’s practice of
closing the lid with its fingers.

SPIRE can train proficient agents using just a handful of human demonstrations. BC methods
can require several human demonstrations to train proficient agents, which can be a major drawback
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Figure 5: Demo efficiency and sampling strategy ablation. (Left) Minimum number of demos needed to
reach at least 80% success rate. (Right) Success rates across 5 seeds in Tool Hang, comparing permissive
and sequential strategies. sequential has a lower variance but permissive has the better top-1 policy.

due to the cost of collecting this data [9]. We reduce the number of human demonstrations used
by SPIRE to 10 and 50 (instead of 200 as in Fig. 3), and we plot the minimum of demonstrations
needed to reach at least 80% success rate in Fig. 5. As the plot shows, SPIRE can successfully
fine-tune a BC policy trained with as few as 10 demos in all evaluated tasks except for Tool Hang
and Coffee Broad, for which 50 demos are enough. In the 7 tasks, our method needs 150 demos in
total, while BC needs more than 870, a 5.8× improvement in efficiency.

4.2 Ablation Study

We conduct two ablative studies to investigate (1) the value of the KL-divergence penalty and (2)
the value of curriculum learning, governed by the two scheduler sampling strategies permissive
and sequential. In this section, we compare the performance distribution of the 5 runs instead of
only the top-1 run for a more comprehensive evaluation.

Value of divergence penalty. We ablate the divergence penalty on two representative tasks, Three
Piece & Tool Hang (Table 6) and observe a drastic performance drop (84% to 17.6%, 74% to 0%).

Task w/ (%) w/o (%)

Three Piece 84.0 (34.7) 17.6 (39.4)
Tool Hang 74.4 (11.8) 0.0 (0.0)

Figure 6: KL-divergence penalty ablation.
Mean and standard deviation (in parenthesis) of
success rates across the 5 seeds in Three Piece
and Tool Hang, with and without KL-divergence
penalty. In both tasks, the divergence penalty im-
proves the performance by a large margin.

The sparsity in rewards leads to high-variance opti-
mization objectives for RL. As a result, even when
warmstarted with BC, the RL policy can quickly de-
viate from it, especially when the chance of reach-
ing the reward signal is low. Therefore, constraining
the policy close to BC throughout the training is crit-
ical. We select two representative tasks, Three Piece
and Tool Hang for this ablation. The result is shown
in Figure 6. Without the divergence penalty, the RL
policies deviated immediately and never returned.

Value of curriculum learning. We compare the two sampling strategies in Tool Hang task. The
result is shown in Figure 5. sequential strategy shows a much smaller variance compared with
permissive. However, permissive produces the better top-1 seed performance. The main dif-
ference between the two strategies is how the second section states emerge during training. For
permissive, the second section states emerge gradually as the success rate of passing the first sec-
tion gets higher, resulting in a more gentle distributional shift that leads to a higher overall success
rate; for sequential, the shift is more abrupt, but it gains the advantage of fewer distraction states
in the early stage, resulting in a more stable training process.

5 Conclusion

We presented SPIRE, an integrated approach for deploying RL, BC, and planning harmoniously.
We showed how BC can be used to not only warm-start RL but also guide the RL process via
focused exploration. We introduced a scheduling mechanism to improve RL data throughput and in-
crease learning efficiency. Finally, we evaluated SPIRE in simulation against recent hybrid learning-
planning baselines and found that SPIRE results in more successful and efficient policies.
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A Overview

The Appendix contains the following content.

• Policy Learning Details (Appendix B)): details on hyperparameters used

• Ablation: SPIRE without TAMP (Appendix C): ablation study on the effect of removing
TAMP-gating and directly running BC and RL fine-tuning

• Comparison to Additional Methods (Appendix D): comparison to other RL methods that
leverage demonstrations

• Tasks (Appendix E): details on tasks used to evaluate SPIRE

• Variance Across Seeds (Appendix F): discussion on the variance of results across different
seeds and how results are presented

• TAMP Formulation(Appendix G): details on the TAMP planner

• Bridging TAMP Planner and RL (Appendix H): details on how we integrate the TAMP
planner with RL

• Ablation: SPIRE without Multi-Worker (Appendix I): ablation study on the effect of
using multiple parallelized TAMP workers

• Additional Experiment Results (Appendix J): additional experiment results, including
RL learning curves
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B Policy Learning Details

Table 1: DrQ-v2 hyperparameters.

Network structure CNN
Learning rate 1e-4
Discount 0.99
Batch size 256
n-step returns 3
Action repeat 1
Seed frames 4000
Feature dim 50
Hidden dim 1024
Optimizer Adam

Hyperparameters. The base RL algorithm for all our experiments is DrQ-v2 [63]. The specific
hyperparameters are in Table 1.

Observation. For most tasks, we use one 84 × 84 RGB image from the wrist camera as the only
observation. For Tool Hang, we use a front-view camera instead since the wrist-view is heavily
occluded. For Tool Hang Broad and Coffee Preparation, we use both camera views plus proprio-
ception state (end-effector pose and gripper finger width). We use the default CNN structure from
DrQ-v2 to encode the image observations. For tasks with multiple observations, we first encode
the image observations each with an independent CNN network, then concatenate the CNN outputs
alongside the low-dimensional observations such as proprioception states to form the feature vector.

Action. All of our tasks share a 7-dimensional continuous action space. It is models 6-DOF delta
movement of the end-effector along with 1 dimension for finger control. The action is modeled as a
normal distribution with a scheduled standard deviation.
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C Ablation: SPIRE without TAMP

We provide an additional ablation study on the high-level planner, TAMP. To do so, we treat the
whole task as one handoff section. The agent only receives a reward of one if it completes the whole
task. We collect 200 full demonstrations in Square, train a BC policy, and apply SPIRE to fine-
tune the BC policy. Since the trajectory becomes longer and the robot now needs to handle object
transportation, a single local wrist-view becomes insufficient. We thus include both the wrist view
and the global front view, as well as the robot proprioception states in the observation for the w/o
TAMP variant. The result is shown in Table 2.

Table 2: Comparing the success rates of Square and Square Broad with and without TAMP.

Task BC RL Ours

Square w/ TAMP 98% 100% 100%
Square w/o TAMP 2% 0% 94%

Square Broad w/ TAMP 100% 100% 100%
Square Broad w/o TAMP 0% 0% 0%

Even though the w/o TAMP variant has more information from observations, the BC and RL policies
are significantly worse than the w/ TAMP counterpart. The increased horizon makes the BC policy
easier to drift away to regions less frequently visited in demonstrations and makes RL exploration
much harder. In Square, despite the low starting quality, SPIRE still fine-tunes BC to reach a 94%
success rate, demonstrating the effectiveness of RL fine-tuning. However, when the initialization
range increases in Square Broad, even SPIRE fails to find an acceptable policy.

In conclusion, TAMP (1) confines the agent-controlled section to a small local area, reducing the
need for global information, and (2) decreases the horizon (11.6 w/ TAMP, 101.7 w/o TAMP in
Square) for the learned agent, reducing compounding errors and exploration difficulty.
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D Comparison to Additional Methods

In each handoff section from TAMP, SPIRE utilizes the demonstrations by training a behavior
cloning agent and using RL to fine-tune it. There are alternative methods to combine expert demon-
strations and RL, which can be readily plugged in as replacements to SPIRE. In this section, we
make connections from our method to GAIL [47]. The discriminator-based IRL reward in GAIL
serves the same purpose as our KL penalty term - preventing the current policy from deviating from
the expert policy. We draw further connection by showing that our KL penalty is the same as the IRL
reward function in GAIL with an alternative discriminator objective and a different reward form.

Let πE be the expert policy. The IRL reward function in GAIL is − log(1 − D(s, a)), where D :
S ×A → [0, 1] is the discriminator that maximizes

J(D) := Eτ∼π[log(1−D(s, a))] + Eτ∼πE
[log(D(s, a))]

If we use an alternative objective:

Ĵ(D) := Es∼πE ,a∼Unif[−D(s, a)] + Eτ∼πE
[log(D(s, a))]

The alternative objective discriminates πE from a fixed policy rather than the current learned policy
π. Assume πE has full support, then maximizing Ĵ(D) is equivalent to maximize for every s ∈ S:

Ĵs(D) :=Ea∼Unif[−D(s, a)] + Ea∼πE(·|s)[log(D(s, a))] (1)

=−
(∫

D(s, a) da

)
+

(∫
πE(a | s) log(D(s, a)) da

)
(2)

=−
(∫

D(s, a) da

)
+

(∫
πE(a | s) log πE(a | s) da

)
+

(∫
πE(a | s) log

D(s, a)

πE(a | s)
da

)
(3)

=−
(∫

D(s, a) da

)
+H(πE(· | s)) +

(∫
πE(a | s) log

D(s, a)

πE(a | s)
da

)
(4)

≤−
(∫

D(s, a) da

)
+H(πE(· | s)) +

(∫
πE(a | s)

(
D(s, a)

πE(a | s)
− 1

)
da

)
(5)

=−
(∫

D(s, a) da

)
+H(πE(· | s)) +

(∫
D(s, a) da

)
−

(∫
πE(a | s) da

)
(6)

=H(πE(· | s))− 1. (7)

where H is the entropy. (5) holds since log x ≤ x− 1 for all x > 0, and only equates when x = 1,
i.e., D̂(s, a) = πE(a | s). Since (7) is a constant, the maximum of Ĵ(D) can be taken when (5)
equates, which means the optimal solution of Ĵ(D) is D̂(s, a) = πE(a | s). Our KL penalty then is
equivalent to using an IRL reward of log(D̂(s, a)) = log πE(a | s).
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Figure 7: Handoffs per task, from top-to-bottom: Square, Three Piece, Tool Hang, Coffee, Coffee Preparation.
In practice, we merge section 1 & 2, section 4 & 5 in Coffee and Coffee Preparation, as there are no TAMP
actions in between.

E Tasks

Square and Square Broad. The robot must pick up a nut and place it onto a peg. This task
has 1 handoff section, where the learned agent places the nut. The Broad version increases the
initialization range of both the nut and the peg.

Three Piece and Three Piece Broad. The robot must insert one piece into a base and place another
piece on top of the first. This task has 2 handoff sections, where the learned agent places the two
pieces. The Broad version increases the initialization range of all three pieces including the base.

Tool Hang and Tool Hang Broad. The robot must first insert a L-shaped piece into a base to
assemble a frame, then hang a wrench off of the frame. This task has 2 handoff sections, where the
learned agent inserts the L-shaped piece and hangs the wrench. The Broad version increases the
initialization range of all three pieces (base, L-shaped hook, and wrench).
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Coffee and Coffee Broad. The robot must pick up a coffee pod, insert it into a coffee machine, and
close the lid. This task has 1 handoff section where the learned agent inserts the pod and closes the
lid. The Broad version increases the initialization range of the pod and the coffee machine.

Coffee Preparation. This is an extended version of Coffee. The robot must place a mug onto the
coffee machine, open the lid, open the drawer with the coffee pod, pick up the pod, insert the pod
into the coffee machine, and close the lid. This task has 3 handoff sections where the learned agent
(1) places the mug and opens the lid, (2) opens the drawer, and (3) inserts the pod and closes the lid.

See Figure 7 for an illustration of all the handoff sections.
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F Variance Across Seeds

In Figure 3, we show the best run out of 5 seeds. Here we provide the mean and standard deviation
of the success rates in Table 3. We observe that although SPIRE still outperforms BC in terms of
mean success rate in most of the tasks, our method exhibits unusually high variances in some of the
tasks, for example, Coffee, Three Piece, and Tool Hang. In those tasks, one or more runs result in a
performance significantly lower than the rest. Specifically,

• In Coffee, one run has 40% success rate, while the rest are all 100%;

• In Three Piece, one run has 22% success rate, while the rest are at least 98%;

• In Tool Hang, one run has 0% success rate and one has 6%, while the rest are at least 82%.

Table 3: Mean and standard deviation (in parenthesis) of success rates out of 5 seeds.

Task BC RL [15] Ours

Square 92.4 (5.5) 83.6 (36.7) 99.2 (1.8)
Square Broad 96.4 (4.1) 100.0 (0.0) 96.4 (5.4)
Coffee 96.8 (4.1) 40.0 (52.1) 88.0 (26.8)
Coffee Broad 41.6 (6.7) 23.2 (12.1) 84.4 (8.3)
Three Piece 63.6 (6.7) 0.0 (0.0) 84.0 (34.7)
Three Piece Broad 25.2 (7.7) 0.0 (0.0) 78.4 (5.0)
Tool Hang 9.2 (4.6) 0.0 (0.0) 54.0 (46.8)

Reinforcement learning methods are known to have high variances, especially in sparse reward
settings. SPIRE partially alleviates this problem by enforcing the KL penalty for deviating from an
anchor policy. However, in practice, such deviation can still happen.

Figure 8 compares the training curve of a successful run (with 88% final success rate) and a failed
run (with 0% final success rate). The policy in the failed run drastically deviated from the BC policy
early on in the training. This is likely related to the unusually large policy gradient loss, which the
KL penalty term was unable to match and failed to constrain the policy.
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Figure 8: Comparing the (a) Deviation from BC, (b) policy gradient loss, and (c) reward training curves of a
successful run (marked as grey) and a failed run (marked as red) in Tool Hang.

In our experiments, such an abrupt decrease in policy gradient loss happens frequently, with varying
scales and timing, causing the training results to have high variance. Using an adaptive weight of
the KL penalty might be a potential solution, which we wish to investigate in future work.

We do not believe 5 seeds are enough to quantitatively reflect the chance of such sudden deviation
happening. An alternative solution would be to compare only the results where such deviation did
not happen, which is why we chose to report the top-1 performing seed in our main paper.
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G TAMP Formulation

We specify TAMP formulations in manner similar to that of Mandlekar et al. [14]. We’ll use the
“Tool Hang” task in Figure 2 as an example of integrating traditional and learned actions within
TAMP. The goal of this task is to pick and insert the frame into the stand and then pick and hang the
wrench on the frame. Accordingly, a sequence of discrete action types that accomplishes this goal
is:

a⃗ = [move(...), pick(...), move(...), insert(...), move(...), pick(...), move(...), hang(...)].

We wish to learn the most contact-rich actions, namely insert and hang. For brevity, we’ll describe
just the insert action since the hang action has a similar description.

Like in [57], we represent planning state variables using predicates. Planning actions can be applied
to planning states if they satisfy an action’s of predicate preconditions (pre:). Upon application, an
action modifies the truth value of the state variables through its predicate effects (eff:). Predicates and
actions are parameterized by a list of typed arguments. Our TAMP domain involves the following
types:

• conf - a robot configuration,

• traj - a robot trajectory comprised of a sequence of configurations,

• obj - a manipulable object,

• grasp - an object grasp pose,

• pose - an object placement pose,

• policy - a learned closed-loop robot policy,

and the following predicates:

• AtConf(q: conf) - the robot is currently at configuration q,

• HandEmpty() - the robot’s hand is currently empty,

• AtPose(o: obj, p: pose) - object o is currently at placement pose p,

• AtGrasp(o: obj, g: grasp) - object o is currently grasped with grasp pose g,

• Inserted(o: obj; π: policy) - object o is inserted into the stand as a result of executing
policy π,

• Motion(q1: conf, τ : traj, q2: conf) - τ is a trajectory that connects configurations q1
and q2,

• Kin(q: conf, o: obj, g: grasp, p: pose) - configuration q satisfies a kinematics constraint
with placement pose p when object o is grasped with grasp pose g,

• PreInsert(o: obj, g: grasp, q: conf, π: policy) - object o grasped with grasp pose g
and the robot at configuration q are initiation states for policy π.

The move action is deployed using a joint-trajectory controller. Its parameters are the current robot
configuration q1, new configuration q2, and trajectory τ .

move(q1 : conf, q2 : conf, τ : traj)
pre: {Motion(q1, τ, q2), AtConf(q1)}
eff: {AtConf(q2), ¬AtConf(q1)}

The pick action instantaneously grasps object o. Its parameters are object o, future grasp pose o,
current placement pose p, and current robot configuration q.

pick(o : obj, g : grasp, p : pose, q : conf)
pre: {Kin(q, o, g, p), AtPose(o, p), HandEmpty(), AtConf(q)}
eff: {AtGrasp(o, g), ¬AtPose(o, p), ¬HandEmpty()}

20



The insert action is deployed using a learned policy π. Its parameters are object o, current ob-
ject grasp g, current robot configuration q1, future configuration q̂2, and learned policy π. The
PreInsert(o, g, q1, π) precondition models the set of combined object and robot states that initiate
the action, thus defining the initial state distribution of the MDP for policy π. The Inserted(o, π)
effect models the set of terminal states of the MDP for policy π, namely where the sparse reward
r(s) = 1. Unlike move and pick, insert is a stochastic action because end configuration q̂2 de-
pends on the execution of policy π. Because of this, we replan after executing each learned action.

insert(o : obj, g : grasp, q1 : conf, q̂2 : conf, π : policy)
pre: {PreInsert(o, g, q1, π), AtGrasp(o, g), AtConf(q1)}

eff: {Inserted(o, π), HandEmpty(), AtConf(q̂2), ¬AtGrasp(o, g), ¬AtConf(q1)}

How do we select the handoff actions?

SPIRE offers flexibility to human modelers for deciding which skills should be learned, depending
on the precision requirements of the interaction. In our experiments, we used our understanding of
the limits of the TAMP system to determine which skills should be learned. The hand-crafted skills,
or the classical skills in our work include moving without colliding (transit and transfer motion) and
grasping, which are fairly easy to automate. The rest of the skills are learned.
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H Bridging TAMP Planner and RL

In this section, we describe how we bridge the gap between a TAMP planner and RL in full detail.
We follow our main text and use S and A to denote the state and action space respectively, with
T : S ×A → S being the state transition function and S∗ ⊆ S being the set of goal states.

H.1 Planner Formulation

We use TAMP as our default planner in our main text. In this section, we generalize our method to
any planner with the following assumptions.

A SPIRE-compatible planner P, conditioned on a generated high-level plan, can be defined as a
tuple (N,Sinit, {Si

pre}, {Si
eff})Ni=1, where N is the number of handoff sections; Sinit ⊆ S is

set of the admissible initial states; for handoff section i, Si
pre ⊆ S is the set of states where the

preconditions for this section are satisfied, while Si
eff ⊆ S is the set where the desired effects are

realized. The planner works by iterating through the sections from 1 to N . The planner should
satisfy the following properties.

Sequence validity. For each section i, if the desired effects of the previous section are satisfied, i.e.,
the current environment state s ∈ Si−1

eff (let S0
eff = Sinit for notational convenience), the planner

then plans a sequence of actions that always terminates and leads to a new state that satisfies the
preconditions of the current section, i.e., s′ ∈ Si

pre.

Section validity. For each section i, starting from any state s ∈ Si
pre, a state s′ ∈ Si

eff is reachable
within a finite number of steps.

Goal validity. Any state that satisfies the effects of the final section should be a goal state, i.e.,
SN
eff ⊆ S∗.

H.2 Connecting the Planner with RL

SPIRE runs by interleavingly executing the planner P and the agent π, iterating through the N
handoff sections. In the i-th section, if the current state s /∈ Si−1

eff , then we terminate the process and
report failure; otherwise, we execute the planner until the preconditions of this section are met. The
planner then hands it off to the agent until the desired effects are met or a specified step limit has
been reached.

Theorem 1. Let P be a SPIRE-compatible planner, i.e., P satisfies sequence validity, section valid-
ity, and goal validity. There exists an agent π∗ with which SPIRE reaches the goal state determinis-
tically within a finite number of steps if the initial state is admissible by P, i.e., s0 ∈ Sinit and with
a large enough step limit.

Proof. With an induction on the handoff sections, we can conclude that given sequence validity and
section validity there exists an agent π∗ with which SPIRE always reaches a state in SN

eff within
a finite number of steps in each section. Given goal validity, the final state is always a goal state.

Planner-induced MDPs. In Sec 3.1, we formulate the planner-induced MDPs as a series of N
MDPs with shared dynamics and different reward functions and initial state distributions, each cor-
responding to a planner handoff section. We can now formally define each MDP’s reward function:
For the i-th MDP, the reward function is ri(s) := 1{s∈Si

eff}. The support of the initial state distri-
bution satisfies supp(pi0) ⊆ Si

pre.

Sample collection rate issue. One critical issue we encountered when integrating a TAMP planner
into RL training was the dropped rate of sample collection. To give more context, suppose it takes
a fixed time of t to sample one frame of environment interaction with an RL agent. Under this as-
sumption, the natural sampling speed with pure RL is 1/t frames per second (FPS). When combined
with a TAMP planner, let the planning time before each handoff section be T , and let the RL agent
run for at least H steps in each section, the resulting sampling speed becomes at most H/(T + tH)
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(a) Single TAMP-RL worker

(b) Parallelized TAMP-RL workers

Figure 9: Demonstrations of a single-process TAMP-RL pipeline and multi-process TAMP-RL pipeline.

FPS (see Figure 9a), a relative slowdown of Ht/T . In practice, the TAMP planning time T can be
much longer than tH , making this slowdown significant.

Initial state distribution issue. We know that the support of the initial state distribution in the i-th
section is within Si

eff . However, even if we assume the planner is fixed, the distribution can still
change based on the agent behaviors in the previous sections. In the case of training a single agent
for all sections, the distribution is even more prone to policy changes as the completion rates of
previous sections can affect the appearance rates of later sections.

H.3 Multi-Worker Scheduling Framework

To resolve the two aforementioned issues, we designed the multi-worker scheduling framework that
utilizes parallelization, as introduced in Sec 3.5.

Solving the sample collection rate issue. See Figure 9b. The multi-worker system runs n TAMP
planners in parallel. When a worker finishes planning and reaches the next handoff section, it will
notify the scheduler to be available and enter hiatus, until selected by the scheduler for RL interac-
tions. If the system has enough workers, specifically when n ≥ T

tH , there always will be a TAMP
worker available for RL and reach the optimal sample collection rate of 1/t FPS.

Solving the initial state distribution issue. We attempt to alleviate the changing initial state distri-
bution issue by applying a selection strategy to the scheduler. Specifically, the sequential strategy
only accepts a section when the success rate of passing all the previous sections reaches a thresh-
old, which indicates that the agent’s behavior in previous sections becomes stable. The framework
allows for other potentially more sophisticated selection strategies, even though we do not find it
necessary in the scope of our work.
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I Ablation: SPIRE without Multi-Worker

We provide an additional ablation study on how the sample collection rate boost from the multi-
worker system benefits the overall performance. We run SPIRE with 16 workers and 1 worker
respectively for the same amount of 6-hour wall-clock time, for the first insertion of the Tool Hang
task. The result is shown in Table 4.

Table 4: Comparing the success rates of the first insertion in Tool Hang with and without multiple workers.

# Workers Success rate Sampling FPS

16 98% 55.4
1 42% 7.7
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J Additional Experiment Results

We show the RL learning curves in Figure 10 comparing SPIRE and naive RL. The x-axis represents
the environment steps and the y-axis represents the success rate.

(a) Square (b) Square Broad

(c) Coffee (d) Coffee Broad

(e) Three Piece (f) Three Piece Broad

Figure 10: Comparing the RL learning curves of SPIRE and naive RL.
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