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Abstract

Succinct representation of complex signals using coordinate-based neural rep-
resentations (CNRs) has seen great progress, and several recent efforts focus on
extending them for handling videos. Here, the main challenge is how to (a) alleviate
a compute-inefficiency in training CNRs to (b) achieve high-quality video encoding
while (c) maintaining the parameter-efficiency. To meet all requirements (a), (b),
and (c) simultaneously, we propose neural video representations with learnable po-
sitional features (NVP), a novel CNR by introducing “learnable positional features”
that effectively amortize a video as latent codes. Specifically, we first present a
CNR architecture based on designing 2D latent keyframes to learn the common
video contents across each spatio-temporal axis, which dramatically improves all
of those three requirements. Then, we propose to utilize existing powerful image
and video codecs as a compute-/memory-efficient compression procedure of latent
codes. We demonstrate the superiority of NVP on the popular UVG benchmark;
compared with prior arts, NVP not only trains 2 times faster (less than 5 minutes)
but also exceeds their encoding quality as 34.07—34.57 (measured with the PSNR
metric), even using >8 times fewer parameters. We also show intriguing properties
of NVP, e.g., video inpainting, video frame interpolation, etc.!

1 Introduction

Recent advances in coordinate-based neural representations (CNRs) [9, 13, 17, 40, 46] have shown
great promise in the field as a new paradigm for representing complex signals, including gigapixel
images [29, 34], audios [40], 3D scenes [30, 33, 35], and even large city-scale street views [47].
Instead of storing signal outputs as a coordinate grid (e.g., image pixels), whose memory requirement
scales unfavorably in terms of resolution and dimension, CNRs represent each signal as a compactly
parameterized, continuous neural network; they interpret a signal as a coordinate-to-value function
and train a neural network to approximate this mapping. CNRs enjoy numerous appealing properties,
including data compression [11, 12, 59], super-resolution [6], novel view synthesis [18, 22, 33, 54],
and generative modeling of complex, high-dimensional data [14, 24, 41, 42, 57, 60], while being
parameter-efficient interpretation of a given signal in various scenarios.

In particular, several works have attempted to exploit CNRs to interpret video signals [5, 23, 42, 57]
by learning a neural network f : R® — R? with f(z,y,t) = (r, g,b) and exhibited their potential
as a succinct representation of videos, as well as providing numerous applications including video
generative modeling [42, 57], video compression [5, 59], and video super-resolution [7]. They
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Ground Truth

Figure 1: Reconstruction results on Jockey in UVG-HD after training each model for “1 minute”
with a single NVIDIA V100 32GB GPU. NVP can capture the detail of a video containing dynamic
motions, e.g., the legs of a running horse, while the prior methods generate blurry artifacts.

observe that conventional CNR architectures [40, 46] often fail to encode large-scale videos due to
their complex temporal dynamics accompanied by large spatial variations, but the problem can be
remarkably mitigated by designing CNR architectures specialized for videos. For instance, Chen
et al. [5] proposes a CNR structure that focuses on the continuous modeling of the video signal only
along the temporal dimension, allowing for more radical variations along spatial axes; it exhibits a
comparable encoding quality to existing powerful video codecs (e.g., H.264 [51], HEVC [43]) while
enjoying lots of intriguing properties (e.g., denoising and video frame interpolation).

However, CNRs suffer from a severe compute-inefficiency,” limiting their scalability to encode real-
world, large-scale videos despite their advantages. To alleviate this issue, several works [26, 34, 37]
have proposed new CNR architectures by separating a CNR f into two parts; f = hg o gg for a
coordinate-to-latent mapping gy (z, y,t) = z and a latent-to-RGB mapping hy(z) = (r, g, b). They
construct gg as an embedding function defined with latent grids Uy in which the shape resembles the
grid interpretation of a given signal (e.g., a 2D array of C-dimensional latent codes Uy € RH*WxC
for image pixels) rather than as a neural network. These approaches have shown a promise in
compute-efficiency due to the strong locality induced by a grid structure of Uy; however, they result
in another problem: these architectures severely sacrifice the parameter-efficiency since the parameter
size of 6 can be very large, growing proportionally to both the input coordinate dimension and the
signal resolution. In this paper, we focus on developing video CNRs that are the best of both worlds:
achieving high-quality encoding and the compute-/parameter-efficiency simultaneously.

Contribution. We introduce neural video representations with learnable positional features (NVP),
a novel CNR for videos. NVP avoids requiring a single giant full-dimensional 3D array in gy by
presenting learnable positional features that effectively amortize a given video as “2D and 3D” latent
grids with succinct parameters. Specifically, we decompose the coordinate-to-latent mapping as

90 = 90,y X 90,5 X G0y X GOsye» for 0:= (gxyv O, eyta exyt)v
—_———
2D keyframes 3D sparse features

where we present two types of latent grids for constructing these mappings (see Figure 2).

o Latent keyframes: We first design “image-like” 2D latent grids Uy, , U,,,, Ug, for gy, , go.., 9o,
(respectively) that learn the representative video contents across each spatio-temporal axis and
dramatically improve the parameter efficiency of NVP.?

o Sparse positional features: We then introduce a “video-like” 3D latent grid Uy, , for gy, ,, whose
size is much smaller than the original video pixels, but effectively encodes video details locally.

Measured with a single NVIDIA V100 32GB GPU, NeRV [5] takes at least 15 GPU hours to encode a
single video of 600 frames with a 1920 x 1080 resolution for the desired quality.

3Such a spatio-temporal consideration is different from conventional approaches for specifying keyframes
deterministically across only the temporal direction.
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Figure 2: Overall illustration of our NVP. At a given space-time coordinate, NVP computes a latent
vector from latent keyframes (see Figure 19 in Appendix E for details) and sparse positional features.
The latent vector is passed through a neural network to compute the corresponding RGB output.

Moreover, we propose a compute-/memory-efficient compression procedure to further reduce the
parameter 6 by incorporating existing image and video codecs, e.g., JPEG [49] for images and
HEVC [43] for videos, respectively. In particular, we treat 2D and 3D latent grids like the image or
video pixels and utilize powerful compression pipelines for them. Our compression scheme does
not require any re-training of trained parameters, which significantly increases compute-efficiency to
prior approaches to compressing CNR parameters but remarkably maintains the encoding quality.
We also remark that such a compression approach is not applicable to the hashing-based latent grid of
the prior method [34], while ours is “collision-free”” and maintains the video- or image-like structures.
Finally, for the choice of hg, we suggest using a modulated network (with respect to the temporal
coordinate) to improve the encoding quality of videos that contain dynamic motions.

We verify the effectiveness of our method on the popular UVG benchmark [32]. In particular, NVP
achieves the peak signal-to-noise ratio (PSNR; higher is better) metric of 34.57 in 5 minutes (with
a single NVIDIA V100 32GB GPU): it is achieved >2 times faster, even with using >8 times
fewer parameters than the state-of-the-art on compute-efficiency that reaches 34.07 in 10 minutes.
Moreover, compared with prior arts on encoding quality, our method improves the learned perceptual
image patch similarity (LPIPS [58]; lower is better) as 0.145—0.102 (429.7%) with a similar number
of parameters while requiring ~72.5% less training time. We also show numerous compelling
properties of NVP, e.g., video inpainting, video frame interpolation, super-resolution, compression,
and consistent frame-wise encoding results without deviating quality.

2 Related work

Coordinate-based neural representations. Coordinate-based neural representations (CNRs), also
known as implicit neural representations or neural fields, have emerged as a new paradigm for
representing complex, continuous signals. They propose to encode signals through a neural network,
typically a multilayer perceptron (MLP) combined with high-frequency sinusoidal activations [40] or
Gaussian activations [9]. Prior works have focused on utilizing neural fields on various complicated
data, e.g., gigapixel images [29, 34], 2D videos [5, 42, 57], 3D static scenes, [30, 33, 35], and 3D
dynamics scenes [23, 39, 52]. In particular, most approaches have focused on constructing CNR
architectures for encoding 3D scenes [3, 15, 47] and exhibited how employing specialized prior
knowledge for a given signal domain in the architecture can remarkably boost the encoding quality.
Despite these successes, extending CNRs for videos is yet under-explored. In this paper, we aim to
move toward developing a CNR for videos by exploiting their unique temporal properties.

Hybrid CNRs. Rather than solely designing a neural network of coordinate-to-RGB mapping,
hybrid CNRs incorporate learnable latent codes that follow a grid structure, e.g., image CNRs
combined with 2D latent spatial grids [6, 31], and 3D scene (or shape) CNRs with latent cubic grids
[4, 8, 19, 26, 29, 37]. Specifically, they compute a latent vector using the grid-structured latent
code and pass it through a neural network to compute the signal output at a given input coordinate.
Such approaches have shown significant efficiencies in training time and encoding quality due to
the powerful locality induced by grid-shaped latent codes. However, the number of parameters
required for latent grid-based representations easily grows proportionally to the input coordinate
dimension or data resolution, limiting the scalability of hybrid CNRs. Remarkably, some of the recent
approaches have exhibited this inefficiency can be significantly mitigated by considering multi-level
(or progressive) structures for latent grids [26, 29, 44, 45]. While prior works primarily focus on
encoding images or 3D scenes, we aim to design parameter-efficient hybrid CNRs for videos.



3 NVP: Neural video representations with learnable positional features

We first formulate our problem setup as follows. Given a video signal v := (f1, fa, ..., f7) consisting
of T video frames, the goal is to find a compact neural representation fy, with parameters w, from
which the original video v can be reconstructed with high quality. Here, the quality can be defined
using various distortion metrics, e.g., peak signal-to-noise ratio (PSNR) [16] and LPIPS [58], for
evaluating a reconstruction quality and a perceptual similarity, respectively.

To achieve this goal, we take an approach based on coordinate-based neural representations (CNRs)—
a paradigm where each datum (e.g., video) is parameterized as a neural network of coordinate
mapping. In particular, we aim to represent the given video using a neural network f,, : R? — R3,
which maps the space-time coordinates (x, y, t) of the video to corresponding RGB values (r, g, b),
where fy, is optimized with reconstruction objectives, e.g., mean-squared error. Such an approach
has significant potential, as CNRs have shown to encode other continuous, complex signals (e.g., 3D
scenes) [40, 46] compactly while enjoying lots of intriguing properties, e.g., super-resolution [6] and
denoising [5]. However, CNRs have suffered from tremendous time costs for training, and even in
the case of videos, it is difficult to achieve high-quality encodings if one utilizes conventional CNR
architectures that overlook the complex spatio-temporal dynamics of videos [5]. Our contribution
lies in resolving these issues by designing “learnable positional features” that succinctly encode a
video as latent codes with high quality and keeping their compute-/parameter-efficiency intact.

In the rest of this section, we provide a detailed description of each component in NVP. In Section 3.1,
we explain the architecture of NVP. We then describe our compression procedure in Section 3.2.

3.1 Architecture

We design our video CNR fy, as a composition of two functions with a parameterization w := (6, ¢):
a coordinate-to-latent mapping gg and a latent-to-RGB mapping hy. Here, we decompose the
coordinate-to-latent-mapping as gg = go,, X 9o,. X 96,. X 9y, With go(2,y,t) = (Zxy, Zxt, Zyt, Zayt)
(for 0 := (ny, Oxt, Oyt 9xyt)), where each gy, , go,., 9o, is formalized with image-like 2D latent
spatial grids Ug, , Ug,., Uy, (respectively) and gy, , is designed with a video-like sparse 3D latent
grid Uy, .. We then present the latent-to-RGB mapping hy (Zxy, Zxt, Zyt, Zxye) = (7,9,0) to be a
multi-layer perceptrion (MLP) modulated by another neural network. To explain our architecture, we
assume all the input coordinate (x,y,t) of gs (and fy ) is in [0, 1]3 C R? without loss of generality.

Learnable latent keyframes. At a high level, learnable latent keyframes Uy, , Ug,,, Uy, are image-
like 2D latent grids learned to capture the common representative contents in a given video v across
each t-, y-, x-axis, respectively. For a given input coordinate (z,y, ¢), we compute latent vectors
Zyys Zxt, Zyy from Uy, Uy, Uy individually. We explain our keyframe only with Uy_ by letting
U := Uy, for simplicity, but note that other keyframes Uy, , Uy,, operate in the similar manner.

xt 2

Formally, U is L 2D spatial grids of C-dimensional latent codes 1;;, whose resolution is H; x W:
U= (U1;-~-7UL)a

Uy = (ul;) € RFUWIXC for 1 =1,... L,
u; €ERY for1<i< H,1<j<W,.

Here, the keyframe follows an L-level multi-resolution structure, i.e., for each level [, the height H;

and the width T; become different as H; = |/~ H; | and W; = |7'~'W} | with fixed v > 1 and

Hy,W; > 0, where |-| indicates the floor function of the input. Since U = Ugy , 1s shared over the

z-axis, we compute the latent vector zyy, := (25, . . ., 2%) by considering only the value of y and ¢ at

a given coordinate (,v,t). Specifically, for [ = 1,..., L, each 2/, is a linearly interpolated vector of
four vectors in the spatial grid U;, where the indices of these vectors are chosen as the closest ones to
the relative position of the input coordinate (y,t) € [0, 1]?:

(man):(LyHILLtWZJ) fOfl:l?"-aLv
I _q H — m. AW —n): l l l
Ry = 1l€rp (y l m, l n)vumn?um,n—i—lvum-&-l,nvum—i-l,n-i—l )
where lerp indicates a linear interpolation operation at the input coordinate between given vectors.

Note that we learn the keyframe as the latent codes, unlike conventional approaches that specify the
keyframe in a deterministic manner from 7" video frames (fi, f5, . .., fr); it encourages to capture



the representative contents of the video over each spatio-temporal direction better. We also remark
that our architecture involves two keyframes Uy, , Uy, that are considered across spatial axes.
Considering these keyframes may not be beneficial in the RGB space as the spatial variation of
video pixels is often large. However, in our approach, these keyframes are learned under a more
flexible, continuous latent space, and thus the representative frames can even be found in these spatial
directions in such a space while encoding the RGB outputs of the video accurately.

Finally, recall that Uy, , Uy,,, Ug,, consist of multi-resolution spatial grids, i.e., the resolution of
spatial grids in each latent keyframe grows from coarse to fine. Since natural scenes often include
repeating patterns in various scales, e.g., a scene of flowers of different sizes, this multi-resolution
architecture promotes learning common patterns with reduced memory and computation costs, which
is also validated in Miiller et al. [34].

Sparse positional features. Given a space-time coordinate (x, y,t), we compute the latent vector
ZzysWith Uy,  that represents the local details of the video at this input position. Here, Uy, , =
(uijn) € RHXWXSXD g4 3D sparse grid of D-dimensional latent codes, i.e., the 3D grid size
H x W x S is much smaller than the size of the video pixels of a 3D RGB grid:

Uy, = (uyp) € RFWXSD 1y e RP for 1<i<H,1<j<W,1<k<S8S.

To evaluate the latent vector z,y¢, We concatenate i X w X s latent codes in ngyt that their indices
are near the relative position of the input (x, y, t):

(m’nvk) = (LxHJa LyWJ’ LtSJ)v

Zyyt = (umnk7 v 7um+h71,n+w71,k+sfl)
where h, w, s > 0 are given as hyperparameters.

The locality of Uy, as 3D latent codes dramatically alleviates the compute-inefficiency in fitting
videos, in contrast to conventional CNRs where the entire parameters are shared (as a neural network)
for arbitrary input coordinates (z, y, t) and thus require a significant training cost. Moreover, recall
that we construct Uy,  as a sparse 3D grid of latent codes; remarkably, Uy,  efficiently captures the
video details even if the size is smaller than the number of video pixels since the common contents of
a given video are effectively encoded with the latent keyframes Uy, , Ug,,, Ug,,.

Note that we design Uy, , as a sparse 3D grid; each single u;;; should represent a wide area of videos
solely without concatenation. As the single latent vector may lack expressive power to represent such
a wide range and may result in a non-smooth transition as the CNR output. Hence, we mitigate this
issue by concatenating multiple vectors near each other (see Figure 10 in Section 4.3).

xt 2

Instead of directly selecting near latent codes from Uy, ., one may consider upsampling of Uy, , using
linear interpolation before selecting the close latent codes at a given coordinate. Such an interpolation
further helps each latent code to learn smoother representations and also generalizes to representing
video frames at unseen coordinates during training. Meanwhile, this upsampling requires more
computing time compared to the computational cost of other modules in NVP, and thus faces a
trade-off between the smoothness and compute-efficiency in training (see Table 4 in Section 4.3).

Modulated implicit function. With the latent vector z = [zxy, Zyt, Dyt nyt] evaluated from gy,
a naive design choice of the latent-to-RGB mapping hy is to utilize a MLP that maps z to the
corresponding RGB output (r, g,b). However, if a video contains temporally dynamic motions, we
found such a simple MLP architecture occasionally lacks expressive power and can be difficult to
capture the complex dynamics of the given video, even with the large network size of h.

To circumvent this issue, we design hg to be a K-layer MLP (coined as a synthesizer network)
modulated by another modulator network [31]: where the latent vector z and the time coordinate ¢
are passed through the modulator and the synthesizer, respectively. Here, the modulator network
utilizes piecewise linear activations (e.g., ReLU), where the synthesizer uses sinusoidal activations.
Specifically, an RGB output (7, g, b) of the latent vector z (from (z, y, t)) is computed as follows:

o = t,
o =z Osin(Agag_1 +bg) fork=1,... K—1,
(T,g,b) = AKaK—l + bK7
where Ay, by, are weights and biases of k-th layer of the synthesizer, zy, is k-th hidden feature of the

modulator, and ® denotes an element-wise product. It helps to achieve high-quality encoding rapidly
in early training iterations and often at the convergence than a naive MLP (See Table 3 for details).



Table 1: PSNR, FLIP, and LPIPS of different CNRs to encode videos in UVG-HD under each
encoding time. 1 and | denote higher and lower values are better, respectively. Subscripts denote
standard deviations, and bolds indicate the best results. * indicates applying the method without
the corresponding compression scheme. We report the BPP values of NeRV without compressing
parameters if the encoding time is < 1 hour since the NeRV’s compression requires a longer time.
On the other hand, the compression procedure of NVP only takes less than 1 minute, but for a fair
comparison, we do not apply it to NVP as well whenever NeRV is not compressed.

Encoding time ~ Method BPP  PSNR (1) FLIP (}) LPIPS (1)
Instant-ngp [34] 7.580 33.15£3.19  0.090+0.034 0.22640.112
~5 minutes  NeRV-S* [5] 1072 24.16£5.17  0.219+0.097  0.54240.180

NVP-S* (ours) 0.901 34.57+2.62 0.075+0.021 0.190+0.100

Instant-ngp [34] 7.580 34.07£3.01 0.082+0.030  0.204+£0.105
~10 minutes ~ NeRV-S* [5] 1.072  26.53+5.92 0.176+0.088 0.460+0.184
NVP-S* (ours) 0901 35.79£2.31 0.065+0.016 0.160-0.098

Instant-ngp [34] 7.580 35.69+2.72  0.071£0.025 0.16240.090
~1 hour NeRV-S* [3] 1.072  33.26+4.31 0.094£0.038  0.24040.112
NVP-S* (ours) 0.901 37.61+2.20 0.052+0.011 0.145+0.106

SIREN [40] 0.284 27.20£3.77 0.1694+0.059  0.409+0.124
~15 hours FFN [46] 0.284 28.184+3.62 0.153+£0.055 0.442+0.126
Instant-ngp [34] 0.229  28.81+3.48 0.155+0.057 0.390£0.135
NeRV-S [5] 0.201 36.144+3.97 0.067+0.023 0.163+0.101
~8 hours NVP-S (ours) 0210 36.46+2.18 0.067+0.017 0.135+0.083
SIREN [40] 0.284 26.09+£3.88 0.175+0.082  0.486+0.188
<40 hours FFN [46] 0.284 29.53+3.44 0.135£0.052  0.391+0.124
Instant-ngp [34] 0.436  29.984+3.39  0.138+0.051 0.358+0.140
NeRV-L [5] 0485 35.00£3.31 0.079£0.020  0.145+0.100

~11 hours NVP-L (ours) 0412 37.47+2.08 0.062+0.017 0.102+£0.061

3.2 Compression procedure

Recall that we aim to find “compact” video CNRs; several works have focused on reducing the number
of coordinate-based neural representations parameters (or bits) after training while maintaining their
performance. In particular, they have relied on exploiting existing well-known techniques for neural
network compression, e.g., exploiting magnitude pruning [5, 21] or quantization [5, 59], and exhibited
considerable results. However, these approaches mainly involve a re-training of CNR parameters,
requiring severe computation costs, and thus are not suitable for practical scenarios.

Instead, we propose a compression pipeline for NVP, which does not require re-training, yet signifi-
cantly reduces the number of bits while preserving the video quality. Our main idea is to incorporate
existing image and video codecs that have shown their promises for the compression of given pixels.
In particular, we focus on compressing keyframes Uy, , Uy, , Uy, , and sparse positional features
Uy,,. as the parameter size of the modulated implicit function A is neglectable compared with those.
Specifically, we quantize Uy, and Uy, , Ug,,, Uy, as 3D/2D grids of 8-bit latent codes and regard
them as video and image pixel grids, where the number of the channel becomes the dimension of
latent codes. Based on these interpretations, we compress these latent codes by utilizing existing
video and image codecs, e.g., HEVC [43] for videos and JPEG [49] for images. Intriguingly, we
found this procedure can significantly reduce the parameters while notably maintaining the video
quality without any fine-tuning of the latent-to-RGB mapping hy (See Section 4.3).

4 [Experiments

We verify the effectiveness of our framework on UVG-HD [32], a representative benchmark for
evaluating video encodings. Experimental results demonstrate that our neural video representations
with learnable positional features (NVP) simultaneously improves the overall performance by (a)
alleviating a compute-inefficiency in training, (b) achieving high-quality video encoding, and (c)
maintaining parameter-efficiency. We also show applications of our NVP, including video inpainting
and spatio-temporal interpolation. Finally, we conduct ablation studies to validate each component.



Ground Truth

Figure 3: Illustration of reconstructions on Yachtride (left), and ShakeNDry (right) in UVG-HD.
FLIP indicates the output of evaluating its metric. The red box is zoomed in as the image at the right.

Evaluation. We follow similar setups on prior work [5] proposing coordinate-based neural represen-
tations (CNRs) for videos. All reported numbers are averaged over 7 videos in UVG-HD: Beauty,
Bosphorus, HoneyBee, Jockey, ReadySetGo, ShakeNDry, and Yachtride, along with the standard
deviations unless otherwise specified. We also use the Big Buck Bunny video, which is used in
NeRV [5]. For quantitative evaluation, we use the following metrics: peak signal-to-noise ratio
(PSNR) for reconstruction quality, LPIPS [58], FLIP [2], and SSIM [50] for perceptual similarity,
where all metrics are evaluated in a frame-wise manner and averaged over the whole video. We
evaluate these metrics on different bits-per-pixel (BPP; lower is better) to evaluate the parameter
efficiency; see Appendix A.1 for more description of the evaluation.

Implementation details. All main experiments, including baselines, are processed with a single
GPU (NVIDIA V100 32GB) and 28 instances from a virtual CPU (Intel® Xeon® Platinum 8168
CPU @ 2.70GHz), where it takes at most ~11 hours to run our method and ~2 days to run other
baselines. Moreover, we denote NVP-S and NVP-L as the model with latent code dimensions of
sparse positional features to be 2 and 4, respectively; see Appendix A.2 for more details.

Baselines. We compare our method with SIREN [40], and FEN [46], which are well-known signal-
agnostic CNR architectures, Instant-ngp [34] for state-of-the-art CNRs on compute-efficiency, and
NeRYV [5], which is a CNR specialized for videos. For all of the baseline methods, we follow their
reported experimental setups. In particular, for NeRV [5], we use two configurations provided in
the official implementation: NeRV-S and NeRV-L for a small and a large model, respectively. See
Appendix B for a detailed description of baseline methods.

4.1 Main results

Figure 1, Figure 3, and Table 1 summarize quantitative and qualitative results of NVP and baselines.
Remarkably, as shown in Figure 1, NVP can accurately capture dynamic motions and high-frequency
details of a video, e.g., the legs of a running horse, while prior state-of-the-art CNRs fail to achieve
and show a blurry artifact. We also emphasize such a high-quality encoding is accomplished in “less
than 1 minute”, which supports the superior compute-efficiency of NVP in training.

Moreover, Table 1 verifies the effectiveness of NVP with quantitative evaluations, which outperforms
all other baselines at varying encoding times from ~35 minutes to >40 hours. In particular, NVP
significantly improves LPIPS compared with previous methods, demonstrating how the encoded
videos are perceptually similar to ground-truth videos. Such a result is also confirmed in Figure 3;
NeRV shows a distortion that some pixels significantly deviate from the ground-truth outputs, while
our method does not suffer from such artifacts. We also note that the variance of NVP is relatively
small compared with other baselines, which shows the robustness of videos with diverse scenes and
motion. See Appendix C and D for video-wise results and discussion on decoding time, respectively.



Table 2: Quantitative interpolation
result of different methods on Big
Buck Bunny measured with PSNR,
LPIPS, and SSIM metrics. Bold
indicates the best result.

Metric NeRV [5] NVP (ours)
. L PSNR (1) 23.05 33.76
Original Inpainting Result LPIPS (]) 0.480 0311
SSIM (1) 0.690 0.960

Figure 4: Video inpainting result of NVP on the drift-chicane
video in DAVIS 2017 [38] to remove the masked car.
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4.2 Applications

In this section, we provide several applications of our method, NVP, as video CNRs. For better,
playable illustrations and qualitative results, please refer to our project page.

Video inpainting. Intriguingly, our method has the capability of video inpainting, i.e., the desired
moving object in the video can be naturally removed by capturing shared video contents with learnable
keyframes. Figure 4 visualizes the illustration of inpainting results from NVP; as shown in this figure,
one can see the car is removed where such parts are filled with a natural background.

Video frame interpolation. Since video CNRs approximate videos as temporally continuous signals,
they should interpolate among two different frames at an arbitrary time, even if such a frame does
not exist in the training dataset. To validate the interpolation capability of NVP, we provide the
quantitative results on Big Buck Bunny sequences; our method shows better interpolation results
measured with various metrics, such as PSNR and LPIPS.

Video super-resolution. We remark that NVP encodes a given video as a spatio-temporally continu-
ous signal. Thus, our method can interpolate the frames across spatial directions, i.e., frame-wise
super-resolution. Figure 5 exhibits how well NVP smoothly interpolates video frames across spatial
directions while preserving the sharp edges, compared with naive upsampling methods.

Video compression. Recall that one of the major advantages of CNRs is their succinct encoding to
represent a given signal; one may consider utilizing CNRs for video compression [5, 11, 12]. To
verify the potential of our method on video compression, we compare the quality of compressed
videos from NVP with the ones from the current state-of-the-art video codecs. As shown in Figure 6,
compressed videos from NVP show the comparable reconstruction quality (measured with PSNR
metrics) while outperforming perceptual similarity (measured with LPIPS metrics).

4.3 Ablation studies

Effect of architecture components. To verify the effectiveness of each component, we train our
model with all the videos in UVG-HD by removing each component while maintaining the total
number of parameters, then measure PSNR metrics from these models. Table 3 summarizes the
effect of three different architecture components. Without any of the components consisting of our
positional features, the reconstruction quality gets dramatically worse, which validates how NVP
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succinctly encodes a given video as latent codes. We also note that the modulation not only improves
the final encoding quality but also notably achieves high-quality encoding in its early training epochs.

Compression procedure. To validate the effectiveness of our compression scheme, we compare
the encoding quality of (a) NVP with our compression scheme and (b) NVP compressed through
magnitude-based pruning. Figure 7 shows the proposed compression pipeline outperforms conven-
tional magnitude-based pruning under various BPP values. We also remark that our compression
method does not require re-training and is thus much more time-efficient.

Analysis of non-temporal keyframes. Recall that we additionally design keyframes across spatial
directions, unlike conventional approaches that designate the keyframe over only the temporal
direction. To validate the effect of such keyframes, we compare NVP with (a) NVP without spatial
keyframes and (b) NVP without all of the keyframes in Figure 8, where the number of parameters
is equally set for a fair comparison. While utilizing latent learnable keyframes only over temporal
direction is already fairly effective for high-quality encoding, one can observe the consideration of
keyframes across other directions provides a further improvement.

Consistent frame-wise encoding quality. Existing keyframe-based compression approaches often
suffer from inconsistent encoding quality: the frame-wise quality of the compressed video highly
depends on whether it is the designated keyframe or not. In contrast, NVP learns the keyframes and
does not have this problem. Figure 9 validates the result: our method exhibits consistent encoding
performance while conventional popular video codecs show several peaks that the reconstruction
quality (measured with PSNR metrics) highly deviates from others.

Effect of the concatenation of latent codes in sparse positional features. To validate the effective-
ness of design choice on extracting latent features from sparse positional features Uy, , we compare
the reconstructions from NVP with and without concatenation of Uy, . As shown in Figure 10, the
concatenation of latent codes u;jx in Uy, , indeed mitigates non-smooth transitions between latent
codes and captures sharp details in a given video better. In particular, without the concatenation, it
results in undesirable artifacts (e.g., showing discontinuous borders), validating our concatenation
scheme for constructing latent representations from sparse positional features.

Effect of upsampling of sparse positional features. We also examine the effect of upsampling of the
sparse positional features Uy, . Figure 11 shows the result: linear interpolation of Uy, exhibits more
smooth patterns for unseen coordinates during training. Meanwhile, we note that the upsampling
requires 1.61 times more training time per iteration due to the additional computation bottleneck (see
Table 4); however, regardless of upsampling, we remark that NVP still achieves notable compute-
efficiency compared with prior state-of-the-art methods (such as Chen et al. [5]).



Without Concatenation of Uy, With Concatenation of Uy, , Ground Truth

Figure 10: Reconstruction results on ReadySetGo in UVG-HD. Concatenation of sparse positional
features captures sharp details (e.g., a fence) better.

Table 4: Training time per
iteration with/without up-
sampling of sparse posi-
tional features.

Upsampling  Time

X 0.291s
4 0.469s

Without Upsampling of Uy, , With Upsampling of Uy, ,

Figure 11: Comparison of super-resolution result (x8) on HoneyBee.

5 Discussion and conclusion

We proposed NVP, a new coordinate-based neural representation (CNR) to encode videos as succinct
latent codes. Our main idea is to decompose a video into “image-like” and “video-like” structures to
learn coordinate-to-latent mapping efficiently. Extensive experiments have verified the effectiveness
of NVP on all the parameter-/compute-efficiency and the encoding quality. We hope our method will
facilitate various future research directions in the CNR area.

Limitations and future works. Each video contains different scenes and motions so that it can be
either static or dynamic, yet we utilize the same hyperparameters and architectures for encoding any
video. Although such a video-agnostic design is fairly effective and outperforms prior works, we
believe the video-wise consideration of the architecture and hyperparameter can remarkably boost
the performance further. Moreover, we have shown the potential of utilizing powerful image and
video codes for compressing latent codes in NVP; extending such codecs to be specialized for the
compression of latent codes should be an interesting direction.

Negative social impacts. A side effect of CNRs is their potential unexpected behavior on encoding;
they may cause undesirable artifacts in representing the given signal but are challenging to predict
due to the under-explored behavior of training CNRs. Furthermore, in the case of representing videos,
the encoded videos may suffer from severe distortions and conceivably cause ethical problems. In
this respect, such behaviors should be extensively and carefully investigated and mitigated to exploit
CNRs as the standard for encoding videos in real-world situations.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

* Did you include the license to the code and datasets? [Yes] See Section 4
* Did you include the license to the code and datasets? The code and the data are
proprietary.

* Did you include the license to the code and datasets? [IN/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 5.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See
Section 5.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A |

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See Section 4
and supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4 and supplementary material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Section 4.
(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [Yes] See Section 4.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 4.
(b) Did you mention the license of the assets? [Yes] See Section 4.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
See the supplementary material.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] See the supplementary material.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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