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ABSTRACT

Generalising robustly to distribution shift is a major challenge that is pervasive
across most real-world applications of machine learning. A recent study highlighted
that many advanced algorithms proposed to tackle such domain generalisation (DG)
fail to outperform a properly tuned empirical risk minimisation (ERM) baseline.
We take a different approach, and explore the impact of the ERM loss function on
out-of-domain generalisation. In particular, we introduce a novel meta-learning
approach to loss function search based on implicit gradient. This enables us
to discover a general purpose parametric loss function that provides a drop-in
replacement for cross-entropy. Our loss can be used in standard training pipelines
to efficiently train robust models using any neural architecture on new datasets.
The results show that it clearly surpasses cross-entropy, enables simple ERM to
outperform some more complicated prior DG methods, and provides state-of-the-art
performance across a variety of DG benchmarks. Furthermore, unlike most existing
DG approaches, our setup applies to the most practical setting of single-source
domain generalisation, on which we show significant improvement.

1 INTRODUCTION

Deep learning is highly successful when the training and testing samples meet the i.i.d. assumption.
However, this assumption is violated in many practical applications of machine learning from medical
imaging to earth observation imaging (Koh et al., 2021). This has led a large number of studies to
investigate approaches to training models with increased robustness to distribution shift at testing-
time, a problem setting known as Domain Generalisation (DG). Despite the volume of research
in this area (Zhou et al., 2021a), a recent careful benchmarking exercise, DomainBed (Gulrajani
& Lopez-Paz, 2021) showed that simple empirical risk minimisation (ERM) on a combination of
training domains is a very strong baseline when properly tuned. State-of-the-art alternatives based
on sophisticated architectures, regularisers, and data augmentation schemes failed to reliably beat
ERM (Gulrajani & Lopez-Paz, 2021).

Rather than propose an alternative to ERM for DG, we investigate a previously unstudied hyper-
parameter of ERM, namely the choice of loss function—which has been ubiquitously taken to be
standard cross-entropy (CE) in prior DG work. Loss function choice has been shown to impact
calibration (Mukhoti et al., 2020), overfitting (Gonzalez & Miikkulainen, 2019), and label-noise
robustness (Wang et al., 2019) in standard supervised learning, so it is intuitive that it would impact
robustness to domain-shift. However, it has not yet been studied in this context. Our preliminary
experiments showed that equipping ERM with some recent robust loss functions in place of CE does
lead to improvements in DG performance where sophisticated alternatives have failed (Gulrajani &
Lopez-Paz, 2021). This raises the question: can one design a loss function specialised for DG?

To answer this question, we define a meta-learning algorithm to learn a parametric (white-box) loss
function suitable for DG. Our desiderata are: (1) Performing ERM with this loss on a source domain
should lead to good performance when tested on out-of-domain target data; and (2) It should provide
a ‘plug-and-play’ drop-in replacement for cross-entropy that, once learned, can be used without
further modification or computational expense with any new dataset or model architecture. While
there has been growing interest in meta-learning for loss function design (Li et al., 2019a), they
mostly fail to meet these criteria. They learn problem-specific—rather than re-usable—losses. If
applied to DG, this would imply replacing simple ERM learning with sophisticated meta-learning
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pipelines to train a loss on a per-problem basis. In contrast, our discovered loss provides a drop in
replacement for CE that leads standard training pipelines to produce more robust models.

To train a general purpose robust loss function we need a search space that is flexible enough to
include interesting new losses, but simple enough to generalise across tasks without overfitting to the
problem used for loss learning. We choose a 12-dimensional space of fourth order Taylor polynomials.
Furthermore, we need a loss that is suitable for all stages of training. This precludes the majority
of approaches based on online meta-learning which update the loss and base model iteratively (Li
et al., 2019a;c), and also suffer from short-horizon bias (Wu et al., 2018). Evolutionary methods
(Gonzalez & Miikkulainen, 2019) and reinforcement-learning (Li et al., 2019a) could support loss
learning in principle, but are too slow to be feasible. Therefore we develop the first implicit-gradient
based approach to loss learning. This allows us to tractably compute meta-gradients of the target
recognition performance with respect to the loss used for training in the source domain.

We use a simple DG task (RotatedMNIST) to train our robust loss, termed Implicit Taylor Loss (ITL),
to replace CE in ERM. Subsequent experiments show that ERM with ITL surpasses CE across a range
of DG benchmarks, and leads to state of the art performance, despite being much simpler and faster
than competitor DG methods. While the majority of existing DG methods require multiple source
domains to conduct data augmentation or feature alignment strategies, ITL improves single-source
domain generalisation, a crucial problem setting which has been minimally studied thus far.

To summarise our contributions: (i) We provide the first study on the significance of supervised
loss function choice in DG (ii) We demonstrate the first efficient solution to loss-learning based on
meta-gradients computed by the Implicit Function Theorem. (iii) Empirically, we show that our
learned ITL loss enhances simple ERM and achieves state of the art DG performance across a range
of benchmarks, including the challenging single-source DG scenario.

2 RELATED WORK

Domain Generalisation: Domain Generalisation aims to learn a model using data from one or more
source domains, but with the further requirement that it is robust to testing on novel target domain
data—without accessing target data during training. DG is now a well studied (Zhou et al., 2021a) area
with diverse approaches including data augmentation (Shankar et al., 2018; Zhou et al., 2021b), robust
training algorithms such as domain alignment objectives (Li et al., 2018b), and other regularisers
(Li et al., 2019c; Balaji et al., 2018). Most DG studies have assumed the multi-source setting, which
enables new data-augmentation strategies (Zhou et al., 2021b), and allows generalisation-promoting
design features to be tuned by domain-wise cross-validation. In particular, a few studies (Li et al.,
2019c; Balaji et al., 2018) have considered meta-learning based DG, where a regulariser applied in a
training domain is tuned by meta-gradients from the resulting validation-domain performance. The
resulting model is then deployed to the true target domain within the same family. These methods
require regulariser meta-learning for each given multi-source DG problem family. In contrast, we
propose to learn a simple loss function once, which then provides a drop-in replacement for CE in
any single-, or multi-source DG problem. A recent criticism of the DG literature showed that no
method consistently outperformed a well tuned ERM baseline on the carefully designed DomainBed
benchmark (Gulrajani & Lopez-Paz, 2021). Rather than competing with ERM, we simply enhance
the ERM loss function and this leads to a clear improvement on DomainBed.

Loss Function learning: Loss Function learning aims to discover new losses that improve model
optimisation from various perspectives including conventional generalisation performance, (Gonzalez
& Miikkulainen, 2019; Liu et al., 2021), optimisation efficiency (Li et al., 2019a; Gonzalez &
Miikkulainen, 2019; Wang et al., 2020; Bechtle et al., 2020), and noise robustness (Li et al., 2019a).
Key dichotomies are in the search space of black box (neural) (Bechtle et al., 2020; Li et al., 2019c)
vs white-box (human-readable) (Li et al., 2019a; Gonzalez & Miikkulainen, 2019; Wang et al., 2020)
losses; whether learned losses are problem specific (Li et al., 2019a; Wang et al., 2020) or reusable
(Gonzalez & Miikkulainen, 2019); the meta-optimisation algorithm used—evolution (Liu et al., 2021;
Gonzalez & Miikkulainen, 2019), RL (Li et al., 2019a; Wang et al., 2020; Bechtle et al., 2020), or
gradient (Li et al., 2019c); and whether the loss is updated offline (Liu et al., 2021; Gonzalez &
Miikkulainen, 2019) (long inner loop, typically intractable), or online (Li et al., 2019a; Wang et al.,
2020) (short inner loop, efficient but suffers from short-horizon bias (Wu et al., 2018)). No studies
have thus far investigated loss learning for domain-shift robustness. In order to learn a reusable
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robust loss we use a white-box loss search space of Taylor polynomials proposed in Gonzalez &
Miikkulainen (2020), and offline/long inner loop meta-learning. To make this meta-optimisation
tractable, we exploit the Implicit Function Theorem, to efficiently generate accurate hypergradients
of the validation domain performance with respect to the training domain loss function parameters.
Besides being the first demonstration of loss learning for DG, to our knowledge it is also the first
demonstration of any implicit gradient-based loss learning.

3 METHOD

The need for Domain Generalisation arises when one is using machine learning to build a model
where the available training data is not representative of the data that will be observed by the model
once it has been deployed. In particular, it is assumed that there is an underlying distribution over
domains, P , from which we can sample several source domain distributions, {p(s)1 , ..., p

(s)
n ∼ P},

to make use of during training. We can construct a training set for each of these source domain
distributions by sampling K data points, D(s)

i = {(x(s,j)
i , y

(s,j)
i ) ∼ p(s)i }Kj=1, and use the union of

all these sets as the full training set, D(s) =
⋃n
i=1D

(s)
i . Empirical Risk Minimisation (ERM) then

simply finds the model parameters, θ, that minimise the loss measured on this training set,

min
θ

1

n

n∑
i=1

1

K

K∑
j=1

L(fθ(x(j)
i ), y

(j)
i ), (1)

where L(·, ·) is a loss function (typically cross entropy) measuring how well the predicted labels
match the ground truth labels. One can empirically check the resulting model’s robustness to domain
shift by sampling one or more target domain distributions, {p(t)1 , ..., p

(t)
m ∼ P}, from the same

distribution over domains that was used to generate the training data. Data can then be sampled for
each of these target domains, yielding a test dataset D(t) =

⋃m
i=1D

(t)
i . Standard evaluation metrics

such as accuracy can then be computed using this data.

3.1 META-LEARNING LOSSES FOR DG

Our goal is to replace the standard CE loss typically used in ERM with a learned loss function. We
are motivated by recent work showing that learned losses can enable models to perform better for a
variety of other problem settings, such as training with label noise (Wang et al., 2019) and improving
calibration (Mukhoti et al., 2020). We formulate the task of learning the parameters, ω, of a loss
function, Lω, as a bilevel optimisation problem. The outer objective is to find the ω that maximises
the performance of a model evaluated on the target domain data, and the inner problem is to train
a model to minimise the value of Lω measured on the source domain data. The loss parameters
are optimised using gradient-based methods that take advantage of the implicit function theorem to
efficiently compute gradients for the outer optimisation problem. Crucially, once the optimal loss
function ω∗ has been found, new DG problems can be solved via ERM on the Lω∗ loss.

The bilevel optimisation we use to formalise the meta-learning process is given by

ω∗ = argmin
ω

1

m

m∑
i=1

1

K

K∑
j=1

M(fθ∗(ω)(x
(t,j)
i ), y

(t,j)
i ) (2)

s.t. θ∗(ω) = argmin
θ

1

n

n∑
i=1

1

K

K∑
j=1

Lω(fθ(x(s,j)
i ), y

(s,j)
i ) (3)

whereM is a loss function used to measure the performance of the model on the target domains,
typically chosen to be cross entropy.

Optimising ω is challenging due to the need to backpropagate through the long inner loop optimi-
sation of θ. Existing approaches for learning loss functions typically resort to slow evolutionary
or reinforcement learning updates (Li et al., 2019a; Gonzalez & Miikkulainen, 2019; Wang et al.,
2020) in the outer loop, or to an online approximation based on alternating steps on ω and θ (Li et al.,
2019a; Wang et al., 2020). The latter approach leads to a loss function ω∗ that cannot be transferred
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to new tasks, as it suffers from a short-horizon bias (Wu et al., 2018). To solve this problem, we
use the Implicit Function Theorem (IFT) to compute ∂M

∂ω without truncating the inner optimisation
problem to approximate θ∗(ω).

3.2 IMPLICIT GRADIENT

The conceptually simplest way to optimise ω is to store all the intermediate iterates generated by
the optimiser when training the network in the inner loop, and to then backpropagate through all of
these weight updates (Maclaurin et al., 2015). This becomes prohibitively expensive in both memory
and computation. Instead, after finding θ∗(ω) we compute the gradient using the Implicit Function
Theorem (IFT). The implicit gradient computation takes advantage of the fact that ∂Lω

∂θ = 0, because
we have found locally optimal model parameters for the inner problem. The gradient we want to
compute is given by

∂M
∂ω

=
∂M
∂θ

∂θ

∂ω

∣∣∣∣∣
ω,θ∗(ω)

, (4)

and the IFT can be used to obtain
∂θ

∂ω
= −

[ ∂2Lω
∂θ ∂θT︸ ︷︷ ︸
|θ|×|θ|

]−1
× ∂2Lω
∂θ ∂ωT︸ ︷︷ ︸
|θ|×|ω|

. (5)

The inverse of the Hessian can be rephrased in terms of a Neumann series,[ ∂2Lω
∂θ ∂θT

]−1
= lim
i→∞

i∑
j=0

[I − ∂2Lω
∂θ ∂θT

]j , (6)

and approximated by truncating the summation to a finite number of terms. In practice, one can
make use of vector-Jacobian products to avoid explicitly constructing the Hessian in the summation.
Further details can be found in Lorraine et al. (2020), but we provide pseudo-code for computing the
implicit gradient in Algorithm 2.

Algorithm 1 IFT-based loss learning for DG.
1: Input: P, ω
2: Output: ω∗

3: Init ω
4: while not converged or reached max steps do
5: sample p1, ..., pn from P
6: sample D1, ..., Dn from p1, ..., pn
7: Init H = 0 ∈ Rn×|ω|
8: for all Di do
9: Init θi {Get random network weights}

10: Ds = {D1, ..., Dn}/Di, Dt = Di {Construct
source/target splits}

11: θ∗i = argminθ Lω(θi, Ds) {Train the network}
12: hi = Hypergradient(Lω,M, (ω, θ∗i ), α)
13: H[i, :] = hi
14: end for
15: h = grad-surgery(H)
16: ω = ω − ηh {Update the loss function}
17: end while

Algorithm 2 Computing the hyper-
gradient of the meta-objectiveM,
with respect to the loss ω. The
grad(·, ·, ·) function from PyTorch
computes a Jacobian-vector prod-
uct when called with a non-scalar
first argument. Inspired by Lor-
raine et al. (2020), we use this to
efficiently compute the Hessian re-
quired for approximating the Neu-
mann series.

Input: Lω,M, (ω, θ∗), α

Output:−p∂
2Lω

∂θ∂ω

v = p = ∂M
∂θ |(ω,θ∗)

for all j = 1, ..., J do
v− = α · grad(∂Lω

∂θ , θ, v)
p += v

end for

3.3 ROBUST GRADIENT ESTIMATION

Algorithm 1 summarizes the gradient estimation procedure. To obtain high quality gradient estimates
in each outer loop iteration, we employ a leave-one-domain-out strategy. The DG task, P , used for
meta-training the loss parameters has m domains associated with it. In each iteration of the outer
loop, we train m networks with the prospective loss (i.e., we instantiate m different copies of the
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Figure 1: Algorithm schematic. Loss Lω is trained to optimize held-out domain performance on
R-MNIST and then deployed on novel datasets.

inner loop), where each network has a different target domain and the remainder of the domains are
used to train the network. We can then compute a gradient for each of the m networks and aggregate
them together in order to perform an update to the loss parameters. Rather than using the mean
gradient, we found aggregation using gradient surgery (Yu et al., 2020), which reduces the gradient
noise caused by different source/target domain splits in the inner loop, to work better in practice.

3.4 TAYLOR POLYNOMIAL REPRESENTATION

The choice of loss function parameterisation is a crucial factor in our framework. One must balance the
ability to represent a sufficiently broad range of loss functions, with the susceptibility to overfitting the
data used to learn the loss. The search space we consider is based on the truncated Taylor polynomials
used by the evolutionary optimisation loss learning approach of (Gonzalez & Miikkulainen, 2020).
This family of loss functions treats the point around which the Taylor polynomial is centred, and
also the value of the derivatives at this point, as learnable parameters. In this sense, it is a variational
learning method—though it should be stressed it is not a variational Bayesian method. The family of
β order multivariate Taylor polynomials has the form

`(z) =

β∑
n=0

1

n!
∇n`(c)T (z− c)n, (7)

where c is a fixed point around which function is being expanded. Because c is fixed, the values of
the derivative at this point are also fixed. As such, we can replace c and∇n`(c) with meta-learnable
parameters. This allows us to parameterize the learned loss function in terms of the gradients it should
have at a meta-learnable point. We define our learnable loss as

Lω(ŷ,y) =
1

C

C∑
i=1

`ω(ŷi,yi), `ω(ŷi,yi) =

β∑
n=0

1

n!
∇n`([ω0, ω1])

T ([ŷi,yi]− [ω0, ω1])
n, (8)

where each∇n`([ω0, ω1]) can actually be replaced by introducing more meta-parameters to ω. Please
see Appendix A.4 for an expanded definition of this loss function.

3.5 ALGORITHM SUMMARY

Meta-train: Given a set of training domains, the loss function search space in Section 3.4, and
efficient update strategy in Section 3.2 and Algorithm 1, we are able to train a robust loss function
Lω. We conduct such loss function learning only once using a small dataset, and then evaluate the
resulting loss on a variety of larger datasets that are unseen during meta-training. Meta-test: Given
the learned loss function Lω∗ , we fix it and use it together with the ERM algorithm for novel DG
tasks. Each target problem is trained from scratch and has not been seen during loss learning. An
overview of the algorithm, and the learning curve of the meta-train phase, are given in Figure 1.

4 EXPERIMENTS

4.1 DATASET AND IMPLEMENTATION DETAILS.

Meta-train stage: We aim to learn a general purpose loss function that can be used in diverse DG
problems, but we first need to select a dataset for initial loss learning. We chose RotatedMNIST (Ghi-
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Table 1: Resnet18 Cross-domain recognition accuracy (%) on PACS.
Target set Art Cartoon Photo Sketch Avg.

Epi-FCR (Li et al., 2019b) 82.1 77.0 93.9 73.0 81.5
JiGen (Carlucci et al., 2019) 79.4 75.3 96.0 71.6 80.5
MASF (Dou et al., 2019) 80.3 77.2 95.0 71.7 81.0
CrossGrad (Shankar et al., 2018) 79.8 76.8 96.0 70.2 80.7
Entropy (Zhao et al., 2020) 80.7 76.4 96.7 71.8 81.4
L2A-OT (Zhou et al., 2020) 83.3 78.2 96.2 73.6 82.8
RSC (reported in Huang et al. (2020)) 83.43 80.31 95.99 80.85 85.15

Mixstyle (rs) (Zhou et al., 2021b) 82.3 ± 0.2 79.0 ± 0.3 96.3 ± 0.3 73.8 ± 0.9 82.8
Mixstyle (dl) (Zhou et al., 2021b) 84.1 ± 0.4 78.8 ± 0.4 96.1 ± 0.3 75.9 ± 0.9 83.7
RSC (our rerun their code) 79.25± 0.69 77.63± 0.50 93.61± 0.37 78.11± 1.40 81.91
RSC + ITL 81.67± 0.80 76.56± 0.50 95.57± 0.22 77.05± 0.56 82.71
ERM + BCE 71.19 ± 0.81 70.82 ± 0.29 93.11 ± 0.78 57.65 ± 0.98 73.19
ERM + CE 76.9 ± 0.6 76.5 ± 0.7 93.3 ± 0.1 68.8 ± 0.6 78.9
ITL-Net (ERM+ITL) 83.9 ± 0.4 78.9 ± 0.6 94.8 ± 0.2 80.1 ± 0.6 84.4

fary et al., 2015), which contains six different domains that are all derived from MNIST (LeCun
& Cortes, 2010) but with different rotations: 0%, 15%, 30%, 45%, 60%, and 75%. The leave-
one-domain-out strategy for robust implicit gradient estimation, therefore, results in six inner loop
instantiations for each outer loop iteration. For efficiency, we use 2-layer MLPs as the base model,
which contains 1024-256-10 units from the input layer to the output one with ReLU as the activation
function. The learning rates in the inner loop and outer loop are both 0.01, a batch size of 32 is used
for the inner loop, and the Neumann series used for approximating the inverse Hessian is truncated at
15 iterations. The result is a set of 12 parameters that define the learned fourth-order polynomial loss
function and an example of learned loss is shown in Appendix A.3. The meta-train compute cost is
descripted in Appendix A.6.

Meta-test (deployment) stage: We now evaluate our learned ITL using ERM, but with our learned
loss instead of cross entropy. Models trained with our method are denoted by ITL-Net. We evaluate
the learned loss function on the four common DG benchmarks: VLCS (Fang et al., 2013), PACS (Li
et al., 2018a), OfficeHome (Venkateswara et al., 2017), and Terra Incognita (Beery et al., 2018). Two
sets of experiments are conducted: (i) We evaluate the conventional PACS benchmark, as it is the
most widely used in the DG literature, and enables comparison against the most recent state-of-the-art
competitors. (ii) We evaluate all four benchmarks using the recent DomainBed platform, which is
designed to enforce fair and consistent hyperparameter tuning across different methods.

4.2 RESULTS

PACS: Setup A pre-trained ResNet18 backbone is used throughout, together with the source and
target domain split described in (Li et al., 2018a). We train ResNet-18 with ITL on the training split
and perform model selection using the validation set. We use same set of hyperparameters (learning
rate of 0.001, weight decay of 0.00001, and batch size of 32 for each domain) for the baseline ERM
with Cross-Entropy (ERM +CE) and Binary Cross-Entropy (BCE) to train our model. We compare
ITL-Net with the existing state-of-the-art methods on this benchmark, including RSC (Huang et al.,
2020), data augmentation-based L2A-OT (Zhou et al., 2021b), Mixstyle (Zhou et al., 2020) including
random shuffle (rs) and domain label (dl), regulariser-based Entropy (Zhao et al., 2020), adversarial
gradient-based CrossGrad (Shankar et al., 2018), meta learning-based MASF (Dou et al., 2019) and
Epi-FCR (Li et al., 2019b) and self-supervision-based JiGen (Carlucci et al., 2019).

PACS: Results We first conduct experiments using the classic PACS protocol to facilitate com-
parison against many recent competitors that were not evaluated on DomainBed. Table 1 compares
our ITL-Net performance vs state-of-the-art methods. From the results we can see that: (i) Simply
swapping out the loss in ERM from CE to ITL, leads to a significant 5.5% improvement. (ii) Overall
our ITL-Net leads to state-of-the-art performance on this benchmark, surpassing the most recent and
sophisticated competitors such as Mixstyle.

DomainBed: Setup We next evaluate ITL using the DomainBed platform, which enforces careful
and fair evaluation by ensuring that all competitors use the same hyper-parameter tuning strategy
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Table 2: DomainBed Cross-domain recognition accuracy (%) with ResNet50 on ColoredMNIST
VLCS, PACS, TerraIncognita, OfficeHome and DomainNet. Bottom: Results of Wilcoxon signed-
rank hypothesis test comparing ITL-Net against competitors.

Models
Dataset ERM SagNet CORAL CDANN RSC ITL-Net

ColoredMNIST 51.5 51.7 51.5 51.7 51.7 52.0
VLCS 77.5 77.8 78.8 77.5 77.1 78.9
PACS 85.5 86.3 86.2 82.6 85.2 86.4
TerraIncoginita 46.1 48.6 47.6 45.8 46.6 51.0
OfficeHome 66.5 68.1 68.7 65.8 65.5 69.3
DomainNet 40.9 40.3 41.5 38.3 38.9 41.6
Avg. Rank 4.17 2.67 3.00 5.17 5.00 1.00

p-value (H0) Reject (0.016) Reject (0.016) Reject (0.016) Reject (0.016) Reject (0.016)

Table 3: Cross-domain recognition accuracy (%) on DomainBed-PACS-Resnet50. Comparison
with alternative manually-designed robust losses.

Loss ERM+CE ERM+FOCAL ERM+SCE ERM+GCE EMR+LS ERM+ITL

Avg Perf 83.9± 0.5 84.6± 0.8 84.2± 0.5 83.0± 0.2 84.9± 0.6 86.4± 0.5

(random search, driven by source domain validation performance), and the same number of hyperpa-
rameter search iterations. We follow the standard DomainBed protocol and use a ResNet-50, with
experiments conducted on VLCS, PACS, OfficeHome, and Terra Incognita.

DomainBed: Results The results in Table 2 compare ITL-Net with ERM and some of the most
competitive published alternatives: SagNet (Nam et al., 2019), CORAL (Sun & Saenko, 2016),
CDANN (Li et al., 2018c) and RSC (Huang et al., 2020) in the original DomainBed paper (Gulrajani &
Lopez-Paz, 2021). A detailed comparison is given in Appendix 6. The conclusion of the DomainBed
study was that existing methods did not reliably beat ERM under this hyperparameter tuning protocol.
In contrast, we can see that ITL-Net provides a clear improvement on ERM and matches or improves
on the strongest existing competitor in each case, especially on TerraIncognita and OfficeHome. To
formally compare ITL-Net with competitors, we perform significance testing using the Wilcoxon
signed-rank test, where the p-value is set as 0.025 and the sample size is number of the Domain
datasets applied. For example, when comparing the performance of ITL-Net and ERM, the null
hypothesis (H0) is that ITL-Net has equal performance to ERM on DomainBed and the alternative
hypothesis (H1) that ITL-Net is statistically significantly better than ERM on DomainBed. The
results of the hypothesis tests comparing ITL to each competitor are summarized at the bottom of
Table 2, and confirm that ITL-Net outperforms them all.

Single Source DG: Setup Most existing DG methods rely on the availability of multiple source
domains in some form: For example to synthesise new domains for data augmentation (Zhou et al.,
2021b), or perform feature alignment among training domains (Sun & Saenko, 2016). A unique
feature of our ITL-Net is that, since it is only a small modification to ERM, it can be used to learn on
a single source domain. Although this setting is not well explored in the literature, it is obviously
highly practical as multiple source domains are often not available in practice. To explore this setting,
we modify the DomainBed benchmark to train on a single source at a time and average over each
source→target combination, rather than training on the conjunction of all sources.

Single Source DG: Results From the results in Table 4, we can see that performance drops across
the board compared to multi-source training (Table 2), as expected. However, the state of the art
alternatives CORAL and SagNet are no longer as competitive compared to ERM as they were in
the multi-source case (Table 2)—this is expected as they are designed to exploit cues from multiple
source domains. In contrast, our ITL-Net maintains a clear lead over the conventional ERM with
cross entropy baseline in this setting. This is a significant achievement as existing work has not
produced algorithms that improve robustness under the single-source setting.
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Table 4: Cross-domain recognition accuracy (%) on DomainBed with single source domain. The
heading of the table denotes the single source domain, and results average across all target domains.

Source Dataset VLCS PACS OfficeHome TerraIncognita

ERM 64.08 51.85 53.57 32.13
CORAL 64.07 51.84 53.51 32.13
SagNet 61.78 53.00 51.30 33.93
Mixup 59.01 54.92 52.70 30.80

ITL-Net 62.17 56.54 55.04 35.09
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Figure 2: The evolution of posterior entropy for target domain test samples during training. Left:
Correctly classified samples. Right: Misclassified samples.

4.3 FURTHER ANALYSIS

Qualitative comparison and impact on learning To understand our learned loss, we visually
compare it Figure 5 with several other loss functions: CE, SCE (Wang et al., 2019), Label Smoothing
(LS) (Pereyra et al., 2017), and FOCAL (Mukhoti et al., 2020). Compared to the standard cross entropy
loss, we can see that ITL has softer penalties for severe misclassification, and stronger penalties for
moderate misclassification. In addition, it can be noticed that FOCAL has the most similar shape
to our ITL. The properties of the FOCAL loss for probability calibration were recently studied in
(Mukhoti et al., 2020). Motivated by this, we report the evolution of the target-domain entropy
of correctly and incorrectly classified samples during training in Figure 2(left) and Figure 2(right)
respectively. Clearly, a byproduct of ITL compared to CE and SCE is a (desirable) increase in
uncertainty for misclassified instances. FOCAL has similar behaviour to ITL in general, especially
the entropy of prediction distributions for misclassified instances.

Quantitative comparison to other robust losses We next investigate whether the good perfor-
mance of ITL in cross-domain robustness can be easily replicated by applying existing robust loss
functions, or whether our meta-learning pipeline has learned something new in terms of robust model
training. SCE (Wang et al., 2019) and GCE (Zhang & Sabuncu, 2018) were designed with label-noise
robustness in mind, while Focal (Mukhoti et al., 2020; Lin et al., 2017) was designed for class
imbalance and calibration. Label-smooth (LS) (Pereyra et al., 2017) is for improving generalisation
and reducing overconfidence. From the results in Table 3, we can see that while some losses improve
on CE, ITL leads to the clearest improvement. The somewhat similar behaviour of ITL and FOCAL
in terms of induced entropy from Figure 2 does not carry over similar cross-domain recognition
accuracy. Note that all experiments in Table 3 were run by us, while competitor performance in
Table 2 is taken from (Gulrajani & Lopez-Paz, 2021).

Loss landscape analysis and Perturbation analysis One of the factors that affect model general-
isation is the loss landscape at convergence. (Keskar et al., 2017; Chaudhari et al., 2019) observed
that flatter loss landscapes lead to good generalisation of the learned model. To this end, we compared
a 1D slice through the loss landscape of ITL-Net with that of ERM on both source domain and target
domains. Namely, we perturb the converged paraeters by moving it around though gradient direction
which generated by the evigenvector of the Hessian matrix . From Figure 4, we can see that for each
held out target domain, ITL-Nets have flatter loss landscapes compared with models trained by CE
with respect to the source domains. To further analyse the quality of the minimas provided by CE

8



Under review as a conference paper at ICLR 2022

Table 5: Cross-domain recognition accuracy (%) on OfficeHome: Impact of meta-train seed (±
standard deviation), and choice of pre-training dataset.

Target set Artistic Clipart Product Real World Avg.
ITL-NET (RotatedMNIST) 64.22± 0.84 56.25± 0.38 77.52± 0.32 78.12± 0.32 69.03± 0.18
ITL-NET (RotatedKMNIST) 64.28± 0.30 55.84± 0.29 76.89± 1.04 77.96± 0.30 68.74± 0.35

None 0.01 0.03 0.05
Gaussian noise std
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Figure 3: Perturbation analysis on OfficeHome: ITL-Net vs ERM. Multiplicative Gaussian noise
with mean 1 and std: 0.01, 0.05, 0.08 is added to network weights.

and ITL, we follow the perturbation analysis routine in (Keskar et al., 2017; Zhang et al., 2018) by
adding multiplicative noise to the weights of the converged models. From the results in Figure 3, it
can be see that ITL-Nets outperform ERM at every noise ratio.
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Figure 4: 1D Loss Landscape: ITL-Net vs ERM on OfficeHome. Left two: Source domain loss
landscape. Right two: Target domain loss landscape.

Repeatability analysis Our message thus far is that a single loss produced by our pipeline can be
re-used as a plug-and-play modification to improve vanilla ERM+CE on a wide variety of held-out
downstream DG tasks. That said, one might reasonably wonder about the reliability of the loss
function learning procedure itself. To investigate this, we repeat our entire pipeline including the
meta-train stage five times. We then evaluate the consistency of the resulting five loss functions on
the downstream ColoredMNIST task. Furthermore, to evaluate the dependence of our result on the
choice of meta-training dataset, we repeat the above experiment on RotatedKMNIST (Clanuwat et al.,
2018) to replace the RotatedMNIST used previously. From the results in Table 5, we can see that
performance is quite consistent over trials (small standard deviation). It also differs little with choice
of pre-training dataset - with both options performing well compared to competitors in Table 2.

Limitations ITL improves ERM+CE for DG tasks in general, but in some cases, the margin over
SOTA is small, since other state-of-the-art competitors may beat ERM+CE. It would be more inter-
esting if ITL is highly complementary to SOTA methods based on other architectural, augmentation,
or domain-alignment improvements – but this remains for future work to determine.

5 CONCLUSION

We provided the first study of the effect of ERM loss functions on Domain Generalisation. We
observe that models trained by ERM with existing robust loss functions can improve performance on
Domain Generalisation compared with those trained by Cross-Entropy. To discover the best loss for
DG, we perform meta-learning to find a re-usable white-box loss function. This is tractably solved
using IFT to obtain gradients of the target domain performance with respect to the source domain
loss parameters. This also provides the first demonstration of IFT-based loss learning in the literature.
The results show that a simple modification to the standard ERM pipeline improves both multi-source
and single source DG, and even surpasses the purpose-designed state of the art models.
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A APPENDIX

A.1 THE DETAILED RESULTS FOR DOMAINBED

In Table 2 of the main paper, we summarized performance across held out target domains for the
standard multi-source DG problem. In Table 6 we now give the detailed results of ITL-Net for each
target domain.

Table 6: DomainBed Cross-domain recognition accuracy (%) with ResNet50 on ColoredMNIST
VLCS, PACS, TerraIncognita, OfficeHome and DomainNet.

C
ol

or
ed

M
N

IS
T Target set +90% +80% -90% Avg.

ERM 71.7 ± 0.1 72.9 ± 0.2 10.0 ± 0.1 51.5
SagNet 71.8 ± 0.2 73.0 ± 0.2 10.3 ± 0.0 51.7
CORAL 71.6 ± 0.3 73.1 ± 0.1 9.9 ± 0.1 51.5
CDANN 72.0 ± 0.3 73.0 ± 0.2 10.2 ± 0.1 51.7
RSC 71.9 ± 0.3 72.9 ± 0.4 10.2 ± 0.2 51.8
ITL-Net 71.3 ± 0.6 73.4 ± 0.1 11.3 ± 0.7 52.0

V
L

C
S

Target set Caltech Labelme Sun V-Pascal Avg.

ERM 97.7± 0.4 64.3± 0.9 73.4± 0.5 77.3± 1.3 77.5
SagNet 97.9± 0.4 64.5± 0.5 71.4± 1.3 77.5± 0.5 77.8
CORAL 98.3± 0.1 66.1± 1.2 73.4± 0.3 77.5± 1.2 78.8
CDANN 97.3± 0.3 65.1± 1.2 70.7± 0.8 77.1± 1.5 77.5
RSC 97.9± 0.1 62.5± 0.7 72.3± 1.2 75.6± 0.8 77.1
ITL-Net 98.3± 0.4 65.4± 0.7 75.1± 0.6 76.8± 1.2 78.9

PA
C

S

Target set Art Cartoon Photo Sketch Avg.

ERM 84.7± 0.4 80.8± 0.6 97.2± 0.3 79.3± 1.0 85.5
SagNet 87.4± 1.0 80.7± 0.6 97.1± 0.1 80.0± 0.4 86.3
CORAL 88.3± 0.2 80.0± 0.5 97.5± 0.3 78.8± 1.3 86.2
CDANN 84.6± 1.8 75.5± 0.9 96.8± 0.3 73.5± 0.6 82.6
RSC 85.4± 0.8 79.1± 0.6 96.9± 0.5 77.7± 1.7 84.9
ITL-Net 87.1± 0.4 83.3± 0.6 96.1± 0.4 79.3± 0.6 86.4

Te
rr

aI
nc

og
ni

ta Target set L100 L38 L43 L46 Avg.

ERM 49.8± 4.4 42.1± 1.4 56.9± 1.8 35.7± 3.9 46.1
SagNet 53.0± 2.9 43.0± 2.5 57.9± 0.6 40.4± 1.3 48.6
CORAL 51.6± 2.4 42.2± 1.0 57.0± 1.0 39.8± 2.9 47.6
CDANN 47.0± 1.9 41.3± 4.8 54.9± 1.7 39.8± 0.8 45.8
RSC 50.2± 2.2 39.2± 1.4 56.3± 1.4 40.8± 0.6 46.6
ITL-Net 58.4± 3.7 46.2± 1.8 58.5± 0.9 40.9± 1.8 51.0

O
ffi

ce
H

om
e Target set Artistic Clipart Product Real World Avg.

ERM 61.3± 0.7 52.4± 0.3 75.8± 0.1 76.6± 0.3 66.5
SagNet 63.4± 0.2 54.8± 0.4 75.8± 0.4 78.3± 0.3 68.1
CORAL 65.3± 0.4 54.4± 0.5 76.5± 0.1 78.4± 0.5 68.7
CDANN 61.0± 1.4 50.4± 2.4 74.4± 0.9 76.6± 0.8 65.8
RSC 60.7± 1.4 51.4± 0.3 74.8± 1.1 75.1± 1.3 65.5
ITL-Net 65.6± 0.4 55.6± 0.4 77.5± 0.3 78.6± 0.4 69.3

D
om

ai
nN

et Target set Clipart Infograph Painting Quickdraw Real Sketch Avg.

ERM 58.1± 0.3 18.8± 0.3 46.7± 0.3 12.2± 0.4 59.6± 0.1 49.8± 0.4 40.9
SagNet 57.7± 0.3 19.0± 0.2 45.3± 0.3 12.7± 0.5 58.1± 0.5 48.8± 0.2 40.3
CORAL 59.2± 0.1 19.7± 0.2 46.6± 0.3 13.4± 0.4 59.8± 0.2 50.1± 0.6 41.5
CDANN 54.6± 0.4 17.3± 0.1 43.7± 0.9 12.1± 0.7 56.2± 0.4 45.9± 0.5 38.3
RSC 55.0± 1.2 18.3± 0.5 44.4± 0.6 12.2± 0.2 55.7± 0.7 47.8± 0.9 38.9
ITL-Net 63.5± 0.3 19.4± 0.1 46.3± 0.1 13.7± 0.4 53.2± 0.6 53.5± 0.3 41.6

Competitors ERM SagNet CORAL RSC CDANN
H0 (p-value) Reject (0.016) Reject (0.016) Reject (0.016) Reject (0.016) Reject (0.016)
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A.2 DETAILED RESULTS FOR SINGLE SOURCE DOMAIN EXPERIMENT

In Table 4 of the main paper, we reported single-source DG results, summarising performance across
choice of source domain and over all target domains. In Table 7 we now give the detailed results of
ITL-Net for each choice of source and target domain.

Table 7: DomainBed Single source domain recognition accuracy (%) with ResNet50 on VLCS,
PACS, TerraIncognita and OfficeHome. Each cell reports the accuracy for a set of target domains,
and the source domain used for training corresponding to the column. The performance of target
domains is separated by ‘/‘. Average over target domains for a given source domain is given at the
bottom of the cell.

V
L

C
S

Source
set

Caltech Labelme Sun V-Pascal Avg.

ERM 47.81/55.58/59.72 70.00/57.61/65.90 52.93/62.27/60.30 96.75/63.29/76.81
54.37 64.5 58.5 78.95 64.08

CORAL 47.81/55.58/59.72 70.00/57.61/65.90 52.93/62.27/60.30 96.75/63.29/76.81
54.37 64.5 58.5 78.95 64.08

SagNet 48.76/53.14/56.93 35.69/53.53/63.33 67.28/62.05/66.70 96.96/62.88/75.20
52.94 50.85 65.34 78.35 61.87

ITL-Net 43.19/39.85/51.01 89.82/55.18/60.63 48.90/61.78/60.01 97.31/60.84/77.51
44.68 68.54 56.9 78.55 62.17

PA
C

S

Source
set

Art Cartoon Photo Sketch Avg.

ERM 65.36/96.23/45.41 70.17/86.17/66.02 68.07/20.05/16.62 24.76/36.05/27.25
69.0 74.12 34.91 29.35 51.85

CORAL 65.36/96.21/45.41 70.20/86.15/66.01 68.03/20.04/16.62 24.70/36.05/27.24
68.99 74.12 34.9 29.33 51.84

SagNet 66.60/93.41/55.61 61.42/79.76/64.93 69.04/30.38/25.88 26.17/36.86/25.93
71.87 68.7 41.77 29.65 53.0

ITL-Net 66.30/94.67/57.29 74.85/86.52/75.06 62.60/45.82/51.44 17.87/26.45/19.64
72.75 78.81 53.29 21.32 56.54

Te
rr

aI
nc

og
ni

ta Source
set

L100 L38 L43 L46 Avg.

ERM 43.82/60.93/69.15 39.97/51.27/54.40 40.96/39.11/64.70 58.26/46.53/73.73
57.97 48.55 48.26 59.51 53.57

CORAL 43.80/60.90/69.17 40.00/51.12/54.20 40.87/40.12/64.23 58.70/45.43/73.62
57.96 48.44 48.41 59.25 53.51

SagNet 40.71/56.95/68.19 37.95/50.44/53.71 33.99/34.41/59.01 59.54/45.93/74.72
55.28 47.37 42.47 60.06 51.3

ITL-Net 44.79/55.71/67.62 44.66/53.62/58.07 40.97/39.29/66.35 61.68/51.36/76.41
56.04 52.12 48.87 63.15 55.04

O
ffi

ce
H

om
e Source

set
Artistic Clipart Product Real World Avg.

ERM 44.75/23.36/21.09 39.50/18.66/20.11 37.45/26.00/39.55 27.67/31.44/56.00
29.73 26.09 34.33 38.37 32.13

CORAL 44.75/23.36/21.09 39.49/18.67/20.11 37.45/26.01/39.55 27.77/31.46/55.98
29.73 26.09 34.34 38.4 32.14

SagNet 47.98/22.33/17.85 46.40/23.98/14.89 34.84/34.34/41.62 33.30/35.41/54.25
29.39 28.42 36.93 40.99 33.93

ITL-Net 31.63/21.57/21.53 54.72/21.79/30.99 37.38/38.75/36.69 33.71/35.64/56.64
24.91 35.83 37.61 42.0 35.09

14



Under review as a conference paper at ICLR 2022

A.3 THE LEARNED LOSS FUNCTION

Recall that our experimental design trained a single loss function on RotatedMNIST, and then
evaluated it from different perspectives across all our main experiments. The specific parameters of
our learned ITL (as visualised in Fig. 5(right)) are given in Table A.3. Then reader can plug-and-play
for their own Domain Generalisation problems.

Table 8: The parameters of the learned ITL
Loss type parameters

ω0, ω2, ..., ω11

ITL -2.0193, -1.2234, 0.1363, 0.1269, -0.4566, -0.1016, -0.2545, 1.0971, -0.9203, 0.2368, 0.4795, 0.9975

A.4 THE PARAMETERISATION OF THE LEARNABLE LOSS FUNCTION

We apply fourth order bi-variate Taylor polynomial to parameterise the learnable loss function. The
terms only contain yi are removed from the polynomial since these do not generate gradients with
respect to the prediction of the network. The final form, only containing 12 learnable parameters, is
given as:

L(i)
ω (ŷi,yi) = ω2(ŷi − ω0) + ω3(ŷi − ω0)

2 + ω4(ŷi − ω0)
3 + ω5(ŷi − ω0)

4

+ ω6(ŷi − ω0)(yi − ω1) + ω7(ŷi − ω0)(yi − ω1)
2 + ω8(ŷi − ω0)

2(yi − ω1)

+ ω9(ŷi − ω0)
3(yi − ω1) + ω10(ŷi − ω0)(yi − ω1)

3 + ω11(ŷi − ω0)
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A.5 ROBUST LOSS FUNCITON ILLUSTRATION
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Figure 5: Comparison of loss functions (from left to right): CE, SCE, FOCAL and ITL. The range of
ITL is normalised between 0 and 1.

A.6 META-TRAIN COMPUTE COST

Due to the efficiency of implicit gradient, training our ITL required using PyTorch (Paszke et al.,
2017) only required 8 hours on a single V100 GPU to complete 200 gradient descent steps on ω.
While the goals and base learning problems are not directly comparable, this is dramatically faster
than alternatives that require an entire cluster (Li et al., 2019a), and where even very recent fast
methods require about 12 GPU-days (Liu et al., 2021).

A.7 META-TRAINING CONVERGENCE

Figure 6 shows the convergence of ITL during meta-training on R-MNIST. The x-axis shows outer
loop iterations/loss function updates. The lines graph (i) the inner loop accuracy (mean over all source
domains) after model training with the current loss function, and (ii) and the outer loop accuracy
(held out domain accuracy). The convergence process is quite smooth.

A.8 FULL LOSS LANDSCAPE PLOTS

Figure 7 shows the landscape for all four domains, of which two were shown in Figure 4 of the main
manuscript.
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Figure 6: The learning curve for ITL meta-training stage.
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Figure 7: 1D Loss Landscape: ITL-Net vs ERM on OfficeHome. Top row: Source domain loss
landscape. Bottom row: Target domain loss landscape.
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