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Figure 1. Overview. TD-MPC2 compares favorably to existing model-free and model-based RL
methods across 104 continuous control tasks spanning multiple domains, with a single set of hyper-
parameters (right). We further demonstrate the scalability of TD-MPC2 by training a single 317M
parameter agent to perform 80 tasks across multiple domains, embodiments, and action spaces (left).

ABSTRACT

TD-MPC is a model-based reinforcement learning (RL) algorithm that performs
local trajectory optimization in the latent space of a learned implicit (decoder-
free) world model. In this work, we present TD-MPC2: a series of improvements
upon the TD-MPC algorithm. We demonstrate that TD-MPC2 improves signifi-
cantly over baselines across 104 online RL tasks spanning 4 diverse task domains,
achieving consistently strong results with a single set of hyperparameters. We
further show that agent capabilities increase with model and data size, and suc-
cessfully train a single 317M parameter agent to perform 80 tasks across multiple
task domains, embodiments, and action spaces. We conclude with an account of
lessons, opportunities, and risks associated with large TD-MPC2 agents.

Explore videos, models, data, code, and more at https://tdmpc2.com

1 INTRODUCTION

Training large models on internet-scale datasets has led to generalist models that perform a wide
variety of language and vision tasks (Brown et al., 2020; He et al., 2022; Kirillov et al., 2023). The
success of these models can largely be attributed to the availability of enormous datasets, and care-
fully designed architectures that reliably scale with model and data size. While researchers have
recently extended this paradigm to robotics (Reed et al., 2022; Brohan et al., 2023), a generalist
embodied agent that learns to perform diverse control tasks via low-level actions, across multiple
embodiments, from large uncurated (i.e., mixed-quality) datasets remains an elusive goal. We argue
that current approaches to generalist embodied agents suffer from (a) the assumption of near-expert
trajectories for behavior cloning which severely limits the amount of available data (Reed et al.,
2022; Lee et al., 2022; Kumar et al., 2022; Schubert et al., 2023; Driess et al., 2023; Brohan et al.,
2023), and (b) a lack of scalable continuous control algorithms that are able to consume large uncu-
rated datasets.
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Figure 2. Tasks. TD-MPC2 performs 104 diverse tasks from (left to right) DMControl (Tassa et al.,
2018), Meta-World (Yu et al., 2019), ManiSkill2 (Gu et al., 2023), and MyoSuite (Caggiano et al.,
2022), with a single set of hyperparameters. See Appendix B for visualization of all tasks.

Reinforcement Learning (RL) is an ideal framework for extracting expert behavior from uncurated
datasets. However, most existing RL algorithms (Lillicrap et al., 2016; Haarnoja et al., 2018) are
designed for single-task learning and rely on per-task hyperparameters, with no principled method
for selecting those hyperparameters (Zhang et al., 2021). An algorithm that can consume large multi-
task datasets will invariably need to be robust to variation between different tasks (e.g., action space
dimensionality, difficulty of exploration, and reward distribution). In this work, we present TD-
MPC2: a significant step towards achieving this goal. TD-MPC2 is a model-based RL algorithm
designed for learning generalist world models on large uncurated datasets composed of multiple
task domains, embodiments, and action spaces, with data sourced from behavior policies that cover
a wide range of skill levels, and without the need for hyperparameter-tuning.

Our algorithm, which builds upon TD-MPC (Hansen et al., 2022), performs local trajectory opti-
mization in the latent space of a learned implicit (decoder-free) world model. While the TD-MPC
family of algorithms has demonstrated strong empirical performance in prior work (Hansen et al.,
2022; 2023; Yuan et al., 2022; Yang et al., 2023; Feng et al., 2023; Chitnis et al., 2023; Zhu et al.,
2023; Lancaster et al., 2023), most successes have been limited to single-task learning with little em-
phasis on scaling. As shown in Figure 1, naı̈vely increasing model and data size of TD-MPC often
leads to a net decrease in agent performance, as is commonly observed in RL literature (Kumar et al.,
2023). In contrast, scaling TD-MPC2 leads to consistently improved capabilities. Our algorithmic
contributions, which have been key to achieving this milestone, are two-fold: (1) improved algo-
rithmic robustness by revisiting core design choices, and (2) careful design of an architecture that
can accommodate datasets with multiple embodiments and action spaces without relying on domain
knowledge. The resulting algorithm, TD-MPC2, is scalable, robust, and can be applied to a variety
of single-task and multi-task continuous control problems using a single set of hyperparameters.

We evaluate TD-MPC2 across a total of 104 diverse continuous control tasks spanning 4 task do-
mains: DMControl (Tassa et al., 2018), Meta-World (Yu et al., 2019), ManiSkill2 (Gu et al., 2023),
and MyoSuite (Caggiano et al., 2022). We summarize our results in Figure 1, and visualize task
domains in Figure 2. Tasks include high-dimensional state and action spaces (up to A ∈ R39),
sparse rewards, multi-object manipulation, physiologically accurate musculoskeletal motor control,
complex locomotion (e.g. Dog and Humanoid embodiments), and cover a wide range of task dif-
ficulties. Our results demonstrate that TD-MPC2 consistently outperforms existing model-based
and model-free methods, using the same hyperparameters across all tasks (Figure 1, right). Here,
“Locomotion” and “Pick YCB” are particularly challenging subsets of DMControl and ManiSkill2,
respectively. We further show that agent capabilities increase with model and data size, and success-
fully train a single 317M parameter world model to perform 80 tasks across multiple task domains,
embodiments, and action spaces (Figure 1, left). In support of open-source science, we publicly
release 300+ model checkpoints, datasets, and code for training and evaluating TD-MPC2
agents, which is available at https://tdmpc2.com. We conclude the paper with an account
of lessons, opportunities, and risks associated with large TD-MPC2 agents.

2 BACKGROUND

Reinforcement Learning (RL) aims to learn a policy from interaction with an environment, for-
mulated as a Markov Decision Process (MDP) (Bellman, 1957). We focus on infinite-horizon
MDPs with continuous action spaces, which can be formalized as a tuple (S,A, T , R, γ) where
s ∈ S are states, a ∈ A are actions, T : S ×A 7→ S is the transition function, R : S × A 7→ R
is a reward function associated with a particular task, and γ is a discount factor. The goal is to
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derive a control policy π : S 7→ A such that the expected discounted sum of rewards (return)
Eπ [

∑∞
t=0 γ

trt] , rt = R(st, π(st)) is maximized. In this work, we obtain π by learning a world
model (model of the environment) and then select actions by planning with the learned model.

Model Predictive Control (MPC) is a general framework for model-based control that optimizes
action sequences at:t+H of finite length such that return is maximized (or cost is minimized) over
the time horizon H , which corresponds to solving the following optimization problem:

π(st) = arg max
at:t+H

E

[
H∑
i=0

γt+iR(st+i,at+i)

]
. (1)

The return of a candidate trajectory is estimated by simulating it with the learned model (Negenborn
et al., 2005). Thus, a policy obtained by Equation 1 will invariably be a (temporally) locally optimal
policy and is not guaranteed (nor likely) to be a solution to the general reinforcement learning
problem outlined above. As we discuss in the following, TD-MPC2 addresses this shortcoming
of local trajectory optimization by bootstrapping return estimates beyond horizon H with a learned
terminal value function.

3 TD-MPC2

Our work builds upon TD-MPC (Hansen et al., 2022), a model-based RL algorithm that performs
local trajectory optimization (planning) in the latent space of a learned implicit world model. TD-
MPC2 is a practical algorithm for training massively multitask world models. Specifically, we
propose a series of improvements to the TD-MPC algorithm, which have been key to achieving
strong algorithmic robustness (can use the same hyperparameters across all tasks) and scaling its
world model to 300× more parameters than previously. We introduce the TD-MPC2 algorithm in
the following, and provide a full list of algorithmic improvements in Appendix A.

3.1 LEARNING AN IMPLICIT WORLD MODEL

â â

enc enc enc

â âr

aa

s1 s2 s3
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Figure 3. The TD-MPC2 architecture.
Observations s are encoded into their
(normalized) latent representation z. The
model then recurrently predicts actions â,
rewards r̂, and terminal values q̂, without
decoding future observations.

Learning a generative model of the environment using
a reconstruction (decoder) objective is tempting due to
its rich learning signal. However, accurately predict-
ing raw future observations (e.g., images or propriocep-
tive features) over long time horizons is a difficult prob-
lem, and does not necessarily lead to effective control
(Lambert et al., 2020). Rather than explicitly model-
ing dynamics using reconstruction, TD-MPC2 aims to
learn a maximally useful model: a model that accurately
predicts outcomes (returns) conditioned on a sequence
of actions. Specifically, TD-MPC2 learns an implicit,
control-centric world model from environment interac-
tion using a combination of joint-embedding prediction
(Grill et al., 2020), reward prediction, and TD-learning
(Sutton, 1998), without decoding observations. We ar-
gue that this alternative formulation of model-based RL
is key to modeling large datasets with modest model
sizes. The world model can subsequently be used for
decision-making by performing local trajectory opti-
mization (planning) following the MPC framework.

Components. The TD-MPC2 architecture is shown in Figure 3 and consists of five components:
Encoder z = h(s, e) ▷ Maps observations to their latent representations
Latent dynamics z′ = d(z,a, e) ▷ Models (latent) forward dynamics
Reward r̂ = R(z,a, e) ▷ Predicts reward r of a transition
Terminal value q̂ = Q(z,a, e) ▷ Predicts discounted sum of rewards (return)
Policy prior â = p(z, e) ▷ Predicts action a∗ that maximizes Q

(2)

where s and a are states and actions, z is the latent representation, and e is a learnable task embed-
ding for use in multitask world models. For visual clarity, we will omit e in the following unless it is
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particularly relevant. The policy prior p serves to guide the sample-based trajectory optimizer (plan-
ner), and to reduce the computational cost of TD-learning. During online interaction, TD-MPC2
maintains a replay buffer B with trajectories, and iteratively (i) updates the world model using data
sampled from B, and (ii) collects new environment data by planning with the learned model.

Model objective. The h, d,R,Q components are jointly optimized to minimize the objective

L (θ)
.
= E

(s,a,r,s′)0:H∼B

 H∑
t=0

λt

∥ z′t − sg(h(s′t))∥22︸ ︷︷ ︸
Joint-embedding prediction

+ CE(r̂t, rt)︸ ︷︷ ︸
Reward prediction

+ CE(q̂t, qt)︸ ︷︷ ︸
Value prediction


 , (3)

where sg is the stop-grad operator, (z′t, r̂t, q̂t) are defined in Equation 2, qt
.
= rt+γQ̄(z′t, p(z

′
t))

is the TD-target at step t, λ ∈ (0, 1] is a constant coefficient that weighs temporally farther time
steps less, and CE is the cross-entropy. Q̄ used to compute the TD-target is an exponential moving
average (EMA) of Q (Lillicrap et al., 2016). As the magnitude of rewards may differ drastically
between tasks, TD-MPC2 formulates reward and value prediction as a discrete regression (multi-
class classification) problem in a log-transformed space, which is optimized by minimizing cross-
entropy with rt, qt as soft targets (Bellemare et al., 2017; Kumar et al., 2023; Hafner et al., 2023).

Policy objective. The policy prior p is a stochastic maximum entropy (Ziebart et al., 2008; Haarnoja
et al., 2018) policy that learns to maximize the objective

Lp(θ)
.
= E

(s,a)0:H∼B

[
H∑
t=0

λt [αQ(zt, p(zt))− βH(p(·|zt))]

]
, zt+1 = d(zt,at), z0 = h(s0) , (4)

where H is the entropy of p which can be computed in closed form. Gradients of Lp(θ) are taken wrt.
p only. As magnitude of the value estimate Q(zt, p(zt)) and entropy H can vary greatly between
datasets and different stages of training, it is necessary to balance the two losses to prevent premature
entropy collapse (Yarats et al., 2021). A common choice for automatically tuning α, β is to keep
one of them constant, and adjusting the other based on an entropy target (Haarnoja et al., 2018) or
moving statistics (Hafner et al., 2023). In practice, we opt for tuning α via moving statistics, but
empirically did not observe any significant difference in results between these two options.

Architecture. All components of TD-MPC2 are implemented as MLPs with intermediate linear
layers followed by LayerNorm (Ba et al., 2016) and Mish (Misra, 2019) activations. To mitigate ex-
ploding gradients, we normalize the latent representation by projecting z into L fixed-dimensional
simplices using a softmax operation (Lavoie et al., 2022). A key benefit of embedding z as simplices
(as opposed to e.g. a discrete representation or squashing) is that it naturally biases the representation
towards sparsity without enforcing hard constraints (see Appendix H for motivation and implemen-
tation). We dub this normalization scheme SimNorm. Let V be the dimensionality of each simplex
g constructed from L partitions (groups) of z. SimNorm then applies the following transformation:

z◦
.
= [gi, . . . ,gL] , gi =

ezi:i+V /τ∑V
j=1 e

zi:i+V /τ
, (5)

where z◦ is the simplicial embedding of z, [·] denotes concatenation, and τ > 0 is a temperature
parameter that modulates the “sparsity” of the representation. As we will demonstrate in our ex-
periments, SimNorm is essential to the training stability of TD-MPC2. Finally, to reduce bias in
TD-targets generated by Q̄, we learn an ensemble of Q-functions using the objective from Equa-
tion 3 and maintain Q̄ as an EMA of each Q-function. We use 5Q-functions in practice. Targets are
then computed as the minimum of two randomly sub-sampled Q̄-functions (Chen et al., 2021).

3.2 MODEL PREDICTIVE CONTROL WITH A POLICY PRIOR

TD-MPC2 derives its closed-loop control policy by planning with the learned world model. Specif-
ically, our approach leverages the MPC framework for local trajectory optimization using Model
Predictive Path Integral (MPPI) (Williams et al., 2015) as a derivative-free optimizer with sampled
action sequences (at,at+1, . . . ,at+H) of length H evaluated by rolling out latent trajectories with
the model. At each decision step, we estimate parameters µ∗, σ∗ of a time-dependent multivariate
Gaussian with diagonal covariance such that expected return is maximized, i.e.,

µ∗, σ∗ = argmax
(µ,σ)

E
(at,at+1,...,at+H)∼N (µ,σ2)

[
γHQ(zt+H ,at+H) +

H−1∑
h=t

γhR(zh,ah)

]
, (6)
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Figure 4. Single-task RL. Episode return (DMControl) and success rate (others) as a function of
environment steps across 104 continuous control tasks spanning 4 diverse task domains. TD-MPC2
achieves higher data-efficiency and asymptotic performance than existing methods, while using the
same hyperparameters across all tasks. Mean and 95% CIs over 3 seeds.

where µ, σ ∈ RH×m, A ∈ Rm. Equation 6 is solved by iteratively sampling action sequences from
N (µ, σ2), evaluating their expected return, and updating µ, σ based on a weighted average. Notably,
Equation 6 estimates the full RL objective introduced in Section 2 by bootstrapping with the learned
terminal value function beyond horizon H . TD-MPC2 repeats this iterative planning process for
a fixed number of iterations and executes the first action at ∼ N (µ∗

t , σ
∗
t ) in the environment. To

accelerate convergence of planning, a fraction of action sequences originate from the policy prior p,
and we warm-start planning by initializing (µ, σ) as the solution to the previous decision step shifted
by 1. Refer to Hansen et al. (2022) for more details about the planning procedure.

3.3 TRAINING GENERALIST TD-MPC2 AGENTS

The success of TD-MPC2 in diverse single-task problems can be attributed to the algorithm outlined
above. However, learning a large generalist TD-MPC2 agent that performs a variety of tasks across
multiple task domains, embodiments, and action spaces poses several unique challenges: (i) how to
learn and represent task semantics? (ii) how to accommodate multiple observation and action spaces
without specific domain knowledge? (iii) how to leverage the learned model for few-shot learning
of new tasks? We describe our approach to multitask model learning in the following.

Learnable task embeddings. To succeed in a multitask setting, an agent needs to learn a common
representation that takes advantage of task similarities, while still retaining the ability to differentiate
between tasks at test-time. When task or domain knowledge is available, e.g. in the form of natural
language instructions, the task embedding e from Equation 2 may encode such information. How-
ever, in the general case where domain knowledge cannot be assumed, we may instead choose to
learn the task embeddings (and, implicitly, task relations) from data. TD-MPC2 conditions all of its
five components with a learnable, fixed-dimensional task embedding e, which is jointly trained to-
gether with other components of the model. To improve training stability, we constrain the ℓ2-norm
of e to be ≤ 1; this also leads to more semantically coherent task embeddings in our experiments.
When finetuning a multitask TD-MPC2 agent to a new task, we can choose to either initialize e as
the embedding of a semantically similar task, or simply as a random vector.

Action masking. TD-MPC2 learns to perform tasks with a variety of observation and action spaces,
without any domain knowledge. To do so, we zero-pad all model inputs and outputs to their largest
respective dimensions, and mask out invalid action dimensions in predictions made by the policy
prior p during both training and inference. This ensures that prediction errors in invalid dimensions
do not influence TD-target estimation, and prevents p from falsely inflating its entropy for tasks with
small action spaces. We similarly only sample actions along valid dimensions during planning.

4 EXPERIMENTS

We evaluate TD-MPC2 across a total of 104 diverse continuous control tasks spanning 4 task do-
mains: DMControl (Tassa et al., 2018), Meta-World (Yu et al., 2019), ManiSkill2 (Gu et al., 2023),
and MyoSuite (Caggiano et al., 2022). Tasks include high-dimensional state and action spaces (up to
A ∈ R39), sparse rewards, multi-object manipulation, physiologically accurate musculoskeletal mo-
tor control, complex locomotion (e.g. Dog and Humanoid embodiments), and cover a wide range
of task difficulties. In support of open-source science, we publicly release 300+ model check-
points, datasets, and code for training and evaluating TD-MPC2 agents, which is available at
https://tdmpc2.com.
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Figure 5. High-dimensional locomotion. Episode return as a function of environment steps in
Humanoid (A ∈ R21) and Dog (A ∈ R38) locomotion tasks from DMControl. SAC and DreamerV3
are prone to numerical instabilities in Dog tasks, and are significantly less data-efficient than TD-
MPC2 in Humanoid tasks. Mean and 95% CIs over 3 seeds. See Appendix D for more tasks.
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Figure 6. Object manipulation. Success rate (%) as a function of environment steps on 5 object
manipulation tasks from ManiSkill2. Pick YCB considers manipulation of all 74 objects from the
YCB (Calli et al., 2015) dataset. TD-MPC2 excels at hard tasks. Mean and 95% CIs over 3 seeds.

We seek to answer three core research questions through experimentation:
• Comparison to existing methods. How does TD-MPC2 compare to state-of-the-art model-free

(SAC) and model-based (DreamerV3, TD-MPC) methods for data-efficient continuous control?
• Scaling. Do the algorithmic innovations of TD-MPC2 lead to improved agent capabilities as

model and data size increases? Can a single agent learn to perform diverse skills across multiple
task domains, embodiments, and action spaces?

• Analysis. How do the specific design choices introduced in TD-MPC2 influence downstream
task performance? How much does planning contribute to its success? Are the learned task
embeddings semantically meaningful? Can large multi-task agents be adapted to unseen tasks?

Baselines. Our baselines represent the state-of-the-art in data-efficient RL, and include (1) Soft
Actor-Critic (SAC) (Haarnoja et al., 2018), a model-free actor-critic algorithm based on maximum
entropy RL, (2) DreamerV3 (Hafner et al., 2023), a model-based method that optimizes a model-
free policy with rollouts from a learned generative model of the environment, and (3) the original
version of TD-MPC (Hansen et al., 2022), a model-based RL algorithm that performs local trajec-
tory optimization (planning) in the latent space of a learned implicit (non-generative) world model.
SAC and TD-MPC use task-specific hyperparameters, whereas TD-MPC2 uses the same hyperpa-
rameters across all tasks. Additionally, it is worth noting that both SAC and TD-MPC use a larger
batch size of 512, while 256 is sufficient for stable learning with TD-MPC2. Similarly, DreamerV3
uses a high update-to-data (UTD) ratio of 512, whereas TD-MPC2 uses a UTD of 1 by default. We
use a 5M parameter TD-MPC2 agent in all experiments (unless stated otherwise). For reference, the
DreamerV3 baseline has approx. 20M learnable parameters. See Appendix H for more details.

4.1 RESULTS

Comparison to existing methods. We first compare the data-efficiency of TD-MPC2 to a set of
strong baselines on 104 diverse tasks in an online RL setting. Aggregate results are shown in Fig-
ure 4. We find that TD-MPC2 outperforms prior methods across all task domains. The MyoSuite
results are particularly noteworthy, as we did not run any TD-MPC2 experiments on this bench-
mark prior to the reported results. Individual task performances on some of the most difficult tasks
(high-dimensional locomotion and multi-object manipulation) are shown in Figure 5 and Figure 6.
TD-MPC2 outperforms baselines by a large margin on these tasks, despite using the same hyper-
parameters across all tasks. Notably, TD-MPC sometimes diverges due to exploding gradients,
whereas TD-MPC2 remains stable. We provide per-task visualization of gradients in Appendix G.
Similarly, we observe that DreamerV3 experiences occasional numerical instabilities (Dog) and
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Figure 7. Massively multi-task world models. (Left) Normalized score as a function of model
size on the two 80-task and 30-task datasets. TD-MPC2 capabilities scale with model size. (Right)
T-SNE (van der Maaten & Hinton, 2008) visualization of task embeddings learned by a TD-MPC2
agent trained on 80 tasks from DMControl and Meta-World. A subset of labels are shown for clarity.

generally struggles with tasks that require fine-grained object manipulation (lift, pick, stack). See
Appendix D for the full single-task RL results.

Table 1. Training cost. Ap-
proximate TD-MPC2 training cost
on the 80-task dataset, reported in
GPU days on a single NVIDIA
GeForce RTX 3090 GPU. We also
list the normalized score achieved
by each model at end of training.

Params (M) GPU days Score

1 3.7 16.0
5 4.2 49.5
19 5.3 57.1
48 12 68.0
317 33 70.6

Massively multitask world models. To demonstrate that our
proposed improvements facilitate scaling of world models, we
evaluate the performance of 5 multitask models ranging from
1M to 317M parameters on a collection of 80 diverse tasks that
span multiple task domains and vary greatly in objective, em-
bodiment, and action space. Models are trained on a dataset
of 545M transitions obtained from the replay buffers of 240
single-task TD-MPC2 agents, and thus contain a wide variety
of behaviors ranging from random to expert policies. The task
set consists of all 50 Meta-World tasks, as well as 30 DMCon-
trol tasks. The DMControl task set includes 19 original DM-
Control tasks, as well as 11 new tasks. For completeness, we
include a separate set of scaling results on the 30-task DMCon-
trol subset (345M transitions) as well. Due to our careful de-
sign of the TD-MPC2 algorithm, scaling up is straightforward:
to improve rate of convergence we use a 4× larger batch size (1024) compared to the single-task
experiments, but make no other changes to hyperparameters.
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Figure 8. Finetuning.
Score of a 19M parameter
TD-MPC2 agent trained
on 70 tasks and finetuned
online to each of 10 held-
out tasks for 20k environ-
ment steps. 3 seeds.

Scaling TD-MPC2 to 317M parameters. Our scaling results are
shown in Figure 7. To summarize agent performance with a single
metric, we produce a normalized score that is an average of all indi-
vidual task success rates (Meta-World) and episode returns normalized
to the [0, 100] range (DMControl). We observe that agent capabili-
ties consistently increase with model size on both task sets. Notably,
performance does not appear to have saturated for our largest models
(317M parameters) on either dataset, and we can thus expect results
to continue improving beyond our considered model sizes. We refrain
from formulating a scaling law, but note that normalized score appears
to scale linearly with the log of model parameters (gray line in Fig-
ure 7). We also report approximate training costs in Table 1. The 317M
parameter model can be trained with limited computational resources.
To better understand why multitask model learning is successful, we
explore the task embeddings learned by TD-MPC2 (Figure 7, right).
Intriguingly, tasks that are semantically similar (e.g., Door Open and
Door Close) are close in the learned task embedding space. However,
embedding similarity appears to align more closely with task dynamics (embodiment, objects) than
objective (walk, run). This makes intuitive sense, as dynamics are tightly coupled with control.

Few-shot learning. While our work mainly focuses on the scaling and robustness of world models,
we also explore the efficacy of finetuning pretrained world models for few-shot learning of unseen
tasks. Specifically, we pretrain a 19M parameter TD-MPC2 agent on 70 tasks from DMControl and
Meta-World, and naı̈vely finetune the full model to each of 10 held-out tasks (5 from each domain)
via online RL with an initially empty replay buffer and no changes to hyperparameters. Aggregate
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Figure 9. Ablations. (Curves) Normalized score as a function of environment steps, averaged
across three of the most difficult tasks: Dog Run, Humanoid Walk (DMControl), and Pick YCB
(ManiSkill2). Mean and 95% CIs over 3 random seeds. (Bars) Normalized score of 19M parameter
multitask (80 tasks) TD-MPC2 agents. Our ablations highlight the relative importance of each
design choice; red is the default formulation of TD-MPC2. See Appendix D for more ablations.

results are shown in Figure 8. We find that TD-MPC2 improves 2× over learning from scratch
on new tasks in the low-data regime (20k environment steps1). Although finetuning world models
to new tasks is very much an open research problem, our exploratory results are promising. See
Appendix E for experiment details and individual task curves.

Ablations. We ablate most of our design choices for TD-MPC2, including choice of actor, various
normalization techniques, regression objective, and number of Q-functions. Our main ablations,
shown in Figure 9, are conducted on three of the most difficult online RL tasks, as well as large-
scale multitask training (80 tasks). We observe that all of our proposed improvements contribute
meaningfully to the robustness and strong performance of TD-MPC2 in both single-task RL and
multi-task RL. Interestingly, we find that the relative importance of each design choice is consistent
across both settings. Lastly, we also ablate normalization of the learned task embeddings, shown in
Appendix F. The results indicate that maintaining a normalized task embedding space (ℓ2-norm of 1)
is moderately important for stable multitask training, and results in more meaningful task relations.

5 LESSONS, OPPORTUNITIES, AND RISKS

Lessons. Historically, RL algorithms have been notoriously sensitive to architecture, hyperparame-
ters, characteristics of the task, and even random seed (Henderson et al., 2018), with no principled
method for tuning the algorithms. As a result, successful application of deep RL often requires large
teams of experts with significant computational resources (Berner et al., 2019; Schrittwieser et al.,
2020; Ouyang et al., 2022). TD-MPC2 – along with several other contemporary RL methods (Yarats
et al., 2021; Ye et al., 2021; Hafner et al., 2023) – seek to democratize use of RL (i.e., lowering the
barrier of entry for smaller teams of academics, practitioners, and individuals with fewer resources)
by improving robustness of existing open-source algorithms. We firmly believe that improving al-
gorithmic robustness will continue to have profound impact on the field. A key lesson from the
development of TD-MPC2 is that the community has yet to discover an algorithm that truly masters
everything out-of-the-box. While e.g. DreamerV3 (Hafner et al., 2023) has delivered strong results
on challenging tasks with discrete action spaces (such as Atari games and Minecraft), we find that
TD-MPC2 produces significantly better results on difficult continuous control tasks. At the same
time, extending TD-MPC2 to discrete action spaces remains an open problem.

Opportunities. Our scaling results demonstrate a path for model-based RL in which massively
multitask world models are leveraged as generalist world models. While multi-task world models

120k environment steps corresponds to 20 episodes in DMControl and 100 episodes in Meta-World.
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remain relatively underexplored in literature, prior work suggests that the implicit world model of
TD-MPC2 may be better suited than reconstruction-based approaches for tasks with large visual
variation (Zhu et al., 2023). We envision a future in which implicit world models are used zero-shot
to perform diverse tasks on seen embodiments (Xu et al., 2023; Yang et al., 2023), finetuned to
quickly perform tasks on new embodiments, and combined with existing vision-language models to
perform higher-level cognitive tasks in conjunction with low-level physical interaction. Our results
are promising, but such level of generalization will likely require several orders of magnitude more
tasks than currently available. Lastly, we want to remark that, while TD-MPC2 relies on rewards for
task learning, it is useful to adopt a generalized notion of reward as simply a metric for task comple-
tion. Such metrics already exist in the wild, e.g., success labels, human preferences or interventions
(Ouyang et al., 2022), or the embedding distance between a current observation and a goal (Eysen-
bach et al., 2022; Ma et al., 2022) within a pre-existing learned representation. However, leveraging
such rewards for large-scale pretraining is an open problem. To accelerate research in this area, we
are releasing 300+ TD-MPC2 models, including 12 multitask models, as well as datasets and code,
and we are beyond excited to see what the community will do with these resources.

Risks. While we are excited by the potential of generalist world models, several challenges re-
main: (i) misspecification of task rewards can lead to unintended outcomes (Clark & Amodei, 2016)
that may be difficult to anticipate, (ii) handing over unconstrained autonomy of physical robots to
a learned model can result in catastrophic failures if no additional safety checks are in place (Lan-
caster et al., 2023), and (iii) data for certain applications may be prohibitively expensive for small
teams to obtain at the scale required for generalist behavior to emerge, leading to a concentration of
power. Mitigating each of these challenges will require new research innovations, and we invite the
community to join us in these efforts.

6 RELATED WORK

Multiple prior works have sought to build RL algorithms that are robust to hyperparameters, archi-
tecture, as well as variation in tasks and data. For example, (1) Double Q-learning (Hasselt et al.,
2016), RED-Q (Chen et al., 2021), SVEA (Hansen et al., 2021), and SR-SPR (D’Oro et al., 2023)
each improve the stability of Q-learning algorithms by adjusting the bias-variance trade-off in TD-
target estimation, (2) C51 (Bellemare et al., 2017) and DreamerV3 (Hafner et al., 2023) improve
robustness to the magnitude of rewards by performing discrete regression in a transformed space,
and (3) model-free algorithms DrQ (Kostrikov et al., 2020) and DrQ-v2 (Yarats et al., 2021) improve
training stability and exploration, respectively, through use of data augmentation and several other
minor but important implementation details. However, all of the aforementioned works strictly focus
on improving data-efficiency and robustness in single-task online RL.

Existing literature that studies scaling of neural architectures for decision-making typically assume
access to large datasets of near-expert demonstrations for behavior cloning (Reed et al., 2022; Lee
et al., 2022; Kumar et al., 2022; Schubert et al., 2023; Driess et al., 2023; Brohan et al., 2023). Gato
(Reed et al., 2022) learns to perform tasks across multiple domains by training a large Transformer-
based sequence model (Vaswani et al., 2017) on an enormous dataset of expert demonstrations, and
RT-1 (Brohan et al., 2023) similarly learns a sequence model for object manipulation on a single
(real) robot embodiment by training on a large dataset collected by human teleoperation. While the
empirical results of this line of work are impressive, the assumption of large demonstration datasets
is impractical. Additionally, current sequence models rely on discretization of the action space
(tokenization), which makes scaling to high-dimensional continuous control tasks difficult.

Most recently, researchers have explored scaling of RL algorithms as a solution to the aforemen-
tioned challenges (Baker et al., 2022; Jia et al., 2022; Xu et al., 2023; Kumar et al., 2023; Hafner
et al., 2023). For example, VPT (Baker et al., 2022) learns to play Minecraft by first pretraining
a behavior cloning policy on a large human play dataset, and then finetuning the policy with RL.
GSL (Jia et al., 2022) requires no pre-existing data. Instead, GSL iteratively trains a population of
“specialist” agents on individual task variations, distills them into a “generalist” policy via behavior
cloning, and then uses the generalist as initialization for the next population of specialists. However,
this work considers strictly single-task RL and assumes full control over the initial state in each
episode. Lastly, DreamerV3 (Hafner et al., 2023) successfully scales its world model in terms of
parameters and shows that larger models generally are more data-efficient in an online RL setting,
but does not consider multitask RL.
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Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In H. Jaap
van den Herik, Paolo Ciancarini, and H. H. L. M. (Jeroen) Donkers (eds.), Computers and Games,
pp. 72–83, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and
Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier.
In The Eleventh International Conference on Learning Representations, 2023.

10



Published as a conference paper at ICLR 2024

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multi-
modal language model. arXiv preprint arXiv:2303.03378, 2023.

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learn-
ing as goal-conditioned reinforcement learning. Advances in Neural Information Processing Sys-
tems, 35:35603–35620, 2022.

Yunhai Feng, Nicklas Hansen, Ziyan Xiong, Chandramouli Rajagopalan, and Xiaolong Wang. Fine-
tuning offline world models in the real world. Conference on Robot Learning, 2023.

Jean-Bastien Grill, Florian Strub, Florent Altch’e, Corentin Tallec, Pierre H. Richemond, Elena
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A SUMMARY OF IMPROVEMENTS

We summarize the main differences between TD-MPC and TD-MPC2 as follows:

• Architectural design. All components of TD-MPC2 are MLPs with LayerNorm (Ba et al.,
2016) and Mish (Misra, 2019) activations after each layer. We apply SimNorm normaliza-
tion to the latent state z which biases the representation towards sparsity and maintaining
a small ℓ2-norm. We train an ensemble of Q-functions (5 by default) and additionally
apply 1% Dropout (Srivastava et al., 2014) after the first linear layer in each Q-function.
TD-targets are computed as the mininum of two randomly subsampled Q-functions (Chen
et al., 2021). In contrast, TD-MPC is implemented as MLPs without LayerNorm, and in-
stead uses ELU (Clevert et al., 2015) activations. TD-MPC does not constrain the latent
state at all, which in some instances leads to exploding gradients (see Appendix G for ex-
perimental results). Lastly, TD-MPC learns only 2 Q-functions and does not use Dropout.
The architectural differences in TD-MPC2 result in a 4M net increase in learnable param-
eters (5M total) for our default single-task model size compared to the 1M parameters of
TD-MPC. However, as shown in Figure 7, naı̈vely increasing the model size of TD-MPC
does not lead to consistently better performance, whereas it does for TD-MPC2.

• Policy prior. The policy prior of TD-MPC2 is trained with maximum entropy RL (Ziebart
et al., 2008; Haarnoja et al., 2018), whereas the policy prior of TD-MPC is trained as a
deterministic policy with Gaussian noise applied to actions. We find that a carefully tuned
Gaussian noise schedule is comparable to a policy prior trained with maximum entropy.
However, maximum entropy RL can more easily be applied with task-agnostic hyperparam-
eters. We only compute policy entropy over valid action dimensions in multi-task learning
with multiple action spaces.

• Planning. The planning procedure of TD-MPC2 closely follows that of TD-MPC. How-
ever, we simplify planning marginally by not leveraging momentum between iteration, as
we find it to produce comparable results. We also improve the throughput of planning by
approx. 2× through a series of code-level optimizations.

• Model objective. We revisit the training objective of TD-MPC and improve its robustness
to variation in tasks, such as the magnitude of rewards. TD-MPC2 uses discrete regression
(soft cross-entropy) of rewards and values in a log-transformed space, which makes the
magnitude of the two loss terms independent of the magnitude of the task rewards. TD-
MPC uses continuous regression which leads to training instabilities in tasks where rewards
are large. While this issue can be alleviated by, e.g., normalizing task rewards based on
moving statistics, in the single-task case, it is difficult to design robust reward normalization
schemes for multi-task learning. TD-MPC2 retains the continuous regression term for joint-
embedding prediction as the latent representation is already normalized by SimNorm, and
discrete regression is computationally expensive for high-dimensional spaces (requires N
bins for each dimension of z).

• Multi-task model. TD-MPC2 introduces a framework for learning multi-task world mod-
els across multiple domains, embodiments, and action spaces. We introduce a normalized
learnable task embedding space which all components of TD-MPC are conditioned on,
and we accommodate multiple observation and action spaces by applying zero-padding
and action masking during both training and inference. We train multi-task models on a
large number of tasks, and finetune the model to held-out tasks (across embodiments) us-
ing online RL. TD-MPC only considers multi-task learning on a small number of tasks
with shared observation and action space, and does not consider finetuning of the learned
multi-task model.

• Simplified algorithm and implementation. TD-MPC2 removes momentum in MPPI
(Williams et al., 2015), and replaces prioritized experience replay sampling from the re-
play buffer with uniform sampling, both of which simplify the implementation with no
significant change in experimental results. Finally, we also use a faster replay buffer imple-
mentation that uses multiple workers for sampling, and we increase training and planning
throughput through code-level optimizations such as Q-function ensemble vectorization,
which makes the wall-time of TD-MPC2 comparable to that of TD-MPC despite a larger
architecture (5M vs. 1M).
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B TASK VISUALIZATIONS

Figure 10. Task visualizations. Visualization of a random initial state for each of the 104 tasks
that we consider. Tasks vary greatly in objective, embodiment, and action space. Visit https:
//tdmpc2.com for videos of TD-MPC2 performing each task. See Appendix C for task details.
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C TASK DOMAINS

We consider a total of 104 continuous control tasks from 4 task domains: DMControl (Tassa et al.,
2018), Meta-World (Yu et al., 2019), ManiSkill2 (Gu et al., 2023), and MyoSuite (Caggiano et al.,
2022). This section provides an exhaustive list of all tasks considered, as well as their observation
and action dimensions. Environment details are listed at the end of the section. We provide (static)
task visualizations in Appendix B and videos of TD-MPC2 agents performing each task at https:
//www.tdmpc2.com.

Table 2. DMControl. We consider a total of 39 continuous control tasks in the DMControl domain,
including 19 original DMControl tasks and 11 new (custom) tasks created specifically for TD-MPC2
benchmarking and multitask training. We list all considered DMControl tasks below. The Locomo-
tion task set shown in Figure 1 corresponds to the Humanoid and Dog embodiments of DMControl,
with performance reported at 14M environment steps.

Task Observation dim Action dim Sparse? New?
Acrobot Swingup 6 1 N N
Cartpole Balance 5 1 N N
Cartpole Balance Sparse 5 1 Y N
Cartpole Swingup 5 1 N N
Cartpole Swingup Sparse 5 1 Y N
Cheetah Jump 17 6 N Y
Cheetah Run 17 6 N N
Cheetah Run Back 17 6 N Y
Cheetah Run Backwards 17 6 N Y
Cheetah Run Front 17 6 N Y
Cup Catch 8 2 Y N
Cup Spin 8 2 N Y
Dog Run 223 38 N N
Dog Trot 223 38 N N
Dog Stand 223 38 N N
Dog Walk 223 38 N N
Finger Spin 9 2 Y N
Finger Turn Easy 12 2 Y N
Finger Turn Hard 12 2 Y N
Fish Swim 24 5 N N
Hopper Hop 15 4 N N
Hopper Hop Backwards 15 4 N Y
Hopper Stand 15 4 N N
Humanoid Run 67 24 N N
Humanoid Stand 67 24 N N
Humanoid Walk 67 24 N N
Pendulum Spin 3 1 N Y
Pendulum Swingup 3 1 N N
Quadruped Run 78 12 N N
Quadruped Walk 78 12 N N
Reacher Easy 6 2 Y N
Reacher Hard 6 2 Y N
Reacher Three Easy 8 3 Y Y
Reacher Three Hard 8 3 Y Y
Walker Run 24 6 N N
Walker Run Backwards 24 6 N Y
Walker Stand 24 6 N N
Walker Walk 24 6 N N
Walker Walk Backwards 24 6 N Y
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Table 3. Meta-World. We consider a total of 50 continuous control tasks from the Meta-World
domain. The Meta-World benchmark is designed for multitask and meta-learning research and all
tasks thus share embodiment, observation space, and action space.

Task Observation dim Action dim
Assembly 39 4
Basketball 39 4
Bin Picking 39 4
... ... ...
Window Open 39 4

Table 4. ManiSkill2. We consider a total of 5 continuous control tasks from the ManiSkill2 domain.
The ManiSkill2 benchmark is designed for large-scale robot learning and contains a high degree
of randomization and task variations. The Pick YCB task shown in Figure 1 corresponds to the
ManiSkill2 task of the same name, with performance reported at 14M environment steps.

Task Observation dim Action dim
Lift Cube 42 4
Pick Cube 51 4
Pick YCB 51 7
Stack Cube 55 4
Turn Faucet 40 7

Table 5. MyoSuite. We consider a total of 10 continuous control tasks from the MyoSuite domain.
The MyoSuite benchmark is designed for high-dimensional physiologically accurate muscoloskele-
tal motor control and involves particularly complex object manipulation with a dexterous hand. The
MyoSuite domain consists of tasks with and without goal randomization. We consider both settings,
and refer to them as Easy (fixed goal) and Hard (random goal), respectively.

Task Observation dim Action dim
Reach Easy 115 39
Reach Hard 115 39
Pose Easy 108 39
Pose Hard 108 39
Pen Twirl Easy 83 39
Pen Twirl Hard 83 39
Object Hold Easy 91 39
Object Hold Hard 91 39
Key Turn Easy 93 39
Key Turn Hard 93 39
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Environment details. We benchmark algorithms on DMControl, Meta-World, ManiSkill2, and
MyoSuite without modification. All four domains are infinite-horizon continuous control environ-
ments for which we use a fixed episode length and no termination conditions. We list episode
lengths, action repeats, total number of environment steps, and the performance metric used for
each domain in Table 6. In all experiments, we only consider an episode successful if the final step
of an episode is successful. This is a stricter definition of success than used in some of the related
literature, which e.g. may consider an episode successful if success is achieved at any step within
a given episode. In tasks that require manipulation of objects, such as picking up an object, our
definition of success ensures that an episode in which an object is picked up but then dropped again
is not considered successful.

Table 6. Environment details. We list the episode length and action repeat used for each task
domain, as well as the total number of environment steps and performance metrics that we use for
benchmarking methods. All methods use the same values for all tasks.

DMControl Meta-World ManiSkill2 MyoSuite
Episode length 1, 000 200 200 100
Action repeat 2 2 2 1
Effective length 500 100 100 100
Total env. steps 4M - 14M 2M 4M - 14M 2M
Performance metric Reward Success Success Success

— Appendices continue on next page —
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D SINGLE-TASK EXPERIMENTAL RESULTS
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Figure 11. Single-task DMControl results. Episode return as a function of environment steps.
The first 4M environment steps are shown for each task, although the Humanoid and Dog tasks are
run for 14M environment steps; we provide those curves in Figure 14 as part of the “Locomotion”
benchmark. Note that TD-MPC diverges on tasks like Walker Stand and Walker Walk whereas TD-
MPC2 remains stable. We visualize gradients on these tasks in Appendix G. Mean and 95% CIs
over 3 seeds.
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Figure 12. Single-task Meta-World results. Success rate (%) as a function of environment steps.
TD-MPC2 performance is comparable to existing methods on easy tasks, while outperforming other
methods on hard tasks such as Pick Place Wall and Shelf Place. DreamerV3 often fails to converge.
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Figure 13. Single-task ManiSkill2 results. Success rate (%) as a function of environment steps on 5
object manipulation tasks from ManiSkill2. Pick YCB is the hardest task and considers manipulation
of all 74 objects from the YCB (Calli et al., 2015) dataset. We report results for this tasks at 14M
environment steps, and 4M environment steps for other tasks. TD-MPC2 achieves a > 60% success
rate on the Pick YCB task, whereas other methods fail to learn within the given budget. Mean and
95% CIs over 3 seeds.
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Figure 14. Single-task high-dimensional locomotion results. Episode return as a function of
environment steps on all 7 “Locomotion” benchmark tasks. This domain includes high-dimensional
Humanoid (A ∈ R21) and Dog (A ∈ R38) embodiments. Mean and 95% CIs over 3 seeds.
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Figure 15. Single-task MyoSuite results. Success rate (%) as a function of environment steps.
This task domain includes high-dimensional contact-rich musculoskeletal motor control (A ∈ R39)
with a physiologically accurate robot hand. Goals are randomized in tasks designated as “Hard”.
TD-MPC2 achieves comparable or better performance than existing methods on all tasks from this
benchmark, except for Key Turn Hard in which TD-MPC succeeds early in training.
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E FEW-SHOT EXPERIMENTAL RESULTS

We finetune a 19M parameter TD-MPC2 agent trained on 70 tasks to each of 10 held-out tasks.
Individual task curves are shown in Figure 16. We compare data-efficiency of the finetuned model to
a baseline agent of similar model capacity trained from scratch. However, we find that performance
of our 19M parameter baselines trained from scratch are comparable to our 5M parameter agents
also trained from scratch. Our few-shot finetuning results suggest that the efficacy of finetuning is
somewhat task-dependent. However, more research is needed to conclude whether this is due to task
similarity (or rather lack thereof) or due to subpar task performance of the pretrained agent on the
source task. We conjecture that both likely influence results.

When finetuning to an unseen task, we initialize the learnable task embedding for the new task as
the embedding of a semantically similar task from the pretraining dataset. We list the source task
embedding used as initialization for each experiment in Table 7. We did not experiment with other
initialization schemes, nor other task pairings.
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Figure 16. Few-shot learning. Normalized episode return (DMControl) and success rate (Meta-
World) as a function of environment steps while finetuning a 19M parameter TD-MPC2 agent
trained on 70 tasks to each of 10 held-out tasks. 40k steps corresponds to 40 episodes in DM-
Control and 200 in Meta-World. Mean and 95% CIs over 3 seeds.

Table 7. Initialization of task embeddings for few-shot learning. We list the task embeddings
used as initialization when finetuning our 19M parameter TD-MPC2 agent to held-out tasks. We did
not experiment with other initialization schemes, nor other task pairings.

Target task Source task
Walker Run Walker Walk
Cheetah Run Cheetah Run Backwards
Hopper Hop Hopper Stand
Pendulum Swingup Pendulum Spin
Reacher Hard Reacher Easy
Bin Picking Pick Place
Box Close Assembly
Door Lock Door Open
Door Unlock Door Open
Hand Insert Sweep Into
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F ADDITIONAL ABLATIONS
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Figure 17. Normalized task embeddings. Normalized score of 19M parameter multitask (80 tasks)
TD-MPC2 agents, with and without normalized task embeddings e as described in Section 3.1. We
find that normalizing e to have a maximum ℓ2-norm of 1 improves multitask performance.
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Figure 18. T-SNE of task embeddings with and without normalization. T-SNE (van der Maaten
& Hinton, 2008) visualizations of task embeddings learned by TD-MPC2 agent trained on 80 tasks
from DMControl and Meta-World. (Left) with normalization. (Right) without normalization. A
subset of labels are shown for clarity. We observe that task embeddings are more semantically
meaningful when normalized during training, e.g., “Door Open” and “Door Close” are close in
embedding space on the left, but far apart on the right.
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Figure 19. Activation function. Normalized score as a function of environment steps, averaged
across three of the most difficult tasks: Dog Run, Humanoid Walk (DMControl), and Pick YCB
(ManiSkill2). Mean and 95% CIs over 3 random seeds. We find that TD-MPC2 achieves comparable
asymptotic performance and data-efficiency with either activation function, but that Mish (Misra,
2019) leads to smoother gradients overall.
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G GRADIENT NORM AND TRAINING STABILITY
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Figure 20. Gradient norm during training. We compare the gradient norm (log-scale) of TD-MPC
and TD-MPC2 as a function of environment steps on five tasks from DMControl. TD-MPC is prone
to exploding gradients, which can cause learning to diverge on some tasks (e.g., Walker Stand in
Figure 11). In comparison, the gradients of TD-MPC2 remain stable throughout training. We only
display 1 seed per task for visual clarity.

H IMPLEMENTATION DETAILS

Architectural details. All components of TD-MPC2 are implemented as MLPs. The encoder h
contains a variable number of layers (2−5) depending on the architecture size; all other components
are 3-layer MLPs. Intermediate layers consist of a linear layer followed by LayerNorm and a Mish
activation function. The latent representation is normalized as a simplicial embedding. Q-functions
additionally use Dropout. We summarize the TD-MPC2 architecture for the 5M parameter base
(default for online RL) model size using PyTorch-like notation:

Encoder parameters: 167,936
Dynamics parameters: 843,264
Reward parameters: 631,397
Policy parameters: 582,668
Q parameters: 3,156,985
Task parameters: 7,680
Total parameters: 5,389,930

Architecture: TD-MPC2 base 5M(
(task_embedding): Embedding(T, 96, max_norm=1)
(encoder): ModuleDict(
(state): Sequential(

(0): NormedLinear(in_features=S+T, out_features=256, act=Mish)
(1): NormedLinear(in_features=256, out_features=512, act=SimNorm)

)
)
(dynamics): Sequential(
(0): NormedLinear(in_features=512+T+A, out_features=512, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, act=Mish)
(2): NormedLinear(in_features=512, out_features=512, act=SimNorm)

)
(reward): Sequential(
(0): NormedLinear(in_features=512+T+A, out_features=512, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, act=Mish)
(2): Linear(in_features=512, out_features=101,)

)
(pi): Sequential(
(0): NormedLinear(in_features=512+T, out_features=512, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, act=Mish)
(2): Linear(in_features=512, out_features=2A, bias=True)

)
(Qs): Vectorized ModuleList(
(0-4): 5 x Sequential(

(0): NormedLinear(in_features=512+T+A, out_features=512, dropout=0.01, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, act=Mish)
(2): Linear(in_features=512, out_features=101, bias=True)

)
)

where S is the input dimensionality, T is the number of tasks, and A is the action space. We exclude
the task embedding T from single-task experiments. The exact parameter counts listed above are for
S= 39, T= 80, and A= 6.
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Hyperparameters. We use the same hyperparameters across all tasks. Our hyperparameters are
listed in Table 8. We use the same hyperparameters for TD-MPC and SAC as in Hansen et al.
(2022). DreamerV3 (Hafner et al., 2023) uses a fixed set of hyperparameters.

Table 8. TD-MPC2 hyperparameters. We use the same hyperparameters across all tasks. Certain
hyperparameters are set automatically using heuristics.

Hyperparameter Value
Planning
Horizon (H) 3
Iterations 6 (+2 if ∥A∥ ≥ 20)
Population size 512
Policy prior samples 24
Number of elites 64
Minimum std. 0.05
Maximum std. 2
Temperature 0.5
Momentum No

Policy prior
Log std. min. −10
Log std. max. 2

Replay buffer
Capacity 1, 000, 000
Sampling Uniform

Architecture (5M)
Encoder dim 256
MLP dim 512
Latent state dim 512
Task embedding dim 96
Task embedding norm 1
Activation LayerNorm + Mish
Q-function dropout rate 1%
Number of Q-functions 5
Number of reward/value bins 101
SimNorm dim (V ) 8
SimNorm temperature (τ ) 1

Optimization
Update-to-data ratio 1
Batch size 256
Joint-embedding coef. 20
Reward prediction coef. 0.1
Value prediction coef. 0.1
Temporal coef. (λ) 0.5
Q-fn. momentum coef. 0.99
Policy prior entropy coef. 1× 10−4

Policy prior loss norm. Moving (5%, 95%) percentiles
Optimizer Adam
Learning rate 3× 10−4

Encoder learning rate 1× 10−4

Gradient clip norm 20
Discount factor Heuristic
Seed steps Heuristic
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We set the discount factor γ for a task using the heuristic

γ = clip(
T
5 − 1

T
5

, [0.95, 0.995]) (7)

where T is the expected length of an episode after applying action repeat, and clip constrains the
discount factor to the interval [0.95, 0.995]. Using this heuristic, we obtain γ = 0.99 for DMControl
(T = 500), which is the most widely used discount factor for this task domain. Tasks with shorter
episodes are assigned a lower discount factor, whereas tasks with longer episodes are assigned a
higher discount factor. All of the tasks that we consider are infinite-horizon MDPs with fixed episode
lengths. We use individual discount factors (set using the above heuristic) for each task in our
multitask experiments. For tasks with variable or unknown episode lengths, we suggest using an
empirical mean length, a qualified guess, or simply γ = 0.99. While this heuristic is introduced in
TD-MPC2, we apply the same discount factor for the TD-MPC and SAC baselines to ensure that
comparison is fair across all task domains.

We set the seed steps S (number of environment steps before any gradient updates) for a task using
the heuristic

S = max(5T, 1000) (8)
where T again is the expected episode length of the task after applying action repeat. We did not
experiment with other heuristics nor constant values, but conjecture that Equation 8 will ensure that
the replay buffer B has sufficient data for model learning regardless of episode lengths.

Model configurations. Our multitask experiments consider TD-MPC2 agents with model sizes
ranging from 1M parameters to 317M parameters. Table 9 lists the exact specifications for each of
our model sizes. We scale the model size by varying dimensions of fully-connected layers, the latent
state dimension z, the number of encoder layers, and the number of Q-functions. We make no other
modifications to the architecture nor hyperparameters across model sizes.

Table 9. Model configurations. We list the specifications for each model configuration (size)
of our multitask experiments. Encoder dim is the dimensionality of fully connected layers in the
encoder h, MLP dim is the dimensionality of layers in all other components, Latent state dim is the
dimensionality of the latent representation z, # encoder layers is the number of layers in the encoder
h, # Q-functions is the number of learned Q-functions, and Task embedding dim is the dimensionality
of e from Equation 2. TD-targets are always computed by randomly subsampling two Q-functions,
regardless of the number of Q-functions in the ensemble. We did not experiment with other model
configurations. *The default (base) configuration used in our single-task RL experiments has 5M
parameters.

1M 5M* 19M 48M 317M
Encoder dim 256 256 1024 1792 4096
MLP dim 384 512 1024 1792 4096
Latent state dim 128 512 768 768 1376
# encoder layers 2 2 3 4 5
# Q-functions 2 5 5 5 8
Task embedding dim 96 96 96 96 96

Simplicial Normalization (SimNorm). SimNorm is a simple method for normalizing the latent rep-
resentation z by projecting it into L fixed-dimensional simplices using a softmax operation (Lavoie
et al., 2022). A key benefit of embedding z as simplices (as opposed to e.g. a discrete representation
or squashing) is that it naturally biases the representation towards sparsity without enforcing hard
constraints. Intuitively, SimNorm can be thought of as a ”soft” variant of the vector-of-categoricals
approach to representation learning proposed by Oord et al. (2017) (VQ-VAE). Whereas VQ-VAE
represents latent codes using a set of discrete codes (L vector partitions each consisting of a one-hot
encoding), SimNorm partitions the latent state into L vector partitions of continuous values that each
sum to 1 due to the softmax operator. This relaxation of the latent representation is akin to softmax
being a relaxation of the argmax operator. While we do not adjust the temperature τ ∈ [0,∞) of
the softmax used in SimNorm in our experiments, it is useful to note that it provides a mechanism
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for interpolating between two extremes. For example, τ → ∞ would force all probability mass onto
single categories, resulting in the discrete codes (one-hot encodings) of VQ-VAE. The alternative of
τ = 0 would result in trivial codes (constant vectors; uniform probability mass) and prohibit prop-
agation of information. SimNorm thus biases representations towards sparsity without enforcing
discrete codes or other hard constraints. We implement the SimNorm normalization layer (Lavoie
et al., 2022) using PyTorch-like notation as follows:

def simnorm(self, z, V=8):
shape = z.shape
z = z.view(*shape[:-1], -1, V)
z = softmax(z, dim=-1)
return z.view(*shape)

Here, z is the latent representation z, and V is the dimensionality of each simplex. The number of
simplices L can be inferred from V and the dimensionality of z. We apply a softmax (optionally
modulated by a temperature τ ) to each of L partitions of z to form simplices, and then reshape to
the original shape of z.

TD-MPC baseline implementation. We benchmark against the official implementation of TD-
MPC available at https://github.com/nicklashansen/tdmpc. The default TD-MPC
world model has approx. 1M trainable parameters, and uses per-task hyperparameters. We use the
suggested hyperparameters where available (DMControl and Meta-World). For example, TD-MPC
requires tuning of the number of planning iterations, latent state dimensionality, batch size, and
learning rate in order to solve the challenging Dog and Humanoid tasks. Refer to their paper for a
complete list of hyperparameters.

DreamerV3 baseline implementation. We benchmark against the official reimplementation of
DreamerV3 available at https://github.com/danijar/dreamerv3. We follow the au-
thors’ suggested hyperparameters for proprioceptive control (DMControl) and use the S model size
(20M parameters), as well as an update-to-data (UTD) ratio of 512. We use this model size and
UTD for all tasks. Refer to their paper for a complete list of hyperparameters.

SAC baseline implementation. We follow the TD-MPC (Hansen et al., 2022) paper in
their decision to benchmark against the SAC implementation from https://github.com/
denisyarats/pytorch_sac, and we use the hyperparameters suggested by the authors (when
available). For example, this includes tuning the latent dimension, learning rate, and batch size for
the Dog and Humanoid tasks. Refer to their paper for a complete list of hyperparameters.

I EXTENDING TD-MPC2 TO DISCRETE ACTION SPACES

It is desirable to develop a single algorithm that excels at tasks with continuous and discrete action
spaces alike. However, the community has yet to discover such an algorithm. While e.g. Dream-
erV3 (Hafner et al., 2023) has delivered strong results on challenging tasks with discrete action
spaces (such as Atari and Minecraft), we find that TD-MPC2 produces significantly better results on
difficult continuous control tasks. At the same time, extending TD-MPC2 to discrete action spaces
remains an open problem. While we do not consider discrete action spaces in this work, we ac-
knowledge the value of such an extension. At present, the main challenge in applying TD-MPC2
to discrete actions lies in the choice of planning algorithm. TD-MPC2 relies on the MPC frame-
work for planning, which is designed for continuous action spaces. We believe that MPC could be
replaced with a planning algorithm designed for discrete action spaces, such as MCTS (Coulom,
2007) as used in MuZero (Schrittwieser et al., 2020). It is also possible that there exists a way to
apply MPC to discrete action spaces that is yet to be discovered (to the best of our knowledge),
similar to how recent work (Hubert et al., 2021) has discovered ways to apply MCTS to continuous
action spaces through sampling.
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J TEST-TIME REGULARIZATION FOR OFFLINE RL

Our multi-task experiments revolve around training massively multi-task world models on fixed
datasets that consist of a variety of behaviors, which is an offline RL problem. We do not con-
sider any special treatment of the offline RL problem in the main paper, and simply train TD-MPC2
agents without any additional regularization nor hyperparameter-tuning. However, we recognize
that models may benefit from such regularization (conservative estimations) due to extrapolation
errors when the dataset has limited state-action coverage and/or is highly skewed. Current offline
RL algorithms are ill-suited for our problem setting, given that we aim to develop an algorithm that
can seamlessly transition from massively multi-task offline pretraining to single-task online fine-
tuning, without any changes in hyperparameters. Current offline RL techniques rely on (1) explicit
or implicit conservatism in Q-value estimation which requires modifications to the training objec-
tive and empirically hampers online RL performance (Nakamoto et al., 2023), and (2) relies on a
task-specific coefficient that balances value estimation and the regularizer. Instead, we propose to
regularize the planning procedure of TD-MPC2, which can be done at test-time without any addi-
tional model updates. Concretely, we apply the test-time regularizer proposed by Feng et al. (2023),
which penalizes trajectories with large uncertainty (as estimated by the variance in Q-value predic-
tions) during planning. While this approach eliminates the need for training-time regularization, it
still requires users to specify a coefficient that weighs estimated value relative to uncertainty for a
trajectory, which is infeasible in a multi-task scenario where estimated values may differ drastically
between tasks. To circumvent this issue, we propose a simple heuristic for automatically scaling the
regularization strength at each timestep based on the (magnitude of) mean value predictions for a
given latent state. Specifically, we estimate the uncertainty penalty at latent state zt of a sampled
trajectory as

ut = c · avg([q̂1, q̂2, . . . , q̂N ]) · std([q̂1, q̂2, . . . , q̂N ]) (9)

where q̂n is a value prediction from Q-function n in an ensemble of N Q-functions, and c is now
a task-agnostic coefficient that balances return maximization and uncertainty minimization. The
planning objective in Equation 6 is then redefined as

µ∗, σ∗ = argmax
(µ,σ)

E
(at,at+1,...,at+H)∼N (µ,σ2)

(10)[
γHQ(zt+H ,at+H)− ut+H (11)

+

H−1∑
h=t

(
γhR(zh,ah)− uh

) ]
, (12)

using the definition of task-agnostic uncertainty in Equation 9. We conduct an experiment in which
we apply our proposed test-time regularization to a 19M parameter TD-MPC2 agent trained on
the 80-task dataset, varying the regularization strength c. Results are shown in Table 10. Our
results indicate that additional regularization (using our heuristic for automatic tuning) can indeed
improve the average model performance for some values of c. Similar to what one would expect
in a single-task setting, we find that large values of c (strong regularization) decrease performance,
whereas small (but > 0) values of c tend to improve performance compared to TD-MPC2 without
regularization. Given that our heuristic with c = 0.01 leads to meaningful improvements across 80
tasks, we expect it to work reasonably well for other datasets as well, but leave this for future work.

Table 10. Test-time regularization. Normalized score of a 19M parameter TD-MPC2 agent trained
on the 80-task dataset, varying the regularization strength c of our proposed test-time regularizer.
We do not apply this regularization in any of our other experiments, and only include these results
to inspire future research directions.

No reg. c = 0.001 c = 0.01 c = 0.1

Normalized score 56.54 58.14 62.01 44.13
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K ADDITIONAL MULTI-TASK RESULTS

To provide further insights into the effect of data size and task diversity on TD-MPC2 performance in
a multi-task setting, we provide additional experiments on a 15-task subset of DMControl, selected
at random. Results for TD-MPC2 agents trained on 15 tasks, 30 tasks, and 80 tasks are shown in
Figure 21. We observe that performance scales with model size across all three task suites, but
numbers are higher across the board on the smallest dataset compared to similar capacity models
trained on larger datasets. This makes intuitive sense, since model capacity remains the same while
there are comparably fewer tasks to learn.
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Figure 21. Additional results on massively multi-task world models. Normalized score as a
function of model size on the 15-task, 30-task, and 80-task datasets. TD-MPC2 capabilities scale
with model size.
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