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ABSTRACT

Current computer vision models are approaching superhuman performance on vi-
sual categorization tasks in domains such as ecology, radiology, etc. Explainable
Al (XAI) methods aim to explain how such models make decisions. Unfortu-
nately, in order to make explanations that are human-friendly, XAI methods can
often simplify model behavior to the point that critical information is lost. For
humans to learn how model’s achieve superhuman performance, we must work
towards understanding these nuances. In this work, we consider the challenging
task of visually explaining the differences between two representations. By na-
ture, this task forces XAl methods to discard coarse-grained, obvious aspects of
a model’s representation to focus on nuances that make a model unique. To this
end, we propose a clustering method that is able to isolate neighborhoods of im-
ages that are close together in one representation, but distant in the other. These
discovered clusters represent concepts that are present in only one of the two rep-
resentations. We use our method to compare different model representations and
discover semantically meaningful clusters.

1 INTRODUCTION

Explaining model decisions is incredibly important for the safe deployment and use of Al mod-
els (Kopl [2021). Explainable methods for Al (XAI) aim to organize, simplify, and visualize a
model’s reasoning process so that humans can interpret it. Recent evaluations have shown that XAI
methods improve human understanding, but there is still significant room for improvement (Achtibat
et al.} 2023} [Fel et al., 2023b; |Colin et al., [2022; Shen & Huang| 2020; [Nguyen et al., 2021} |Sixt;
et al.| 2022} [Kim et al., 2022). Broadly speaking, post-hoc XAI methods are faced with a trade-off:
simplifying model behavior helps humans understand a model’s predictions, but reduces faithful-
ness to the original model (Fel et al.,|2023b; | Kondapaneni et al., 2024} (Cunningham et al., 2024). To
understand how Al models achieve superhuman performance in critical tasks (e.g., in medical image
analysis), we must be able to explain the intricacies of model behavior. We consider the problem of
explaining the difference between two vision model representations. Solving this task necessitates
the development of methods that can attend to model differences. This approach highlights nuanced,
fine-grained aspects of a model’s representation, since obvious concepts are likely to be shared by
both models.

Representational Similarity. Our task is closely related to measuring “representational similarity”,
in which methods provide a single score to quantify similarity (Hotelling, |1936; [Kornblith et al.,
2019; Raghu et al.| 2017} [Li et al.l 2015 [Huh et al. |2024). These scores provide a coarse insight
into differences between architectures, pre-training methods, etc. (Nguyen et al.,2021; Raghu et al.,
20215 Xie et al.|, [2023]; [Neyshabur et al., [2020; |Park et al., 2024;|Zhang et al., [2020). Somewhat also
related is work that aims to discover similar neurons across models and visualize the features they
encode (Dravid et al.l|2023). However, none of these methods provide fine-grained explanations for
the nuanced differences between a pair of models.

Explainable AI (XAI). XAl methods in vision can be broadly grouped into local, global, and glocal
methods. Local explanations provide users with attribution maps that identify regions of the input
image that the model uses in its decision (Selvaraju et al., |2020; Ribeiro et al., 2016; |[Lundberg &
Leel 2017). Global explanations provide users with a collage of images that represent a learned
semantic concept Kim et al.|(2018)); |Ghorbani et al|(2019); [Zhang et al.|(2021)); [Fel et al.| (2023al);
Kowal et al.[(2024); Poeta et al.| (2023)); |Bau et al.| (2020). Glocal methods fuse both approaches,
both localizing where and what a model is using to make its decision [Schrouff et al.| (2021)); Fel
et al.| (2023b); [Achtibat et al.| (2023)); Kondapaneni et al.| (2024). However, these methods are not
explicitly designed to compare two models.
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Explainable Representational Similarity. Recently, Kondapaneni et al.| (2025)) proposed a method
called RSVC in which they generate concept-based explanations for two models and compare the
explanations. While RSVC can surface some concepts that are unique to a single model, they find
that many concepts are partially related, making it challenging to interpret model differences. In
this work, we consider an approach that uses information from both models to isolate clusters of
images that exist in one model, but do not exist in the other. This approach makes it easier to clearly
isolate and visualize model differences. We visualize our clusters using a representative image grid,
which have been shown to be human-friendly and interpretable (Fel et al., [2023b; |Kim et al.| 2018;
Ghorbani et al., [2019). Our approach is also related to DiSC (Sristi et al.l 2022), a method that
discovers clusters of features that differentiate data collected from two experimental conditions but
share a feature space. In contrast to DiSC, our approach is concerned with identifying clusters of
images which can come from different models with different feature spaces. In addition, DiSC
directly modifies the spectral clustering objective to discover differentiating feature clusters. In
contrast, our approach is based on defining an affinity matrix and thus can be used flexibly with
different clustering algorithms.

2 METHOD

As input we take two embedding matrices obtained from two different models, X € R™*4x and
Y € R"¥9, where dx and dy are the embedding dimensions for models X and Y respectively,
and n is the total number of images. X and Y contain embeddings over the same set of images,
where each row corresponds to the same image. We propose a method to identify clusters present in
X but are absent in Y. To do so, we construct an affinity matrix that assigns high affinity to images
that are close in X but distant in Y, and perform clustering to reveal the distinctive structure in X.

At a high-level, our Representational Difference Clustering (RDC) approach performs the following
steps: (1) compute the pairwise distances between images in X and Y to build fully connected
graphs, Gx and Gy, (2) compute a normalized difference between the graphs to form Ga, and
(3) convert the difference into an affinity graph (G 4) and apply a clustering algorithm. Intuitively,
negative edges in G A indicate that the corresponding pair of images were closer together in X than
they were in Y. We provide details in the following sections.

2.1 GRAPH CONSTRUCTION

We compute the pairwise Euclidean distances for each embedding matrix, Dx € R™*™ and
Dy € R™ ™. We define Gx to be the graph with adjacency matrix Dx. To construct the nor-
malized difference graph G A from Gx and Gy, we must make the distances in each representation
comparable. Since our final goal is to visualize an image collage representing a cluster, we must
preserve the relative positions of images. A natural choice is to use a scale-invariant neighborhood
ranking where the edge weight between ¢ and j is the nearest neighbor rank of j. Specifically, we
define the neighbor ranking graph as:

N¥ = argsort(argsort(D%)) + 1, (1)

where i, : indicates the i*" row of D,. When using the neighborhood ranking, vertices in G x and
Gy are considered similar if they have similar neighborhood rankings. We prioritize differences in
nearby neighbors by dividing by the minimum neighbor rank. This ensures that large differences
in distant neighbors are ignored, but large differences in nearby neighbors are emphasized. To
avoid exponential growth in our difference function when a neighbor rank is small, we apply a tanh
function to normalize the outputs:

Gy = tanh(y - (NY — Ny)/(min(NY, Ny/)). @

The ~ parameter controls how quickly the function saturates. Given an image i, this function will
output negative values when the neighbor rank between ¢ and j is smaller in X than in Y. Thus,
negative values in this matrix indicate images that are closer in X than in Y. Finally, we convert
G A into affinities with:

G =exp(—5-Ga). 3)

Since neighborhood rankings are not symmetric, we symmetrize the affinity graph adjacency matrix
by averaging with its transpose.
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Figure 1: Difference clusters when comparing model checkpoints. Here we compare checkpoints
from different points in time from a ResNet-18 trained on the Butterflies dataset against the final
representation obtained. Cluster O is a “special” cluster since it contains the images that change the
least between two representations. We compare cluster O to the average of clusters 1-9 and visualize
the minimum and maximum value with the shaded region. (Left) We see that cluster O decreases
in mean affinity over time and transitions to a “no-change” cluster (gray) at checkpoint 1 (C1). In
contrast, clusters 1-9 increase in mean affinity until checkpoint 45 (C45), when the cluster size for
1-9 becomes zero. (Middle) The cluster size increases steadily for cluster O as the representations
become more similar. (Right) Both the training checkpoints and final checkpoint are more accurate
on images in cluster 0. Performance within clusters 1-9 is much more variable, indicating that the
clusters capture images that the model is less certain about.

2.2 CLUSTERING

Normalized cuts (N-Cut) seek out partitions of a graph that minimizes the sum of the cut edges,
while balancing the size of the partition (Sh1 & Malik, 2000). Spectral clustering solves a relaxed
version of the N-Cut problem (Von Luxburg, [2007) given an affinity matrix. Since, edges in G 4 are
large when images are closer in X than they are in Y, the clustering algorithm is biased to finding
partitions in which images are close together in X, but far apart in Y. In practice, if representational
similarity between X and Y is high, edges in G 4 will be close to 1, since the value in G will be
near zero. In this setting, spectral clustering will tend to return some clusters with average affinities
close to 1. We apply a simple post-processing step, such that clusters with an average affinity below
1.5 are considered part of a “no-change” group. Finally, we order the clusters by their mean within-
cluster affinity (low to high).

3 RESULTS

We train a randomly initialized ResNet-18 model for 50 epochs on the butterflies dataset
from [Mac Aodha et al|(2018) and save checkpoints during training. This dataset contains five
butterfly species, in which three are challenging for humans to distinguish. We use RDC to discover
10 clusters that exist in the final checkpoint (CF), but do not exist in the compared checkpoint (CY).
Since RDC is not symmetric, we set X to be the embedding matrix for CF and Y to be the output
of CY. Our probe set is the entire training set (~ 2000 images). When comparing training check-
points to their final representation, we expect that the no-change cluster becomes larger as the two
representations become more similar. Additionally, as the model improves, we expect to discover
clusters of images for which the model is more likely to make errors.

In Fig.[1] we explore the mean affinity, cluster size, and cluster accuracy of cluster O vs. the average
of clusters 1-9. At checkpoint 1 (C1), the mean affinity of cluster O drops below 1.5 and it becomes
the no-change cluster (gray color). In the middle panel, we can see that cluster O grows in size over
time, indicating that our RDC method correctly detects that the two representations are becoming
more similar. It also appears that clusters 1-9 have lower average accuracy than cluster 0. This
indicates that clusters are forming on images in which the model is still refining its predictions. In
sum, we find that our method accurately identifies the growing similarity between the checkpoints
and the final representation and that clusters are localized to regions of greater uncertainty.

In Fig. 2] we take a closer look at the differences between the checkpoints. We highlight CO vs. CF,
CS vs. CF, and C23 vs. CF. For each comparison, we visualize the model representations using a



Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

Ckpt 0 Final Ckpt 5 Final ) Ckpt 23 Final

......

B LR
~ ~ b R
g I W
2 4%

e B

PC1
Cluster 9 - Ckpt 23

Tect N
Cluster 8 - Ckpt 0

N ’ \ A
2 2 = Wy P N |
. - ) At

Figure 2: Cluster visualizations. We compare checkpoint 0 (C0), C5, and C23 against the final
representation (CF). We project the high-dimensional representations into a PCA space and visualize
clusters discovered by RDC. We seek clusters that exist in CF, but not in CY. When comparing PCA
plots, CY tends to have more distant images within a cluster, whereas the same images will be tightly
grouped in CF. (A) At CO, there is a large difference between the two representations and the lowest
affinity cluster, cluster 0, is still above the “no-change” threshold. We visualize a cluster that shows
diverse images of Monarch butterflies. In the cluster title, we show that CO has low accuracy on these
images. (B) At C5, the model has greater similarity to CF and many images belong to the no-change
cluster (gray). We visualize a cluster that shows CS5 is still weak at classifying Monarch butterflies.
(C) At C23, the representations are quite similar and most images belong to the no-change cluster.
We visualize a cluster of Monarch butterflies that are classified well by both models. In this case,
our method is identifying a semantic grouping in CF that does not impact overall performance. This
collage seem to have images of Monarchs that are more occluded or blurry.

e AL !

PCA projection and a subset of images from one discovered cluster. In each panel, the left subplot
contains CY, the right subplot contains CF and the bottom contains the image collage. We color
points according to the difference cluster discovered by RDC. We can see that points within a cluster
are closer together in CF than they are in CY, indicating that RDC is successfully identifying regions
of high similarity in CF that have low similarity in CY. Additionally, we can see that cluster 0
transitions from a difference cluster (blue) to a no-change cluster (gray). The no-change cluster
grows in size from C5 to C23 indicating that representation is becoming more similar. Finally,
clusters in C5 form around images that are from classes with lower accuracy. C5 accuracies for the
five classes are 0.962, 0.709, 0.954, 0.955, 0.803 respectively and 99% of the images in clusters
1-9 belong to class 1, 2, or 4. which are known to be the most commonly confused
2018). We visualize clusters from each comparison that are semantically similar. We find that
these clusters correspond to Monarch butterfly images that are close together in CF but far apart in
CY. This is sensible, since, CO and C5 are much worse at identifying Monarch butterflies than CF.
Finally, in panel C, we show that when models are highly similar (C23), RDC is able to capture
more fine-grained, nuanced clusters. In this cluster we identify a semantic grouping of images in
CF that appears to organize Monarch images that are blurry or occluded. Interestingly, C23 has no
trouble classifying these images correctly, even though they are not embedded as near each other.

4 DISCUSSION

We propose Representational Difference Clustering (RDC), a new approach for identifying clusters
that are present in one representation, but not the other. These clusters can be visualized through
human-friendly image collages that convey differences in model behavior (Fig.[2]A,B). Additionally,
by comparing model representations over training, we can focus our explanations on increasingly
nuanced and complex patterns (Fig. 2] C). In the future, this approach can be used to contrast repre-
sentations learned from human similarity judgments against superhuman Al models. This may help
us discover patterns/groupings that have been learned by the model that humans do not observe. By
teaching these patterns back to human subjects, humans can better understand models and improve
their own understanding of the visual world.
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