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Abstract

Domain adaptation, the process of training a001
model in one domain and applying it to an-002
other, has been extensively explored in machine003
learning. While training a domain-specific004
foundation model (FM) from scratch is an op-005
tion, recent methods have focused on adapt-006
ing pre-trained FMs for domain-specific tasks.007
However, our experiments reveal that either008
approach does not consistently achieve state-of-009
the-art (SOTA) results in the target domain. In010
this work, we study extractive question answer-011
ing within closed domains and introduce the012
concept of targeted pre-training. This involves013
determining and generating relevant data to fur-014
ther pre-train our models, as opposed to the015
conventional philosophy of utilizing domain-016
specific FMs trained on a wide range of data.017
Our proposed framework uses Galactica to gen-018
erate synthetic, “targeted” corpora that align019
with specific writing styles and topics, such as020
research papers and radiology reports. This021
process can be viewed as a form of knowl-022
edge distillation. We apply our method to023
two biomedical extractive question answering024
datasets, COVID-QA and RadQA, achieving a025
new benchmark on the former and demonstrat-026
ing overall improvements on the latter. Code027
available upon publication.028

1 Introduction029

Our work revolves around three key pillars: Extrac-030

tive Question Answering (EQA), Domain Adapta-031

tion, and knowledge distillation through prompting032

generative foundation models (FMs). EQA, a long-033

standing problem in natural language processing034

(NLP) involves identifying a token span in a text035

passage to answer a given question. The task is036

typically evaluated using datasets like SQuAD (Ra-037

jpurkar et al., 2016) and DuoRC (Saha et al., 2018).038

While recent architectures like BERT (Devlin et al.,039

2019), T5 (Raffel et al., 2020), and GPT-3 (Brown040

et al., 2020) have made remarkable advancements041

in this task, their performance suffers when applied042

to domain-specific data, especially in the biomedi- 043

cal/clinical domain (Moradi et al., 2021). 044

The performance discrepancy in models is linked 045

to the definition of a domain, i.e., the loose NLP 046

equivalency of domain = genre or thematic con- 047

tent of a dataset. This definition is quite restric- 048

tive (Plank, 2016). Ideally, a model pre-trained 049

on a specific theme should excel in tasks related 050

to that subject matter. However, not all domain- 051

specific models are equal as illustrated by the dif- 052

fering performances of BioBERT (Lee et al., 2020) 053

and PubMedBERT (Gu et al., 2021), even though 054

both trained on PubMed data. We suggest redefin- 055

ing domain = [genre + dataset], emphasizing 056

the importance of tailoring the training data to the 057

subject matter of the task. This approach acknowl- 058

edges that a one-domain-model-to-rule-them-all is 059

not universally applicable, and the learning should 060

focus on concepts relevant to specific tasks. We de- 061

fine “closed-domains” as datasets related to highly 062

specialized subjects like medicine, law, or finance. 063

The third pillar supporting our work is the re- 064

cent progress in generative FMs (Ye et al., 2023; 065

OpenAI, 2023). While ChatGPT performs well on 066

the USMLE (Kung et al., 2023), our experiments 067

demonstrate that large, general-domain (and even 068

closed) FMs struggle with tasks involving highly 069

specialized language, such as COVID-QA (Möller 070

et al., 2020) and RadQA (Soni et al., 2022). Ad- 071

ditionally, their autoregressive architecture is not 072

well-suited for extractive QA as they are designed 073

to synthesize new text rather than extract spans 074

from given text (c.f. sec. 3.1). Also, when pre- 075

sented with sequences exceeding the model’s con- 076

text length, they need to be divided into overlapping 077

segments. Although this challenge applies to both 078

bi-directional and generative models, bi-directional 079

models are more suitable due to their inherent ca- 080

pabilities. While a generative model can generate 081

an answer for each segment, it lacks the ability to 082

indicate the model’s confidence in each answer, a 083
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feature provided by bi-directional models.084

To overcome these limitations, we propose dis-085

tilling the knowledge from generative FMs into086

smaller, bi-directional language models (LMs) bet-087

ter suited for EQA. We leverage recent break-088

throughs in FMs and architectures better suited089

for the task. Our approach involves using a genera-090

tive FM to generate a synthetic corpus tailored to a091

specific application and fine-tuning a bi-directional,092

general-purpose LM on this corpus. The results093

of our approach demonstrate the efficacy and run-094

ning time improvements as compared to existing095

domain-specific LMs.096

In the seminal work in this area, West et al.097

(2022) demonstrate how GPT3 could be utilized to098

create high-quality knowledge graphs via prompt-099

ing. He et al. (2022) show how a GPT model could100

be used as a “teacher” to distil knowledge into a101

“student.” Similarly, Peris et al. (2022) used unla-102

belled task-relevant data and trained multilingual103

students with varying proportions of general/task-104

specific data and report the most gains using “only105

the downstream task’s unlabelled data”.106

Gururangan et al. (2020) introduces the con-107

cepts of DAPT (Domain-Adaptive Pretraining) and108

TAPT (Task-Adaptive Pretraining), which are simi-109

lar to our approach. DAPT involves extended pre-110

training on domain-specific corpora without labels,111

while TAPT focuses on pretraining on the unla-112

belled training set of the downstream task. Al-113

though they demonstrate the effectiveness of TAPT114

compared to DAPT, closed-domain datasets like115

COVID-QA typically lack a separate unlabelled116

training set and may not even have train/dev/test117

splits. Further, DAPT considers knowledge be-118

yond what is specifically relevant to the task data,119

whereas our approach confines training to the re-120

quired concepts.121

In summary, our contributions are (a) propos-122

ing a pipeline for generating customized pre-123

training data for closed domains, (b) demonstrating124

the effectiveness of synthetic data in achieving sub-125

stantial gains with reduced memory footprint, (c)126

showcasing the benefits of creative prompting and127

dataset awareness, (d) setting a new benchmark on128

COVID-QA & overall improvements on RadQA.129

2 Methodology130

In Figure 1, we present our method and compare it131

to existing pre-training paradigms. The current ap-132

proaches involve training a randomly initialized ar-133

chitecture from scratch (top) on either open-domain 134

data (e.g., BERT/RoBERTa (Liu et al., 2019)) or 135

closed-domain data (e.g., SciBERT (Beltagy et al., 136

2019), PubMedBERT (Gu et al., 2021)), or adopt- 137

ing an extended pre-training approach (middle), 138

where the model is initially trained on open-domain 139

data and then further pre-trained on unlabelled 140

domain-specific text (e.g., BioBERT) to adapt it 141

to the closed-domain. The former emphasizes 142

stronger domain representations, while the latter 143

prioritizes computational efficiency by not requir- 144

ing the model to learn a general sense of language. 145

After training, these models typically require fine- 146

tuning on datasets like SQuAD to learn the task, 147

and can undergo additional fine-tuning for domain 148

adaptation on the final dataset. 149

While the above techniques have achieved much 150

success, they typically rely on high quantities of un- 151

labelled corpora to yield useful results, thus raising 152

the question: What happens when we do not have 153

enough “relevant” domain data, either in style or 154

volume? To this end, we introduce the notion of 155

targeted pre-training, which focuses on a specific 156

subset of the domain, tailor-made for the ultimate 157

downstream dataset. 158

Our method works as follows. First, we combine 159

all the questions and contexts from the training 160

split of the EQA dataset. Unfortunately, COVID- 161

QA does not have a train-dev-test split. In such a 162

situation, we consider the entire dataset for the next 163

step (we test for cheating/information leakage in 164

this case as described in sec. 4.3). Next, we extract 165

entities through Named Entity Recognition (NER) 166

using scispaCy (Neumann et al., 2019). Comparing 167

the small and large versions of the NER models, 168

we found the former (en_core_sci_sm) yields 169

qualitatively better & quantitatively more, entities. 170

Next, we create prompts for the identified enti- 171

ties to generate contexts mimicking the respective 172

datasets. This required studying the characteristics 173

of the datasets such as the style of contexts (full re- 174

search articles in COVID-QA & radiology reports 175

in RadQA), their lengths and relevant keywords. 176

The collection of prompts were then supplied to 177

Galactica (Taylor et al., 2022), to generate the 178

corpora (∪ generated contexts) for pre-training. 179

Galactica is a decoder-based FM pre-trained on 180

a collection of text encompassing research articles, 181

knowledge bases, code and even LATEX markup. 182

Galactica is equipped with the feature of being able 183

to generate research papers by being prompted as 184
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Figure 1: Pre-Training Pathways: From scratch (top); Extended (middle); Targeted (bottom; ours) | Note: We only
show Fine-Tuning on EQA as it is the task of interest | The prompt handle is written in CAPITAL for emphasis.

“Title: [entity]” (where Title: is the185

prompt handle/keyword and entity is the entity186

for which we require generated content). We con-187

sidered other generative models such as BLOOM188

(Scao et al., 2022) and PubMedGPT. However,189

they were either producing multilingual text for our190

prompts (former) or their generations were qualita-191

tively inferior to Galactica (both).192

The choice of prompt for COVID-QA is straight-193

forward (as above) seeing as its contexts are re-194

search articles themselves. RadQA, on the other195

hand, presents a bigger challenge. Its contexts196

are redacted radiology reports without any con-197

sistent format (Hartung et al., 2020). This proved198

to be a challenge since we did not have a template199

for which to synthesize prompts. However, after200

going through the samples in the dataset, we re-201

alized that the Findings and Impressions section202

are the most vital in a patient’s report (akin to the203

experiment and results section in a research pa-204

per). Such clues led us to construct our prompt205

for RadQA as, “Patient has [entity].206

FINDINGS AND IMPRESSION”. This was very207

interesting for us since Galactica had never seen208

radiology reports during training and we found a209

way to get it to synthesize pseudo-reports in this210

manner bypassing any privacy concern. We specifi-211

cally wrote our prompt in this way so as to acquire212

text for both sections in a single go (for computa-213

tional efficiency) and, to avoid chain-of-thought-214

reasoning (CoT) since we were using the base vari-215

ant of Galactica (1.3B) which according to Wei216

et al. (2022), would not be able to keep track of217

logic seeing as it’s << ~100B parameters.218

After generating contexts, we perform extended219

pre-training i.e., taking an open-domain pre-trained 220

checkpoint (BERT/RoBERTa) and further training 221

it on our generated corpus followed by two rounds 222

of fine-tuning (SQuAD → COVID-QA/RadQA). 223

A natural question to ask is why we generated 224

a corpus rather than using existing text. We do 225

this for 3 reasons, (a) flexibility to create content 226

of a certain style, as mentioned before (b) some 227

corpora can be unavailable due to privacy reasons 228

or blocked behind paywalls, such as the corpora 229

used by Gururangan et al. (2020), & (c) our tests 230

can be used to determine if the content produced 231

by such FMs is factually grounded and is able to 232

teach the student models specific writing styles. 233

3 Experiments 234

Our study focuses on two datasets: COVID- 235

QA, comprising 2,019 answerable QA pairs 236

(no train/dev/test splits) sourced from CORD- 237

19 (Wang et al., 2020), and RadQA, consisting 238

of 6,148 QA pairs from radiology reports, with a 239

train/dev/test split of 4,878/656/614. We conduct 240

experiments in two primary areas: benchmarking 241

and targeted pre-training. 242

3.1 Benchmarking 243

We identify ten encoder models to apply to each 244

dataset. The application to COVID-QA required 245

a domain-related model checkpoint fine-tuned on 246

SQuAD v1 while RadQA contains questions with 247

no answers and requires models fine-tuned on 248

SQuAD v2 (Rajpurkar et al., 2018). For consis- 249

tency, we utilized the cased, base version of each 250

architecture when available. Models applied to 251

COVID-QA were fine-tuned using five-fold cross- 252
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Table 1: Benchmarking Bio Models (RadQA). H(F1): HasAns_F1, H(EM): HasAns_EM; *: (“18% papers from the
computer science domain and 82% from the broad biomedical domain” (Beltagy et al., 2019)); Unified Medical
Language System (UMLS); #: from U.S. Department of Veterans Affairs health care systems; †: Trained on UMLS
KG for entity representations; MIMIC: Medical Information Mart for Intensive Care; S2ORC: The Semantic
Scholar Open Research Corpus; Blue/red indicates best/worst scores; 1(Yan et al., 2022); 2(Alsentzer et al., 2019);
3(Gururangan et al., 2020)

Model Corpus Corpus Size Dev Test

EM F1 H(EM) H(F1) EM F1 H(EM) H(F1)

BioBERT PubMed 4.5B words 26.98 44.33 41.65 68.42 50.49 63.53 46.74 64.15
SciBERT Semantic Scholar* 3.2B words 26.68 44.34 40.94 68.21 53.26 67.91 47.83 67.38
PubMedBERT PubMed 3.1B words / 21GB 31.55 48.15 48.24 73.86 54.4 68.5 49.35 68.17
BlueBERT PubMed + MIMIC 4.5B words 31.55 48.02 48.24 73.65 54.23 67.83 48.91 67.07
CODER UMLS N/A† 40.24 57.47 45.41 72 52.93 67.96 50.43 70.49
LUKE Wikipedia 3.5 billion words 27.29 44.39 42.12 68.51 49.51 62.92 46.3 64.2
RadBERT1 Radiology reports# 2.6 GB 32.01 49.57 46.11 73.22 51.14 65.36 50.65 69.64
ClinicalBERT2 MIMIC 0.5B words / 3.7GB 28.35 44.51 43.76 68.7 50.17 63.39 46.74 64.38
BioMed-
RoBERTa3

S2ORC 7.55B tokens /
47GB

28.66 46.17 44.24 71.27 52.28 66.45 48.91 67.82

Galactica c.f. section 2 106B tokens 1.37 8.5 1.37 8.5 0.49 10.23 0.49 10.23
MedLLaMA Medical Corpora NA 0.3 10.63 0.3 10.63 0.16 12.14 0.16 12.14
MedAlpaca Medical Meadow NA 1.68 15.18 1.68 15.18 1.3 16.95 1.3 16.95

validation and the resulting average performance253

across folds is presented in Table 3. Results of mod-254

els applied to the prescribed splits are presented in255

Table 1. The metrics used are exact match (EM),256

binary measure of whether the prediction & gold257

spans are identical & F1, the harmonic mean of258

the number of shared words in the two spans w.r.t259

number of words in the prediction (precision) and260

w.r.t number of words in the gold span (recall).261

To assess the zero-shot performance of three262

decoder models, namely Galactica-base (1.3B),263

MedLLaMA, and MedAlpaca (both 13B), we264

measure their ability to generate answers without265

further fine-tuning on our datasets, considering266

that decoders do not extract spans, but generate267

answers for comparison to gold spans. We268

selected Galactica-1.3B for consistency with269

our corpus generation experiments, MedLLaMA270

as a strong open-source medical checkpoint,271

and MedAlpaca as a medical QA-specific272

LLaMA checkpoint. Each sample was for-273

matted as Question:<question_text>274

Context:<part_of_context> Answer:275

and the text generated after Answer: was276

considered as the predicted span. Due to the large277

size of COVID-QA contexts, they were segmented278

as they exceeded the maximum sequence length279

of each model (2,048 tokens). We report overall280

EM/F1 on each dataset and average best EM/F1281

(parenthesis in Table 3) from each Q+C+A chunk282

for COVID-QA (N/A for RadQA since the context283

size was << models maximum input length). 284

3.2 Targeted Pre-training 285

Targeted pre-training begins by identifying named 286

entities in each of our datasets. scispaCy 287

en_core_sci_sm identifies roughly 47k and 288

11k named entities in COVID-QA and RadQA, 289

respectively. Next, Galactica is used to generate 290

contexts for the identified entities, constituting the 291

synthetic dataset used for targeted pre-training. To 292

maintain size-parity, five contexts are generated for 293

each entity identified in RadQA, yielding around 294

55k total contexts. Galactica is allowed to use its 295

full context size of 2,048 tokens to generate the 296

synthetic data for each entity. 297

3.2.1 Corpus Size 298

When training models for COVID-QA, we investi- 299

gated the impact of synthetic dataset size on down- 300

stream performance. We examined the effects of 301

generating one context per entity and also explored 302

generating ten contexts per entity, resulting in a 303

dataset that was 10 times larger than the baseline. 304

This analysis allowed us to assess the scalability of 305

our proposed approach. 306

3.2.2 Context Length 307

The average context length for COVID-QA is 6k 308

tokens, and Galactica has a maximum context size 309

of 2k, resulting in a misalignment between the 310

synthetic corpus and the target dataset. Increasing 311

the context size of Galactica would mean training 312

4

https://github.com/kbressem/medAlpaca/blob/main/DATA_DESCIPTION.md#medical-meadow


it from scratch with architectural changes which313

is infeasible. Thus, we explore the impact of se-314

quence length in the synthetic corpus by limiting315

the records to only 1k tokens. While we cannot316

determine if longer sequences are beneficial, we317

can evaluate if shorter ones are detrimental.318

3.2.3 Token Filtering319

We performed entity filtering as a common abla-320

tion technique for both datasets. We used regular321

expressions to remove entities with special charac-322

ters such as *, !, etc., as well as specific text pat-323

terns like https* and baby. We implemented324

a length-based filter, retaining only entities longer325

than a certain number of characters. Additionally,326

for COVID-QA, we applied a second round of fil-327

tration using TF-IDF, considering the questions +328

context as the corpus and retaining the top 25k en-329

tities with the highest IDF scores. However, as330

this approach did not yield satisfactory results, we331

decided not to use it for RadQA. Due to the large332

number of possible combinations, we did not ex-333

tensively explore these settings in our experiments.334

3.2.4 Prompting Style335

We explore the use of two different prompts336

when encouraging Galactica to generate pseudo ra-337

diology reports - “Patient has [entity].338

FINDINGS AND IMPRESSION” as described339

above, and simply “[entity].” Galactica was340

not pretrained on radiology reports, so the ideal341

prompt is not immediately obvious. In trying differ-342

ent options, we hope to find a satisfactory prompt.343

3.2.5 Human-Generated Contexts344

We established a Wikipedia baseline alongside our345

domain-specific pre-trained models to assess the346

influence of content and text structure during do-347

main adaptation. Instead of utilizing Galactica to348

generate our corpus, we queried Wikipedia and re-349

trieved the complete page associated with the top350

search result for each entity. This analysis aimed to351

gauge the significance of text content and structure.352

Wikipedia was chosen as it has been extensively353

used in the training data of varied models offering354

reliable information. The number of entities avail-355

able for this baseline was << than to our approach356

since most of them do not exist in Wikipedia due to357

either being extremely esoteric, e.g., pulmonary358

parenchymal infiltrate or improperly359

formed, e.g., Bao &.360

4 Discussion 361

Here we discuss the results of benchmarking exist- 362

ing models (Tables 1 & 3) as well as results for our 363

targeted pre-training (Tables 2 & 4). 364

4.1 Baseline Analysis 365

4.1.1 COVID-QA 366

Our benchmarking trials demonstrate that a one- 367

size-fits-all approach does not work for domain 368

adaptation. BioBERT and PubMedBERT were 369

trained on similar corpora and yet yield similar 370

performance, indicating no clear winner. 371

Surprisingly, the SciBERT (+CORD-19) check- 372

point, trained on CORD-19 articles, performs 373

worse than regular SciBERT, suggesting potential 374

issues in training choices or noisiness in the data. 375

Notably, LUKE, trained solely on Wikipedia 376

data, emerges as the best baseline model, possi- 377

bly due to its entity-recognition pre-training objec- 378

tive, which aids in identifying relevant entities for 379

QA tasks (Van Aken et al., 2019). XLNet, degrades 380

completely on COVID-QA, potentially due to the 381

permutation of input tokens hindering its reasoning 382

across large contexts. 383

4.1.2 RadQA 384

RadQA benchmarks were a bit less unanimous. 385

On the dev set, CODER had the best overall EM 386

& F1 but suffered a bit w.r.t PubMedBERT on 387

only answerable questions. This was not surpris- 388

ing since CODER is an extended PubMedBERT 389

checkpoint trained to learn clinical embeddings 390

from the UMLS knowledge graph which covers 391

several terms found in radiology reports. Learning 392

them led to an overall improvement of 27.54% EM 393

& 19.36% F1 respectively. 394

PubMedBERT and BlueBERT exhibit simi- 395

lar performance on both development and test 396

sets, which is unexpected considering that Blue- 397

BERT was pretrained on clinical notes from the 398

MIMIC corpus. Surprisingly, RadBERT, de- 399

spite being a RoBERTa architecture, outperforms 400

PubMed/BlueBERT. Although RadBERT’s perfor- 401

mance shows slight enhancements, it was trained 402

on smaller amount of data compared to others. This 403

highlights the significance of domain alignment in 404

terms of the data on which models are trained. 405

Unfortunately, LUKE performed poorly com- 406

pared to Bio/Sci-BERT, showing little (dev) to no 407

gain (test) in the evaluation. The impact of writ- 408

ing styles in the training corpora is evident in the 409
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Table 2: Targeted Pre-training Results (RadQA). H(F1): HasAns_F1, H(EM): HasAns_EM; *: [Vanilla Fine-
Tuning]. †: normal prompting, ‡: fancy prompting, ♣: entity filter. Blue/red indicates best/worst scores.

Model Time Corpus Size / Train
dataset

Dev Test

EM F1 H(EM) H(F1) EM F1 H(EM) H(F1)

BERT
NA* NA

24.85 43.34 38.35 66.89 45.77 58.63 41.74 58.91
RoBERTa 26.37 44.26 40.71 68.31 50.81 64.38 47.61 65.71

BERT ≈30 mins 18.4 MB/Wikipedia
24.7 43.15 38.12 66.6 46.91 59.91 41.74 59.1

RoBERTa 26.98 45.28 41.65 69.88 50.17 63.5 48.04 65.85

BERT ≈11 hrs
81.6 MB/ 24.7 42.51 38.12 65.61 47.39 59.56 42.61 58.84

RoBERTa Galactica(≈55k) † 27.59 44.72 42.59 69.02 51.95 65.28 47.39 65.18
BERT ≈11 hrs

80.3 MB 25 43.24 38.59 66.74 47.88 60.06 42.83 59.08
RoBERTa Galactica(≈55k) †♣ 26.83 44.57 41.18 68.57 51.47 65.04 49.35 67.47

BERT ≈11 hrs
38.1 MB/ 25.61 42.78 39.53 66.03 46.25 59.34 42.61 60.34

RoBERTa Galactica(≈55k) ‡ 27.44 44.75 42.35 69.07 52.12 65.31 47.61 65.22
BERT ≈11 hrs

34.3 MB/ 25.91 43.4 40 66.99 44.63 58.34 39.57 57.87
RoBERTa Galactica(≈55k) ‡♣ 26.68 44.85 41.18 69.23 49.84 63 47.39 64.96

BERT ≈22 hrs
120.8 MB/ 26.22 43.55 40.47 67.22 46.09 59.52 41.3 59.23

RoBERTa Galactica(≈100k) †‡ 28.2 45.68 43.53 70.5 52.12 65.03 49.13 66.36
BERT ≈22 hrs

115.6 MB/ 24.23 43.27 37.41 66.79 47.07 60.79 43.26 61.58
RoBERTa Galactica(≈100k) † ‡ ♣ 26.83 44.32 41.41 68.4 50.81 65.04 47.17 66.16

Table 3: Benchmarking Bio Models (COVID-QA). *: (“18% papers from the computer science domain and 82%
from the broad biomedical domain” (Beltagy et al., 2019)); 1(Peng et al., 2019); 2(Yuan et al., 2022); 3(Yamada
et al., 2020); Blue/red indicates best/worst scores; bold = best decoder (underneath dotted line) scores

Model Pre-Training Corpus Corpus Size EM F1

BioBERT PubMed 4.5B words 38.14 65.65
SciBERT Semantic Scholar* 3.2B words 37.99 65.96
SciBERT(+CORD-19) Semantic Scholar + CORD-19 3.2B words + 20GB 35.61 63.52
PubMedBERT PubMed 3.1B words / 21GB 39.03 68.56
BlueBERT 1 PubMed + MIMIC 4.5B words 29.07 56.57
CODER 2 Unified Medical Language System NA 38.88 66.89
LUKE 3 Wikipedia 3.5B words 41.36 68.99
XLNET BooksCorpus + Wikipedia + Giga5 +

ClueWeb 2012-B + Common Crawl
32.89B words 2.38 8.83

Galactica c.f. section 2 106B tokens 0 (0) 5.01 (11.11)
MedLLaMA Medical Corpora NA 0 (0) 5.81 (12.79)
MedAlpaca Medical Meadow NA 0.03 (0.2) 5.21 (12.73)

performance gap between Clinical and RadBERT.410

Although Clinical was trained on more clinical data,411

it was not the right data for this task involving radi-412

ology report-style documents, leading RadBERT to413

outperform Clinical on all measures in both splits.414

4.1.3 Decoder-Based Models415

The last 3 rows of Tables 1 & 3 provide zero-416

shot performance of our chosen decoder models on417

RadQA & COVID-QA resp. As can be seen, their418

performance is nowhere near their bidirectional419

counterparts. Granted they were not fine-tuned,420

their size, pre-training data coverage & reported421

performance on related datasets, should have al-422

lowed them to at least perform on par or better than423

open-domain BERT/RoBERTa. Overall, we see424

that MedAlpaca seems to be the “best” among425

the three for RadQA and only marginally poorer 426

in terms of F1 for COVID-QA. In terms of EM 427

(for COVID-QA), none of the models generated 428

text in line with the gold standard (and hence ~0 429

EM) and only showed positive F1. 430

4.2 Proposed Method Analysis 431

4.2.1 COVID-QA 432

Fine-tuning on our Wikipedia corpus does not 433

yield gains for BERT, rather a decline of 1.6% 434

in EM, while RoBERTa shows a 2.7% increase in 435

EM and a 0.7% increase in F1. This confirms our 436

hypothesis that having the right content alone is 437

insufficient without proper structure/style. How- 438

ever, with our targeted pre-training, both models 439

demonstrate improvements. BERT achieves a 440

5.5% increase in EM and a 2.9% increase in F1, 441
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Table 4: Targeted Pre-training (COVID-QA). Time #: to generate corpus; ⋆: filtered; Gal = Galactica; max_length =
Context Max Length. Blue/red indicates best/worst scores.

Model Train Dataset Time# Corpus Size EM F1
BERT NA [Vanilla Fine-Tuning] NA NA 34.13 60.81
RoBERTa 39.42 67.5

BERT Wikipedia ≈2.5 hrs 139.6 MB 33.58 61.06
RoBERTa 40.47 67.96
BERT Gal(47k) ≈ 6.5 hrs 67.4 MB 36.01 62.58
RoBERTa 42.05 69.3
BERT Gal(470k) [10x] ≈ 2.5 days 558.2 MB 34.72 61.39
RoBERTa 42.2 69.15
BERT Gal(25k*2 = 50k)⋆ ≈ 6.5 hrs 64.0 MB 36.45 61.86
RoBERTa 41.36 69.6
BERT Gal(47k) [max_length = 1k]≈ 2.5 hrs 44.8 MB 34.82 61.11
RoBERTa 41.46 69.08

while RoBERTa shows a 6.7% increase in EM and442

a 2.7% increase in F1, setting a new SOTA on443

COVID-QA. Remarkably, RoBERTa even outper-444

forms the previous SOTA model (LUKE) by 1.7%445

in EM and 0.4% in F1, despite using a training cor-446

pus significantly smaller (67.4 MB/0.032B words)447

than LUKE’s 3.5B-word corpus (0.9% of the size).448

Contrary to our expectations, training with a449

10x corpus (10 contexts per entity) did not lead450

to improvements. Instead, it resulted in minimal451

enhancements for RoBERTa and even negatively452

impacted BERT’s performance compared to the453

regular corpus. We attribute this behavior to noise454

introduced at scale, including ill-formed entities455

and incorrect facts. As there is currently no reliable456

method for automatically verifying the integrity of457

information at scale, we attribute these results to458

the presence of such noise.459

Although we expected that removing ill-460

formed entities would improve the results, the461

fifth row of Table 4 shows that performance ac-462

tually declined when we filtered out such entities.463

We hypothesize that our regular expression-based464

filtering rules may have mistakenly removed impor-465

tant entities such as author names or URLs, leading466

to the decline. Furthermore, when we decreased467

the context length due to limitations in Galactica’s468

token generation (last row of Table 4), we observed469

a decline in performance for both metrics and both470

models. This outcome was expected as Galactica471

was unable to generate content that matched the472

style of COVID-QA, underscoring the importance473

of writing style for domain awareness.474

4.2.2 RadQA475

We analyze the results of RadQA separately for476

each model, considering the type of contexts477

(prompts) they were trained on and whether they478

used the filtered or unfiltered set of entities. The 479

“normal” prompt is denoted by “[entity],” 480

while the other prompt is referred to as the “fancy” 481

prompt (see sec. 2). We observed higher test scores 482

on average compared to validation scores, which 483

we attribute to fewer unanswerable questions in the 484

test set (154 vs. 231) and slightly shorter contexts 485

(73.82 vs. 78.1 tokens). We also conducted checks 486

for information leakage but found no irregularities. 487

While we report scores for both sets, our analysis 488

mainly focuses on the dev set, which serves as the 489

first point of evaluation in the RadQA domain. 490

When trained on the Wikipedia corpus, 491

BERT shows a decrease in performance on the 492

dev set, but a 2.5% improvement in EM and a 2.2% 493

improvement in F1 on the test set (versus regu- 494

lar fine-tuning). Training on the unfiltered corpus 495

with normal prompts leads to either a decline or no 496

significant change compared to vanilla fine-tuning 497

and Wikipedia training. This decline or lack of 498

improvement is attributed to noise from ill-formed 499

entities, which were absent from the Wikipedia 500

dataset. However, when the filter is applied, slight 501

improvements are observed over the Wiki corpus 502

(row 2 & 4), particularly in EM (row 1 & 4) for the 503

vanilla baseline. The most notable improvement 504

for BERT occurs when both filtered entities and 505

the corpus from the fancy prompt is used (row 506

6), resulting in enhancements across all metrics 507

over basic fine-tuning and the Wikipedia baseline 508

(4.3% EM, 0.1% F1 for answerable and overall met- 509

rics in basic fine-tuning, and 4.9% EM, 0.6% F1 for 510

answerable and overall metrics in the Wikipedia 511

baseline). It is noteworthy that BERT achieves 512

these scores with a modest 34.3MB corpus, which 513

is << than its benchmarked counterparts. 514

RoBERTa demonstrates improvements across 515
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different combinations of filtration methods and516

prompt styles, as well as when trained on the517

Wikipedia corpus. However, the improvements518

are less consistent compared to a specific ap-519

proach. In terms of EM, the best performance520

is observed with the corpus using unfiltered en-521

tities & normal prompting (row 3), with a 4.6%522

increase over vanilla fine-tuning and a 2.3% in-523

crease over the Wikipedia baseline. Regarding524

F1, training on the filtered corpus with fancy525

prompts (row 6) yields the highest increase of526

1.3% over vanilla fine-tuning, but a slight decrease527

of 0.9% compared to the Wikipedia baseline. No-528

tably, RoBERTa in row 3 outperforms BioBERT,529

SciBERT, and LUKE in all metrics. This is in-530

triguing considering that LUKE is an open-domain531

model, while the former two are not. Specifically,532

compared to BioBERT, RoBERTa achieves a 2.3%533

increase in EM and a 0.9% increase in F1, high-534

lighting the benefits of our approach for domain535

and dataset awareness.536

We examined the effectiveness of combining537

different context styles (rows 7 and 8) for our538

approach. We created corpora by merging the539

contexts from both prompt styles for the filtered540

and the unfiltered entities separately. The models541

trained on the unfiltered combined corpora (row542

7) showed the best overall performance. BERT543

demonstrated a 5.5% increase in EM over regular544

fine-tuning, a 6.2% increase over the Wikipedia545

baseline, and similar improvements in F1 by 0.5%546

and 0.9%, respectively. RoBERTa exhibited a547

6.9% and 4.5% increase in EM, and a 3.2% and548

0.9% increase in F1 compared to their respective549

baselines, similar to BERT. Moreover, this vari-550

ant outperformed ClinicalBERT in F1 by ~2.6%551

(with roughly the same EM) in addition to sur-552

passing Bio/Sci-BERT, and LUKE. These find-553

ings suggest that incorporating a mixture of554

prompt styles creates a more diverse corpus,555

enhancing model alignment with the domain.556

Further, such improvements are achieved with557

a dataset << than their bio-based counterparts.558

4.3 Investigating Information Leakage559

Given that the synthetic corpus generated for560

COVID-QA in §3 contains entities identified in the561

entire COVID-QA dataset - not from the train split562

within each fold - we explore if the performance563

gains from targeted pre-training are a result of in-564

formation leak. To this end, we construct a roughly565

Figure 2: Information Leakage Validation Trials (Left -
EM | Right - F1): RoBERTa (ours) was targeted trained
on a subset of the 47k corpus with entities only from the
80% train set. All of the other models were fine-tuned
in the usual manner i.e. SQuAD→COVID-QA (80%
train set) and evaluated on the 20% test set.

80%/20% train/test split (1,676/343 records), ensur- 566

ing no context overlap, and apply a suite of models 567

to this new split. When applying our targeted pre- 568

training, a syhthetic corpus is generated only from 569

entites identified in the train split. The results from 570

a brief parameter search for this assay are presented 571

in Figure 2. 572

As we can see, the RoBERTa model subjected 573

to targeted pre-training still yields strong perfor- 574

mance in this restricted scenario, only surpassed 575

by PubMedBERT (& marginally by LUKE in F1), 576

demonstrating that the improved performance on 577

COVID-QA cannot be attributed to information 578

leak from the test set. Although the scores are 579

lower than those in Table 4, the relative scores pro- 580

duced by each model leads to a similar conclusion 581

that targeted pre-training yields optimal results. 582

5 Conclusion & Future Work 583

We demonstrated the effectiveness of bootstrapping 584

corpora for domain adaptation using FMs, prompt- 585

ing & domain awareness. We achieved SOTA on 586

COVID-QA and observed notable improvements 587

on RadQA by using combinations of corpora, occa- 588

sionally surpassing the benchmarks. However, this 589

work is just the initial step, and there is room for 590

further exploration. Our future endeavors involve 591

using larger versions of Galactica to enable CoT 592

prompting and to generate even more extensive 593

contexts. Additionally, we aim to incorporate fact- 594

checking mechanisms to eliminate inaccurate in- 595

formation, potentially enhancing the performance 596

of our 10x COVID-QA corpus (c.f. sec. 3). Lastly, 597

beyond corpus, we aspire to explore complete EQA 598

dataset generation that can be used for additional 599

fine-tuning instead of relying solely on pre-training. 600
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Limitations601

We identify two limitations of our work. First,602

we use a number of GPUs to generate our corpus.603

While we were fortunate to have access to powerful604

computing clusters, this could form a bottleneck605

when being deployed on low-end hardware. How-606

ever, with cloud services being made more and607

more affordable, we feel that this point can only608

be a deal-breaker in severely budget-constrained609

settings. And second, in this study, we have only610

shown how to generate corpora for the biomedical611

domain. For an even wider applicability, we need612

to study generation techniques for other closed do-613

mains such as Finance, Law, Aviation, etc.614

Ethics Statement615

As our work relied on publicly available datasets,616

we believe that the ethical ramifications here are617

limited. That being said, we recognize that to use618

RadQA, we had to acquire certifications to access619

it. This shows that even though the data in it is620

redacted, loosely disseminated patient reports are a621

threat to their privacy. Moreover, we had to make622

sure that when generating our synthetic reports, we623

were not mentioning any patient names, which even624

with a small probability might bear resemblance to625

an actual person.626
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A Model Cards851

All models used in this study were downloaded852

from the HuggingFace library (Wolf et al., 2020).853

Each model, along with its model card (name as it854

appears in the HuggingFace model hub) and URL855

is listed in Table 5.856

B Hardware Details857

To run our corpus generation code, we used a total858

of 8 40GB NVIDIA A100 or 8 32GB NVIDIA859

Tesla V100 cards, depending on our institutes job860

scheduler and availability. Although the former861

is a superior card, we preferred the latter since it862

gives relatively quick turnaround and is a general863

purpose GPU unlike the A100 which is required for864

even heavier compute. In fact we were requested865

by our system administrator to use the V100 over866

the A100, if it was possible, to avoid blocking off867

even more compute-heavy experiments, which we868

did not have an issue obeying. That being said, if869

the A100 cluster was free, we did take advantage870

of it to run our code. For pre-training and fine-871

tuning BERT/RoBERTa, we only used 1 GPU, out872

of either cluster.873

C Hyperparameters Used 874

Hyperparameters for each experiment is detailed 875

in Table 6. These were selected mostly from preex- 876

isting implementations or through minimal explo- 877

ration of known settings. 878

D Synthetic Corpora Samples 879

We provide samples from our generated corpus. 880

In Figure 3 we show two positive results for our 881

COVID-QA directed corpus. The top one is in 882

the style of a research paper while the bottom one, 883

though shorter in length, details useful information 884

on the required entity. We show negative examples 885

of the same in Figure 4. The top one completely 886

degrades into noise while the bottom one although 887

coherent is talking about an unrelated topic. 888

For RadQA, we show similar examples. In Fig- 889

ure 6 we show positive (top) and negative (bottom) 890

samples from normal prompting. Note that since 891

programming languages were a part of Galactica’s 892

training corpora, it sometimes generates the same 893

during prompting. Finally, Figure 7 shows pos- 894

tive (top) and negative (bottom) examples of fancy 895

prompting. While the positive sample shows a 896

strong correlation with an actual radiology report, 897

the bottom one completely breaks down. 898

E Prompts Tried 899

As mentioned before, we knew the prompt to be 900

used for COVID-QA since it was a feature of Galac- 901

tica. However, we had to experiment with a few 902

prompt styles for RadQA before landing on our 903

final one. We describe the prompts we tried below 904

for the entity small-bowel injury and the 905

reasons for not using them. The text in courier 906

is the prompt and in italics is the generated text. 907

• IMPRESSION: small-bowel injury 908

(SBI) was defined as injury to the small bowel 909

wall, or transmural disruption of the bowel 910

wall, in the absence of penetrating abdominal 911

trauma ( The management of small-bowel 912

injuries in the emergency room., Brown). 913

Patients were excluded if the SBIs occurred 914

after admission to the emergency department 915

or were complicated by perforation. ... 916

(truncated) 917

– Issue - Did not include the FINDINGS 918

section. 919
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Figure 3: COVID-QA positive examples (underline = entity | red = prompt) | olive = generation

12



Figure 4: COVID-QA negative examples (underline = entity | red = prompt) | olive = generation

Figure 5: Testing ChatGPT

13



Figure 6: RadQA - normal prompt (underline = entity | red = prompt) | olive = generation
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Model Model Card (URL)
BERT-Base, Cased bert-base-cased

BERT-Base, Cased, SQuAD v1 batterydata/bert-base-cased-squad-v1
BERT-Base, Cased, SQuAD v2 deepset/bert-base-cased-squad2

RoBERTa-Base roberta-base
RoBERTa-Base, SQuAD v1 csarron/roberta-base-squad-v1
RoBERTa-Base, SQuAD v2 deepset/roberta-base-squad2

BioBERT dmis-lab/biobert-base-cased-v1.2
SciBERT allenai/scibert_scivocab_uncased

SciBERT (+CORD-19) lordtt13/COVID-SciBERT
PubMedBERT microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext

BlueBERT bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12
CODER GanjinZero/UMLSBert_ENG
LUKE studio-ousia/luke-base

XLNet, SQuAD v1 arrafmousa/xlnet-base-cased-finetuned-squad
STonKGs * stonkgs/stonkgs-150k
RadBERT zzxslp/RadBERT-RoBERTa-4m

Clinical BERT emilyalsentzer/Bio_ClinicalBERT
BioMed-RoBERTa allenai/biomed_roberta_base

MedLLaMA chaoyi-wu/MedLLaMA_13B
MedAlpaca medalpaca/medalpaca-13b
Galactica facebook/galactica-1.3b

Table 5: Model cards and URLs for all models used in our paper. * We wanted to use STonKGs (Balabin et al.,
2022). However, there was no vocabulary file for the model which resulted in errors.

• FINDINGS: small-bowel injury920

was observed in 11.1% and 21.9% of patients,921

respectively. Small-bowel injury associated922

with liver injury occurred in 10.1%. The923

mortality rate was significantly higher in924

the small-bowel injury group than in the925

non-small-bowel injury group (11.6% vs.926

2.1%, P = 0.005). This study shows that927

small-bowel injury is associated with a high928

mortality rate, and that this complication is929

an important cause of morbidity and mortality930

in patients with severe acute pancreatitis.931

– Issue - Did not include the932

IMPRESSIONS section.933

• Patient has small-bowel934

injury. FINAL REPORT This pa-935

tient was treated with conservative methods.936

The small-bowel injury was treated surgically937

with resection of the bowel, primary anasto-938

mosis, and end-to-end anastomosis between939

the ends of the resected bowel. She did not940

have recurrence of intestinal obstruction after941

3 years.942

– Issue - Did not include either943

IMPRESSIONS or FINDINGS section. 944

• John Doe has small-bowel 945

injury. IMPRESSIONS : This 946

case study was made possible by his support 947

by a research grant from the National 948

Institutes of Health (CA 10644). 949

– Issue - Had to make sure that the pro- 950

nouns used were same throughout the 951

report otherwise it would not be consis- 952

tent. 953

• Jane Doe has small-bowel 954

injury. IMPRESSIONS : This case 955

study was made possible by the support of 956

a research grant from the Department of 957

Veterans Affairs. 958

– Issue - Same as above. 959

• Patient I has small-bowel 960

injury He has no history of abdomi- 961

nal trauma or surgery. At first, he has only 962

mild abdominal pain. But with the progress 963

of disease, he has become distressed. At 964

the initial examination, the abdominal pain 965

was alleviated, but the patient still has slight 966
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Figure 7: RadQA - fancy prompt (underline = entity | red = prompt) | olive = generation

Experiment Hyperparameters

Corpus Generation

random seed: 42
renormalize_logits: True
do_sample: True
max_length (prompt + generated tokens): 2,048
top_p: 0.9
temperature: 0.9

Pre-Training
batch_size: 40
learning_rate: 5e-5
epochs: 3

Fine-Tuning (SQuAD)

batch_size: 16
max_input_length (question + context): 384
stride: 128
learning_rate: 2e-5
epochs: 3
n_best (top n answer spans): 20
max_answer_length: 30
optimizer_type: AdamW

Fine-Tuning (COVID-QA)

batch_size: 40
max_input_length (question + context): 384
stride: 128
learning_rate: 2e-5
epochs: 1
n_best (top n answer spans): 20
max_answer_length: 1000
optimizer_type: AdamW

Fine-Tuning (RadQA)

batch_size: 16
max_length: 384
stride: 128
learning_rate: 3e-5
epochs: 1
n_best (top n answer spans): 20
max_answer_length: 1000
optimizer_type: AdamW

Table 6: Hyperparameters for each experiment. Note,
all random seeds were set to 42. This was especially
important for Galactica since a different seed implied
different sampling of the vocabulary. Additionally, for
reproducibility, the seed was set to 42.

distention of abdomen. He was admitted to 967

our hospital on the third day of admission. 968

His vital signs were: body temperature 37.5 969

°C, blood pressure 110/70 mmHg, pulse 105 970

beats/min, respiratory rate 26 breaths/min 971

and oxygen saturation 97% on room air. 972

He had mild abdominal distention. The 973

results of routine blood tests, urinalysis 974

and abdominal ultrasound examination 975

were normal. X-ray showed free air in the 976

abdomen. ... (truncated) 977

– Issue - Galactica could get confused 978

between I (alphabet) and I (roman nu- 979

meral). 980

• Patient A has small-bowel 981

injury (Fig. 1). He has no history 982

of abdominal trauma or surgery. At first, 983

an abdominal CT scan was performed to 984

evaluate abdominal pain. Abdominal CT 985

showed a partial small-bowel obstruction at 986

the splenic flexure of the colon (Fig. 2). An 987

oral contrast medium was then administered 988

via a nasogastric tube and an abdominal CT 989

scan was performed. ... (truncated) 990

– Issue - Galactica could get confused mis- 991

interpret “A” for the beginning of a sen- 992
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tence (it was observed for a few cases)993

• Patient alpha has small-bowel994

injury requiring an open operation and995

was diagnosed with C. difficile colitis. The996

patient had a history of severe anemia and997

leukopenia, which were also observed in998

patient beta. Patient alpha was treated with999

a single course of intravenous moxifloxacin1000

400 mg/day, which resulted in the resolution1001

of the diarrhea. He was followed closely after1002

discharge. In patient beta, he had a similar1003

episode of diarrhea after hospital admission,1004

but the diarrhea did not resolve. He was1005

prescribed with an oral vancomycin 1000 mg1006

twice a day, and the diarrhea was resolved. ...1007

(truncated)1008

– Issue - This would have been a good1009

choice. However, as we see above, pa-1010

tient qualifiers such as A, I and alpha,1011

might bias the model towards more male1012

patients (He). As such, we decided to1013

drop the qualifier altogether.1014

F ChatGPT results1015

We were curious to see if ChatGPT (with GPT3.5)1016

would be able to answer a few questions from1017

COVID-QA. Only the questions were provided to1018

it without the context since they were much longer1019

than its input capacity. We did not test RadQA1020

since its questions were heavily linked to the pa-1021

tient report on hand and were not as general as1022

the former’s. Figure 5 shows a few examples from1023

our trials. As we can see, it seems to answer the1024

questions correctly. However, as mentioned before,1025

these answers need validation from a professional1026

in the field. Also, we can see that sometimes it1027

cannot answer questions on topics not found in its1028

training data, a problem not faced by our encoder-1029

only models.1030

G Note on Stability1031

We have noticed that RoBERTa is an extremely sta-1032

ble architecture i.e. all scores from pre-training to1033

both rounds of fine-tuning were consistent, down to1034

the final decimal point, over two consecutive runs.1035

However, BERT was a little less so. We observed1036

that it is more sensitive to pre-training and subse-1037

quently gives a slight deviation in its downstream1038

scores. That notwithstanding, we did see that in1039

Table 2, when using the corpus from the filtered en- 1040

tities and fancy prompt, BERT showed RoBERTa- 1041

like behavior i.e. consistency in all scores across 1042

each phase of training. Overall, we report first-time 1043

runs for BERT. 1044
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