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Abstract

The rapid proliferation of smart devices coupled with the advent of 6G networks
has profoundly reshaped the domain of collaborative machine learning. Alongside
growing privacy-security concerns in sensitive fields, these developments have
positioned federated learning (FL) as a pivotal technology for decentralized model
training. Despite its vast potential, specially in the age of complex foundation
models, FL encounters challenges such as elevated communication costs, computa-
tional constraints, and the complexities of non-IID data distributions. We introduce
AutoFLIP, an innovative approach that utilizes a federated loss exploration phase
to drive adaptive hybrid pruning, operating in a structured and unstructured way.
This innovative mechanism automatically identifies and prunes model substruc-
ture by distilling knowledge on model gradients behavior across different non-IID
client losses topology, thereby optimizing computational efficiency and enhancing
model performance on resource-constrained scenarios. Extensive experiments on
various datasets and FL tasks reveal that AutoFLIP not only efficiently accelerates
global convergence, but also achieves superior accuracy and robustness compared
to traditional methods. On average, AutoFLIP reduces computational overhead by
48.8% and communication costs by 35.5%, while improving global accuracy. By
significantly reducing these overheads, AutoFLIP offer the way for efficient FL
deployment in real-world applications for a scalable and broad applicability.

1 Introduction

The proliferation of smart devices at the network edge, coupled with advancements in 6G networks,
has created a decentralized setting [31, 47]. Multiple participants store their data locally, which offers
an opportunity for collaborative model training, enhancing robustness and generalization. Distribut-
ing the computational load across these devices results in faster training times and lower energy
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consumption compared to centralized approaches [56, 3]. However, collaborative Machine Learning
(ML) faces significant challenges [26]. Efficient communication and coordination among participants
are crucial, as each device holds only a subset of the data. This requires designing algorithms that
minimize data exchange while ensuring high-quality model convergence. Device heterogeneity,
including differences in computational power, storage, and bandwidth, further complicates distributed
training. Algorithms must adapt to such environments to scale up distributed learning. Privacy and
security concerns, along with regulations like the European GDPR [1], the EU AI Act [8] and the
U.S. Secure AI [54] Act add another layer of complexity [20]. With sensitive data distributed across
various devices, ensuring the privacy of individual data points becomes essential [13]. For example,
medical data stored in hospitals and personal devices is valuable for training diagnostic models but is
also subject to strict privacy and security regulations [46].

In this context, Federated Learning (FL) [65] emerges as an effective strategy for training always
more complex DL models while preserving the privacy of the data. FL facilitates collaborative
model training across multiple devices without exposing local data. A central server, i.e., a global
model, coordinates this process by aggregating updates from locally trained models, which ensures a
secure learning environment. Current FL research focuses on enhancing privacy and adapting ML
workflows for specific uses, often with predetermined ML model configurations. Tasks related to
computer vision may involve well-known neural network (NN) architectures like VGG-16 [49] (138
million parameters) or ResNet-50 [18] (25.6 million parameters). However, these complex NN risk
overfitting, especially with small training data sizes.

In the era of foundation models [3] becoming the norm in machine learning development, FL
systems typically expect clients to have high-speed processors and sufficient computational power for
local calculations and parameter updates. Yet, many edge devices, such as smartphones, wearable,
and sensors, have limited computing and memory capacities, posing a challenge to DL model
training systems [20]. Additionally, communicating DL models with millions of parameters presents
significant obstacles for FL transmission [48, 2]. Therefore, using FL effectively with edge devices
that have limited computational capabilities, while maintaining efficient communication, remains an
active research question. FL’s effectiveness is further hindered by the prevalence of non-IID data in
real-world scenarios [65, 27]. non-IID data refers to the unique statistical properties of each client’s
dataset, reflecting their varied environments. This creates conflicting training goals for local and
global models, leading to convergence towards different local optima. As a result, client model
updates become biased, impeding global convergence [65, 27]. These challenges underscore the
need for personalized and innovative approaches in FL, particularly in optimizing and compressing
models to improve inference time, communication cost, energy efficiency, and complexity, all while
maintaining satisfactory accuracy.

Our contribution. We introduce a novel automated federated learning approach via adaptive hybrid
pruning (AutoFLIP), which uses a novel loss exploration mechanism to automatically prune and
compress DL models. In our assumed single-server architecture, each client operates on the same
initial deep NN structure that automatically prunes itself at each round, based on the extraction of
shared knowledge from the federated loss exploration for an informed model compression. Specif-
ically, by analyzing the variability of gradients during a preliminary local loss exploration phase,
which provides insights into gradient behaviors on the loss landscapes across clients, and subsequent
information aggregation, the DL models involved in a FL round are hybridly pruned automatically.
This strategy allows for dynamically reducing the complexity of the models in FL environments,
thereby optimizing performance with limited computational resources at the client level. With our
experiments over various datasets, tasks, and realistic non-IID scenarios, we provide strong evidence
of the effectiveness and efficiency of AutoFLIP.

Reproducibility. Our code for reproducing the experiments is available on Anonymous GitHub.1

2 Background and Related Work

Pruning in Deep Learning. Following the assumption that a DL model can contain a sub-network
that represents the performance of the entire model after being trained, model pruning is a good
strategy to reduce computational requirements of resource-constrained devices [41, 29, 24]. Most
pruning approaches balance accuracy and sparsity during the inference stage by calculating the

1 https://github.com/ChristianInterno/AutoFLIP
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importance scores of parameters in a well-trained NN and removing those with lower scores. These
scores can be derived from weight magnitudes [24, 16], first-order Taylor expansion of the loss
function [42, 39], second-order Taylor expansion [29, 17, 40], and other variants [37, 50].

Another recent research direction in NN pruning focuses on improving training efficiency, divided
into two categories: pruning at initialization and dynamic sparse training. Pruning at initialization
involves pruning the original full-size model before training based on connection sensitivity [30],
Hessian-gradient product [55], and synaptic flow [51]. However, since this method does not involve
training data, the pruned model may be biased and not specialized for the task. Dynamic sparse
training iteratively adjusts the pruned model structure during training while maintaining the desired
sparsity [7, 9]. This approach requires memory-intensive operations due to the large search space,
making it impractical for resource-constrained devices.

Initial attempts to use pruning for deploying deep neural networks on resource-limited devices have
utilized pre-trained CNNs in a centralized setting [61, 33]. However, this approach can lead to
reduced data privacy, higher costs, poor adaptation to local conditions, suboptimal performance on
diverse data, and latency in real-time applications.

Hybrid Pruning in Deep Learning. Hybrid pruning techniques combine structured and unstructured
pruning strategies to optimize both performance and efficiency in deep neural networks [36, 44, 12,
14]. Structured pruning [19] removes entire units like neurons, filters, or layers, leading to more
hardware-efficient designs that are easier to implement on resource-constrained devices. On the
other hand, unstructured pruning [32]focuses on removing individual weights, which can achieve
higher sparsity levels and further compress the model, though it may require more complex hardware
support [40].

Pruning in Federated Learning. The widely accepted FL standard is known as FedAvg [38]. It
distributes a global model to clients for local training and aggregates it by averaging their parameters.
Empirical studies have shown the robustness of this approach, even when handling non-convex
optimization problems [5]. As a result, it is commonly used as a standard for evaluating newly
developed FL protocols. In this study, we will compare the performance of the proposed AutoFLIP
method to FedAvg, with different State-of-the-Art (SotA) FL pruning approachs, as tested in [58]. In
fact, since data remains locally stored and cannot be shared, traditional centralized pruning approaches
that rely on access to training data are not feasible in FL.

In the context of FL, there has been work focused on dynamic active pruning to increase commu-
nication efficiency during training. Liu et al. [35], Zhou et al. [64] introduced a method where
pruning decisions are made dynamically based on the model’s real-time performance evaluation,
which significantly reduces the data exchanged during training but adds computational complexity
to client devices. Jiang et al. [25] introduced PruneFL, a FL method that incorporates adaptive and
distributed parameter pruning. Their approach utilizes an unstructured method that does not take
advantage of the collective insights of participating clients to develop a cooperative structured pruning
strategy. This is in contrast to the objectives of AutoFLIP, which seeks to harness client-specific
knowledge to facilitate a structured approach to pruning. Lin et al. [34] introduced a novel approach
for adaptive per-layer sparsity, however without incorporating any parameter aggregation scheme to
reduce the error caused by pruning. This challenge was addressed by Tingting et al. [52] by moving
the pruning process to the global model that works on a computationally more powerful server. The
pruned model is distributed to each client, where it undergoes training. Subsequently, each client
sends back to the server only the updated parameters, restoring the full structure of the model at
the server. Although this study includes various parameter selection criteria from the literature, its
pruning method does not incorporate the information gathered during model training. This contrasts
with our strategy, AutoFLIP, which leverages such information to enhance the pruning process. Yu
et al. [62] proposed Resource-aware Federated Foundation Models, focusing on integrating large
transformer-based models into FL, with the limitation of not exploring other architectures. Our
method, AutoFLIP, diverges by introducing a pruning strategy that avoids the need for continuous
evaluation of parameter significance and is universally applicable across various FL aggregation
algorithms and model architectures.
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3 Preliminaries

Notation: We consider a total number of C clients. At each FL round, K clients are chosen and
trained on different batches of size B for E epochs. The total number of rounds is R, which represents
our termination criterion. For the exploration phase,Cexp is the number of clients selected, which, in
this study, we take as the totality C of available clients. The exploration lasts for Eexp epochs.

3.1 Federated Learning

In the conventional FL setting, each client i (1 ≤ i ≤ K) possesses its own data distribution
pi(x, y), where x ∈ Rd represents the d-dimensional input vector and y ∈ {1, . . . ,M} is the
corresponding label from M classes. Each client has a dataset Di with Ni data points: Di =

{(x(1)
i , y

(1)
i ), . . . , (x

(Ni)
i , y

(Ni)
i )}. It is assumed that in a non-IID scenario the data distribution

pi(x, y) varies across clients. These data distributions pi(x, y) are sampled from a family E of
distributions. The objective is for the clients to collaboratively train a global model with parameters
Wglobal, which will perform predictions on new data. The global loss function for a data point (x, y)
is denoted by L(Wglobal, x, y), where the global objective function to be minimized is defined as:
L(Wglobal) := 1

C

∑C
i=1 E(xi,yi)∼pi

[L(Wglobal, xi, yi)], with E(xi,yi)∼pi
representing the expected

loss over the data distribution pi for each client i with parameters W .

The optimization process involves several key steps:
1. Client Selection: A subset of K clients is selected from the total C clients. 2. Local Training:
Each selected client i performs local training for E epochs using its local dataset Di. The local
training aims to minimize the local objective function L(Wi) using stochastic gradient descent (SGD):
let W r

i be the local model parameters of client i at round r, the update rule is given by: W r+1
i =

W r
i −η∇L(W r

i ), where η is the learning rate. 3. Parameter Aggregation: After local training, each
client sends its updated parameters W r+1

i to the central server. The server aggregates these parameters
to form the new global model W r+1

global using a weighted average: W r+1
global =

1
K

∑K
i=1 W

r+1
i . This

iterative process is repeated for R rounds the termination criterion is met.

3.2 Problem Definition and Objective

i) Mitigates noise and biases in the client trajectories: By selectively pruning model parameters
based on their contribution to loss topology variability, we aim to the trajectories of the different clients
to help converging the global model more effectively despite the heterogeneous data distributions
across clients. ii) Enhance Computation and Communication Efficiency: The hybrid pruning
serves as a mechanism to decrease the number of model parameters that need to be communicated
between clients and the central server. By eliminating less critical parameters and substructure,
AutoFLIP reduces communication overhead and accelerates the computational process. This not only
expedites the overall FL workflow but also makes it more feasible to deploy in resource-constrained
scenarios.

4 Methodology

AutoFLIP is an automatized FL approach that utilizes informed pruning through a federated client
loss exploration process. Inspired by the idea of utilizing agents with similar tasks as scouts which
explore the conformation of different loss function landscapes from Internò et al. [22], Nikolić
et al. [43], AutoFLIP introduces a preliminary step to the FL process, which we term federated
loss exploration phase. Here, a Cexp portion of clients (or the totality C), which inherit their model
structure from the global model, explore for a number of Eexp exploration epochs their loss landscape
using its local dataset Di. Based on this, for each client cexpi , we compute a local guidance matrix
Glocali , which records how important a certain parameter Wi (weight or bias) is in terms of loss
variability 1. Afterward, we aggregate the information collected locally in a global pruning guidance
matrix PGglobal on the server 2, which will generate an informed pruning mask to guide the pruning
of the client models 3. The pruning workflow of AutoFLIP is illustrated in Figure 1. Please note that
the initial federated loss exploration, computation of parameter deviations, and definition of local
guidance matrices occur only once at the beginning of the FL optimization process as a preliminary
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Figure 1: Illustration of the AutoFLIP pruning procedure. The local guidance matrices are computed
a priori through the federated exploration phase. The global guidance matrix is computed by the server
by aggregating the elements of the local guidance matrices corresponding to the clients participating
in each FL round. The pruning mask is downloaded by the participant clients. All steps preliminary
to the FL procedure are denoted in gray, while the steps intrinsic to the FL procedure with pruning
are denoted in red.

procedure. In contrast, the global guidance matrix and subsequent pruning strategy are automatically
redefined in each FL round, considering the clients participating in that round.

To summarize, the iterative procedure consists of (1) pruning local models using the updated pruning
guidance matrix, (2) training the pruned local models, (3) aggregating the model parameters and (4)
evaluating performance and updating the pruning guidance matrix in each FL round.

4.1 Federated Loss Exploration

In AutoFLIP, the model initialization phase is augmented by a crucial federated loss exploration
phase, allowing clients to explore their loss function landscapes. We envision each client as an
explorer that delves into different regions of their loss landscape. Through this exploration, they can
identify crucial dimensions and those that can be disregarded based on their experience by quantifying
gradient variability during the exploration. In other words, how much the loss is steep in that direction.
Subsequently, they transmit this knowledge to the server, which updates a pruning guidance mask
PGglobal. This knowledge contained in the mask is then distilled among participating clients in each
FL round to guide the evolution of client model structures within an informed pruning session.

To construct the mask PGglobal, we begin with an initial exploration phase conducted on Cexp clients.
In this study, we consider Cexp = C. In our study, we let explore the clients for Eexp = 150 epochs.
Appendix A provides ablation studies for Cexp and Eexp. For each model parameter we evaluate its
evolution in the search space during the loss exploration. This evaluation is conducted by calculating
the deviation Di,m for the mth parameter of a client model i as the squared difference between the
initial (W Initial

i,m ) and final (W Final
i,m ) parameter values after Eexp epochs of exploration:

Di,m = (W Initial
i,m −W Final

i,m )2. (1)

Using stochastic gradient descent for exploration, the deviation Di,m in Eq. (1) serves as a measure
of gradient variability on the loss landscape for parameter m during the preliminary exploration
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phase before the actual FL procedure. The greater the variation in the parameter space, the faster the
improvements in loss: the update rule for a parameter in stochastic gradient descent is W (eexp+1)

i,m =

W
(eexp)
i,m −η∇Li

(
W

(eexp)
i,m ;Di

)
), where W (eexp)

i,m and W
(eexp+1)
i,m are the values of the parameter m at the

exploration epochs eexp and eexp + 1, η is the learning rate, and ∇Li

(
W

(eexp)
i,m

)
is the gradient of the

loss function of client i with respect to the parameter m at epoch eexp using its local dataset Di. Given
the gradient update rule, the deviation in Wi,m from the initial to the final exploration epoch Eexp can

be approximated to W Final
i,m −W Initial

i,m ≈ −η
∑Eexp

t=1 ∇Li

(
W

(t)
i,m;Di

)
. To ensure non-negativity and

highlight larger deviations more severely, we take the square of this value. This squared deviation
measure Di,m approximates the square of the sum of gradients affecting the parameter evolution,
indicating the significance of parameter updates on loss variability during the exploration phase. By
squaring the sum of the gradients, we ensure that the deviation measure is always non-negative and
that larger deviations are highlighted more severely than smaller ones.

The Cexp clients compile these deviations into a local matrix Glocal, whose entries are the deviations
for the model parameters. At each FL round, where only K clients are involved, the server aggregates
the Glocal matrices associated to those client to formulate Gglobal through a normalization process:

Gglobal =
1

K

K∑
k=1

Glocalk −min(Glocal)

max(Glocal) −min(Glocal)
(2)

Here, the minimum and maximum values are taken over all Glocalk matrices for k = 1, . . . ,K. Each
element of Gglobal thus represents the mean normalized deviation for each parameter, scaled between
0 and 1. This process ensures that no single client’s Glocal disproportionately influences Gglobal
due the possible presence of outliers in terms of deviations Di,m. A value closer to 0 indicates
minimal deviation, suggesting gradient stability during the exploration, hence scarce relevance of the
parameter itself. Conversely, values near 1 highlight significant parameter deviations, pointing to
more dynamic and potentially insightful areas of the loss landscape. Then, a binarization process is
applied to Gglobal where elements below Tp are set to 0 and those above are set to 1:

PGglobal,m =

{
0 if Gglobal,m < Tp

1 otherwise
(3)

The threshold Tp directly determines the compression ratio of the model by setting the proportion of
parameters to be pruned. Tp can be seen has a hard constraint on model size, which is sometimes
needed due to devices’ resource constraints. Given their smaller influence, parameters corresponding
to 0 are marked for pruning, whereas those marked with 1 are retained, indicating important search
directions within the model parameter space. During each FL round, the K participating clients
update PGglobal by incorporating their Glocal deviation values derived from the initial loss exploration
phase.

To select an appropriate Tp, consider the desired compression ratio for the model. This ratio reflects
the extent to which the model needs to be compressed while maintaining acceptable performance.
By carefully selecting Tp based on the desired compression ratio and empirical validation, we can
achieve a well-balanced model that is both efficient and accurate, tailored to the specific needs of the
FL task. In appendix B we conduct ablation studies on Tp.

The Proposed AutoFLIP Framework. Here our aim is to argument how the parameter pruning
mechanism based on loss exploration enters a general FL edge training framework. Algorithm 1
provides an overview of the entire framework of the proposed AutoFLIP algorithm for FL. It is
composed by the following steps.

Server initialization (Line 1). The server is initialized with a global model that it is sent to all the
clients. At this stage, the total number of clients undergoing exploration, the number of exploration
epochs, and the pruning threshold are also decided.
Exploration phase (Lines 2–3).
The preliminary exploration phase aimed at understanding the relevance of each parameter (weight or
bias) in view of loss improvement starts. For each client participating (in this study we select all the
available clients), a local guidance matrix storing parameter deviations is computed.
Mask update (Lines 5–7). A FL round starts. The server selects K clients that participate in the
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Algorithm 1 AutoFLIP Algorithm

1: Server Initialization: Initial matrix W
(0)
global, number of clients for exploration Cexp, exploration

epochs Eexp, pruning threshold Tp, FL rounds R, training epochs E, number of selected clients
per round K

2: Server selects Cexp clients for exploration
3: Glocali = (W Initial

i −W Final
i )2,∀i ∈ [1, Cexp]

4: for round r = 1 to R do
5: Server selects K clients
6: Compute G

(r)
global using Eq. (2)

7: Compute mask PG
(r)
global using Eq. (3)

8: for client k = 1 to K do
9: W

(r)
k,pruned = W

(r)
k ⊙ PG

(r)
global

10: for each local epoch e = 0 to E − 1 do
11: W

(e+1)
k,pruned = W

(e)
k,pruned − η∇Lk

(
W

(e)
k,pruned

)
12: end for
13: end for
14: W

(r)
global =

1
K

∑K
k=1 W

(E)
k,pruned ▷ This can be replaced with other FL aggregation algorithms

15: end for

round. Only the local guidance matrices of those clients are considered to compute a global guidance
matrix, which is then used to generate a binary mask for pruning. The mask contains ones only for
the parameters with normalized deviations higher than a prescribed threshold Tp.
Pruning (Lines 8–9). During each round, clients use the pruning mask to compress their models.
This happens through element-wise multiplication between their weight matrix and PGglobal at that
FL round. Parameters aligned with a 0 in PGglobal are pruned; those corresponding to a 1 are kept.
FL round with reduced client models (Lines 10–14). The standard algorithm FedAvg [38] is usedin
this framework but AutoFLIP can be applied to other SotA FL aggregation algorithm. The pruned
clients are trained. The server receives the local model updates and, upon aggregation, proceeds to
update the global model with the FL aggregation strategy. Once updated, the global model is either
ready for the next communication round or deemed ready for deployment if the convergence criteria
are satisfied.

4.2 Robustness and Efficiency of AutoFLIP

Referring to [11, 10, 57, 60], we base our convergence guarantees on a federated stochastic aggrega-
tion scheme. The authors’ assumptions on Lipschitz smoothness, convexity of local loss functions,
unbiased gradient estimators, finite client answering times, and specific client aggregation weights
form the theoretical backbone of AutoFLIP. These conditions ensure that the learning process re-
mains stable and converges efficiently even in the presence of non-IID data distributions. With
AutoFLIP, at each round, each client experiences the same pruning strategy with the pruning mask
PGglobal, resulting in a substantial decrease in the variance ( σ2

∆W ) previously defined in Section
3.2 of weight updates for the global model. This uniform pruning strategy minimizes discrepancies
in weight adjustments across clients by focusing updates on critical weights identified during the
federated loss exploration phase. The reduction in variance helps to alleviate the bias caused by the
non-IID setting, as shown in the work of [65], thus promoting better global convergence.

Furthermore, [59, 45, 53, 23] provide a theoretical foundation for which pruned NNs can effectively
learn signals. They demonstrate that pruning preserves the signal’s magnitude in features and reduces
noise, leading to improved generalization. These studies highlight that pruning, when done correctly,
does not degrade the model’s capacity to learn but rather focuses the learning on more relevant
features. By focusing on parameters with significant contributions to the loss topology, AutoFLIP
ensures that the essential features are retained. As illustrated in Figure 2 for different NN, the
parameters in Gglobal with minimal variability during the federated loss exploration phase are pruned,
while those exhibiting high deviations are retained. Note that higher frequencies are recorded for
smaller deviation values, indicating that many parameters, according to our pruning strategy, are
non important. The high density of those parameters lead to the weights of entire channels or layers
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Figure 2: Distribution of parameter deviations in Gglobal after exploration. Absolute frequency
in log-scale is shown for each normalized deviation. Higher frequencies are recorded for smaller
deviation values, indicating that many parameters are irrelevant for loss improvement.

being set to zero. In such cases, we delete the entire substructure of the NN, resulting in a structured
network reduction. This leads to an improvement in computing efficiency as detteiled in appendix E.

AutoFLIP enhances communication efficiency in FL by reducing model sizes transmitted between
clients and the server, thus lowering bandwidth requirements for FL rounds. Its selective updating
mechanism ensures only essential parameters, those significantly affecting global model convergence,
are communicated. The appendices F, G and H provide a detailed analysis of how AutoFLIP
accelerates inference and improves training efficiency, demonstrating its significant role in lowering
computational costs and boosting FL’s overall applicability.

5 Experiments

Inspired by [15], we benchmark AutoFLIP across established datasets to evaluate its robustness in
various non-IID environments. We explore three distinct partitioning approaches for creating strongly
non-IID conditions: a Pathological non-IID scenario, which involves clients using data from two
distinct classes, employing MNIST with a six-layer CNN (7,628,484 parameters) and CIFAR10 with
EfficientNet-B3 (10,838,784 parameters), a Dirichlet-based non-IID scenario, which utilizes the
Dirichlet distribution to distribute data among clients, with varying class counts per client, using
CIFAR100 with ResNet (23,755,900 parameters), and a LEAF non-IID scenario, which adopts the
LEAF benchmark [4] with FEMNIST and Shakespeare datasets. For FEMNIST, a CNN architecture
with 13,180,734 parameters is used. For Shakespeare, we consider a two-layer LSTM model with
5,040,000 parameters. Further details on these scenarios are provided in Appendix C.

5.1 Experimental Setup and Results

We evaluate AutoFLIP against both FedAvg without any model compression and with SotA algorithm
e.g PruneFL [25], and FL-pruning with various parameter selection criteria: Random, L1, L2,
Similarity, and BN mask, as described in [58]. The experimental setup involves C = 20 (for LEAF
non-IID scenario we employ C = 730 for Shakespeare and C = 660 for FEMNIST) clients, a batch
size B = 350, a local update epochs E = 5, and a learning rate η = 0.0003 over 200 total rounds R
with K = 5 (for LEAF non-IID scenario K = 20) clients selected per round. We incorporate a server
momentum of 0.9 and use an SGD optimizer with weight decay. The exploration phase consists of
up to Eexp = 150 epochs, and the pruning threshold is set to Tp = 0.3. Data is divided into 80%
for training and 20% for testing, with global model performance assessed by the average prediction
accuracy on the test sets. To ensure statistical validity, each experiment is repeated 10 times. We
measure the compression rate to evaluate model size reduction and its impact. Experiments were
conducted with an Intel Xeon X5680, 128 GB of DDR4 RAM, and an NVIDIA TITAN X GPU.

Pathological non-IID) Here, AutoFLIP achieves an average client compression rate of x1.74. At
each round, we remove on average 3244298 parameters of the six-layer CNN for each participant
client. For the EfficientNet-B3, we obtain an average compression rate of x2.1 with 5677458 deleted
parameters. For a fair comparison with the baselines, we ensure that the number of parameters pruned
matches the compression ratio of AutoFLIP, quantified as 42% for the six-layer CNN and 52.38% for
EfficientNet-B3.
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Figure 3: Average accuracy convergence profiles for the global model within the FL framework.

The first two subplots in Figure 3 show the evolution of global model accuracy during the FL rounds
for the four-layer CNN with the MNIST dataset and for EfficientNet-B3 with the CIFAR10 dataset.
Refer to Appendix D for the evolution of the loss metric. In the case of the MNIST, the early rounds
of FL show that AutoFLIP achieves slightly higher accuracy compared to both FedAvg and the other
FL pruning strategies, among which RandomPruning emerges as the top performer. This indicates a
faster convergence rate for our proposed method. However, the performance of the baselines soon
becomes comparable, with no clear superiority as the FL procedure progresses. We attribute this to
the simplicity of the prediction tasks on the MNIST dataset compared to the excessive complexity
of the four-layer CNN, which already possesses extremely good prediction capabilities that cannot
be further enhanced by pruning. For the CIFAR10 dataset, we do not observe any advantage in
using AutoFLIP over the other baselines. Surprisingly, all methods exhibit severe fluctuations in the
accuracy convergence profiles up to FL round 100, after which they stabilize and become comparable.

Dirichlet-based non-IID) For ResNet, AutoFLIP achieves an average compression rate for the
clients of x1.58, with 8,720,520 parameters pruned on average out of 23,755,900 total parameters.
Hence, we adjust the percentage of parameters to be pruned to 36.71% for the different baselines.

The third subplot in Figure 3 illustrates the evolution of the global model accuracy during the FL
rounds for ResNet on CIFAR100. Here, AutoFLIP exhibits a performance enhancement throughout
the considered training rounds. At round 200, it achieves an accuracy of 0.987, compared to 0.918 for
FedAvg and 0.925 for PruneFL. This enhancement signifies the robustness of AutoFLIP, showcasing
its ability to maintain elevated performance levels when integrated with larger-complex neural
networks and larger datasets.

LEAF non-IID) In this scenario, AutoFLIP achieves an average compression rate of x1.8 for
5858104 client parameters pruned out of 13180734. Hence, we adjust the number of parameters
to be pruned for the different baselines to 44%. As observed in the last two subplots of Figure 3
for the FEMNIST and Shakespeare datasets, AutoFLIP consistently outperforms the other pruning
strategies by a significant margin.

What stands out is the initial acceleration in convergence speed observed for AutoFLIP, firmly
establishing it as a superior choice overFedAvg and the other FL baselines. Furthermore, this
superiority persists throughout the entire FL training procedure. The final average accuracy values are
0.985 for AutoFLIP, 0.905 for FedAvg, and 0.935 for RandomPruning on the FEMNIST dataset. For
the Shakespeare dataset, the values are 0.815, 0.783, and 0.738, respectively. Here, even L1 proves to
be competitive, reaching a final accuracy equal to 0.802. However, it demonstrates inferior initial
convergence.
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6 Conclusion and Limitations

We introduced AutoFLIP, an innovative federated learning (FL) approach that employs informed
pruning to optimize deep learning (DL) models on clients with limited computational resources.
Through extensive experiments in various non-IID scenarios, AutoFLIP has demonstrated its ability
to achieve better accuracy and significantly reduce computational and communication overheads. It
enhances global convergence in federated settings and shows remarkable adaptability and scalability
across diverse DL model architectures and multi-class datasets, particularly as the complexity of
tasks increases.

Limitations. AutoFLIP shows promise but has limitations. It is primarily tested in the popular
efficient single-server setting, not accounting for multi-server or hierarchical environments with
diverse client capabilities and model structure. Our tests also assume standard conditions without
data label noise.

Future Research Directions. AutoFLIP underscores its potential for future research avenues,
such as leveraging loss exploration for guiding complex Neural Architecture Search (NAS) tasks.
Enhancements will focus on refining AutoFLIP’s dynamic and adaptive pruning to better client
personalization. We aim to perform comparison analysis with other strategies from other domain such
us like NAS or Client Dropout. Further, the impact on data privacy and defense against adversarial
clients during the federated loss exploration phase has to assessed. Research will also explore
the extension of AutoFLIP to more complex DL architectures and its integration into real-world
applications across various domains such as healthcare and mobile computing.

Broader Impact. AutoFLIP enhances sustainability and efficiency in FL, reducing the energy
footprint of training deep learning models. Its utility in sensitive sectors like healthcare and finance
emphasizes its societal importance. However, deploying AutoFLIP requires careful consideration of
ethical issues, including data privacy and biases. Proactive management and regulation are crucial to
ensure its positive societal impact and responsible integration into critical fields.
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Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have dedicated a subsection within the "6 Discussion and Limitations"
section of our paper specifically to address the limitations of our study.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our paper focuses on empirical evaluations and practical implementations of
AutoFLIP in federated learning environments, and does not delve into theoretical proofs
or formulations. Thus, this question is not applicable as our contributions are primarily
experimental and do not involve new theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our paper provides a detailed description of the experimental settings, includ-
ing the complete framework (Section 4 and 4.1), hyperparameters, and pubblic datasets
used (Section 5, 5.1 and Appendix B). We ensure full reproducibility by providing ac-
cess to our code through supplementary materials and an anonymous GitHub repository
(https://anonymous.4open.science/r/AutoFLIP-D283).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We ensure full reproducibility by providing access to our
code through supplementary materials and an anonymous GitHub repository
(https://anonymous.4open.science/r/AutoFLIP-D283).

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This information is documented in Section 4 and Appendix A for experimental
framework and hyperparameter ablation studies. Section 5 and its subsections, along with
Appendix B, elaborate on the dataset configurations and the specifics of the public datasets
utilized.

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: The paper includes error bars for each experiment, indicating the variability
and reliability of the results. As detailed in Section 5.1, each experiment was conducted
multiple times, and error bars represent the standard deviation across these runs, providing
statistical consistency.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section 5.1 of our paper provides detailed information about the computing
resources used for the experiments, including the type of CPUs and GPUs, the amount of
RAM available, and the specific machine configurations.

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have ensured that all experimental procedures, data handling, and method-
ologies are conducted responsibly, with a focus on maintaining privacy and fairness. We have
considered potential impacts and ensured that our research does not facilitate misuse or harm.
Additionally, all data used in our experiments are from publicly available datasets or are
generated through simulations that comply with ethical standards. The methods proposed are
designed to enhance federated learning settings, aligning with ethical guidelines regarding
the use of artificial intelligence in sensitive and resource-constrained environments.
Guidelines:
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In Section 6, titled "Discussion and Limitations," we specifically added the
broader impacts of our work in a dedicated subsection.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our research does not involve the release of models or datasets that pose a
high risk for misuse, such as pretrained language models or image generators.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Our research utilizes publicly available datasets, and we have duly cited the
original sources in the manuscript.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper introduces a new federated learning framework AutoFLIP, which
we have documented extensively in the supplementary material provided alongside the
publication. We provide a publicly accessible anonymous GitHub repository that contains
the code, a README file detailing the setup and execution instructions, and a license file
specifying the usage rights.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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A Ablation Study on Cexp and Eexp

We perform an ablation study to assess the sensitivitiy of our method to the parameters Cexp and Eexp.
The number of explorer clients Cexp influences the comprehensiveness of Gglobal in capturing the
intricacies of the clients loss landscapes. The depth of the exploration phase, quantified by the number
of exploration epochs Eexp influences loss function surface understanding and Gglobal’s knowledge
depth.

In particular, we check how the average accuracy and loss for the global model predictions vary
for Cexp ∈ {0.25, 0.5, 0.75, 2.0} and for Eexp ∈ {150, 300, 500, 750, 1000}. We do this for datasets
FEMINST the LEAF non-IID scenario 4. It is possible to observe in Figure 4, the x-axis represents
the Eexp parameter. Each distinct plot corresponds to a different Cexp, with the highest accuracy
achieved distinctly highlighted. In particular, our findings reveal that even a conservative value of
Cexp can boost the accuracy. The influence of Cexp is substantial, with higher counts of explorer
clients resulting in improved initial accuracy, indicative of a more robust Gglobal at the outset of the
learning process. A discernible trend suggests that increasing the Eexp value generally leads to an
improvement in accuracy. However, at higher values, the increase is reduced, indicating a saturation
point beyond which additional exploration epochs no longer improve accuracy.
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Figure 4: Ablation on the total number of clients for exploration Cexp and the total number of
exploration epochs Eexp for FEMNIST/pathological non-IID data, based on average accuracy.
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B Ablation Study on Tp

We perform an ablation study to assess the sensitivitiy of our method to the pruning threshold
parameter Tp. In particular, we check how the average accuracy and loss for the global model
predictions vary for Tp ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We do this on two datasets: MINST in Figure 5
and CIFAR10 in Figure 6 from the Pathological non-IID scenario. In both cases, Tp = 0.3 seems the
most convenient choice.
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Figure 5: Ablation on Tp for MNIST/non-IID based on average accuracy (top) and loss (bottom).
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Figure 6: Ablation on Tp for CIFAR10/non-IID based on average accuracy (top) and loss (bottom).
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C Partitioning approaches

Pathological non-IID

This experimental configuration is delineated by each client possessing data exclusively from two
distinct classes within a broader multi-class dataset. Figure 7 illustrates this "pathological" data
partitioning scenario within the CIFAR10 dataset across 20 clients. For our experiments, we select
the MNIST dataset [6] with a six-layer CNN (7628484 parameters) and the CIFAR10 dataset [28]
with EfficientNet-B3 architecture (10838784 parameters), following the guidelines in [38] and [52].
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Figure 7: Illustration of pathological data partitioning on CIFAR10 for 20 clients, where each color
represents a different class.

Dirichlet-based non-IID

This advanced experimental setup, as introduced by [21], utilizes the Dirichlet distribution, modulated
by a concentration parameter α. Let p = (p1, p2, ..., pN ) be the class distribution for a given client,
where N is the number of classes. The Dirichlet distribution is defined as p ∼ Dir(α · 1N ), where
“Dir” denotes the Dirichlet distribution, α is the concentration parameter, and 1N is a N-dimensional
vector of ones. In this context, a low value of α, or α → 0, leads to distributions where most of
the probability mass is concentrated on a single class, thereby indicating that each client’s data is
restricted to a single class. Conversely, as α → ∞, p approaches a uniform distribution, ensuring that
the samples are evenly split across all clients. Figure 8 illustrates this “Dirichlet-based non-IID” data
partitioning scenario within the CIFAR100 dataset across 20 clients, with individual colors denoting
separate classes.

To address the complexities of larger datasets, we have extended our evaluation to include CI-
FAR100 [28] with a α = 100, employing ResNet (23755900 parameters) [18] in alignment with the
methodology proposed in [15].

LEAF non-IID

Utilizing the popular LEAF benchmark for FL [4], we selected the FEMNIST and Shakespeare
datasets to simulate closer real-world FL scenarios, with each dataset designed for specific tasks.
The FEMNIST dataset is defined for a multi-class classification challenge involving 62 distinct
classes. Conversely, the Shakespeare dataset is tailored for a next-character prediction task, requiring
models to predict the subsequent character from a sequence of 80 characters, thereby testing the
model capabilities in sequential data processing and language modeling. The incorporation of the
next-character prediction task allows for a comprehensive assessment of AutoFLIP adaptability
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Figure 8: Illustration of Dirichlet-based non-IID data partitioning on CIFAR100 for 20 clients, where
each color represents a different class.

and performance across diverse task types and deep neural network architectures, such as Long
Short-Term Memory (LSTM) networks.

In our experimental setup, we employed the FEMNIST-CNN architecture, as delineated in [4], for
the FEMNIST dataset. For the Shakespeare dataset, we utilized a two-layer (LSTM) (5040000
parameters) model, in accordance with the specifications provided in [38].
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D Loss plots

We present in Figure 9 the loss convergence profiles for the global model participating in the FL
procedure.for the global model. Here, we compare AutoFLIP to the different federated pruning
strategies evaluated on both image recognition and text prediction tasks using five distinct datasets:
MNIST, CIFAR10, CIFAR100, FEMNIST, and Shakespeare. Due to the varying complexities of
each task, we use different model structures for different datasets.

Figure 9: Average loss convergence profiles for the global model within the FL framework.
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E Structured Pruning Experiments

We present an evaluation of AutoFLIP using exclusively structured pruning methods. We compare
these results with both the hybrid approach of AutoFLIP and the SotA algorithm PruneFL [25]. We
conducted experiments on FEMNIST and CIFAR-100, utilizing the same non-IID settings, model
architectures, and parameters as described in Sec. 5.

With structured pruning, we focus solely on removing entire filters, channels, or neurons based on the
knowledge derived from the federated loss exploration phase. Unlike the hybrid approach, individual
weights within structures were not pruned unless the entire substructure was considered unimportant.

Tables 1 and 2 summarize the performance metrics of AutoFLIP with structured pruning compared
to AutoFLIP with hybrid pruning, PruneFL, and the standard FedAvg without model compression.

Table 1: Performance Comparison on FEMNIST with Structured Pruning

Metric AutoFLIP AutoFLIP PruneFL FedAvg
(Structured) (Hybrid) (No Compression)

Compression Rate (%) 33.89 – – –
Training Time per Client (s) 15.66 – 17.39 21.39
Inference Time per Client (ms) 7.5 – 11.61 14.61
Computation Cost (GFLOPs) 10.08 – 11.28 19.36
Final Test Accuracy (%) 93.9 98.5 89.3 90.5

Table 2: Performance Comparison on CIFAR-100 with Structured Pruning

Metric AutoFLIP AutoFLIP PruneFL FedAvg
(Structured) (Hybrid) (No Compression)

Compression Rate (%) 49.22 – – –
Training Time per Client (s) 186.00 – 192.01 257.18
Inference Time per Client (ms) 8.1 – 9.8 15.97
Computation Cost (GFLOPs) 14.39 – 14.98 17.78
Final Test Accuracy (%) 94.9 98.7 90.6 91.8

The structured pruning approach in AutoFLIP resulted in notable reductions in training time per client.
For FEMNIST, the training time decreased by approximately 26.8% compared to FedAvg without
compression, and by 10.0% compared to PruneFL. For CIFAR-100, the training time decreased by
approximately 27.7% compared to FedAvg, and by 3.1% compared to PruneFL.

Inference times per client were significantly reduced. For FEMNIST, the inference time decreased by
48.7% compared to FedAvg, and by 35.4% compared to PruneFL. For CIFAR-100, the inference
time decreased by 49.3% compared to FedAvg, and by 17.3% compared to PruneFL.

The computation cost, measured in giga floating-point operations (GFLOPs), was substantially
reduced. For FEMNIST, the computation cost decreased by 47.9% compared to FedAvg, and by
10.6% compared to PruneFL. For CIFAR-100, it decreased by 19.0% compared to FedAvg, and by
4.0% compared to PruneFL.

Regarding memory usage and the number of processed parameters, on FEMNIST, the structured
pruning version processed approximately 15.3 billion parameters during the entire federated learning
procedure, compared to 28.3 billion for FedAvg. On CIFAR-100, the structured pruning version
processed approximately 3.9 billion parameters, compared to 9.4 billion for FedAvg. These reductions
contribute to decreased memory bandwidth requirements and potential energy savings, which are
significant factors in large-scale federated learning deployments.

The accuracy for FEMNIST was 93.9%, which is lower than that of hybrid AutoFLIP (98.5%), but
higher than those of PruneFL (89.3%) and FedAvg (90.5%). For CIFAR-100, the final test accuracy
was 94.9%, lower than that of hybrid AutoFLIP (98.7%), but higher than those of PruneFL (90.6%)
and FedAvg (91.8%). The hybrid AutoFLIP approach achieves superior accuracy by also eliminating
individual weights that may contribute to overfitting or biased learning. Thiss demonstrate that the
hybrid pruning approach of AutoFLIP offers the best overall performance by combining the benefits
of both structured and unstructured pruning.
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F Inference acceleration

In this section, we discuss the inference acceleration of AutoFLIP. When performing inference
on the client’s side with the pruned sub-model, we accelerate the inference time and reduce the
computational consumption. Figure 10 shows the inference acceleration comparison after applying
AutoFLIP. Notably, the FLOPs (floating point operations per second) in all the evaluated models are
reduced. Table 3 shows that the Six-layer CNN deployed for the pathological non-IID experiment
with MNIST, experienced a substantial decrease in computational load, equal to a 41.62% reduction
in FLOPs. EfficientNet-B3, used for CIFAR10 in the pathological non-IID experiment, saw further
improvements, reaching a FLOPs reduction of 46.44%. The deeper ResNet model, designed for
CIFAR100 in the Dirichlet-based non-IID experiment, achieved a significant reduction in FLOPs,
over 50%, highlighting the potential of AutoFLIP to streamline deep networks for more efficient
inference. The FEMNIST-CNN and LSTM models, employed for the LEAF non-IID experiment,
showcased a FLOPs reduction equal to 56.49% and 44.44%, respectively.
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Figure 10: Original FLOPs and reduced FLOPs

Table 3: FLOPs comparison

Model Compression Rate Original FLOPs Reduced FLOPs FLOPs % Reduced
Six-layer CNN 1.74 13.25 G 5.43 G 41.62% ↓
EfficientNet-B3 2.1 15.67 G 7.20 G 46.44% ↓
ResNet 1.58 7.83 G 4.07 G 52.75% ↓
FEMNIST-CNN 1.8 19.36 G 10.08 G 56.49% ↓
LSTM 1.8 10.08 G 4.43 G 44.44% ↓

28



G Training efficiency

To ascertain AutoFLIP’s impact on enhancing training efficiency within FL frameworks, we delve
into an examination of the associated communication costs. For a practical perspective, the deployed
models are trained to achieve a 90% accuracy threshold. As presented in [63], the cost function
employed for this evaluation is defined as:

Cost = # Parameters ×# Rounds to Reach Target Accuracy ×# Clients × Sample Rate.

In Table 4, we observe the effectiveness of AutoFLIP in reducing communication costs across
various non-IID scenarios with different models and datasets. Notably, the Six-layer CNN model,
used in the MNIST dataset for the Pathological non-IID experiment, demonstrated a significant
reduction in communication costs by 41.61%, which underscores AutoFLIP’s effectiveness in
simpler architectures. This efficiency extends to more complex architectures, like EfficientNet-B3
and ResNet, employed for the CIFAR10 and CIFAR100 datasets respectively for the Dirichlet-based
non-IID experiment, which also saw notable cost reductions of 30.93% and 29.88%. Similarly, the
FEMNIST-CNN and LSTM models, used in the LEAF non-IID experiment, exhibited reductions
in communication costs by 19.54% and 19.29%, respectively. These results highlight AutoFLIP’s
broad applicability and substantial impact on training efficiency across a range of model complexities
and dataset types.

Table 4: Comparison of the total communication costs

Model Rounds AutoFLIP Rounds NoAutoFLIP Cost AutoFLIP Cost NoAutoFLIP % Cost Reduced
Six-layer CNN 3 58 189.45 GB 324.43 GB 41.61% ↓
EfficientNet-B3 27 39 290.26 GB 420.27 GB 30.93% ↓
ResNet 7 49 712.70 GB 1016.40 GB 29.88% ↓
FEMNIST-CNN 280 348 369.06 GB 458.69 GB 19.54% ↓
LSTM 243 301 122.47 GB 151.74 GB 19.29% ↓
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H Computation Cost

To evaluate AutoFLIP’s role in reducing computational effort, we investigate the number of pa-
rameters processed for a single client. Distinguishing between computational efforts on the global
model and the clients is essential, with a particular focus on the client side. For AutoFLIP, each
client handles a substantial number of parameters over an additional 150 exploration epochs (Eexp).
From a practical standpoint, we compare AutoFLIP and FedAvg with RandomPruning with the
same compression rate. The models are trained to meet a 90% of global accuracy. We define the
computation cost function as:

Computation cost for single client = Total Parameters Processed ×# Epochs × Sample Rate

In Table 5, the pathological non-IID experiment with MNIST using the Six-layer CNN model
shows a significant reduction in computational cost by 62.51%. This efficiency extends to more
complex architectures like EfficientNet-B3 and ResNet, used for the CIFAR10 and CIFAR100 datasets
respectively, with cost reductions of 46.41% and 58.22%. Similarly, the FEMNIST-CNN and LSTM
models, employed in the LEAF non-IID experiment, demonstrated reductions in computational costs
by 45.99% and 29.60% respectively. These results underline AutoFLIP’s broad applicability and
substantial impact on reducing computational efforts across diverse model architectures and dataset
types.

Table 5: Comparison of the total computation costs

Model Processed parameters AutoFLIP Processed parameters NoAutoFLIP % Cost Reduced
Six-layer CNN 535,309,170 1,428,653,880 62.51% ↓
EfficientNet-B3 2,005,175,040 3,740,891,680 46.41% ↓
ResNet 3,919,723,500 9,378,097,500 58.22% ↓
FEMNIST-CNN 15,303,653,440 28,338,578,100 45.99% ↓
LSTM 5,871,600,000 8,335,200,000 29.60% ↓
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