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ABSTRACT

Simulation-based optimization has emerged as a crucial methodology in the field
of mobile network optimization, addressing the need for dynamic and predictive
network management. To address the scarcity of open-source mobile network
simulators for advanced research, we developed GenNet—a generative AI-driven
mobile network simulator. GenNet can create virtual replicas of mobile users, base
stations, and wireless environments, utilizing generative AI methods to simulate
the behaviors of these entities under various network settings with high accuracy.
GenNet features a tailor-made API explicitly designed for reinforcement learning
environments, enabling researchers to finely adjust network parameters such as tilts,
azimuth, and transmitting power. Extensive experiments have employed GenNet
to benchmark multi-objective optimization algorithms, focusing on enhancing
network coverage, throughput, and energy efficiency, validating its effectiveness
as a robust platform for advancing network optimization techniques. Through this
innovative tool, we aim to empower researchers and practitioners to identify and
implement the most effective approaches for network optimization, paving the way
for future advancements in mobile network management.

1 INTRODUCTION

The deployment of the fifth-generation mobile network (5G) has expanded the range of services,
users, and devices on mobile networks, resulting in more complex network environments and
diverse application scenarios (Wu et al., 2017). This complexity introduces significant challenges for
network optimization, which has traditionally depended on mathematical modeling and operations
research (Fei et al., 2016; Aliu et al., 2012). In the typical network optimization process, researchers
first define control variables and objectives and then model these relationships mathematically
before applying optimization algorithms. However, several issues hinder this approach in today’s
5G networks: traditional models struggle to capture the physical realities of increasingly complex
systems; direct testing of optimized configurations in real-world networks is often not feasible,
making it difficult to assess their effectiveness accurately. These issues underscore the urgent need
for innovative network optimization strategies to effectively address the dynamic and complex
requirements of 5G networks.

Simulation-based optimization has emerged as an innovative methodology for addressing the chal-
lenges inherent in current mobile network optimization (Chen et al., 2020; Gong et al., 2023; Huang
et al., 2023; Li & Li, 2023). This approach involves constructing a virtual network simulator that acts
as a digital twin of a physical mobile network, replicating the structure, environment, and state of
network elements or systems with high accuracy. Reinforcement learning-based optimizers work
iteratively with this simulation model to identify the most effective network configurations. This
technique addresses the two principal challenges of traditional optimization methods: modeling
and evaluation difficulties. The simulator avoids complex mathematical modeling by generating a
virtual counterpart of the mobile network. Developers and operators can use this simulator to conduct
What-if Analysis, allowing them to test various network configurations and optimization strategies
without impacting the real-world network. Additionally, because the simulator is designed to be a
high-fidelity replica of the real-world network, it ensures that the optimization strategies developed
are applicable and effective in real-world scenarios. Thus, simulation-based optimization is poised to
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Table 1: Advantages and disadvantages of GenNet and contextualize it within the landscape of
existing environments.

Simulators Simulation
Methods

Platform
Language

Realistic
Mobility

Realistic
Traffic
Usage

Link
QoS

Scheduling
Support

Handover
Support

Protocol
Stack

Simulation
Time Cost Interpretability

Matlab Rule-based Matlab × × ✓ ✓ × × High High

NS-3
Event-
triggered C++ × × × ✓ × ✓ High High

OMNet++
Event-
triggered C++ × × × ✓ ✓ ✓ High High

OPNET
Event-
triggered C++ × × × ✓ × ✓ High High

SyntheticNET
Rule-based,
Event-
triggered

Python ✓ × ✓ ✓ ✓ ✓ High Medium

CityFlow Data-driven Python ✓ × × × × × Medium Low

MATSim Data-driven Python ✓ × × × × × Medium Low

GenNet Data-driven,
Rule-based

Go,
Python ✓ ✓ ✓ ✓ ✓ × Low Medium

play a critical role in the future evolution of mobile networks. It promises to transform the interaction
with mobile networks and their operational and optimization models, fundamentally changing the
network management landscape.

Creating a virtual simulator of a physical mobile network for performance evaluation is a crucial
research area in networking. Network simulators like NS-3 (Henderson et al., 2008), OPNET (Chang,
1999), Matlab (Tariq et al., 2018), and OMNet++ (Köpke et al., 2008) utilize discrete-event-driven
simulations to mimic the communication behaviors of network elements and assess performance
metrics such as throughput, latency, and data rate. However, these simulators are significantly less
efficient (Hui et al., 2022); their simulation speed is much slower than real-world networks. This
inefficiency hinders their ability to meet the demands of interactions with reinforcement learning-
based optimizers. Hence, there is a pressing need to develop a new virtual simulation technique that
can quickly, efficiently, and accurately simulate the dynamic behavior and performance of networks.

In this paper, we propose GenNet, a generative AI-driven mobile network simulator designed for
multi-objective network optimization with reinforcement learning (RL). This simulator creates a vir-
tual replica of each physical entity within a mobile network, including mobile users, base stations, and
wireless environments. To effectively simulate the behaviors of these network components, GenNet
leverages real-world data from mobile networks and employs generative AI methods such as Gener-
ative Adversarial Networks (GANs) (Cai et al., 2021), Variational Autoencoders (VAEs) (Cemgil
et al., 2020), and diffusion models (Croitoru et al., 2023). Unlike traditional, inefficient discrete-
event-driven network simulations, generative AI models in GenNet are trained on extensive datasets
from real-world mobile networks. This training enables the models to learn the distributional char-
acteristics of network data under various environmental conditions. This approach facilitates an
accurate mapping of environmental factors to network components’ behavioral and performance data,
resulting in an efficient, AI-driven simulation process.

Importantly, GenNet features a user-friendly Application Programming Interface (API) tailored
explicitly for RL environments, making it an ideal tool for RL-based optimizations. As an interactive
simulator, GenNet enables researchers to adjust network settings such as mechanical tilt, electrical
tilt, azimuth, and maximum transmitting power of base stations and generate corresponding network
performance data. Notably, compared to single-objective optimization, which focuses on finding
the best solution for a single metric, multi-objective optimization seeks to balance different goals.
Multi-objective optimization is essential in mobile networks, where trade-offs must be made between
competing factors such as throughput, coverage, energy efficiency, and signal interference. Thus, to
facilitate the development and testing of multi-objective optimization RL algorithms in mobile net-
work scenarios, we conduct comprehensive experiments to benchmark multi-objective optimizations
in mobile networks. GenNet provides a standardized environment for multi-objective optimization,
focusing on optimizing network coverage, throughput, and energy consumption. We introduce
RL-based network optimization baselines, a collection of reliable and efficient implementations of
state-of-the-art algorithms designed to provide a solid foundation for advancing large-scale mobile
network optimization. Notably, all these algorithms are inherently compatible with GenNet.

Our contributions are summarized as follows:
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• We propose GenNet, the first open-source generative AI-driven mobile network simulator. GenNet
creates virtual replicas of network entities such as mobile users, base stations, and wireless envi-
ronments. It utilizes generative AI methods to accurately simulate the behaviors of these entities
under various network settings based on extensive real-world data, thereby surpassing traditional
discrete-event-driven simulations. GenNet is open-sourced and freely available at GitHub1.

• GenNet provides a tailor-made API for reinforcement learning environments, enabling researchers to
adjust network settings like tilts, azimuth, and transmitting power, generate network performance data,
and explore and evaluate various optimization strategies to identify the most effective approaches.

• We conduct extensive experiments using GenNet to benchmark multi-objective optimization
algorithms in mobile networks to optimize network coverage, network throughput, and energy
consumption. We introduce RL-based optimization baselines compatible with GenNet and validate
its effectiveness as a robust platform for advancing network optimization techniques.

2 RELATED WORK

2.1 SIMULATORS FOR MOBILE NETWORK

Among the available mobile network simulators, Matlab (Tariq et al., 2018) is a highly advanced
link-level simulator that offers a flexible frame structure and various resource scheduling techniques.
However, unlike GenNet, Matlab is not a system-level simulator and lacks features for realistic
mobility and traffic usage modeling for mobile users. Since Matlab does not model user mobility, it
cannot simulate handover mechanisms. Also, Matlab-based simulators face integration challenges
with Python-based reinforcement learning optimizers due to limited platform language support.

Other popular discrete-event mobile network simulators, including NS-3 (Henderson et al., 2008),
OMNeT++ (Köpke et al., 2008), and OPNET (Chang, 1999), deliver accurate packet-level results
through their comprehensive protocol stack implementations. However, due to the absence of user
mobility modeling, NS-3 and OPNET are better suited for core network modeling than mobile access
networks, where key performance indicators like coverage and capacity are essential. Although
OMNeT++ can integrate predefined user trajectories to model handover mechanisms, the complex and
resource-intensive protocol stack simulations make NS-3, OMNeT++, and OPNET computationally
demanding, limiting their ability to model large-scale networks with hundreds of elements realistically.
Furthermore, they lack APIs for reinforcement learning environments, which restricts their utility
in advanced RL optimization scenarios. A recent simulator, SyntheticNET (Zaidi et al., 2020),
integrates the advantages of rule-based simulators like Matlab and event-triggered simulators like
NS-3, OMNeT++, and OPNET. It uses rule-based methods for link-level flexible frame structure
simulation and protocol stack implementation for fine-grained packet-level scheduling. SyntheticNET
also leverages SUMO to provide mobile users with realistic mobility. However, SyntheticNET has a
much higher computational cost due to its integration complexity.

Besides rule-based and event-triggered simulation methods, simulations also use data-driven ap-
proaches. For example, CityFlow (Zhang et al., 2019) and MATSim (W Axhausen et al., 2016)
use black-box neural network models to simulate realistic user mobility in a city. One significant
advantage of data-driven methods is reduced simulation time. Inspired by this, we designed GenNet,
which leverages generative AI methods to simulate mobile networks. Unlike traditional black-box
structures, GenNet applies a grey-box approach, decomposing the mobile network into different
critical elements. GenNet uses a white-box rule-based method for the connections between elements,
while each entity’s behavior is simulated using black-box data-driven methods. Benefiting from
parallelism, GenNet also excels in simulation time. However, we acknowledge that GenNet has
not yet implemented a comprehensive protocol stack, which limits the interpretability of simulation
results for internal network elements.

In summary, we compare the advantages and disadvantages of our proposed GenNet and contextualize
it within the landscape of existing simulation environments, as presented in the Table 1.

1https://github.com/xxx, due to double blind review, the full url cannot be given.
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Mobile User Modeling

Traffic Generation

Wireless Environment 
Modeling

GenNet

Reinforcement Learning Based Network Optimizer

Base Station Modeling

Trajectory Generation Energy ConsumptionPhysical Parameters Physical Environment Modeling Signal Propagation Modeling

Network 
Configurations

Network Performance 
Indicators

Figure 1: The building bocks of GenNet.

2.2 LEARNING-BASED MOBILE NETWORK OPTIMIZATION

The application of reinforcement learning (RL) to adaptively configure operational parameters in
mobile networks has recently garnered significant research interest. Since the pioneering studies
referenced in (Mnih et al., 2015) and (Silver et al., 2016), deep reinforcement learning (DRL)
has become a crucial area within machine learning and artificial intelligence. Algorithms such
as Q-learning (Watkins & Dayan, 1992), actor-critic methods (Konda & Tsitsiklis, 1999), and
policy gradients (Peters & Schaal, 2008) have proven effective in mastering complex tasks in high-
dimensional spaces solely through reward feedback. These algorithms have been successfully applied
to a wide array of mobile network optimization challenges, including energy optimization (El Amine
et al., 2022; Mondal et al., 2021), resource allocation (Huang et al., 2023; Naderializadeh et al., 2021),
mobility management (Alsuhli et al., 2021; Marí-Altozano et al., 2021), and power control (Meng
et al., 2020; Guo et al., 2020). Despite the potential of learning-based methods to develop network
optimization policies, benchmarking these policies on large-scale simulators remains challenging. To
support robust and efficient research in mobile network optimization, GenNet provides standardized
training and evaluation workflows and reliable benchmarking for both single- and multi-objective
optimization tasks. Additionally, we offer implementations of representative RL baseline algorithms
and document their performance using a standard set of metrics on GenNet for reference.

3 GENNET PLATFORM

In this section, we provide an overview of the building blocks of GenNet and its user interface.
A primary objective of GenNet is to base its simulations on real-world mobile network scenarios
and model the complex interactions among mobile users, base stations, wireless environments.
Additionally, GenNet is designed to be both fast and flexible. Users can easily modify or replace each
component described in the building blocks to accommodate their specific project needs.

3.1 SIMULATOR BUILDING BLOCKS

As shown in Figure 1, GenNet focuses on three primary components of mobile access networks:
mobile users, base stations, and wireless environments. We develop virtual versions of each, which are
configured with real-world data. This realism is achieved by modeling their fundamental principles
and parameters using generative AI models. By integrating these components, we can then simulate
network performance and develop the overall platform. The detailed descriptions of the used modeling
methods can be found in Appendix A.1.

Mobile User Modeling

1

Restaurant
visit at 18:00, 

stay for 30 mins

Home
visit at 19:00

Step 1: OD trip 
generation with 

ActSTD

Step 2: Route 
generation with 

A* algorithm

Figure 2: Generating mobile
user trajectories with two steps.

Mobile users are pivotal in mobile networks, with their charac-
teristics, such as locations and traffic demands, significantly in-
fluencing communication quality. GenNet accurately models and
analyzes communication by simulating mobile users’ trajectories
and traffic demands across various locations and times. The gen-
eration of mobile user trajectories in GenNet involves two key
steps. Initially, we use ActSTD (Yuan et al., 2022) to simulate
user movements between different points of interest, explicitly
creating origin-destination trips. This method employs generative
adversarial imitation learning to detail user trajectories, including
visited locations, visit timestamps, and durations, as illustrated in
Figure 2. For example, it can generate a scenario where user A
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visits a restaurant at 18:00, stays for 30 minutes and then proceeds home at 19:00. Subsequently, we
employ the A∗ algorithm (Hart et al., 1968) to determine the optimal route between these points,
marked by blue arrows in Figure 2. This step includes modeling pedestrians and vehicles; pedestrians
follow a set speed on sidewalks and crosswalks, while vehicle trajectories are enriched with lane
changes and traffic light dynamics using the Krauss model (Krauß et al., 1997). For modeling users’
traffic demands, we employ MSH-GAN (Li et al., 2024), a multi-scale hierarchical GAN. This
method effectively generates diverse traffic usage patterns using multiple pattern generators and
incorporates various switch modes through multiple switch mode generators.

116.456
116.460

116.464
116.468

116.472

39.908

39.912

39.916

39.920

Figure 3: Guomao area along with
outdoor (large triangles) and indoor
(small triangles) base stations.

Base Station Modeling

GenNet’s base stations are set up with real-world physical pa-
rameters, such as location, height, mechanical tilt, electrical tilt,
azimuth, maximum transmitting power, and the number of an-
tennas. Users can adjust these parameters, but default settings
that used by mobile operators are also available. GenNet can
simulate mobile networks across the entire metropolitan area of
Beijing. The simulation areas encompass a variety of scenarios,
including residential, office, entertainment, and transportation
areas. Users can adjust the ‘microscopic_range’ parameter in
the ‘config.yml’ file to select their desired simulation area. In
this case, we specifically chose the Guomao area, covering
approximately 0.17 km2 and hosting 145 indoor and 39 out-
door base stations, as illustrated in Figure 3. That is because
operators typically group approximately 200 base stations into
a cluster for joint optimization, making the network scale of this area particularly suitable for testing.
Also, GenNet models the energy consumption of base stations, which adheres to the methodology
proposed by Li et al (Li et al., 2023).

Wireless Environment Modeling

The physical environment of a city, particularly the distribution of buildings, significantly affects
wireless signal propagation (Andersen et al., 1995). Our study utilizes OpenStreetMap (Haklay &
Weber, 2008) to gather detailed information on the buildings in Beijing’s Guomao area, including
their outlines and heights. Signal propagation models fall into three main categories: stochastic,
deterministic, and data-driven. In GenNet, we implement both types. The stochastic model, 3GPP TR
38.901 (Zhu et al., 2021), developed by the 3GPP organization, adapts channel modeling to various
settings, including urban, rural, indoor, and outdoor environments. The deterministic model uses Ray
Tracing (Yun & Iskander, 2015), which approximates solutions to Maxwell’s equations based on the
principles of geometrical optics. This method involves launching signal rays from a transmitter and
tracing their interactions with the environment, applying theorems of reflection and diffraction to
assess changes in signal energy and propagation paths.The data-driven model used PEFNet (Jiang
et al., 2024), which integrates computational electromagnetic (CEM) methods with neural networks
to enhance realism, efficiency, and generalization.

Network Performance Modeling

Network performance encompasses a variety of metrics relevant to mobile devices, base stations, and
the overall system. The detailed descriptions can be found in Appendix A.2.

3.2 SYSTEM IMPLEMENTATION
Simulation engine

Client 0 

Client 1 

Display

Action

 Params  

Job name

Reward 

State

Basic Info

MongoDB

Person Info 

Traffic  Info 

Channel Info

Local Files
Job 1

Job 0
Load

Output

Server
Grpc(Local)

Control Flow Data Flow Data 

Http(Remote)

PostgreSQL

① Initialization   ② Client send requests   ③ Start a job      

④ Data output   ⑤ Client receive responses

⑤

④

③ ②

①

①

Start 0 

Start 1 

···

Figure 4: The data flow of GenNet.

GenNet is a mobile network simu-
lation platform that integrates with
external optimizers through custom
remote procedure calls (RPC). We
use MongoDB and PostgreSQL for
data storage, as illustrated in Figure 4,
which shows the data loading process,
simulation, and output. Input data, in-
cluding base station and mobile user information, is retrieved from MongoDB. Clients initiate
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simulations by sending a gRPC or HTTP request containing action information, control parameters,
and a job name. Results are stored in PostgreSQL upon completion, and the client receives a response
with rewards and status. Our system facilitates network optimization by interacting with RL-based
optimizers and supports real-time viewing of optimization results by parallel processing multiple
tasks. Simulating millions of mobile users involves complex interactions addressed using paralleliza-
tion techniques like synchronous updates and mutually exclusive access ((Zhang et al., 2022)). This
includes a two-step update process for mobile user interactions with nearby base stations—connection
updates and state computation and storage—both spatially parallelizable. Additionally, we enforce
mutual exclusivity where only one user can occupy a resource block at any base station, managing
this through a mechanism where mobile users connecting to the same base station sequence their
interactions. Furthermore, our simulation engine manages concurrent requests efficiently by running
multiple coroutines per job name without interference.

3.3 ENVIRONMENT INTERFACE

GenNet offers a user-friendly interface that allows researchers to customize network configurations,
such as base station transmit power, resource allocation schemes, and antenna settings (azimuth
and tilt angles). The platform provides a comprehensive suite of APIs that enable reinforcement
learning algorithms to access and modify environmental parameters, optimizing the network setting.
A key component is the abstract base class“Env”, which outlines essential methods and attributes
for a reinforcement learning environment, including state space, action space, environment reset,
and action execution. Environments must inherit from this base class and implement its methods,
ensuring consistency and functionality across different scenarios. The detailed instructions for the
usage of APIs can be found in Appendix A.4.

“Env.reset (self)”: resetting the environment to an initial state and returns the initial observation.

“Env.step (self, action, start, total, interval)”: accepting the agent’s action as input and returns the
next state, reward, termination status, and other information. “Action” is the decision action provided
by RL. “Start” represents the starting step of the simulator. “Total” denotes the total number of steps
the simulator will execute, and “interval” signifies the time interval for each step.

“Env.render (self)”: computing the rendering frames specified during the environment’s initialization.

“Env.close (self)”: closing the environment and frees up resources.

3.4 SIMULATION EFFICIENCY

We compared GenNet with popular simulators. All simulations were conducted on a server equipped
with 128 GB of RAM, an 8-core Intel Xeon CPU E5-2637 v4 @ 3.5 GHz, and an Nvidia GeForce
RTX 2080Ti GPU with 80 GB of memory. Since our simulator integrates multiple key modules into
a unified framework, we evaluated individual modules against corresponding state-of-the-art (SOTA)
simulators to ensure a fair comparison. Specifically, our simulator consists of two main modules: one
for simulating mobile user behaviors and the other for wireless network transmission. For mobile
user behavior simulation, we compared GenNet with CityFlow and MATSim. For wireless network
transmission simulation, we compared GenNet with Matlab and OMNet++. The experimental
results are presented in Table 2. Compared to CityFlow and MATSim, GenNet demonstrates greater
computational efficiency due to its parallel processing capabilities. Additionally, when compared
to Matlab and OMNet++, GenNet exhibits higher speedup, benefiting from the new data-driven
generative AI methods we employed.

Table 2: Simulation Efficiency of GenNet and existing environments.
Simulators Simulation Task Simulation Scale Computation time
GenNet Mobile user behaviors 2,464,950 users 37.70 sec
CityFlow Mobile user behaviors 2,464,950 users 3806.7 sec

MATSim Mobile user behaviors 2,464,950 users 395.48 sec

GenNet Wireless transmission 183 BSs 1.126 sec
Matlab (Ray tracing) Wireless transmission 183 BSs 2.731 hr
OMNet++ (Volume
Integral Equation) Wireless transmission 183 BSs 19.5 min
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4 BENCHMARK: MULTI-OBJECTIVE OPTIMIZATION IN MOBILE NETWORKS

We evaluate GenNet as a RL environment by implementing and testing several multi-agent RL
optimization baselines designed for multi-objective optimization in mobile networks. We begin by
defining the standard multi-objective optimization problem and introducing tailored RL baselines.
Next, we conduct an empirical study to compare their performance, aiming to demonstrate GenNet’s
potential applications through straightforward design choices and configurations. We present bench-
mark results for 6 baseline algorithms, ensuring reproducibility and reliability by thoroughly testing
them on our platform. This emphasizes GenNet’s role in facilitating the evaluation of different RL
algorithms and provides robust support for multi-objective optimization problems in mobile network
scenario. Future research may further enhance the performance of these baseline agents.

4.1 PROBLEM DEFINITION

We focus on optimizing antenna angles, beamwidth, and power settings to enhance the performance
of a communication network within the Guomao area. We consider three key network performance
indicators: network throughput, coverage rate, and energy consumption. Specifically, we aim to
maximize the effective coverage rate and user data throughput while minimizing energy consumption.

Network optimization presents a significant challenge, as no single solution can perfectly optimize
all objectives simultaneously. For instance, improving the coverage rate (CR) and throughput (TP)
may result in increased energy consumption (EC) and operational costs. Balancing these conflicting
goals is critical in multi-objective network optimization, which involves a variety of parameters such
as antenna angles, transmission power, and beamwidth. The goal is to identify a set of Pareto-optimal
solutions, where any improvement in one objective would cause deterioration in at least one other
objective. These solutions form what is known as the Pareto front Ngatchou et al. (2005). The
multi-objective optimization problem can be mathematically expressed as follows:

max
AN

{
λ1 · CR + λ2 ·

TP
TPmax

+ λ3 ·
(
1− EC

ECmax

)}
, (1)

s.t.
Pi ∈ [0, Pmax], ∀i ∈ N, (2)
ϕi ∈ [0◦, 360◦), ∀i ∈ N, (3)
θi ∈ [0◦, 90◦], ∀i ∈ N, (4)

βH
i ∈ [45◦, 90◦], ∀i ∈ N, (5)

βV
i ∈ [5◦, 45◦], ∀i ∈ N, (6)
3∑

j=1

λj = 1, λj ≥ 0. (7)

In the objective function equation 1, the terms TPmax and ECmax are the maximum possible throughput
and energy consumption, respectively, used for normalization. The term 1− EC

ECmax
ensures that energy

consumption is minimized, as this term will approach 1 when the energy consumption is low. The
variables AN represent the set of actions for base stations (BSs) N , including parameters such
as transmission power Pi, azimuth angle ϕi, tilt angle θi, horizontal beamwidth βH

i , and vertical
beamwidth βV

i , subject to the constraints given by equation 2 to equation 6. The weights λ1, λ2, and
λ3 in the objective function represent the relative importance of each performance metric: coverage
rate, throughput, and energy consumption, respectively. These weights are adjustable and satisfy the
constraints equation 7. By changing the values of λ1, λ2, and λ3, we can obtain different optimal
solutions, each reflecting a different trade-off among the objectives. The set of all such optimal
solutions forms the Pareto front, representing the set of solutions where no single objective can be
improved without sacrificing at least one other objective.

Given that the adjustment of antenna angles is limited to a range specific to each optimization step,
the decision-making process for the next step is based on the actions of the base stations and the state

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

of the environment at the previous step. This problem can be effectively modeled as a Multi-Objective
Markov Decision Process (MOMDP). A Multi-Objective Markov Decision Process is defined by
the tuple ⟨S,A, P,R, γ,D⟩, where S is the state space. A is the action space. P (s′|s, a) is the state
transition probability, representing the probability of transitioning from state s to state s′ given action
a. R = [r1, ..., rm]T is the vector of reward functions, where each ri : S ×A → R corresponds to
a different objective. γ = [γ1, ..., γm]T ∈ [0, 1]m is the vector of discount factors. D is the initial
state distribution. m is the number of objectives. In the context of mobile network optimization, the
MOMDP is defined as follows. State Space (S) includes all possible configurations of the network,
such as the current positions of users, signal strengths, current antenna angles, base station power,
and other relevant environmental factors. Action Space (A) consists of all possible adjustments
to the antenna angles and base station power. Reward Functions (R) includes multiple reward
functions corresponding to the performance metrics we aim to optimize. Discount Factors (γ) reflect
the importance of future rewards compared to immediate rewards for each objective. Initial State
Distribution (D) reflects the starting conditions of the network before any optimization steps have
been taken. By modeling the network optimization problem as a MOMDP, we can leverage multi-
objective reinforcement learning (MORL) techniques to find Pareto-optimal policies that provide the
best trade-offs among the various conflicting objectives.

4.2 EXPERIMENTAL SETTINGS

Experimental Environments

Experiments are conducted in a densely populated sector of Beijing’s Guomao Region. The experi-
mental setup included 183 BSs, comprising 39 outdoor and 144 indoor BSs. It is important to note
the disparities in transmission power and path attenuation between indoor and outdoor BSs. The
bandwidth allocated for each BS was set at 1.8×105 Hz, and the noise density was maintained at -174
dBm/Hz. The experimental area spanned 1770 meters by 1560 meters, resulting in a grid resolution
of 10 meters and a total of 27,612 grids. The threshold for the Reference Signal Received Power
(RSRP) was established at -100 dBm. The maximum transmission power of outdoor BSs is 46dBm,
and the maximum transmission power of indoor BSs is 24dBm. The other detailed information of
experimental settings can be found in Appendix A.3.

Multi-agent RL Baselines

We conducted a comparative analysis of the vanilla MAPPO (Yu et al., 2022) and MADDPG
(Kaur et al., 2023), two of the most established and widely used multi-agent reinforcement learn-
ing algorithms. We also integrated MAPPO and MADDPG with multi-objective optimization
methods—Envelope (Yang et al., 2019), a representative single-policy multi-objective optimization
approach, and Prediction Guide (PG) (Xu et al., 2020), a typical multi-policy multi-objective opti-
mization technique as benchmark baselines. The detailed introduction of baseline methods can be
found in Appendix A.5.

Evaluation Metrics

In single-objective RL settings (i.e., MAPPO and MADDPG), policies are evaluated based on their
corresponding reward. For multi-objective RL (i.e., Envelope and PG), we utilize the following three
evaluation metrics. Expected utility (Zintgraf et al., 2015) (↑). The utility function expresses the
expected utility over a distribution of reward weights. Sparsity (Xu et al., 2020) (↓). This metric

(a) MAPPO. (b) MADDPG.

Figure 5: Reward curves of MAPPO and MADDPG.
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(a) Expected Utility. (b) Sparsity. (c) Hypervolume.

Figure 6: Results for MAPPO Envelope.

(a) Expected Utility. (b) Sparsity. (c) Hypervolume.

Figure 7: Results for MAPPO Prediction Guide (PG).

characterizes the diversity of the policies in a given Pareto front. Hypervolume (Zitzler, 1999) (↑).
Hypervolume assesses the optimizer’s performance by simultaneously considering the proximity
of points to the Pareto front, as well as their diversity and distribution. The hight the better. For a
detailed mathematical expression of the metrics, please refer to the Appendix A.5.1.

4.3 BENCHMARK RESULTS

As illustrated in Figure 5, we conducted experiments using MAPPO and MADDPG under four differ-
ent weight settings, with each episode consisting of 10 time steps. The algorithms converged after
approximately 2000 episodes for MAPPO and 800 episodes for MADDPG. The results demonstrate
that MAPPO consistently outperforms MADDPG across both weight settings. Notably, during the
initial 1000 episodes, MAPPO exhibited greater oscillations in performance compared to MADDPG.
We attribute this increased volatility to MAPPO’s more extensive exploration of the action space,
which introduces fluctuations in its performance metrics. This suggests that while MAPPO’s ex-
ploratory strategy ultimately leads to superior performance, it also incurs higher variability during the
early stages of learning.

In our experiments, we evaluated the performance of four multi-objective multi-agent reinforce-
ment learning (MOMARL) methods: MAPPO Envelope, MAPPO PG, MADDPG Envelope, and
MADDPG PG. Given the inherent challenges in achieving convergence in multi-agent environments,
particularly when optimizing for multiple objectives, we increased the number of time steps per
episode to 100. This extension was intended to provide more opportunities for learning within each
episode and to better assess the convergence behavior of each method. As illustrated in Figures
6, 7, 8, and 9, the MAPPO Envelope method demonstrated the best performance among the four
approaches across all evaluated metrics. Figure 10 draws the Pareto frontiers across different algo-
rithms. Although its results were superior to the other methods, it is important to emphasize that
the overall performance of the MAPPO Envelope method was still suboptimal, and significant room
for improvement remains. Specifically, while MAPPO Envelope outperformed MAPPO PG, the

(a) Expected Utility. (b) Sparsity. (c) Hypervolume.

Figure 8: Results for MADDPG Envelope.
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(a) Expected Utility. (b) Sparsity. (c) Hypervolume.

Figure 9: Results for MADDPG Prediction Guide (PG).

Figure 10: Pareto frontiers of different algorithms.

improvement was only marginal, and neither method achieved robust convergence. The MAPPO
PG method exhibited inconsistent learning dynamics and failed to demonstrate a clear convergence
pattern throughout the training process. Alternatively, the MADDPG-based methods, particularly the
MADDPG Envelope, performed poorly. The MADDPG Envelope method, in particular, failed to
converge altogether, reflecting its inability to handle the complexity of the multi-agent, multi-objective
environment in our experiments. Similarly, the MADDPG PG method struggled with convergence,
and its performance metrics lagged behind those of the MAPPO-based methods.

In conclusion, while the MAPPO Envelope method yielded the best results among the tested methods,
none of the four approaches consistently achieved satisfactory convergence or optimal performance.
These findings highlight the complexity and challenges inherent in multi-objective multi-agent
optimization. Future research should focus on exploring more advanced methods in this area,
potentially incorporating novel strategies for improving convergence and performance in MOMARL
settings. Additionally, further work is needed to investigate how to more effectively balance multiple
objectives across agents, which remains a critical issue in this field. Detailed results and further
analysis can be found in the Appendix A.5.

5 CONCLUSION

In this work, we propose GenNet, a generative AI-driven mobile network simulator. To the best of our
knowledge, GenNet is the first open-source, Python-based mobile network simulator equipped with a
tailor-made API for reinforcement learning environments. This feature allows researchers to adjust
network settings and finely evaluate various optimization strategies. Extensive experiments using
multi-objective optimization algorithms in mobile networks focus on enhancing network coverage,
throughput, and energy consumption, showcasing GenNet’s effectiveness as a robust platform for
advancing network optimization techniques.
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A APPENDIX

In the appendix, we provide a comprehensive overview of the reinforcement learning interfaces used
to optimize base station parameters in our wireless network environment. The RL interface plays a
critical role in enabling intelligent decision-making for parameter optimization, ensuring improved
coverage, throughput, and energy efficiency.

A.1 TECHNICAL DESCRIPTIONS FOR THE MODULES USED IN GENNET

Below are detailed descriptions of the three major generative methods in our simulator GenNet.

ActSTD (Yuan et al., 2022): ActSTD simulates user movements between points of interest using a
Generative Adversarial Imitation Learning framework. This method captures complex spatiotemporal
dynamics by modeling activity trajectories as point processes. To handle irregularly sampled activities,
ActSTD leverages neural differential equations to generate activities sequentially based on learned
dynamics.

MSH-GAN (Li et al., 2024): MSH-GAN simulates mobile users’ traffic usage with generative
adversarial networks. It models micro-scale behavior patterns using BiLSTM networks and self-
attention mechanisms, bridging these patterns to macro-scale user clusters through switch mode
generators. MSH-GAN also captures multi-scale temporal dynamics with Temporal Convolutional
Networks (TCNs).

PEFNet (Jiang et al., 2024): PEFNet simulates wireless propagation in our simulator. It combines
knowledge-driven and data-driven approaches for path loss estimation in wireless transmission.
PEFNet integrates Computational Electromagnetic (CEM) methods with neural networks to enhance
realism, efficiency, and generalization, making it the first approach to merge these methodologies for
this task.

During the training process for ActSTD, we collaborated with a major mobile network operator in
China, which provided us with a dataset comprising 10,000 users in Beijing over the course of one
month. This dataset includes the following categories of points of interest: Company, Concerts,
Culture and Art, Education, Entertainment, Food, Government, Life Services, Market, Medicine,
School, Shops, Sports, Travel, and University. The dataset records anonymous user IDs, timestamps,
POI types, and latitude-longitude coordinates.

For training MSH-GAN, we again partnered with the operator to collect traffic usage data from
6,055 users over one week, specifically from April 20th to April 26th, 2016, in Shanghai. Traffic
usage records were collected every half hour, with each record containing the anonymous user ID,
timestamp, and traffic volume.

To train PEFNet, we utilized an open-access dataset called RSRPSet, measured by Huawei Technolo-
gies Co. This dataset contains information on base stations and receivers, as well as the corresponding
Reference Signal Received Power (RSRP). There are approximately 5 million entries in the dataset,
with each entry comprising 17 features. Importantly, no sensitive user information is included.

A.2 NETWORK PERFORMANCE INDICATORS IN GENNET

Network performance encompasses a variety of metrics relevant to mobile devices, base stations, and
the overall system.

Mobile Device Indicators: These include the device’s connection status with the base station,
allocated resource blocks, received power, interference power, signal-to-interference-plus-noise ratio
(SINR), and communication rates.

Base Station Performance: Key metrics here cover the data rates provided to and required by
mobile users, the number of connected users, and the classification of users into those with satisfied
and unsatisfied communication demands. Additionally, this includes the measurement of energy
consumption at the base station.

System Performance: This aspect integrates data from all users and base stations across the network.
It monitors total and active users, classifying them based on whether their serviced data rates meet
their desired rates. It also calculates the total of all users’ desired and currently serviced data rates.
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Moreover, the system tracks the coverage ratio, which indicates the proportion of the area with
adequate network signal and the overall energy consumption.

A.3 REINFORCEMENT LEARNING FRAMEWORK

We developed our RL interface using the Gym framework, which is widely recognized for its
simplicity and effectiveness in designing and evaluating RL algorithms. Our environment simulates a
wireless network scenario where agents (base stations) interact with the environment (network users
and physical terrain) to optimize key performance metrics.

A.3.1 ENVIRONMENT SETUP

The environment setup includes several key components:

• State Space: The state space represents the current configuration of the wireless network,
including base station positions, antenna angles, and user distribution.

• Action Space: The action space defines the possible adjustments that can be made to the
base station parameters, such as changing the transmission power or adjusting the antenna
downtilt angle.

• Reward Function: The reward function provides feedback to the RL agent based on the
performance of the network, with rewards for improved coverage, higher throughput, and
lower energy consumption.

A.3.2 STATE SPACE REPRESENTATION

The state space in our environment is represented by a multi-dimensional vector that includes:

• Base Station Parameters: Transmission power, azimuth angle, downtilt angle, horizontal
beamwidth, and vertical beamwidth.

• Network Performance Metrics: Current coverage area, throughput, and energy consump-
tion.

• User Distribution: Location and density of users within the coverage area.

This comprehensive representation ensures that the RL agent has access to all relevant information
needed to make informed decisions.

A.3.3 ACTION SPACE DESIGN

The action space is designed to allow the RL agent to make fine-grained adjustments to the base
station parameters. Actions are represented as discrete or continuous changes in the following
parameters:

• Transmission Power: Adjusting the power output of the base station to balance coverage
and energy consumption.

• Antenna Azimuth Angle: Rotating the antenna to optimize the direction of the signal beam.
• Antenna Downtilt Angle: Adjusting the angle of the antenna to control the vertical spread

of the signal.
• Horizontal Beamwidth: Modifying the width of the signal beam in the horizontal plane.
• Vertical Beamwidth: Modifying the width of the signal beam in the vertical plane.

A.3.4 REWARD FUNCTION FORMULATION

The reward function is a critical component of the RL interface, guiding the agent towards optimal
configurations. Our reward function is designed to balance multiple objectives:

R = α× Coverage + β × Throughput − γ × Energy Consumption (8)
where α, β, and γ are weighting factors that determine the relative importance of each metric. This
formulation ensures that the agent receives positive rewards for increasing coverage and throughput
while minimizing energy consumption. Weights can be set by the user.
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A.3.5 TRAINING THE RL AGENT

Training the RL agent involves iteratively interacting with the environment to learn the optimal policy
for parameter adjustments. The training process includes:

• Exploration: The agent explores different actions to understand their impact on network
performance.

• Exploitation: The agent leverages its knowledge to choose actions that maximize the reward
based on past experiences.

• Policy Update: The agent updates its policy using reinforcement learning algorithms.

A.4 USAGE OF THE RL ENVIRONMENT

In this subsection, we provide a detailed guide on how to utilize the reinforcement learning environ-
ment developed for optimizing base station parameters. The RL environment is designed to simulate
a wireless network, allowing for the optimization of key performance metrics such as coverage,
throughput, and energy consumption.

A.4.1 ENVIRONMENT INITIALIZATION

To begin using the RL environment, it is essential to initialize it correctly. Below are the steps and
code examples to set up the environment.

Import Necessary Libraries First, import the necessary libraries and modules required for the
environment.

import pycomm # The client interface of the simulator
from pycomm import CoverageEnv

Create and Reset Environment Create an instance of the environment and reset it to start the
simulation.

# Create the RL environment
env = CoverageEnv(job="coverage", port=51410)

# Reset the environment to get the initial observation
obs, info = env.reset()

A.4.2 ACTION SPACE AND OBSERVATION SPACE

Understanding the action space and observation space is crucial for interacting with the environment
effectively.

Get Action and Observation Space Retrieve and print the action space and observation space to
understand their formats and value ranges.

# Get action space
action_space = env.action_space
print("Action Space:", action_space)

# Get observation space
observation_space = env.observation_space
print("Observation Space:", observation_space)

Action Space Details The action space includes the possible actions that the agent can take, such as
adjusting the base station’s transmission power, azimuth angle, downtilt angle, horizontal beamwidth,
and vertical beamwidth. Each action is represented as a discrete or continuous value within a specified
range.
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Observation Space Details The observation space provides the state of the environment, including
the current configuration of the base station parameters, network performance metrics (coverage,
throughput, energy consumption), and user distribution. The observation space is represented as a
multi-dimensional vector.

A.4.3 ENVIRONMENT STEP FUNCTION

To interact with the environment, the agent performs actions, and the environment responds with new
observations, rewards, and additional information.

Step Function Execution The step function is used to execute an action in the environment and
obtain the resulting state, reward, and other information.

# Sample a random action
action = env.action_space.sample()

# Perform the action and get the results
next_state, reward, done, info = env.step(action)

# Print the results
print("Next State:", next_state)
print("Reward:", reward)
print("Done:", done)
print("Info:", info)

State and Reward Information The state information includes the updated base station parameters
and network performance metrics. The reward is calculated based on the improvement in coverage,
throughput, and energy efficiency.

A.4.4 TASKS AND CONSTRAINTS

The environment supports various optimization tasks and constraints to simulate real-world scenarios.

Supported Tasks The primary tasks supported by the environment include:

• Coverage Optimization: Maximizing the area covered by the base station signal.

• Throughput Optimization: Enhancing the data transmission rate across the network.

• Energy Efficiency Optimization: Reducing the energy consumption of base stations while
maintaining performance.

Supported Constraints The environment imposes constraints on the actions to ensure realistic and
feasible configurations:

• Power Constraints: Limits on the transmission power of base stations.

• Antenna Angle Constraints: Restrictions on the azimuth and downtilt angles of antennas.

• Beamwidth Constraints: Constraints on the horizontal and vertical beamwidth of the
signal.

A.4.5 VISUALIZATION SUPPORT

The environment includes visualization capabilities to render the network and base station configura-
tions, providing insights into the optimization process.

Render Environment The following code snippet demonstrates how to render the environment.

# Render the environment
env.render()
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The rendering provides a visual representation of the base stations, coverage areas, and user distribu-
tion, aiding in the analysis and debugging of the optimization process.

A.4.6 PERFORMANCE METRICS

To evaluate the performance of the RL agent, we measure several key metrics:

• Coverage Ratio: The ratio of the area covered by the base station signals.

• Network Throughput: The aggregate data transmission rate achieved across the network.

• Energy Consumption: The total energy consumed by the base stations.

A.4.7 EXAMPLE USAGE

Below is a complete example of initializing the environment, performing actions, and visualizing the
results.

import pycomm
from pycomm import CoverageEnv

# Create the RL environment
env = CoverageEnv(job="coverage", port=51410)

# Reset the environment
obs, info = env.reset()

# Loop to perform actions
for _ in range(100):

# Sample a random action
action = env.action_space.sample()

# Perform the action
next_state, reward, done, info = env.step(action)

# Render the environment
env.render()

# Break the loop if done
if done:

break

# Close the environment
env.close()

This example demonstrates the typical workflow for using the RL environment, from initialization
to execution and visualization. By following these steps, researchers can effectively leverage the
environment to optimize wireless network parameters and achieve significant improvements in
performance metrics.

A.5 ALGORITHM COMPARISON

In order to verify the functionality of our simulation platform, we compared several RL algorithms:

MAPPO (Yu et al., 2022): MAPPO extends the PPO algorithm for multi-agent environments,
coordinating multiple agents to learn optimal policies while preventing interference among them.

MADDPG (Kaur et al., 2023): A multi-agent version of DDPG that uses centralized training and
decentralized execution to learn policies in multi-agent environments.

MAPPO Envelop: Extending Envelop Yang et al. (2019) to multi-agent case with MAPPO framework
to cope with large-scale network optimization problem. The Envelope algorithm manages trade-
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(a) Normalized Reward. (b) Normalized Coverage Rate.

(c) Normalized User Throughput. (d) Normalized Energy Consumption.

Figure 11: The convergence curves of MAPPO.

offs in multi-objective reinforcement learning by constructing an “envelope” around the objectives,
optimizing them simultaneously without excessive bias.

MAPPO PG: Extending PG Xu et al. (2020) to multi-agent case with MAPPO framework to cope
with large-scale network optimization problem. PG method uses predictive models to guide the RL
process by predicting outcomes across multiple objectives, aiding in decision-making, and optimizing
all objectives concurrently, particularly in continuous control tasks.

MADDPG Envelop: Extending Envelop Yang et al. (2019) to multi-agent case with MADDPG
framework to cope with large-scale network optimization problem. The Envelope algorithm man-
ages trade-offs in multi-objective reinforcement learning by constructing an “envelope” around the
objectives, optimizing them simultaneously without excessive bias.

MADDPG PG: Extending PG Xu et al. (2020) to multi-agent case with MADDPG framework to
cope with large-scale network optimization problem. PG method uses predictive models to guide
the RL process by predicting outcomes across multiple objectives, aiding in decision-making, and
optimizing all objectives concurrently, particularly in continuous control tasks.

A.5.1 EVALUATION METRICS

Expected utility (Zintgraf et al., 2015) (↑). The utility function expresses the expected utility over a
distribution of reward weights, W . Let Π be a set of policies and F̃ = {vπ | π ∈ Π} represent its
corresponding approximate Pareto front. Expected utility metric is then defined as follows:

EU(F̃) = Ew∼W

[
max
vπ∈F

vπ ·w
]
. (9)

Sparsity (Xu et al., 2020) (↓). This metric characterizes the diversity of the policies in a given Pareto
front, which is given by:

S(F̃) =
1

|F̃ | − 1

m∑
j=1

|F̃|−1∑
i=1

(Lj(i)− Lj(i+ 1))
2
, (10)

where Lj is the sorted list of the values of the j-th objective considering all policies in F̃ , and Lj(i)
is the i-th value in Lj .

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) Normalized Reward. (b) Normalized Coverage Rate.

(c) Normalized User Throughput. (d) Normalized Energy Consumption.

Figure 12: The convergence curves of MADDPG.

Hypervolume (Zitzler, 1999) (↑). Given a reference point, vref , the hypervolume metric is defined
as:

HV
(
F̃ ,vref

)
=

⋃
vπ∈F̃

volume (vref ,v
π) , (11)

where volume (vref , v
π) is the volume of the hypercube spanned by the reference vector, vref , and

the vector, vπ .

A.5.2 ANALYSIS OF MAPPO

• (a) reward:
– Different weights (w) show varying trends in the reward metric.
– Weight w = [0.05, 0.05, 0.9] (green) achieves the highest reward, indicating that this

weight configuration leads to the best expected reward performance.
– Other weight configurations have relatively lower and stable rewards.

• (b) cover:
– In the cover metric, weight w = [0.05, 0.05, 0.9] (green) performs poorly, nearly at 0.

Weight w = [0.05, 0.9, 0.05] (orange) performs best.
– Other weight configurations achieve relatively higher and more fluctuating cover values.

• (c) throughput:
– In the throughput metric, weight w = [0.05, 0.05, 0.9] (green) also performs poorly,

nearly at 0.
– Other weight configurations maintain higher and relatively stable throughput.

• (d) power:
– In the power metric, weight w = [0.05, 0.05, 0.9] (green) reaches a level close to 1.
– Other weight configurations have lower and stable power values.

A.5.3 ANALYSIS OF MADDPG

• (a) Reward:
– Weight w = [0.9, 0.05, 0.05] (blue) achieves the highest reward, indicating that this

weight configuration leads to the best expected reward performance.
– Other weight configurations have relatively lower and stable rewards.

• (b) Cover:
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– In the cover metric, weight w = [0.05, 0.05, 0.9] (green) performs poorly, with a rapid
decline.

– Other weight configurations achieve higher and more stable cover values.
• (c) Throughput:

– In the throughput metric, weight w = [0.9, 0.05, 0.05] (green) performs poorly. Weight
w = [0.05, 0.9, 0.05] (orange) performs best.

– Other weight configurations maintain higher and relatively stable throughput.
• (d) Power:

– In the power metric, weight w = [0.05, 0.05, 0.9] (green) reaches the highest level
initially but declines steadily.

– Other weight configurations have lower and more stable power values.

A.5.4 COMPARISON OF MAPPO AND MADDPG

• Reward:
– MAPPO achieved a higher reward value than MADDPG.
– MADDPG shows faster convergence in reward compared to MAPPO.

• Cover:
– MAPPO with weight w = [0.05, 0.05, 0.9] performs poorly in cover, while MADDPG

shows a rapid decline initially.
– Other weight configurations in both algorithms achieve higher cover values, with

MADDPG generally showing more stability.
• Throughput:

– Both MAPPO and MADDPG perform poorly in throughput with weight w =
[0.05, 0.9, 0.05].

– Other weight configurations maintain higher throughput values, with MADDPG show-
ing slightly better stability.

• Power:
– In power, MAPPO with weight w = [0.05, 0.05, 0.9] reaches close to 1, while MAD-

DPG initially reaches a high level but declines.
– Other configurations have lower power values, with MADDPG showing more steady

performance over time.

From the above analysis, we can see that under different preference weights, the single-objective
multi-agent algorithm can learn according to the pre-set preferences. The experimental results verify
the correctness of our simulator.

A.5.5 ANALYSIS OF PARETO FRONTS

As shown in Figure 10, we tested the four preferences set in MAPPO and MADDPG by inputting them
into the multi-objective reinforcement learning algorithms and tried to draw their Pareto frontiers.

• Pareto Fronts for MAPPO:
– The Pareto front for MAPPO includes points such as MAPPO-w1 and MAPPO-w2,

which exhibit high average normalized throughput and high coverage ratio.
– MAPPO-w3 shows significantly lower values in both metrics, indicating it is not part

of the Pareto optimal solutions.
• Pareto Fronts for MADDPG:

– The Pareto front for MADDPG includes points such as MADDPG-Env-w2 and
MADDPG-Env-w3, which have balanced performance in terms of average normalized
throughput and coverage ratio.

– MADDPG-w3, on the other hand, shows poor performance in both metrics, making it
a non-optimal solution.
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• Comparison of MAPPO and MADDPG:
– MAPPO-w1 and MAPPO-w2 achieve higher normalized energy consumption but

perform well in throughput and coverage ratio, indicating a trade-off between energy
consumption and performance.

– MADDPG generally shows more balanced performance across different metrics, with
multiple points lying close to the Pareto front.

– MAPPO demonstrates higher variability in performance based on different weight
configurations compared to MADDPG.

A.5.6 REASONS FOR NON-CONVERGENCE IN MULTI-OBJECTIVE REINFORCEMENT
LEARNING (MORL)

• Conflicting Objectives:
– In our multi-object problem, objectives can conflict, making it difficult for the agent to

optimize all objectives simultaneously.
– This conflict can lead to oscillations in policy updates, preventing convergence.

• High Dimensionality:
– The state and action spaces in wireless optimization multi-object problem are high-

dimensional, increasing the complexity of the learning problem.
– High-dimensional spaces require more data and computation to explore effectively,

which can slow down the learning process and hinder convergence.
• Credit Assignment Problem:

– Assigning credit for outcomes to specific actions becomes more challenging with
multiple objectives, especially when the effects of actions are delayed.

– This problem can lead to suboptimal policy updates, preventing the agent from learning
the optimal policy.

• Exploration vs. Exploitation Dilemma:
– Balancing exploration of the environment and exploitation of known rewards is more

complex with multiple objectives.
– Insufficient exploration can lead to premature convergence to suboptimal policies,

while excessive exploration can slow down convergence.
• Algorithmic Limitations:

– Current MORL algorithms may have inherent limitations in handling the trade-offs
between multiple objectives effectively.

– Improvements in algorithm design and the incorporation of domain knowledge are
necessary to address these limitations.
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