
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENNET: A GENERATIVE AI-DRIVEN MOBILE NET-
WORK SIMULATOR FOR MULTI-OBJECTIVE NETWORK
OPTIMIZATION WITH RL

Anonymous authors
Paper under double-blind review

ABSTRACT

Simulation-based optimization has emerged as a crucial methodology in the field
of mobile network optimization, addressing the need for dynamic and predictive
network management. To address the scarcity of open-source mobile network
simulators for advanced research, we developed GenNet—a generative AI-driven
mobile network simulator. GenNet can create virtual replicas of mobile users, base
stations, and wireless environments, utilizing generative AI methods to simulate
the behaviors of these entities under various network settings with high accuracy.
GenNet features a tailor-made API explicitly designed for reinforcement learning
environments, enabling researchers to finely adjust network parameters such as tilts,
azimuth, and transmitting power. Extensive experiments have employed GenNet
to benchmark multi-objective optimization algorithms, focusing on enhancing
network coverage, throughput, and energy efficiency, validating its effectiveness
as a robust platform for advancing network optimization techniques. Through this
innovative tool, we aim to empower researchers and practitioners to identify and
implement the most effective approaches for network optimization, paving the way
for future advancements in mobile network management.

1 INTRODUCTION

The deployment of the fifth-generation mobile network (5G) has expanded the range of services,
users, and devices on mobile networks, resulting in more complex network environments and
diverse application scenarios (Wu et al., 2017). This complexity introduces significant challenges for
network optimization, which has traditionally depended on mathematical modeling and operations
research (Fei et al., 2016; Aliu et al., 2012). In the typical network optimization process, researchers
first define control variables and objectives and then model these relationships mathematically
before applying optimization algorithms. However, several issues hinder this approach in today’s
5G networks: traditional models struggle to capture the physical realities of increasingly complex
systems; direct testing of optimized configurations in real-world networks is often not feasible,
making it difficult to assess their effectiveness accurately. These issues underscore the urgent need
for innovative network optimization strategies to effectively address the dynamic and complex
requirements of 5G networks.

Simulation-based optimization has emerged as an innovative methodology for addressing the chal-
lenges inherent in current mobile network optimization (Chen et al., 2020; Gong et al., 2023; Huang
et al., 2023; Li & Li, 2023). This approach involves constructing a virtual network simulator that acts
as a digital twin of a physical mobile network, replicating the structure, environment, and state of
network elements or systems with high accuracy. Reinforcement learning-based optimizers work
iteratively with this simulation model to identify the most effective network configurations. This
technique addresses the two principal challenges of traditional optimization methods: modeling
and evaluation difficulties. The simulator avoids complex mathematical modeling by generating a
virtual counterpart of the mobile network. Developers and operators can use this simulator to conduct
What-if Analysis, allowing them to test various network configurations and optimization strategies
without impacting the real-world network. Additionally, because the simulator is designed to be a
high-fidelity replica of the real-world network, it ensures that the optimization strategies developed
are applicable and effective in real-world scenarios. Thus, simulation-based optimization is poised to

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Advantages and disadvantages of GenNet and contextualize it within the landscape of
existing environments.

Simulators Simulation
Methods

Platform
Language

Realistic
Mobility

Realistic
Traffic
Usage

Link
QoS

Scheduling
Support

Handover
Support

Protocol
Stack

Simulation
Time Cost Interpretability

Matlab Rule-based Matlab × × ✓ ✓ × × High High

NS-3
Event-
triggered C++ × × × ✓ × ✓ High High

OMNet++
Event-
triggered C++ × × × ✓ ✓ ✓ High High

OPNET
Event-
triggered C++ × × × ✓ × ✓ High High

SyntheticNET
Rule-based,
Event-
triggered

Python ✓ × ✓ ✓ ✓ ✓ High Medium

CityFlow Data-driven Python ✓ × × × × × Medium Low

MATSim Data-driven Python ✓ × × × × × Medium Low

GenNet Data-driven,
Rule-based

Go,
Python ✓ ✓ ✓ ✓ ✓ × Low Medium

play a critical role in the future evolution of mobile networks. It promises to transform the interaction
with mobile networks and their operational and optimization models, fundamentally changing the
network management landscape.

Creating a virtual simulator of a physical mobile network for performance evaluation is a crucial
research area in networking. Network simulators like NS-3 (Henderson et al., 2008), OPNET (Chang,
1999), Matlab (Tariq et al., 2018), and OMNet++ (Köpke et al., 2008) utilize discrete-event-driven
simulations to mimic the communication behaviors of network elements and assess performance
metrics such as throughput, latency, and data rate. However, these simulators are significantly less
efficient (Hui et al., 2022); their simulation speed is much slower than real-world networks. This
inefficiency hinders their ability to meet the demands of interactions with reinforcement learning-
based optimizers. Hence, there is a pressing need to develop a new virtual simulation technique that
can quickly, efficiently, and accurately simulate the dynamic behavior and performance of networks.

In this paper, we propose GenNet, a generative AI-driven mobile network simulator designed for
multi-objective network optimization with reinforcement learning (RL). This simulator creates a vir-
tual replica of each physical entity within a mobile network, including mobile users, base stations, and
wireless environments. To effectively simulate the behaviors of these network components, GenNet
leverages real-world data from mobile networks and employs generative AI methods such as Gener-
ative Adversarial Networks (GANs) (Cai et al., 2021), Variational Autoencoders (VAEs) (Cemgil
et al., 2020), and diffusion models (Croitoru et al., 2023). Unlike traditional, inefficient discrete-
event-driven network simulations, generative AI models in GenNet are trained on extensive datasets
from real-world mobile networks. This training enables the models to learn the distributional char-
acteristics of network data under various environmental conditions. This approach facilitates an
accurate mapping of environmental factors to network components’ behavioral and performance data,
resulting in an efficient, AI-driven simulation process.

Importantly, GenNet features a user-friendly Application Programming Interface (API) tailored
explicitly for RL environments, making it an ideal tool for RL-based optimizations. As an interactive
simulator, GenNet enables researchers to adjust network settings such as mechanical tilt, electrical
tilt, azimuth, and maximum transmitting power of base stations and generate corresponding network
performance data. Notably, compared to single-objective optimization, which focuses on finding
the best solution for a single metric, multi-objective optimization seeks to balance different goals.
Multi-objective optimization is essential in mobile networks, where trade-offs must be made between
competing factors such as throughput, coverage, energy efficiency, and signal interference. Thus, to
facilitate the development and testing of multi-objective optimization RL algorithms in mobile net-
work scenarios, we conduct comprehensive experiments to benchmark multi-objective optimizations
in mobile networks. GenNet provides a standardized environment for multi-objective optimization,
focusing on optimizing network coverage, throughput, and energy consumption. We introduce
RL-based network optimization baselines, a collection of reliable and efficient implementations of
state-of-the-art algorithms designed to provide a solid foundation for advancing large-scale mobile
network optimization. Notably, all these algorithms are inherently compatible with GenNet.

Our contributions are summarized as follows:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We propose GenNet, the first open-source generative AI-driven mobile network simulator. GenNet
creates virtual replicas of network entities such as mobile users, base stations, and wireless envi-
ronments. It utilizes generative AI methods to accurately simulate the behaviors of these entities
under various network settings based on extensive real-world data, thereby surpassing traditional
discrete-event-driven simulations. GenNet is open-sourced and freely available at GitHub1.

• GenNet provides a tailor-made API for reinforcement learning environments, enabling researchers to
adjust network settings like tilts, azimuth, and transmitting power, generate network performance data,
and explore and evaluate various optimization strategies to identify the most effective approaches.

• We conduct extensive experiments using GenNet to benchmark multi-objective optimization
algorithms in mobile networks to optimize network coverage, network throughput, and energy
consumption. We introduce RL-based optimization baselines compatible with GenNet and validate
its effectiveness as a robust platform for advancing network optimization techniques.

2 RELATED WORK

2.1 SIMULATORS FOR MOBILE NETWORK

Among the available mobile network simulators, Matlab (Tariq et al., 2018) is a highly advanced
link-level simulator that offers a flexible frame structure and various resource scheduling techniques.
However, unlike GenNet, Matlab is not a system-level simulator and lacks features for realistic
mobility and traffic usage modeling for mobile users. Since Matlab does not model user mobility, it
cannot simulate handover mechanisms. Also, Matlab-based simulators face integration challenges
with Python-based reinforcement learning optimizers due to limited platform language support.

Other popular discrete-event mobile network simulators, including NS-3 (Henderson et al., 2008),
OMNeT++ (Köpke et al., 2008), and OPNET (Chang, 1999), deliver accurate packet-level results
through their comprehensive protocol stack implementations. However, due to the absence of user
mobility modeling, NS-3 and OPNET are better suited for core network modeling than mobile access
networks, where key performance indicators like coverage and capacity are essential. Although
OMNeT++ can integrate predefined user trajectories to model handover mechanisms, the complex and
resource-intensive protocol stack simulations make NS-3, OMNeT++, and OPNET computationally
demanding, limiting their ability to model large-scale networks with hundreds of elements realistically.
Furthermore, they lack APIs for reinforcement learning environments, which restricts their utility
in advanced RL optimization scenarios. A recent simulator, SyntheticNET (Zaidi et al., 2020),
integrates the advantages of rule-based simulators like Matlab and event-triggered simulators like
NS-3, OMNeT++, and OPNET. It uses rule-based methods for link-level flexible frame structure
simulation and protocol stack implementation for fine-grained packet-level scheduling. SyntheticNET
also leverages SUMO to provide mobile users with realistic mobility. However, SyntheticNET has a
much higher computational cost due to its integration complexity.

Besides rule-based and event-triggered simulation methods, simulations also use data-driven ap-
proaches. For example, CityFlow (Zhang et al., 2019) and MATSim (W Axhausen et al., 2016)
use black-box neural network models to simulate realistic user mobility in a city. One significant
advantage of data-driven methods is reduced simulation time. Inspired by this, we designed GenNet,
which leverages generative AI methods to simulate mobile networks. Unlike traditional black-box
structures, GenNet applies a grey-box approach, decomposing the mobile network into different
critical elements. GenNet uses a white-box rule-based method for the connections between elements,
while each entity’s behavior is simulated using black-box data-driven methods. Benefiting from
parallelism, GenNet also excels in simulation time. However, we acknowledge that GenNet has
not yet implemented a comprehensive protocol stack, which limits the interpretability of simulation
results for internal network elements.

In summary, we compare the advantages and disadvantages of our proposed GenNet and contextualize
it within the landscape of existing simulation environments, as presented in the Table 1.

1https://github.com/xxx, due to double blind review, the full url cannot be given.

3

https://github.com/

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Mobile User Modeling

Traffic Generation

Wireless Environment
Modeling

GenNet

Reinforcement Learning Based Network Optimizer

Base Station Modeling

Trajectory Generation Energy ConsumptionPhysical Parameters Physical Environment Modeling Signal Propagation Modeling

Network
Configurations

Network Performance
Indicators

Figure 1: The building bocks of GenNet.

2.2 LEARNING-BASED MOBILE NETWORK OPTIMIZATION

The application of reinforcement learning (RL) to adaptively configure operational parameters in
mobile networks has recently garnered significant research interest. Since the pioneering studies
referenced in (Mnih et al., 2015) and (Silver et al., 2016), deep reinforcement learning (DRL)
has become a crucial area within machine learning and artificial intelligence. Algorithms such
as Q-learning (Watkins & Dayan, 1992), actor-critic methods (Konda & Tsitsiklis, 1999), and
policy gradients (Peters & Schaal, 2008) have proven effective in mastering complex tasks in high-
dimensional spaces solely through reward feedback. These algorithms have been successfully applied
to a wide array of mobile network optimization challenges, including energy optimization (El Amine
et al., 2022; Mondal et al., 2021), resource allocation (Huang et al., 2023; Naderializadeh et al., 2021),
mobility management (Alsuhli et al., 2021; Marí-Altozano et al., 2021), and power control (Meng
et al., 2020; Guo et al., 2020). Despite the potential of learning-based methods to develop network
optimization policies, benchmarking these policies on large-scale simulators remains challenging. To
support robust and efficient research in mobile network optimization, GenNet provides standardized
training and evaluation workflows and reliable benchmarking for both single- and multi-objective
optimization tasks. Additionally, we offer implementations of representative RL baseline algorithms
and document their performance using a standard set of metrics on GenNet for reference.

3 GENNET PLATFORM

In this section, we provide an overview of the building blocks of GenNet and its user interface.
A primary objective of GenNet is to base its simulations on real-world mobile network scenarios
and model the complex interactions among mobile users, base stations, wireless environments.
Additionally, GenNet is designed to be both fast and flexible. Users can easily modify or replace each
component described in the building blocks to accommodate their specific project needs.

3.1 SIMULATOR BUILDING BLOCKS

As shown in Figure 1, GenNet focuses on three primary components of mobile access networks:
mobile users, base stations, and wireless environments. We develop virtual versions of each, which are
configured with real-world data. This realism is achieved by modeling their fundamental principles
and parameters using generative AI models. By integrating these components, we can then simulate
network performance and develop the overall platform. The detailed descriptions of the used modeling
methods can be found in Appendix A.1.

Mobile User Modeling

1

Restaurant
visit at 18:00,

stay for 30 mins

Home
visit at 19:00

Step 1: OD trip
generation with

ActSTD

Step 2: Route
generation with

A* algorithm

Figure 2: Generating mobile
user trajectories with two steps.

Mobile users are pivotal in mobile networks, with their charac-
teristics, such as locations and traffic demands, significantly in-
fluencing communication quality. GenNet accurately models and
analyzes communication by simulating mobile users’ trajectories
and traffic demands across various locations and times. The gen-
eration of mobile user trajectories in GenNet involves two key
steps. Initially, we use ActSTD (Yuan et al., 2022) to simulate
user movements between different points of interest, explicitly
creating origin-destination trips. This method employs generative
adversarial imitation learning to detail user trajectories, including
visited locations, visit timestamps, and durations, as illustrated in
Figure 2. For example, it can generate a scenario where user A

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

visits a restaurant at 18:00, stays for 30 minutes and then proceeds home at 19:00. Subsequently, we
employ the A∗ algorithm (Hart et al., 1968) to determine the optimal route between these points,
marked by blue arrows in Figure 2. This step includes modeling pedestrians and vehicles; pedestrians
follow a set speed on sidewalks and crosswalks, while vehicle trajectories are enriched with lane
changes and traffic light dynamics using the Krauss model (Krauß et al., 1997). For modeling users’
traffic demands, we employ MSH-GAN (Li et al., 2024), a multi-scale hierarchical GAN. This
method effectively generates diverse traffic usage patterns using multiple pattern generators and
incorporates various switch modes through multiple switch mode generators.

116.456
116.460

116.464
116.468

116.472

39.908

39.912

39.916

39.920

Figure 3: Guomao area along with
outdoor (large triangles) and indoor
(small triangles) base stations.

Base Station Modeling

GenNet’s base stations are set up with real-world physical pa-
rameters, such as location, height, mechanical tilt, electrical tilt,
azimuth, maximum transmitting power, and the number of an-
tennas. Users can adjust these parameters, but default settings
that used by mobile operators are also available. GenNet can
simulate mobile networks across the entire metropolitan area of
Beijing. The simulation areas encompass a variety of scenarios,
including residential, office, entertainment, and transportation
areas. Users can adjust the ‘microscopic_range’ parameter in
the ‘config.yml’ file to select their desired simulation area. In
this case, we specifically chose the Guomao area, covering
approximately 0.17 km2 and hosting 145 indoor and 39 out-
door base stations, as illustrated in Figure 3. That is because
operators typically group approximately 200 base stations into
a cluster for joint optimization, making the network scale of this area particularly suitable for testing.
Also, GenNet models the energy consumption of base stations, which adheres to the methodology
proposed by Li et al (Li et al., 2023).

Wireless Environment Modeling

The physical environment of a city, particularly the distribution of buildings, significantly affects
wireless signal propagation (Andersen et al., 1995). Our study utilizes OpenStreetMap (Haklay &
Weber, 2008) to gather detailed information on the buildings in Beijing’s Guomao area, including
their outlines and heights. Signal propagation models fall into three main categories: stochastic,
deterministic, and data-driven. In GenNet, we implement both types. The stochastic model, 3GPP TR
38.901 (Zhu et al., 2021), developed by the 3GPP organization, adapts channel modeling to various
settings, including urban, rural, indoor, and outdoor environments. The deterministic model uses Ray
Tracing (Yun & Iskander, 2015), which approximates solutions to Maxwell’s equations based on the
principles of geometrical optics. This method involves launching signal rays from a transmitter and
tracing their interactions with the environment, applying theorems of reflection and diffraction to
assess changes in signal energy and propagation paths.The data-driven model used PEFNet (Jiang
et al., 2024), which integrates computational electromagnetic (CEM) methods with neural networks
to enhance realism, efficiency, and generalization.

Network Performance Modeling

Network performance encompasses a variety of metrics relevant to mobile devices, base stations, and
the overall system. The detailed descriptions can be found in Appendix A.2.

3.2 SYSTEM IMPLEMENTATION
Simulation engine

Client 0

Client 1

Display

Action

 Params

Job name

Reward

State

Basic Info

MongoDB

Person Info

Traffic Info

Channel Info

Local Files
Job 1

Job 0
Load

Output

Server
Grpc(Local)

Control Flow Data Flow Data

Http(Remote)

PostgreSQL

① Initialization ② Client send requests ③ Start a job

④ Data output ⑤ Client receive responses

⑤

④

③ ②

①

①

Start 0

Start 1

···

Figure 4: The data flow of GenNet.

GenNet is a mobile network simu-
lation platform that integrates with
external optimizers through custom
remote procedure calls (RPC). We
use MongoDB and PostgreSQL for
data storage, as illustrated in Figure 4,
which shows the data loading process,
simulation, and output. Input data, in-
cluding base station and mobile user information, is retrieved from MongoDB. Clients initiate

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

simulations by sending a gRPC or HTTP request containing action information, control parameters,
and a job name. Results are stored in PostgreSQL upon completion, and the client receives a response
with rewards and status. Our system facilitates network optimization by interacting with RL-based
optimizers and supports real-time viewing of optimization results by parallel processing multiple
tasks. Simulating millions of mobile users involves complex interactions addressed using paralleliza-
tion techniques like synchronous updates and mutually exclusive access ((Zhang et al., 2022)). This
includes a two-step update process for mobile user interactions with nearby base stations—connection
updates and state computation and storage—both spatially parallelizable. Additionally, we enforce
mutual exclusivity where only one user can occupy a resource block at any base station, managing
this through a mechanism where mobile users connecting to the same base station sequence their
interactions. Furthermore, our simulation engine manages concurrent requests efficiently by running
multiple coroutines per job name without interference.

3.3 ENVIRONMENT INTERFACE

GenNet offers a user-friendly interface that allows researchers to customize network configurations,
such as base station transmit power, resource allocation schemes, and antenna settings (azimuth
and tilt angles). The platform provides a comprehensive suite of APIs that enable reinforcement
learning algorithms to access and modify environmental parameters, optimizing the network setting.
A key component is the abstract base class“Env”, which outlines essential methods and attributes
for a reinforcement learning environment, including state space, action space, environment reset,
and action execution. Environments must inherit from this base class and implement its methods,
ensuring consistency and functionality across different scenarios. The detailed instructions for the
usage of APIs can be found in Appendix A.4.

“Env.reset (self)”: resetting the environment to an initial state and returns the initial observation.

“Env.step (self, action, start, total, interval)”: accepting the agent’s action as input and returns the
next state, reward, termination status, and other information. “Action” is the decision action provided
by RL. “Start” represents the starting step of the simulator. “Total” denotes the total number of steps
the simulator will execute, and “interval” signifies the time interval for each step.

“Env.render (self)”: computing the rendering frames specified during the environment’s initialization.

“Env.close (self)”: closing the environment and frees up resources.

3.4 SIMULATION EFFICIENCY

We compared GenNet with popular simulators. All simulations were conducted on a server equipped
with 128 GB of RAM, an 8-core Intel Xeon CPU E5-2637 v4 @ 3.5 GHz, and an Nvidia GeForce
RTX 2080Ti GPU with 80 GB of memory. Since our simulator integrates multiple key modules into
a unified framework, we evaluated individual modules against corresponding state-of-the-art (SOTA)
simulators to ensure a fair comparison. Specifically, our simulator consists of two main modules: one
for simulating mobile user behaviors and the other for wireless network transmission. For mobile
user behavior simulation, we compared GenNet with CityFlow and MATSim. For wireless network
transmission simulation, we compared GenNet with Matlab and OMNet++. The experimental
results are presented in Table 2. Compared to CityFlow and MATSim, GenNet demonstrates greater
computational efficiency due to its parallel processing capabilities. Additionally, when compared
to Matlab and OMNet++, GenNet exhibits higher speedup, benefiting from the new data-driven
generative AI methods we employed.

Table 2: Simulation Efficiency of GenNet and existing environments.
Simulators Simulation Task Simulation Scale Computation time
GenNet Mobile user behaviors 2,464,950 users 37.70 sec
CityFlow Mobile user behaviors 2,464,950 users 3806.7 sec

MATSim Mobile user behaviors 2,464,950 users 395.48 sec

GenNet Wireless transmission 183 BSs 1.126 sec
Matlab (Ray tracing) Wireless transmission 183 BSs 2.731 hr
OMNet++ (Volume
Integral Equation) Wireless transmission 183 BSs 19.5 min

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 BENCHMARK: MULTI-OBJECTIVE OPTIMIZATION IN MOBILE NETWORKS

We evaluate GenNet as a RL environment by implementing and testing several multi-agent RL
optimization baselines designed for multi-objective optimization in mobile networks. We begin by
defining the standard multi-objective optimization problem and introducing tailored RL baselines.
Next, we conduct an empirical study to compare their performance, aiming to demonstrate GenNet’s
potential applications through straightforward design choices and configurations. We present bench-
mark results for 6 baseline algorithms, ensuring reproducibility and reliability by thoroughly testing
them on our platform. This emphasizes GenNet’s role in facilitating the evaluation of different RL
algorithms and provides robust support for multi-objective optimization problems in mobile network
scenario. Future research may further enhance the performance of these baseline agents.

4.1 PROBLEM DEFINITION

We focus on optimizing antenna angles, beamwidth, and power settings to enhance the performance
of a communication network within the Guomao area. We consider three key network performance
indicators: network throughput, coverage rate, and energy consumption. Specifically, we aim to
maximize the effective coverage rate and user data throughput while minimizing energy consumption.

Network optimization presents a significant challenge, as no single solution can perfectly optimize
all objectives simultaneously. For instance, improving the coverage rate (CR) and throughput (TP)
may result in increased energy consumption (EC) and operational costs. Balancing these conflicting
goals is critical in multi-objective network optimization, which involves a variety of parameters such
as antenna angles, transmission power, and beamwidth. The goal is to identify a set of Pareto-optimal
solutions, where any improvement in one objective would cause deterioration in at least one other
objective. These solutions form what is known as the Pareto front Ngatchou et al. (2005). The
multi-objective optimization problem can be mathematically expressed as follows:

max
AN

{
λ1 · CR + λ2 ·

TP
TPmax

+ λ3 ·
(
1− EC

ECmax

)}
, (1)

s.t.
Pi ∈ [0, Pmax], ∀i ∈ N, (2)
ϕi ∈ [0◦, 360◦), ∀i ∈ N, (3)
θi ∈ [0◦, 90◦], ∀i ∈ N, (4)

βH
i ∈ [45◦, 90◦], ∀i ∈ N, (5)

βV
i ∈ [5◦, 45◦], ∀i ∈ N, (6)
3∑

j=1

λj = 1, λj ≥ 0. (7)

In the objective function equation 1, the terms TPmax and ECmax are the maximum possible throughput
and energy consumption, respectively, used for normalization. The term 1− EC

ECmax
ensures that energy

consumption is minimized, as this term will approach 1 when the energy consumption is low. The
variables AN represent the set of actions for base stations (BSs) N , including parameters such
as transmission power Pi, azimuth angle ϕi, tilt angle θi, horizontal beamwidth βH

i , and vertical
beamwidth βV

i , subject to the constraints given by equation 2 to equation 6. The weights λ1, λ2, and
λ3 in the objective function represent the relative importance of each performance metric: coverage
rate, throughput, and energy consumption, respectively. These weights are adjustable and satisfy the
constraints equation 7. By changing the values of λ1, λ2, and λ3, we can obtain different optimal
solutions, each reflecting a different trade-off among the objectives. The set of all such optimal
solutions forms the Pareto front, representing the set of solutions where no single objective can be
improved without sacrificing at least one other objective.

Given that the adjustment of antenna angles is limited to a range specific to each optimization step,
the decision-making process for the next step is based on the actions of the base stations and the state

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

of the environment at the previous step. This problem can be effectively modeled as a Multi-Objective
Markov Decision Process (MOMDP). A Multi-Objective Markov Decision Process is defined by
the tuple ⟨S,A, P,R, γ,D⟩, where S is the state space. A is the action space. P (s′|s, a) is the state
transition probability, representing the probability of transitioning from state s to state s′ given action
a. R = [r1, ..., rm]T is the vector of reward functions, where each ri : S ×A → R corresponds to
a different objective. γ = [γ1, ..., γm]T ∈ [0, 1]m is the vector of discount factors. D is the initial
state distribution. m is the number of objectives. In the context of mobile network optimization, the
MOMDP is defined as follows. State Space (S) includes all possible configurations of the network,
such as the current positions of users, signal strengths, current antenna angles, base station power,
and other relevant environmental factors. Action Space (A) consists of all possible adjustments
to the antenna angles and base station power. Reward Functions (R) includes multiple reward
functions corresponding to the performance metrics we aim to optimize. Discount Factors (γ) reflect
the importance of future rewards compared to immediate rewards for each objective. Initial State
Distribution (D) reflects the starting conditions of the network before any optimization steps have
been taken. By modeling the network optimization problem as a MOMDP, we can leverage multi-
objective reinforcement learning (MORL) techniques to find Pareto-optimal policies that provide the
best trade-offs among the various conflicting objectives.

4.2 EXPERIMENTAL SETTINGS

Experimental Environments

Experiments are conducted in a densely populated sector of Beijing’s Guomao Region. The experi-
mental setup included 183 BSs, comprising 39 outdoor and 144 indoor BSs. It is important to note
the disparities in transmission power and path attenuation between indoor and outdoor BSs. The
bandwidth allocated for each BS was set at 1.8×105 Hz, and the noise density was maintained at -174
dBm/Hz. The experimental area spanned 1770 meters by 1560 meters, resulting in a grid resolution
of 10 meters and a total of 27,612 grids. The threshold for the Reference Signal Received Power
(RSRP) was established at -100 dBm. The maximum transmission power of outdoor BSs is 46dBm,
and the maximum transmission power of indoor BSs is 24dBm. The other detailed information of
experimental settings can be found in Appendix A.3.

Multi-agent RL Baselines

We conducted a comparative analysis of the vanilla MAPPO (Yu et al., 2022) and MADDPG
(Kaur et al., 2023), two of the most established and widely used multi-agent reinforcement learn-
ing algorithms. We also integrated MAPPO and MADDPG with multi-objective optimization
methods—Envelope (Yang et al., 2019), a representative single-policy multi-objective optimization
approach, and Prediction Guide (PG) (Xu et al., 2020), a typical multi-policy multi-objective opti-
mization technique as benchmark baselines. The detailed introduction of baseline methods can be
found in Appendix A.5.

Evaluation Metrics

In single-objective RL settings (i.e., MAPPO and MADDPG), policies are evaluated based on their
corresponding reward. For multi-objective RL (i.e., Envelope and PG), we utilize the following three
evaluation metrics. Expected utility (Zintgraf et al., 2015) (↑). The utility function expresses the
expected utility over a distribution of reward weights. Sparsity (Xu et al., 2020) (↓). This metric

(a) MAPPO. (b) MADDPG.

Figure 5: Reward curves of MAPPO and MADDPG.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Expected Utility. (b) Sparsity. (c) Hypervolume.

Figure 6: Results for MAPPO Envelope.

(a) Expected Utility. (b) Sparsity. (c) Hypervolume.

Figure 7: Results for MAPPO Prediction Guide (PG).

characterizes the diversity of the policies in a given Pareto front. Hypervolume (Zitzler, 1999) (↑).
Hypervolume assesses the optimizer’s performance by simultaneously considering the proximity
of points to the Pareto front, as well as their diversity and distribution. The hight the better. For a
detailed mathematical expression of the metrics, please refer to the Appendix A.5.1.

4.3 BENCHMARK RESULTS

As illustrated in Figure 5, we conducted experiments using MAPPO and MADDPG under four differ-
ent weight settings, with each episode consisting of 10 time steps. The algorithms converged after
approximately 2000 episodes for MAPPO and 800 episodes for MADDPG. The results demonstrate
that MAPPO consistently outperforms MADDPG across both weight settings. Notably, during the
initial 1000 episodes, MAPPO exhibited greater oscillations in performance compared to MADDPG.
We attribute this increased volatility to MAPPO’s more extensive exploration of the action space,
which introduces fluctuations in its performance metrics. This suggests that while MAPPO’s ex-
ploratory strategy ultimately leads to superior performance, it also incurs higher variability during the
early stages of learning.

In our experiments, we evaluated the performance of four multi-objective multi-agent reinforce-
ment learning (MOMARL) methods: MAPPO Envelope, MAPPO PG, MADDPG Envelope, and
MADDPG PG. Given the inherent challenges in achieving convergence in multi-agent environments,
particularly when optimizing for multiple objectives, we increased the number of time steps per
episode to 100. This extension was intended to provide more opportunities for learning within each
episode and to better assess the convergence behavior of each method. As illustrated in Figures
6, 7, 8, and 9, the MAPPO Envelope method demonstrated the best performance among the four
approaches across all evaluated metrics. Figure 10 draws the Pareto frontiers across different algo-
rithms. Although its results were superior to the other methods, it is important to emphasize that
the overall performance of the MAPPO Envelope method was still suboptimal, and significant room
for improvement remains. Specifically, while MAPPO Envelope outperformed MAPPO PG, the

(a) Expected Utility. (b) Sparsity. (c) Hypervolume.

Figure 8: Results for MADDPG Envelope.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Expected Utility. (b) Sparsity. (c) Hypervolume.

Figure 9: Results for MADDPG Prediction Guide (PG).

Figure 10: Pareto frontiers of different algorithms.

improvement was only marginal, and neither method achieved robust convergence. The MAPPO
PG method exhibited inconsistent learning dynamics and failed to demonstrate a clear convergence
pattern throughout the training process. Alternatively, the MADDPG-based methods, particularly the
MADDPG Envelope, performed poorly. The MADDPG Envelope method, in particular, failed to
converge altogether, reflecting its inability to handle the complexity of the multi-agent, multi-objective
environment in our experiments. Similarly, the MADDPG PG method struggled with convergence,
and its performance metrics lagged behind those of the MAPPO-based methods.

In conclusion, while the MAPPO Envelope method yielded the best results among the tested methods,
none of the four approaches consistently achieved satisfactory convergence or optimal performance.
These findings highlight the complexity and challenges inherent in multi-objective multi-agent
optimization. Future research should focus on exploring more advanced methods in this area,
potentially incorporating novel strategies for improving convergence and performance in MOMARL
settings. Additionally, further work is needed to investigate how to more effectively balance multiple
objectives across agents, which remains a critical issue in this field. Detailed results and further
analysis can be found in the Appendix A.5.

5 CONCLUSION

In this work, we propose GenNet, a generative AI-driven mobile network simulator. To the best of our
knowledge, GenNet is the first open-source, Python-based mobile network simulator equipped with a
tailor-made API for reinforcement learning environments. This feature allows researchers to adjust
network settings and finely evaluate various optimization strategies. Extensive experiments using
multi-objective optimization algorithms in mobile networks focus on enhancing network coverage,
throughput, and energy consumption, showcasing GenNet’s effectiveness as a robust platform for
advancing network optimization techniques.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Osianoh Glenn Aliu, Ali Imran, Muhammad Ali Imran, and Barry Evans. A survey of self organisation
in future cellular networks. IEEE Communications Surveys & Tutorials, 15(1):336–361, 2012.

Ghada Alsuhli, Karim Banawan, Kareem Attiah, Ayman Elezabi, Karim G Seddik, Ayman Gaber,
Mohamed Zaki, and Yasser Gadallah. Mobility load management in cellular networks: A deep
reinforcement learning approach. IEEE Transactions on Mobile Computing, 22(3):1581–1598,
2021.

Jorgen Bach Andersen, Theodore S Rappaport, and Susumu Yoshida. Propagation measurements and
models for wireless communications channels. IEEE Communications magazine, 33(1):42–49,
1995.

Zhipeng Cai, Zuobin Xiong, Honghui Xu, Peng Wang, Wei Li, and Yi Pan. Generative adversarial
networks: A survey toward private and secure applications. ACM Computing Surveys (CSUR), 54
(6):1–38, 2021.

Taylan Cemgil, Sumedh Ghaisas, Krishnamurthy Dvijotham, Sven Gowal, and Pushmeet Kohli. The
autoencoding variational autoencoder. Advances in Neural Information Processing Systems, 33:
15077–15087, 2020.

Xinjie Chang. Network simulations with opnet. In Proceedings of the 31st conference on Winter
simulation: Simulation—a bridge to the future-Volume 1, pp. 307–314, 1999.

Yawen Chen, Yu Liu, Ming Zeng, Umber Saleem, Zhaoming Lu, Xiangming Wen, Depeng Jin,
Zhu Han, Tao Jiang, and Yong Li. Reinforcement learning meets wireless networks: A layering
perspective. IEEE Internet of Things Journal, 8(1):85–111, 2020.

Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models
in vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(9):
10850–10869, 2023.

Ali El Amine, Jean-Paul Chaiban, Hussein Al Haj Hassan, Paolo Dini, Loutfi Nuaymi, and Roger
Achkar. Energy optimization with multi-sleeping control in 5g heterogeneous networks using
reinforcement learning. IEEE Transactions on Network and Service Management, 19(4):4310–
4322, 2022.

Zesong Fei, Bin Li, Shaoshi Yang, Chengwen Xing, Hongbin Chen, and Lajos Hanzo. A survey of
multi-objective optimization in wireless sensor networks: Metrics, algorithms, and open problems.
IEEE Communications Surveys & Tutorials, 19(1):550–586, 2016.

Jiahui Gong, Qiaohong Yu, Tong Li, Haoqiang Liu, Jun Zhang, Hangyu Fan, Depeng Jin, and Yong
Li. Scalable digital twin system for mobile networks with generative ai. In Proceedings of the
21st Annual International Conference on Mobile Systems, Applications and Services, pp. 610–611,
2023.

Delin Guo, Lan Tang, Xinggan Zhang, and Ying-Chang Liang. Joint optimization of handover control
and power allocation based on multi-agent deep reinforcement learning. IEEE Transactions on
Vehicular Technology, 69(11):13124–13138, 2020.

Mordechai Haklay and Patrick Weber. Openstreetmap: User-generated street maps. IEEE Pervasive
computing, 7(4):12–18, 2008.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107, 1968.

Thomas R Henderson, Mathieu Lacage, George F Riley, Craig Dowell, and Joseph Kopena. Network
simulations with the ns-3 simulator. SIGCOMM demonstration, 14(14):527, 2008.

Wenzhen Huang, Tong Li, Yuting Cao, Zhe Lyu, Yanping Liang, Li Yu, Depeng Jin, Junge Zhang,
and Yong Li. Safe-nora: Safe reinforcement learning-based mobile network resource allocation for
diverse user demands. In Proceedings of the 32nd ACM International Conference on Information
and Knowledge Management, pp. 885–894, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Linbo Hui, Mowei Wang, Liang Zhang, Lu Lu, and Yong Cui. Digital twin for networking: A
data-driven performance modeling perspective. IEEE Network, 2022.

Fenyu Jiang, Tong Li, Xingzai Lv, Hua Rui, and Depeng Jin. Physics-informed neural networks for
path loss estimation by solving electromagnetic integral equations. IEEE Transactions on Wireless
Communications, 2024.

Amandeep Kaur, Jaismin Thakur, Mukul Thakur, Krishan Kumar, Arun Prakash, and Rajeev Tripathi.
Deep recurrent reinforcement learning based distributed dynamic spectrum access in multichannel
wireless networks with imperfect feedback. IEEE Transactions on Cognitive Communications and
Networking, 2023.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

Andreas Köpke, Michael Swigulski, Karl Wessel, Daniel Willkomm, PT Klein Haneveld, Tom EV
Parker, Otto W Visser, Hermann S Lichte, and Stefan Valentin. Simulating wireless and mobile
networks in omnet++ the mixim vision. In Proceedings of the 1st international conference on
Simulation tools and techniques for communications, networks and systems & workshops, pp. 1–8,
2008.

Stefan Krauß, Peter Wagner, and Christian Gawron. Metastable states in a microscopic model of
traffic flow. Physical Review E, 55(5):5597, 1997.

Tong Li and Yong Li. Artificial intelligence for reducing the carbon emissions of 5g networks in
china. NATURE SUSTAINABILITY, 6(12):1522–1523, 2023.

Tong Li, Li Yu, Yibo Ma, Tong Duan, Wenzhen Huang, Yan Zhou, Depeng Jin, Yong Li, and Tao
Jiang. Carbon emissions of 5g mobile networks in china. Nature Sustainability, 6(12):1620–1631,
2023.

Tong Li, Shuodi Hui, Shiyuan Zhang, Huandong Wang, Yuheng Zhang, Pan Hui, Depeng Jin, and
Yong Li. Mobile user traffic generation via multi-scale hierarchical gan. ACM Transactions on
Knowledge Discovery from Data, 2024.

María Luisa Marí-Altozano, Stephen S Mwanje, Salvador Luna Ramírez, Matías Toril, Henning
Sanneck, and Carolina Gijón. A service-centric q-learning algorithm for mobility robustness
optimization in lte. IEEE Transactions on Network and Service Management, 18(3):3541–3555,
2021.

Fan Meng, Peng Chen, Lenan Wu, and Julian Cheng. Power allocation in multi-user cellular networks:
Deep reinforcement learning approaches. IEEE Transactions on Wireless Communications, 19
(10):6255–6267, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Abhishek Mondal, Deepak Mishra, Ganesh Prasad, and Ashraf Hossain. Joint optimization framework
for minimization of device energy consumption in transmission rate constrained uav-assisted iot
network. IEEE Internet of Things Journal, 9(12):9591–9607, 2021.

Navid Naderializadeh, Jaroslaw J Sydir, Meryem Simsek, and Hosein Nikopour. Resource manage-
ment in wireless networks via multi-agent deep reinforcement learning. IEEE Transactions on
Wireless Communications, 20(6):3507–3523, 2021.

Patrick Ngatchou, Anahita Zarei, and A El-Sharkawi. Pareto multi objective optimization. In
Proceedings of the 13th international conference on, intelligent systems application to power
systems, pp. 84–91. IEEE, 2005.

Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients. Neural
networks, 21(4):682–697, 2008.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Muhammad Tariq, Muhammad Rizwan Anjum, and Muhammad Amjad. Design of simulation system
for lte-u using 5 ghz band in matlab. Wireless Personal Communications, 100:1661–1676, 2018.

Kay W Axhausen, Andreas Horni, and Kai Nagel. The multi-agent transport simulation MATSim.
Ubiquity Press, 2016.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.

Qingqing Wu, Geoffrey Ye Li, Wen Chen, Derrick Wing Kwan Ng, and Robert Schober. An overview
of sustainable green 5g networks. IEEE wireless communications, 24(4):72–80, 2017.

Jie Xu, Yunsheng Tian, Pingchuan Ma, Daniela Rus, Shinjiro Sueda, and Wojciech Matusik.
Prediction-guided multi-objective reinforcement learning for continuous robot control. In In-
ternational conference on machine learning, pp. 10607–10616. PMLR, 2020.

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective
reinforcement learning and policy adaptation. Advances in neural information processing systems,
32, 2019.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information
Processing Systems, 35:24611–24624, 2022.

Yuan Yuan, Jingtao Ding, Huandong Wang, Depeng Jin, and Yong Li. Activity trajectory generation
via modeling spatiotemporal dynamics. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 4752–4762, 2022.

Zhengqing Yun and Magdy F Iskander. Ray tracing for radio propagation modeling: Principles and
applications. IEEE access, 3:1089–1100, 2015.

Syed Muhammad Asad Zaidi, Marvin Manalastas, Hasan Farooq, and Ali Imran. Syntheticnet: A
3gpp compliant simulator for ai enabled 5g and beyond. IEEE Access, 8:82938–82950, 2020.

Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou, Weinan Zhang, Yong
Yu, Haiming Jin, and Zhenhui Li. Cityflow: A multi-agent reinforcement learning environment for
large scale city traffic scenario. In The world wide web conference, pp. 3620–3624, 2019.

Jun Zhang, Depeng Jin, and Yong Li. Mirage: an efficient and extensible city simulation framework
(systems paper). Proceedings of the 30th International Conference on Advances in Geographic
Information Systems, 2022.

Qiuming Zhu, Cheng-Xiang Wang, Boyu Hua, Kai Mao, Shan Jiang, and Mengtian Yao. 3gpp tr
38.901 channel model. In the wiley 5G Ref: the essential 5G reference online, pp. 1–35. Wiley
Press, 2021.

Luisa M Zintgraf, Timon V Kanters, Diederik M Roijers, Frans Oliehoek, and Philipp Beau. Quality
assessment of morl algorithms: A utility-based approach. In Benelearn 2015: proceedings of the
24th annual machine learning conference of Belgium and the Netherlands, 2015.

Eckart Zitzler. Evolutionary algorithms for multiobjective optimization: Methods and applications,
volume 63. Shaker Ithaca, 1999.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

In the appendix, we provide a comprehensive overview of the reinforcement learning interfaces used
to optimize base station parameters in our wireless network environment. The RL interface plays a
critical role in enabling intelligent decision-making for parameter optimization, ensuring improved
coverage, throughput, and energy efficiency.

A.1 TECHNICAL DESCRIPTIONS FOR THE MODULES USED IN GENNET

Below are detailed descriptions of the three major generative methods in our simulator GenNet.

ActSTD (Yuan et al., 2022): ActSTD simulates user movements between points of interest using a
Generative Adversarial Imitation Learning framework. This method captures complex spatiotemporal
dynamics by modeling activity trajectories as point processes. To handle irregularly sampled activities,
ActSTD leverages neural differential equations to generate activities sequentially based on learned
dynamics.

MSH-GAN (Li et al., 2024): MSH-GAN simulates mobile users’ traffic usage with generative
adversarial networks. It models micro-scale behavior patterns using BiLSTM networks and self-
attention mechanisms, bridging these patterns to macro-scale user clusters through switch mode
generators. MSH-GAN also captures multi-scale temporal dynamics with Temporal Convolutional
Networks (TCNs).

PEFNet (Jiang et al., 2024): PEFNet simulates wireless propagation in our simulator. It combines
knowledge-driven and data-driven approaches for path loss estimation in wireless transmission.
PEFNet integrates Computational Electromagnetic (CEM) methods with neural networks to enhance
realism, efficiency, and generalization, making it the first approach to merge these methodologies for
this task.

During the training process for ActSTD, we collaborated with a major mobile network operator in
China, which provided us with a dataset comprising 10,000 users in Beijing over the course of one
month. This dataset includes the following categories of points of interest: Company, Concerts,
Culture and Art, Education, Entertainment, Food, Government, Life Services, Market, Medicine,
School, Shops, Sports, Travel, and University. The dataset records anonymous user IDs, timestamps,
POI types, and latitude-longitude coordinates.

For training MSH-GAN, we again partnered with the operator to collect traffic usage data from
6,055 users over one week, specifically from April 20th to April 26th, 2016, in Shanghai. Traffic
usage records were collected every half hour, with each record containing the anonymous user ID,
timestamp, and traffic volume.

To train PEFNet, we utilized an open-access dataset called RSRPSet, measured by Huawei Technolo-
gies Co. This dataset contains information on base stations and receivers, as well as the corresponding
Reference Signal Received Power (RSRP). There are approximately 5 million entries in the dataset,
with each entry comprising 17 features. Importantly, no sensitive user information is included.

A.2 NETWORK PERFORMANCE INDICATORS IN GENNET

Network performance encompasses a variety of metrics relevant to mobile devices, base stations, and
the overall system.

Mobile Device Indicators: These include the device’s connection status with the base station,
allocated resource blocks, received power, interference power, signal-to-interference-plus-noise ratio
(SINR), and communication rates.

Base Station Performance: Key metrics here cover the data rates provided to and required by
mobile users, the number of connected users, and the classification of users into those with satisfied
and unsatisfied communication demands. Additionally, this includes the measurement of energy
consumption at the base station.

System Performance: This aspect integrates data from all users and base stations across the network.
It monitors total and active users, classifying them based on whether their serviced data rates meet
their desired rates. It also calculates the total of all users’ desired and currently serviced data rates.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Moreover, the system tracks the coverage ratio, which indicates the proportion of the area with
adequate network signal and the overall energy consumption.

A.3 REINFORCEMENT LEARNING FRAMEWORK

We developed our RL interface using the Gym framework, which is widely recognized for its
simplicity and effectiveness in designing and evaluating RL algorithms. Our environment simulates a
wireless network scenario where agents (base stations) interact with the environment (network users
and physical terrain) to optimize key performance metrics.

A.3.1 ENVIRONMENT SETUP

The environment setup includes several key components:

• State Space: The state space represents the current configuration of the wireless network,
including base station positions, antenna angles, and user distribution.

• Action Space: The action space defines the possible adjustments that can be made to the
base station parameters, such as changing the transmission power or adjusting the antenna
downtilt angle.

• Reward Function: The reward function provides feedback to the RL agent based on the
performance of the network, with rewards for improved coverage, higher throughput, and
lower energy consumption.

A.3.2 STATE SPACE REPRESENTATION

The state space in our environment is represented by a multi-dimensional vector that includes:

• Base Station Parameters: Transmission power, azimuth angle, downtilt angle, horizontal
beamwidth, and vertical beamwidth.

• Network Performance Metrics: Current coverage area, throughput, and energy consump-
tion.

• User Distribution: Location and density of users within the coverage area.

This comprehensive representation ensures that the RL agent has access to all relevant information
needed to make informed decisions.

A.3.3 ACTION SPACE DESIGN

The action space is designed to allow the RL agent to make fine-grained adjustments to the base
station parameters. Actions are represented as discrete or continuous changes in the following
parameters:

• Transmission Power: Adjusting the power output of the base station to balance coverage
and energy consumption.

• Antenna Azimuth Angle: Rotating the antenna to optimize the direction of the signal beam.
• Antenna Downtilt Angle: Adjusting the angle of the antenna to control the vertical spread

of the signal.
• Horizontal Beamwidth: Modifying the width of the signal beam in the horizontal plane.
• Vertical Beamwidth: Modifying the width of the signal beam in the vertical plane.

A.3.4 REWARD FUNCTION FORMULATION

The reward function is a critical component of the RL interface, guiding the agent towards optimal
configurations. Our reward function is designed to balance multiple objectives:

R = α× Coverage + β × Throughput − γ × Energy Consumption (8)
where α, β, and γ are weighting factors that determine the relative importance of each metric. This
formulation ensures that the agent receives positive rewards for increasing coverage and throughput
while minimizing energy consumption. Weights can be set by the user.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.3.5 TRAINING THE RL AGENT

Training the RL agent involves iteratively interacting with the environment to learn the optimal policy
for parameter adjustments. The training process includes:

• Exploration: The agent explores different actions to understand their impact on network
performance.

• Exploitation: The agent leverages its knowledge to choose actions that maximize the reward
based on past experiences.

• Policy Update: The agent updates its policy using reinforcement learning algorithms.

A.4 USAGE OF THE RL ENVIRONMENT

In this subsection, we provide a detailed guide on how to utilize the reinforcement learning environ-
ment developed for optimizing base station parameters. The RL environment is designed to simulate
a wireless network, allowing for the optimization of key performance metrics such as coverage,
throughput, and energy consumption.

A.4.1 ENVIRONMENT INITIALIZATION

To begin using the RL environment, it is essential to initialize it correctly. Below are the steps and
code examples to set up the environment.

Import Necessary Libraries First, import the necessary libraries and modules required for the
environment.

import pycomm # The client interface of the simulator
from pycomm import CoverageEnv

Create and Reset Environment Create an instance of the environment and reset it to start the
simulation.

Create the RL environment
env = CoverageEnv(job="coverage", port=51410)

Reset the environment to get the initial observation
obs, info = env.reset()

A.4.2 ACTION SPACE AND OBSERVATION SPACE

Understanding the action space and observation space is crucial for interacting with the environment
effectively.

Get Action and Observation Space Retrieve and print the action space and observation space to
understand their formats and value ranges.

Get action space
action_space = env.action_space
print("Action Space:", action_space)

Get observation space
observation_space = env.observation_space
print("Observation Space:", observation_space)

Action Space Details The action space includes the possible actions that the agent can take, such as
adjusting the base station’s transmission power, azimuth angle, downtilt angle, horizontal beamwidth,
and vertical beamwidth. Each action is represented as a discrete or continuous value within a specified
range.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Observation Space Details The observation space provides the state of the environment, including
the current configuration of the base station parameters, network performance metrics (coverage,
throughput, energy consumption), and user distribution. The observation space is represented as a
multi-dimensional vector.

A.4.3 ENVIRONMENT STEP FUNCTION

To interact with the environment, the agent performs actions, and the environment responds with new
observations, rewards, and additional information.

Step Function Execution The step function is used to execute an action in the environment and
obtain the resulting state, reward, and other information.

Sample a random action
action = env.action_space.sample()

Perform the action and get the results
next_state, reward, done, info = env.step(action)

Print the results
print("Next State:", next_state)
print("Reward:", reward)
print("Done:", done)
print("Info:", info)

State and Reward Information The state information includes the updated base station parameters
and network performance metrics. The reward is calculated based on the improvement in coverage,
throughput, and energy efficiency.

A.4.4 TASKS AND CONSTRAINTS

The environment supports various optimization tasks and constraints to simulate real-world scenarios.

Supported Tasks The primary tasks supported by the environment include:

• Coverage Optimization: Maximizing the area covered by the base station signal.

• Throughput Optimization: Enhancing the data transmission rate across the network.

• Energy Efficiency Optimization: Reducing the energy consumption of base stations while
maintaining performance.

Supported Constraints The environment imposes constraints on the actions to ensure realistic and
feasible configurations:

• Power Constraints: Limits on the transmission power of base stations.

• Antenna Angle Constraints: Restrictions on the azimuth and downtilt angles of antennas.

• Beamwidth Constraints: Constraints on the horizontal and vertical beamwidth of the
signal.

A.4.5 VISUALIZATION SUPPORT

The environment includes visualization capabilities to render the network and base station configura-
tions, providing insights into the optimization process.

Render Environment The following code snippet demonstrates how to render the environment.

Render the environment
env.render()

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

The rendering provides a visual representation of the base stations, coverage areas, and user distribu-
tion, aiding in the analysis and debugging of the optimization process.

A.4.6 PERFORMANCE METRICS

To evaluate the performance of the RL agent, we measure several key metrics:

• Coverage Ratio: The ratio of the area covered by the base station signals.

• Network Throughput: The aggregate data transmission rate achieved across the network.

• Energy Consumption: The total energy consumed by the base stations.

A.4.7 EXAMPLE USAGE

Below is a complete example of initializing the environment, performing actions, and visualizing the
results.

import pycomm
from pycomm import CoverageEnv

Create the RL environment
env = CoverageEnv(job="coverage", port=51410)

Reset the environment
obs, info = env.reset()

Loop to perform actions
for _ in range(100):

Sample a random action
action = env.action_space.sample()

Perform the action
next_state, reward, done, info = env.step(action)

Render the environment
env.render()

Break the loop if done
if done:

break

Close the environment
env.close()

This example demonstrates the typical workflow for using the RL environment, from initialization
to execution and visualization. By following these steps, researchers can effectively leverage the
environment to optimize wireless network parameters and achieve significant improvements in
performance metrics.

A.5 ALGORITHM COMPARISON

In order to verify the functionality of our simulation platform, we compared several RL algorithms:

MAPPO (Yu et al., 2022): MAPPO extends the PPO algorithm for multi-agent environments,
coordinating multiple agents to learn optimal policies while preventing interference among them.

MADDPG (Kaur et al., 2023): A multi-agent version of DDPG that uses centralized training and
decentralized execution to learn policies in multi-agent environments.

MAPPO Envelop: Extending Envelop Yang et al. (2019) to multi-agent case with MAPPO framework
to cope with large-scale network optimization problem. The Envelope algorithm manages trade-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) Normalized Reward. (b) Normalized Coverage Rate.

(c) Normalized User Throughput. (d) Normalized Energy Consumption.

Figure 11: The convergence curves of MAPPO.

offs in multi-objective reinforcement learning by constructing an “envelope” around the objectives,
optimizing them simultaneously without excessive bias.

MAPPO PG: Extending PG Xu et al. (2020) to multi-agent case with MAPPO framework to cope
with large-scale network optimization problem. PG method uses predictive models to guide the RL
process by predicting outcomes across multiple objectives, aiding in decision-making, and optimizing
all objectives concurrently, particularly in continuous control tasks.

MADDPG Envelop: Extending Envelop Yang et al. (2019) to multi-agent case with MADDPG
framework to cope with large-scale network optimization problem. The Envelope algorithm man-
ages trade-offs in multi-objective reinforcement learning by constructing an “envelope” around the
objectives, optimizing them simultaneously without excessive bias.

MADDPG PG: Extending PG Xu et al. (2020) to multi-agent case with MADDPG framework to
cope with large-scale network optimization problem. PG method uses predictive models to guide
the RL process by predicting outcomes across multiple objectives, aiding in decision-making, and
optimizing all objectives concurrently, particularly in continuous control tasks.

A.5.1 EVALUATION METRICS

Expected utility (Zintgraf et al., 2015) (↑). The utility function expresses the expected utility over a
distribution of reward weights, W . Let Π be a set of policies and F̃ = {vπ | π ∈ Π} represent its
corresponding approximate Pareto front. Expected utility metric is then defined as follows:

EU(F̃) = Ew∼W

[
max
vπ∈F

vπ ·w
]
. (9)

Sparsity (Xu et al., 2020) (↓). This metric characterizes the diversity of the policies in a given Pareto
front, which is given by:

S(F̃) =
1

|F̃ | − 1

m∑
j=1

|F̃|−1∑
i=1

(Lj(i)− Lj(i+ 1))
2
, (10)

where Lj is the sorted list of the values of the j-th objective considering all policies in F̃ , and Lj(i)
is the i-th value in Lj .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) Normalized Reward. (b) Normalized Coverage Rate.

(c) Normalized User Throughput. (d) Normalized Energy Consumption.

Figure 12: The convergence curves of MADDPG.

Hypervolume (Zitzler, 1999) (↑). Given a reference point, vref , the hypervolume metric is defined
as:

HV
(
F̃ ,vref

)
=

⋃
vπ∈F̃

volume (vref ,v
π) , (11)

where volume (vref , v
π) is the volume of the hypercube spanned by the reference vector, vref , and

the vector, vπ .

A.5.2 ANALYSIS OF MAPPO

• (a) reward:
– Different weights (w) show varying trends in the reward metric.
– Weight w = [0.05, 0.05, 0.9] (green) achieves the highest reward, indicating that this

weight configuration leads to the best expected reward performance.
– Other weight configurations have relatively lower and stable rewards.

• (b) cover:
– In the cover metric, weight w = [0.05, 0.05, 0.9] (green) performs poorly, nearly at 0.

Weight w = [0.05, 0.9, 0.05] (orange) performs best.
– Other weight configurations achieve relatively higher and more fluctuating cover values.

• (c) throughput:
– In the throughput metric, weight w = [0.05, 0.05, 0.9] (green) also performs poorly,

nearly at 0.
– Other weight configurations maintain higher and relatively stable throughput.

• (d) power:
– In the power metric, weight w = [0.05, 0.05, 0.9] (green) reaches a level close to 1.
– Other weight configurations have lower and stable power values.

A.5.3 ANALYSIS OF MADDPG

• (a) Reward:
– Weight w = [0.9, 0.05, 0.05] (blue) achieves the highest reward, indicating that this

weight configuration leads to the best expected reward performance.
– Other weight configurations have relatively lower and stable rewards.

• (b) Cover:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

– In the cover metric, weight w = [0.05, 0.05, 0.9] (green) performs poorly, with a rapid
decline.

– Other weight configurations achieve higher and more stable cover values.
• (c) Throughput:

– In the throughput metric, weight w = [0.9, 0.05, 0.05] (green) performs poorly. Weight
w = [0.05, 0.9, 0.05] (orange) performs best.

– Other weight configurations maintain higher and relatively stable throughput.
• (d) Power:

– In the power metric, weight w = [0.05, 0.05, 0.9] (green) reaches the highest level
initially but declines steadily.

– Other weight configurations have lower and more stable power values.

A.5.4 COMPARISON OF MAPPO AND MADDPG

• Reward:
– MAPPO achieved a higher reward value than MADDPG.
– MADDPG shows faster convergence in reward compared to MAPPO.

• Cover:
– MAPPO with weight w = [0.05, 0.05, 0.9] performs poorly in cover, while MADDPG

shows a rapid decline initially.
– Other weight configurations in both algorithms achieve higher cover values, with

MADDPG generally showing more stability.
• Throughput:

– Both MAPPO and MADDPG perform poorly in throughput with weight w =
[0.05, 0.9, 0.05].

– Other weight configurations maintain higher throughput values, with MADDPG show-
ing slightly better stability.

• Power:
– In power, MAPPO with weight w = [0.05, 0.05, 0.9] reaches close to 1, while MAD-

DPG initially reaches a high level but declines.
– Other configurations have lower power values, with MADDPG showing more steady

performance over time.

From the above analysis, we can see that under different preference weights, the single-objective
multi-agent algorithm can learn according to the pre-set preferences. The experimental results verify
the correctness of our simulator.

A.5.5 ANALYSIS OF PARETO FRONTS

As shown in Figure 10, we tested the four preferences set in MAPPO and MADDPG by inputting them
into the multi-objective reinforcement learning algorithms and tried to draw their Pareto frontiers.

• Pareto Fronts for MAPPO:
– The Pareto front for MAPPO includes points such as MAPPO-w1 and MAPPO-w2,

which exhibit high average normalized throughput and high coverage ratio.
– MAPPO-w3 shows significantly lower values in both metrics, indicating it is not part

of the Pareto optimal solutions.
• Pareto Fronts for MADDPG:

– The Pareto front for MADDPG includes points such as MADDPG-Env-w2 and
MADDPG-Env-w3, which have balanced performance in terms of average normalized
throughput and coverage ratio.

– MADDPG-w3, on the other hand, shows poor performance in both metrics, making it
a non-optimal solution.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

• Comparison of MAPPO and MADDPG:
– MAPPO-w1 and MAPPO-w2 achieve higher normalized energy consumption but

perform well in throughput and coverage ratio, indicating a trade-off between energy
consumption and performance.

– MADDPG generally shows more balanced performance across different metrics, with
multiple points lying close to the Pareto front.

– MAPPO demonstrates higher variability in performance based on different weight
configurations compared to MADDPG.

A.5.6 REASONS FOR NON-CONVERGENCE IN MULTI-OBJECTIVE REINFORCEMENT
LEARNING (MORL)

• Conflicting Objectives:
– In our multi-object problem, objectives can conflict, making it difficult for the agent to

optimize all objectives simultaneously.
– This conflict can lead to oscillations in policy updates, preventing convergence.

• High Dimensionality:
– The state and action spaces in wireless optimization multi-object problem are high-

dimensional, increasing the complexity of the learning problem.
– High-dimensional spaces require more data and computation to explore effectively,

which can slow down the learning process and hinder convergence.
• Credit Assignment Problem:

– Assigning credit for outcomes to specific actions becomes more challenging with
multiple objectives, especially when the effects of actions are delayed.

– This problem can lead to suboptimal policy updates, preventing the agent from learning
the optimal policy.

• Exploration vs. Exploitation Dilemma:
– Balancing exploration of the environment and exploitation of known rewards is more

complex with multiple objectives.
– Insufficient exploration can lead to premature convergence to suboptimal policies,

while excessive exploration can slow down convergence.
• Algorithmic Limitations:

– Current MORL algorithms may have inherent limitations in handling the trade-offs
between multiple objectives effectively.

– Improvements in algorithm design and the incorporation of domain knowledge are
necessary to address these limitations.

22

	Introduction
	Related Work
	Simulators for Mobile Network
	Learning-based Mobile Network Optimization

	GenNet Platform
	Simulator Building Blocks
	System Implementation
	Environment Interface
	Simulation Efficiency

	Benchmark: Multi-objective Optimization in Mobile Networks
	Problem Definition
	Experimental Settings
	Benchmark Results

	Conclusion
	Appendix
	Technical Descriptions for the Modules Used in GenNet
	Network Performance Indicators in GenNet
	Reinforcement Learning Framework
	Environment Setup
	State Space Representation
	Action Space Design
	Reward Function Formulation
	Training the RL Agent

	Usage of the RL Environment
	Environment Initialization
	Action Space and Observation Space
	Environment Step Function
	Tasks and Constraints
	Visualization Support
	Performance Metrics
	Example Usage

	Algorithm Comparison
	Evaluation Metrics
	Analysis of MAPPO
	Analysis of MADDPG
	Comparison of MAPPO and MADDPG
	Analysis of Pareto Fronts
	Reasons for Non-Convergence in Multi-Objective Reinforcement Learning (MORL)

