
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRANSFORMER2: SELF-ADAPTIVE LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Self-adaptive large language models (LLMs) aim to solve the challenges posed
by traditional fine-tuning methods, which are often computationally intensive and
static in their ability to handle diverse tasks. We introduce Transformer2, a novel
self-adaptation framework that adapts LLMs for unseen tasks in real-time by se-
lectively adjusting only the singular components of their weight matrices. During
inference, Transformer2 employs a two-pass mechanism: first, a dispatch sys-
tem identifies the task properties, and then task-specific “expert” vectors, trained
using reinforcement learning, are dynamically mixed to obtain targeted behav-
ior for the incoming prompt. Our method consistently outperforms ubiquitous
approaches such as LoRA, with fewer parameters and greater efficiency. Further-
more, Transformer2 demonstrates versatility across different LLM architectures
and modalities, including vision-language tasks. Transformer2 represents a signif-
icant leap forward, offering a scalable, efficient solution for enhancing the adapt-
ability and task-specific performance of LLMs, paving the way for truly dynamic,
self-organizing AI systems. We provide our full source code with the submission.

1 INTRODUCTION

SVD of Weights

Self-Adaptation Vectors

Coding VLM

…
Dispatch

User Query

H
id

de
n

St
at

es

“This is a math question”

H
id

de
n

St
at

es

Answer to User Query

<latexit sha1_base64="N1vdtuDDj/v4W8Gh3EJBeDVKdH4=">AAAB9HicbVBNS8NAEJ34WetX1aOXYCt4KolI9WbBi8cK9gPaWDbbabt0s4m7m0IJ/R2ieFDEq3f/hjf/jZu2B219MPB4b4aZeX7EmdKO820tLa+srq1nNrKbW9s7u7m9/ZoKY0mxSkMeyoZPFHImsKqZ5tiIJJLA51j3B1epXx+iVCwUt3oUoReQnmBdRok2kleo3bWY0Cgp4YV2Lu8UnQnsReLOSP7y8zHFU6Wd+2p1QhoHKDTlRKmm60TaS4jUjHIcZ1uxwojQAelh01BBAlReMjl6bB8bpWN3Q2lKaHui/p5ISKDUKPBNZ0B0X817qfif14x198JLmIhijYJOF3VjbuvQThOwO0wi1XxkCKGSmVtt2ieSUBODypoQ3PmXF0nttOiWiqUbN18+gykycAhHcAIunEMZrqECVaBwDw/wAq/W0Hq23qz3aeuSNZs5gD+wPn4AOWeWLw==</latexit>

V|<latexit sha1_base64="N1vdtuDDj/v4W8Gh3EJBeDVKdH4=">AAAB9HicbVBNS8NAEJ34WetX1aOXYCt4KolI9WbBi8cK9gPaWDbbabt0s4m7m0IJ/R2ieFDEq3f/hjf/jZu2B219MPB4b4aZeX7EmdKO820tLa+srq1nNrKbW9s7u7m9/ZoKY0mxSkMeyoZPFHImsKqZ5tiIJJLA51j3B1epXx+iVCwUt3oUoReQnmBdRok2kleo3bWY0Cgp4YV2Lu8UnQnsReLOSP7y8zHFU6Wd+2p1QhoHKDTlRKmm60TaS4jUjHIcZ1uxwojQAelh01BBAlReMjl6bB8bpWN3Q2lKaHui/p5ISKDUKPBNZ0B0X817qfif14x198JLmIhijYJOF3VjbuvQThOwO0wi1XxkCKGSmVtt2ieSUBODypoQ3PmXF0nttOiWiqUbN18+gykycAhHcAIunEMZrqECVaBwDw/wAq/W0Hq23qz3aeuSNZs5gD+wPn4AOWeWLw==</latexit>

V|
<latexit sha1_base64="eBMAWvMj6r7BRZByVUOzrFT18f0=">AAAB73icbZC5TgMxEIZnwxXCFY6OxiJBoop2KQIdkSigDIIcUrKKvI6TWLG9i+1FCqu8BA0FCNHSUPEkdJS8Cc5RQMIvWfr0/zPyzAQRZ9q47peTWlhcWl5Jr2bW1jc2t7LbO1UdxorQCgl5qOoB1pQzSSuGGU7rkaJYBJzWgv75KK/dUaVZKG/MIKK+wF3JOoxgY616vnnNugLnW9mcW3DHQvPgTSF39nH/ffG+l5Rb2c9mOySxoNIQjrVueG5k/AQrwwinw0wz1jTCpI+7tGFRYkG1n4znHaJD67RRJ1T2SYPG7u+OBAutByKwlQKbnp7NRuZ/WSM2nVM/YTKKDZVk8lEn5siEaLQ8ajNFieEDC5goZmdFpIcVJsaeKGOP4M2uPA/V44JXLBSvvFzJhYnSsA8HcAQenEAJLqEMFSDA4QGe4Nm5dR6dF+d1Uppypj278EfO2w9IDpMn</latexit>

⌃
<latexit sha1_base64="eBMAWvMj6r7BRZByVUOzrFT18f0=">AAAB73icbZC5TgMxEIZnwxXCFY6OxiJBoop2KQIdkSigDIIcUrKKvI6TWLG9i+1FCqu8BA0FCNHSUPEkdJS8Cc5RQMIvWfr0/zPyzAQRZ9q47peTWlhcWl5Jr2bW1jc2t7LbO1UdxorQCgl5qOoB1pQzSSuGGU7rkaJYBJzWgv75KK/dUaVZKG/MIKK+wF3JOoxgY616vnnNugLnW9mcW3DHQvPgTSF39nH/ffG+l5Rb2c9mOySxoNIQjrVueG5k/AQrwwinw0wz1jTCpI+7tGFRYkG1n4znHaJD67RRJ1T2SYPG7u+OBAutByKwlQKbnp7NRuZ/WSM2nVM/YTKKDZVk8lEn5siEaLQ8ajNFieEDC5goZmdFpIcVJsaeKGOP4M2uPA/V44JXLBSvvFzJhYnSsA8HcAQenEAJLqEMFSDA4QGe4Nm5dR6dF+d1Uppypj278EfO2w9IDpMn</latexit>

⌃
<latexit sha1_base64="matz0JW476ILPpVL90CB+3EA69o=">AAAB6nicbZDNTsJAFIVv8Q/xD3XpZiKYuCKtIehOEjcuMVoggYZMhylMmE6bmakJaXgENy406NaX8DXc+TZOgYWCJ5nkyzn3Zu69fsyZ0rb9beXW1jc2t/LbhZ3dvf2D4uFRU0WJJNQlEY9k28eKciaoq5nmtB1LikOf05Y/usny1iOVikXiQY9j6oV4IFjACNbGui+75V6xZFfsmdAqOAsoXX9OM701esWvbj8iSUiFJhwr1XHsWHsplpoRTieFbqJojMkID2jHoMAhVV46G3WCzozTR0EkzRMazdzfHSkOlRqHvqkMsR6q5Swz/8s6iQ6uvJSJONFUkPlHQcKRjlC2N+ozSYnmYwOYSGZmRWSIJSbaXKdgjuAsr7wKzYuKU6vU7pxSvQpz5eEETuEcHLiEOtxCA1wgMIAneIFXi1vP1tR6n5fmrEXPMfyR9fEDiQqRvg==</latexit>

U
<latexit sha1_base64="matz0JW476ILPpVL90CB+3EA69o=">AAAB6nicbZDNTsJAFIVv8Q/xD3XpZiKYuCKtIehOEjcuMVoggYZMhylMmE6bmakJaXgENy406NaX8DXc+TZOgYWCJ5nkyzn3Zu69fsyZ0rb9beXW1jc2t/LbhZ3dvf2D4uFRU0WJJNQlEY9k28eKciaoq5nmtB1LikOf05Y/usny1iOVikXiQY9j6oV4IFjACNbGui+75V6xZFfsmdAqOAsoXX9OM701esWvbj8iSUiFJhwr1XHsWHsplpoRTieFbqJojMkID2jHoMAhVV46G3WCzozTR0EkzRMazdzfHSkOlRqHvqkMsR6q5Swz/8s6iQ6uvJSJONFUkPlHQcKRjlC2N+ozSYnmYwOYSGZmRWSIJSbaXKdgjuAsr7wKzYuKU6vU7pxSvQpz5eEETuEcHLiEOtxCA1wgMIAneIFXi1vP1tR6n5fmrEXPMfyR9fEDiQqRvg==</latexit>

U

Math

First pass
Second pass

Element-wise multiplication

Matrix multiplication

N
la

ye
rs

 in
si

de
 a

n
LL

M

Figure 1: Overview of Transformer2. In the training
phase, we tune the scales of the singular values of the weight
matrices to generate a set of “expert” vectors, each of which
specializes in one type of tasks. In the inference phase, a
two-pass process is adopted where the first applies the task-
specific expert and the second generates the answer.

Self-adaptive large language models
(LLMs) would represent a significant
advancement in artificial intelligence,
providing a framework where mod-
els can adjust to varied tasks and dy-
namic contexts in real time. While
compositionality and scalability are
crucial for effective adaptation, cur-
rent LLM training methodologies fall
short of achieving both these prop-
erties simultaneously. Our research
aims to present a pioneering solu-
tion to realize this vision and address
these gaps.

Traditionally, LLM post-training has
sought to optimize a model for a wide
range of capabilities in a single, ex-
tensive training session. While this
“one-shot” fine-tuning framework is
ideal from a simplicity perspective,
it is also difficult to achieve in prac-
tice. For instance, post-training is
still highly resource-intensive, lead-
ing to significant computational costs
and training times. Additionally,
there tends to be notable performance
trade-offs when introducing additional breadth to the data, making it challenging to overcome over-
fitting and task interference at the same time.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In contrast, self-adaptive models offer a more flexible and efficient approach. Rather than attempting
to train an LLM for all tasks in one step, expert modules can be developed offline and augmented
to the base LLM on-demand (Kang et al., 2024). This allows the model to dynamically modify its
behavior based on the task at hand, without the need for constant re-tuning. In addition to the bene-
fit of having independent components, this modularity also supports continual learning, enabling
the model to add new skills over time without catastrophic forgetting. Moreover, self-adaptive
LLMs mirror a well-established principle in neuroscience and computational biology, where the
brain activates specific regions depending on the task at hand (Loose et al., 2017) and dynamically
reconfigures its functional networks in response to changing task demands (Davison et al., 2015).

In principle, the first step toward achieving self-adaptive LLMs can be realized through the devel-
opment of specialized expert modules, each fine-tuned (Kaplan et al., 2020) via techniques such
as low-rank adaptation (LoRA) (Hu et al., 2021). These expert modules can then be dynamically
composed at runtime based on the task demands, a process that can be efficiently managed through
Mixture of Experts (MoE)-like systems (Tianlong et al., 2024). However, several challenges need to
be addressed to make this approach both scalable and compositional. First, fine-tuning LLMs to cre-
ate multiple expert modules significantly increases the number of parameters that need to be trained.
In practice, even with parameter-efficient methods like LoRA, the cumulative size of these mod-
ules can quickly escalate, leading to increased storage and computational demands. Second, these
expert modules are often prone to overfitting, a phenomenon especially prevalent when training on
smaller datasets or narrow task domains. Third, the flexible composition of these expert modules
also presents largely unresolved challenges currently posing as open research problems.

To overcome these limitations, we first propose Singular Value Fine-tuning (SVF), a novel
parameter-efficient fine-tuning (PEFT) method to obtain effective building blocks for self-
adaptation. SVF works by extracting and tuning only the singular values within the model’s weight
matrices. By focusing on this principled parameterization, our approach mitigates the risk of over-
fitting, drastically reduces computational demands, and allows for inherent compositionality. We
show these properties enable us to cheaply obtain a set of effective domain-specific “expert” vectors
by training on narrow datasets with RL, directly optimizing task performance on individual topics.

We then introduce our full Transformer2 framework to empower LLMs through the underlying prin-
ciples of self-adaptation. Given a prompt from an unknown task, Transformer2 entails a two-pass
inference mechanism which we illustrate in Figure 1. During the first pass, Transformer2 executes
the model and observes its test-time behavior, gathering the relevant information to understand the
necessary skills to tackle the current problem. During the second pass, our framework uses this infor-
mation to combine the available expert vectors and provide a new modification to the base weights
of the LLM specifically tailored to its test-time conditions. We design three different adaptation
strategies that can be used within Transformer2, which we show provide monotonic performance
benefits with increasing access to the test-time conditions.

We evaluate SVF and the full Transformer2 framework through extensive experiments across a di-
verse range of LLMs and tasks. First, when trained on domain-specific datasets, we show that SVF
consistently outperforms traditional strategies for efficient fine-tuning such as LoRA, and at the
same time, with orders of magnitudes fewer parameters. Then we show that Transformer2 is able
to push performance far further, effectively adapting the weights of the base model even in entirely
out-of-distribution applications such as visual question answering. Finally, we analyze the proper-
ties of our new framework, validating that it provides increasing benefits with additional access to
its current test-time conditions and even allow for recycling pre-trained SVF experts across model
architectures. In summary, our key technical contributions are the following:

• The development of Transformer2 as a pivotal self-adaptation framework for LLMs, pro-
viding a universal blueprint to dynamically adapt the behavior of LLMs from a growing set
of pre-trained skills.

• The introduction of SVF, a novel PEFT method trainable with RL on small datasets, pro-
ducing compact expert vectors with inherent compositionality, all key properties necessary
for our scalable self-adaptation framework.

• The implementation of three adaptation strategies within Transformer2, effectively dis-
patching SVF-trained experts with properties designed to cope with different requirements
and deployment scenarios.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORKS

Self-adaptive LLMs We define self-adaptive LLMs as a group of LLMs or a standalone LLM
that can evaluate and modify its behavior in response to changes in its operating environment or
internal state, without external intervention. This adaptation can be explored from two perspectives:
a macroview, where multiple LLMs collaborate and/or compete, and a microview, where internal
adaptations allow a single LLM to specialize in different tasks.

Macroview: From this perspective, the system directs queries to LLMs with domain specific exper-
tise, prioritizing outputs from expert models, thereby achieving higher accuracy and task-specific
optimization. Such task-specific ensembles can be realized through various mechanisms: multiple
LLMs playing distinct roles and coordinate toward a shared goal (Zhuge et al., 2023), engaging
in mutual listening and debate (Du et al., 2023), or using meticulously crafted prompt construc-
tions (Zhang et al., 2024) to integrate knowledge library and skill planning. Naturally, the improve-
ment in the specialization and adaptive capabilities of individual LLMs in the ensemble enhances
the collective performance. Thus, in this paper, we focus on the microview of self-adaptive LLMs.

Microview: MoE in LLMs plays a critical role in this perspective (Tianlong et al., 2024). In MoE
systems, inputs are dynamically routed to a subset of specialized modules or layers (e.g., MLPs)
containing domain-specific knowledge (Rajbhandari et al., 2022; Fedus et al., 2022). To reduce
inference time, researchers introduce sparsely activated MoE where only a subset of the experts are
selected per token Jiang et al. (2024); Qwen Team (2024). While it is possible to view Transformer2

loosely as a type of MoE, there are two major differences. In the aforementioned systems, self-
adaptation is achieved through token-level routing, whereas Transformer2 employs a sample-level
module selection strategy. The second difference lies in the construction of expert modules. In
traditional MoE systems, expert modules are either trained from scratch (Fedus et al., 2022; Jiang
et al., 2024) or dense models (e.g., upcycling) (Qwen Team, 2024; Zhu et al., 2024), without an
auxiliary loss to ensure module specialization. In contrast, Transformer2 specifically trains expert
vectors with RL to acquire domain specific-knowledge, making them true experts.

Low-rank adaptation PEFT methods such as LoRA (Hu et al., 2021) works by freezing the original
model’s parameters and introducing small trainable low-rank matrices for task-specific updates. It
significantly lowers the computational and memory costs while providing performance comparable
to full fine-tuning. Inspired by LoRA’s design, various modifications have been proposed (Zhang
et al., 2023; Kopiczko et al., 2023; Liu et al., 2024; Bałazy et al., 2024; Cetoli, 2024). Transformer2

does not rely on low-rank matrices, and instead scales the singular vectors of the original parameter
matrix that span the full rank space.

SVD for LLM Fine-tuning SVD is increasingly being used as an inductive bias for PEFT in LLMs.
For example, Wang et al. (2024) decompose a weight matrix and use the minor singular components,
associated with noisy or long-tail information, to initialize low-rank matrices for LoRA fine-tuning.
In a similar vein, SVD is employed to approximate an original weight matrix with the top r singular
vectors, corresponding to the highest singular values. A small trainable matrix is then introduced
on top of the truncated singular value matrix to adjust the magnitude and orientations within this
top-r subspace (Bałazy et al., 2024; Cetoli, 2024). However, the drawback of this approach is
that retaining only the top singular components can result in the loss of important information,
particularly when the singular values distribution is less skewed. The work most similar to ours is a
concurrent effort by Lingam et al. (2024), where they introduce various sparsification methods that
utilize the SVD of the weights. However, it is not for self-adaptive LLMs and does not use RL to
enhance learning efficiency.

3 METHODS

3.1 PRELIMINARIES

Singular value decomposition (SVD) offers a fundamental view of matrix multiplications. In the
context of neural networks, each weight matrix W ∈ Rn×m can be decomposed into three compo-
nents W = UΣV ⊺, yielding semi-orthogonal matrices U ∈ Rm×r and V ∈ Rn×r together with an
ordered vector of r singular values (in descending order) arranged in the diagonal matrix Σ ∈ Rr×r.
The linear operation defined by applying W onto x, can be then decomposed into a sum of indepen-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

dent terms, derived from mapping each column vi from V into the corresponding column ui from
U as y =

∑r
i=1 σiuiv

⊺
i x. Hence, each singular component represented by the rank-1 matrix uiv

⊺
i

independently processes the input, providing an orthogonal contribution to the layer’s outputs, with
the singular values σi modulating the degree of the contributions.

Cross-entropy method (CEM) is a Monte Carlo method for importance sampling and optimiza-
tion (Rubinstein & Kroese, 2004). The method is based on the concept of minimizing the KL
divergence between two probability distributions DKL(P∥Q), where P is the target distribution and
Q is a maintained distribution. At its core, CEM repeatedly generates a set of samples from Q,
evaluates these samples with a performance function, and then updates the distribution Q with the
characteristics of the elite samples that have performed best. In the standard setup employed in most
applications, Q is set to a diagonal multivariate Gaussian, reducing the problem to simply estimating
the empirical mean and standard deviation of the latest elites until a stopping criterion is met. We
illustrate a complete CEM step in the Python pseudocode below.

def cem_step(mu, sigma, num_elites, num_samples):

samples = np.random.normal(loc=mean, scale=sigma, size=num_samples)

scores = evaluate(samples)

elites = samples[np.argsort(scores)[-num_elites:]]

new_mu = np.mean(elites, axis=0)

new_sigma = np.std(elites, axis=0)

return (new_mu, new_sigma)

3.2 TRANSFORMER2

The construction of Transformer2 comprises two main steps, for which we provide an illustrative
overview in Figure 2. First, we introduce Singular Value Fine-tuning (SVF), a method to learn
with RL compact and compositional expert vectors based on the SVD of the base model’s weights.
Then, we describe three different adaptation strategies within Transformer2, inspired by three or-
thogonal principles, which adaptively combine the SVF-trained expert vectors during inference. We
motivate how the properties of SVF are highly complementary to our adaptation strategies, making
Transformer2 an effective and scalable framework for the design of new self-adaptive LLMs.

Layer Norm

<latexit sha1_base64="hnfzLeUw92WJ9yYUkRkk/DJmo2g=">AAAB8nicbZDLSgMxFIYzXmu9VV26CRbBVZkRqe4suHFZwV5gOpZMmmlDM8mQnBHK0MdwYReKuPUFfA13vo2Ztgtt/SHw8f/nkHNOmAhuwHW/nZXVtfWNzcJWcXtnd2+/dHDYNCrVlDWoEkq3Q2KY4JI1gINg7UQzEoeCtcLhTZ63Hpk2XMl7GCUsiElf8ohTAtbymw8dLoFpSkS3VHYr7lR4Gbw5lK8/n3NN6t3SV6enaBozCVQQY3zPTSDIiAZOBRsXO6lhCaFD0me+RUliZoJsOvIYn1qnhyOl7ZOAp+7vjozExozi0FbGBAZmMcvN/zI/hegqyLhMUmCSzj6KUoFB4Xx/3OOaURAjC4RqbmfFdEA0ofYKpmiP4C2uvAzN84pXrVTvvHLtAs1UQMfoBJ0hD12iGrpFddRAFCn0hF7QqwPOxHlz3melK8685wj9kfPxA3w0ldM=</latexit>

V |<latexit sha1_base64="hnfzLeUw92WJ9yYUkRkk/DJmo2g=">AAAB8nicbZDLSgMxFIYzXmu9VV26CRbBVZkRqe4suHFZwV5gOpZMmmlDM8mQnBHK0MdwYReKuPUFfA13vo2Ztgtt/SHw8f/nkHNOmAhuwHW/nZXVtfWNzcJWcXtnd2+/dHDYNCrVlDWoEkq3Q2KY4JI1gINg7UQzEoeCtcLhTZ63Hpk2XMl7GCUsiElf8ohTAtbymw8dLoFpSkS3VHYr7lR4Gbw5lK8/n3NN6t3SV6enaBozCVQQY3zPTSDIiAZOBRsXO6lhCaFD0me+RUliZoJsOvIYn1qnhyOl7ZOAp+7vjozExozi0FbGBAZmMcvN/zI/hegqyLhMUmCSzj6KUoFB4Xx/3OOaURAjC4RqbmfFdEA0ofYKpmiP4C2uvAzN84pXrVTvvHLtAs1UQMfoBJ0hD12iGrpFddRAFCn0hF7QqwPOxHlz3melK8685wj9kfPxA3w0ldM=</latexit>

V |<latexit sha1_base64="8jULmK0JRDiG/w9c6wlV1jj7guI=">AAAB7XicbZC7SgNBFIbPxluMt6ilIINBSBV2LaKdARvLBM0FkhBmJ7PJmNmZZWZWCEtKexsLRWztrPMcdj6DL+HkUmjiDwMf/38Oc87xI860cd0vJ7Wyura+kd7MbG3v7O5l9w9qWsaK0CqRXKqGjzXlTNCqYYbTRqQoDn1O6/7gapLX76nSTIpbM4xoO8Q9wQJGsLFWrXXDeiHuZHNuwZ0KLYM3h9zlx7jy/XA8Lneyn62uJHFIhSEca9303Mi0E6wMI5yOMq1Y0wiTAe7RpkWBQ6rbyXTaETq1ThcFUtknDJq6vzsSHGo9DH1bGWLT14vZxPwva8YmuGgnTESxoYLMPgpijoxEk9VRlylKDB9awEQxOysifawwMfZAGXsEb3HlZaidFbxioVjxcqU8zJSGIziBPHhwDiW4hjJUgcAdPMIzvDjSeXJenbdZacqZ9xzCHznvPxkHky0=</latexit>

⌃
<latexit sha1_base64="8jULmK0JRDiG/w9c6wlV1jj7guI=">AAAB7XicbZC7SgNBFIbPxluMt6ilIINBSBV2LaKdARvLBM0FkhBmJ7PJmNmZZWZWCEtKexsLRWztrPMcdj6DL+HkUmjiDwMf/38Oc87xI860cd0vJ7Wyura+kd7MbG3v7O5l9w9qWsaK0CqRXKqGjzXlTNCqYYbTRqQoDn1O6/7gapLX76nSTIpbM4xoO8Q9wQJGsLFWrXXDeiHuZHNuwZ0KLYM3h9zlx7jy/XA8Lneyn62uJHFIhSEca9303Mi0E6wMI5yOMq1Y0wiTAe7RpkWBQ6rbyXTaETq1ThcFUtknDJq6vzsSHGo9DH1bGWLT14vZxPwva8YmuGgnTESxoYLMPgpijoxEk9VRlylKDB9awEQxOysifawwMfZAGXsEb3HlZaidFbxioVjxcqU8zJSGIziBPHhwDiW4hjJUgcAdPMIzvDjSeXJenbdZacqZ9xzCHznvPxkHky0=</latexit>

⌃<latexit sha1_base64="ka/WwxC9Nk0i99aMsQm1DvJgrg0=">AAAB6HicbZDPTsJAEMan+A/xH+rRSyMx8URaY9CbJF48QmKBBBqyXaawst02u1sTQngCLx40Bo++ha/hzbdxCxwU/JJNfvm+mezMBAlnSjvOt5VbW9/Y3MpvF3Z29/YPiodHDRWnkqJHYx7LVkAUcibQ00xzbCUSSRRwbAbD2yxvPqJULBb3epSgH5G+YCGjRBur7nWLJafszGSvgruA0s3nNNN7rVv86vRimkYoNOVEqbbrJNofE6kZ5TgpdFKFCaFD0se2QUEiVP54NujEPjNOzw5jaZ7Q9sz93TEmkVKjKDCVEdEDtZxl5n9ZO9XhtT9mIkk1Cjr/KEy5rWM729ruMYlU85EBQiUzs9p0QCSh2tymYI7gLq+8Co2LslspV+puqXoJc+XhBE7hHFy4gircQQ08oIDwBC/waj1Yz9abNZ2X5qxFzzH8kfXxA9F0kWI=</latexit>

U
<latexit sha1_base64="ka/WwxC9Nk0i99aMsQm1DvJgrg0=">AAAB6HicbZDPTsJAEMan+A/xH+rRSyMx8URaY9CbJF48QmKBBBqyXaawst02u1sTQngCLx40Bo++ha/hzbdxCxwU/JJNfvm+mezMBAlnSjvOt5VbW9/Y3MpvF3Z29/YPiodHDRWnkqJHYx7LVkAUcibQ00xzbCUSSRRwbAbD2yxvPqJULBb3epSgH5G+YCGjRBur7nWLJafszGSvgruA0s3nNNN7rVv86vRimkYoNOVEqbbrJNofE6kZ5TgpdFKFCaFD0se2QUEiVP54NujEPjNOzw5jaZ7Q9sz93TEmkVKjKDCVEdEDtZxl5n9ZO9XhtT9mIkk1Cjr/KEy5rWM729ruMYlU85EBQiUzs9p0QCSh2tymYI7gLq+8Co2LslspV+puqXoJc+XhBE7hHFy4gircQQ08oIDwBC/waj1Yz9abNZ2X5qxFzzH8kfXxA9F0kWI=</latexit>

U

Attention

Layer Norm

MLP

<latexit sha1_base64="WPTq7ovTCCel7T147D53/f38NRg=">AAAB6HicbZC7SgNBFIbPxluMt3jpbAaDYBV2LaKdAQutJAFzgWQJs5OzyZjZCzOzQlzyBDYWitj6AFY+iZ2lb+LkUmj0h4GP/z+HOed4seBK2/anlVlYXFpeya7m1tY3Nrfy2zt1FSWSYY1FIpJNjyoUPMSa5lpgM5ZIA09gwxucj/PGLUrFo/BaD2N0A9oLuc8Z1caqXnXyBbtoT0T+gjODwtn73dfF215a6eQ/2t2IJQGGmgmqVMuxY+2mVGrOBI5y7URhTNmA9rBlMKQBKjedDDoih8bpEj+S5oWaTNyfHSkNlBoGnqkMqO6r+Wxs/pe1Eu2fuikP40RjyKYf+YkgOiLjrUmXS2RaDA1QJrmZlbA+lZRpc5ucOYIzv/JfqB8XnVKxVHUKZRumysI+HMAROHACZbiECtSAAcI9PMKTdWM9WM/Wy7Q0Y816duGXrNdvyOqQmg==</latexit> N<latexit sha1_base64="WPTq7ovTCCel7T147D53/f38NRg=">AAAB6HicbZC7SgNBFIbPxluMt3jpbAaDYBV2LaKdAQutJAFzgWQJs5OzyZjZCzOzQlzyBDYWitj6AFY+iZ2lb+LkUmj0h4GP/z+HOed4seBK2/anlVlYXFpeya7m1tY3Nrfy2zt1FSWSYY1FIpJNjyoUPMSa5lpgM5ZIA09gwxucj/PGLUrFo/BaD2N0A9oLuc8Z1caqXnXyBbtoT0T+gjODwtn73dfF215a6eQ/2t2IJQGGmgmqVMuxY+2mVGrOBI5y7URhTNmA9rBlMKQBKjedDDoih8bpEj+S5oWaTNyfHSkNlBoGnqkMqO6r+Wxs/pe1Eu2fuikP40RjyKYf+YkgOiLjrUmXS2RaDA1QJrmZlbA+lZRpc5ucOYIzv/JfqB8XnVKxVHUKZRumysI+HMAROHACZbiECtSAAcI9PMKTdWM9WM/Wy7Q0Y816duGXrNdvyOqQmg==</latexit> N
 la

ye
rs

<latexit sha1_base64="yC9X/vIczvf0cNc9NaHz45Lo31s=">AAAB6HicbZC7SgNBFIbPxluMt6ilIItBSBV2LaKdARvLBMwFkxBmJ2eTMbOzy8ysEJaUVjYWitj6ANZ5DjufwZdwcik08YeBj/8/hznneBFnSjvOl5VaWV1b30hvZra2d3b3svsHNRXGkmKVhjyUDY8o5ExgVTPNsRFJJIHHse4NriZ5/R6lYqG40cMI2wHpCeYzSrSxKredbM4pOFPZy+DOIXf5Ma58PxyPy53sZ6sb0jhAoSknSjVdJ9LthEjNKMdRphUrjAgdkB42DQoSoGon00FH9qlxurYfSvOEtqfu746EBEoNA89UBkT31WI2Mf/LmrH2L9oJE1GsUdDZR37MbR3ak63tLpNINR8aIFQyM6tN+0QSqs1tMuYI7uLKy1A7K7jFQrHi5kp5mCkNR3ACeXDhHEpwDWWoAgWER3iGF+vOerJerbdZacqa9xzCH1nvP2ZpkQg=</latexit>

Z
<latexit sha1_base64="yC9X/vIczvf0cNc9NaHz45Lo31s=">AAAB6HicbZC7SgNBFIbPxluMt6ilIItBSBV2LaKdARvLBMwFkxBmJ2eTMbOzy8ysEJaUVjYWitj6ANZ5DjufwZdwcik08YeBj/8/hznneBFnSjvOl5VaWV1b30hvZra2d3b3svsHNRXGkmKVhjyUDY8o5ExgVTPNsRFJJIHHse4NriZ5/R6lYqG40cMI2wHpCeYzSrSxKredbM4pOFPZy+DOIXf5Ma58PxyPy53sZ6sb0jhAoSknSjVdJ9LthEjNKMdRphUrjAgdkB42DQoSoGon00FH9qlxurYfSvOEtqfu746EBEoNA89UBkT31WI2Mf/LmrH2L9oJE1GsUdDZR37MbR3ak63tLpNINR8aIFQyM6tN+0QSqs1tMuYI7uLKy1A7K7jFQrHi5kp5mCkNR3ACeXDhHEpwDWWoAgWER3iGF+vOerJerbdZacqa9xzCH1nvP2ZpkQg=</latexit>

Z

Learnable parameters
trained with RL

Frozen parameters

Training Time Inference Time

<latexit sha1_base64="Zy7mRheCx49r7k9l9pfYkhWF0qk=">AAAB6HicbZC7SgNBFIbPxluMt3jpbAaDYBV2LaKdAQtthATMBZIlzE7OJmNmL8zMCnHJE9hYKGLrA1j5JHaWvomTS6HRHwY+/v8c5pzjxYIrbdufVmZhcWl5JbuaW1vf2NzKb+/UVZRIhjUWiUg2PapQ8BBrmmuBzVgiDTyBDW9wPs4btygVj8JrPYzRDWgv5D5nVBuretXJF+yiPRH5C84MCmfvd18Xb3tppZP/aHcjlgQYaiaoUi3HjrWbUqk5EzjKtROFMWUD2sOWwZAGqNx0MuiIHBqnS/xImhdqMnF/dqQ0UGoYeKYyoLqv5rOx+V/WSrR/6qY8jBONIZt+5CeC6IiMtyZdLpFpMTRAmeRmVsL6VFKmzW1y5gjO/Mp/oX5cdErFUtUplG2YKgv7cABH4MAJlOESKlADBgj38AhP1o31YD1bL9PSjDXr2YVfsl6/AcdmkJk=</latexit>

M
<latexit sha1_base64="Zy7mRheCx49r7k9l9pfYkhWF0qk=">AAAB6HicbZC7SgNBFIbPxluMt3jpbAaDYBV2LaKdAQtthATMBZIlzE7OJmNmL8zMCnHJE9hYKGLrA1j5JHaWvomTS6HRHwY+/v8c5pzjxYIrbdufVmZhcWl5JbuaW1vf2NzKb+/UVZRIhjUWiUg2PapQ8BBrmmuBzVgiDTyBDW9wPs4btygVj8JrPYzRDWgv5D5nVBuretXJF+yiPRH5C84MCmfvd18Xb3tppZP/aHcjlgQYaiaoUi3HjrWbUqk5EzjKtROFMWUD2sOWwZAGqNx0MuiIHBqnS/xImhdqMnF/dqQ0UGoYeKYyoLqv5rOx+V/WSrR/6qY8jBONIZt+5CeC6IiMtyZdLpFpMTRAmeRmVsL6VFKmzW1y5gjO/Mp/oX5cdErFUtUplG2YKgv7cABH4MAJlOESKlADBgj38AhP1o31YD1bL9PSjDXr2YVfsl6/AcdmkJk=</latexit>

M matrices

<latexit sha1_base64="hnfzLeUw92WJ9yYUkRkk/DJmo2g=">AAAB8nicbZDLSgMxFIYzXmu9VV26CRbBVZkRqe4suHFZwV5gOpZMmmlDM8mQnBHK0MdwYReKuPUFfA13vo2Ztgtt/SHw8f/nkHNOmAhuwHW/nZXVtfWNzcJWcXtnd2+/dHDYNCrVlDWoEkq3Q2KY4JI1gINg7UQzEoeCtcLhTZ63Hpk2XMl7GCUsiElf8ohTAtbymw8dLoFpSkS3VHYr7lR4Gbw5lK8/n3NN6t3SV6enaBozCVQQY3zPTSDIiAZOBRsXO6lhCaFD0me+RUliZoJsOvIYn1qnhyOl7ZOAp+7vjozExozi0FbGBAZmMcvN/zI/hegqyLhMUmCSzj6KUoFB4Xx/3OOaURAjC4RqbmfFdEA0ofYKpmiP4C2uvAzN84pXrVTvvHLtAs1UQMfoBJ0hD12iGrpFddRAFCn0hF7QqwPOxHlz3melK8685wj9kfPxA3w0ldM=</latexit>

V |<latexit sha1_base64="hnfzLeUw92WJ9yYUkRkk/DJmo2g=">AAAB8nicbZDLSgMxFIYzXmu9VV26CRbBVZkRqe4suHFZwV5gOpZMmmlDM8mQnBHK0MdwYReKuPUFfA13vo2Ztgtt/SHw8f/nkHNOmAhuwHW/nZXVtfWNzcJWcXtnd2+/dHDYNCrVlDWoEkq3Q2KY4JI1gINg7UQzEoeCtcLhTZ63Hpk2XMl7GCUsiElf8ohTAtbymw8dLoFpSkS3VHYr7lR4Gbw5lK8/n3NN6t3SV6enaBozCVQQY3zPTSDIiAZOBRsXO6lhCaFD0me+RUliZoJsOvIYn1qnhyOl7ZOAp+7vjozExozi0FbGBAZmMcvN/zI/hegqyLhMUmCSzj6KUoFB4Xx/3OOaURAjC4RqbmfFdEA0ofYKpmiP4C2uvAzN84pXrVTvvHLtAs1UQMfoBJ0hD12iGrpFddRAFCn0hF7QqwPOxHlz3melK8685wj9kfPxA3w0ldM=</latexit>

V |
<latexit sha1_base64="8jULmK0JRDiG/w9c6wlV1jj7guI=">AAAB7XicbZC7SgNBFIbPxluMt6ilIINBSBV2LaKdARvLBM0FkhBmJ7PJmNmZZWZWCEtKexsLRWztrPMcdj6DL+HkUmjiDwMf/38Oc87xI860cd0vJ7Wyura+kd7MbG3v7O5l9w9qWsaK0CqRXKqGjzXlTNCqYYbTRqQoDn1O6/7gapLX76nSTIpbM4xoO8Q9wQJGsLFWrXXDeiHuZHNuwZ0KLYM3h9zlx7jy/XA8Lneyn62uJHFIhSEca9303Mi0E6wMI5yOMq1Y0wiTAe7RpkWBQ6rbyXTaETq1ThcFUtknDJq6vzsSHGo9DH1bGWLT14vZxPwva8YmuGgnTESxoYLMPgpijoxEk9VRlylKDB9awEQxOysifawwMfZAGXsEb3HlZaidFbxioVjxcqU8zJSGIziBPHhwDiW4hjJUgcAdPMIzvDjSeXJenbdZacqZ9xzCHznvPxkHky0=</latexit>

⌃
<latexit sha1_base64="8jULmK0JRDiG/w9c6wlV1jj7guI=">AAAB7XicbZC7SgNBFIbPxluMt6ilIINBSBV2LaKdARvLBM0FkhBmJ7PJmNmZZWZWCEtKexsLRWztrPMcdj6DL+HkUmjiDwMf/38Oc87xI860cd0vJ7Wyura+kd7MbG3v7O5l9w9qWsaK0CqRXKqGjzXlTNCqYYbTRqQoDn1O6/7gapLX76nSTIpbM4xoO8Q9wQJGsLFWrXXDeiHuZHNuwZ0KLYM3h9zlx7jy/XA8Lneyn62uJHFIhSEca9303Mi0E6wMI5yOMq1Y0wiTAe7RpkWBQ6rbyXTaETq1ThcFUtknDJq6vzsSHGo9DH1bGWLT14vZxPwva8YmuGgnTESxoYLMPgpijoxEk9VRlylKDB9awEQxOysifawwMfZAGXsEb3HlZaidFbxioVjxcqU8zJSGIziBPHhwDiW4hjJUgcAdPMIzvDjSeXJenbdZacqZ9xzCHznvPxkHky0=</latexit>

⌃<latexit sha1_base64="ka/WwxC9Nk0i99aMsQm1DvJgrg0=">AAAB6HicbZDPTsJAEMan+A/xH+rRSyMx8URaY9CbJF48QmKBBBqyXaawst02u1sTQngCLx40Bo++ha/hzbdxCxwU/JJNfvm+mezMBAlnSjvOt5VbW9/Y3MpvF3Z29/YPiodHDRWnkqJHYx7LVkAUcibQ00xzbCUSSRRwbAbD2yxvPqJULBb3epSgH5G+YCGjRBur7nWLJafszGSvgruA0s3nNNN7rVv86vRimkYoNOVEqbbrJNofE6kZ5TgpdFKFCaFD0se2QUEiVP54NujEPjNOzw5jaZ7Q9sz93TEmkVKjKDCVEdEDtZxl5n9ZO9XhtT9mIkk1Cjr/KEy5rWM729ruMYlU85EBQiUzs9p0QCSh2tymYI7gLq+8Co2LslspV+puqXoJc+XhBE7hHFy4gircQQ08oIDwBC/waj1Yz9abNZ2X5qxFzzH8kfXxA9F0kWI=</latexit>

U
<latexit sha1_base64="ka/WwxC9Nk0i99aMsQm1DvJgrg0=">AAAB6HicbZDPTsJAEMan+A/xH+rRSyMx8URaY9CbJF48QmKBBBqyXaawst02u1sTQngCLx40Bo++ha/hzbdxCxwU/JJNfvm+mezMBAlnSjvOt5VbW9/Y3MpvF3Z29/YPiodHDRWnkqJHYx7LVkAUcibQ00xzbCUSSRRwbAbD2yxvPqJULBb3epSgH5G+YCGjRBur7nWLJafszGSvgruA0s3nNNN7rVv86vRimkYoNOVEqbbrJNofE6kZ5TgpdFKFCaFD0se2QUEiVP54NujEPjNOzw5jaZ7Q9sz93TEmkVKjKDCVEdEDtZxl5n9ZO9XhtT9mIkk1Cjr/KEy5rWM729ruMYlU85EBQiUzs9p0QCSh2tymYI7gLq+8Co2LslspV+puqXoJc+XhBE7hHFy4gircQQ08oIDwBC/waj1Yz9abNZ2X5qxFzzH8kfXxA9F0kWI=</latexit>

U
<latexit sha1_base64="yC9X/vIczvf0cNc9NaHz45Lo31s=">AAAB6HicbZC7SgNBFIbPxluMt6ilIItBSBV2LaKdARvLBMwFkxBmJ2eTMbOzy8ysEJaUVjYWitj6ANZ5DjufwZdwcik08YeBj/8/hznneBFnSjvOl5VaWV1b30hvZra2d3b3svsHNRXGkmKVhjyUDY8o5ExgVTPNsRFJJIHHse4NriZ5/R6lYqG40cMI2wHpCeYzSrSxKredbM4pOFPZy+DOIXf5Ma58PxyPy53sZ6sb0jhAoSknSjVdJ9LthEjNKMdRphUrjAgdkB42DQoSoGon00FH9qlxurYfSvOEtqfu746EBEoNA89UBkT31WI2Mf/LmrH2L9oJE1GsUdDZR37MbR3ak63tLpNINR8aIFQyM6tN+0QSqs1tMuYI7uLKy1A7K7jFQrHi5kp5mCkNR3ACeXDhHEpwDWWoAgWER3iGF+vOerJerbdZacqa9xzCH1nvP2ZpkQg=</latexit>

Z
<latexit sha1_base64="yC9X/vIczvf0cNc9NaHz45Lo31s=">AAAB6HicbZC7SgNBFIbPxluMt6ilIItBSBV2LaKdARvLBMwFkxBmJ2eTMbOzy8ysEJaUVjYWitj6ANZ5DjufwZdwcik08YeBj/8/hznneBFnSjvOl5VaWV1b30hvZra2d3b3svsHNRXGkmKVhjyUDY8o5ExgVTPNsRFJJIHHse4NriZ5/R6lYqG40cMI2wHpCeYzSrSxKredbM4pOFPZy+DOIXf5Ma58PxyPy53sZ6sb0jhAoSknSjVdJ9LthEjNKMdRphUrjAgdkB42DQoSoGon00FH9qlxurYfSvOEtqfu746EBEoNA89UBkT31WI2Mf/LmrH2L9oJE1GsUdDZR37MbR3ak63tLpNINR8aIFQyM6tN+0QSqs1tMuYI7uLKy1A7K7jFQrHi5kp5mCkNR3ACeXDhHEpwDWWoAgWER3iGF+vOerJerbdZacqa9xzCH1nvP2ZpkQg=</latexit>

Z

…

A) Prompt-based adaptation, or
B) Job classifier-based adaptation

Replaced with one
learned vector

C) Mixture-based adaptation

… <latexit sha1_base64="ZoBKuE7P69Fe4FstEBqOVIcwRL0=">AAAB+HicbVDLSsNAFJ20Pmp9NCqu3AwWQRBK4qK6LLhxWcE+oClhMp20QyeTMHMj1NAvceNCEbf+gb/gQnDlp+j0sdDWAxcO59zLvfcEieAaHOfTyuVXVtfWCxvFza3tnZK9u9fUcaooa9BYxKodEM0El6wBHARrJ4qRKBCsFQwvJ37rlinNY3kDo4R1I9KXPOSUgJF8u3TqEZEMiD/0gEdM+3bZqThT4GXizkm5lv/4fjv4YnXffvd6MU0jJoEKonXHdRLoZkQBp4KNi16qWULokPRZx1BJzJJuNj18jI+N0sNhrExJwFP190RGIq1HUWA6IwIDvehNxP+8TgrhRTfjMkmBSTpbFKYCQ4wnKeAeV4yCGBlCqOLmVkwHRBEKJquiCcFdfHmZNM8qbrVSvXbLNQfNUECH6AidIBedoxq6QnXUQBSl6B49oifrznqwnq2XWWvOms/soz+wXn8ATKCXPg==</latexit>

+↵k⇥
<latexit sha1_base64="ZoBKuE7P69Fe4FstEBqOVIcwRL0=">AAAB+HicbVDLSsNAFJ20Pmp9NCqu3AwWQRBK4qK6LLhxWcE+oClhMp20QyeTMHMj1NAvceNCEbf+gb/gQnDlp+j0sdDWAxcO59zLvfcEieAaHOfTyuVXVtfWCxvFza3tnZK9u9fUcaooa9BYxKodEM0El6wBHARrJ4qRKBCsFQwvJ37rlinNY3kDo4R1I9KXPOSUgJF8u3TqEZEMiD/0gEdM+3bZqThT4GXizkm5lv/4fjv4YnXffvd6MU0jJoEKonXHdRLoZkQBp4KNi16qWULokPRZx1BJzJJuNj18jI+N0sNhrExJwFP190RGIq1HUWA6IwIDvehNxP+8TgrhRTfjMkmBSTpbFKYCQ4wnKeAeV4yCGBlCqOLmVkwHRBEKJquiCcFdfHmZNM8qbrVSvXbLNQfNUECH6AidIBedoxq6QnXUQBSl6B49oifrznqwnq2XWWvOms/soz+wXn8ATKCXPg==</latexit>

+↵k⇥
<latexit sha1_base64="rvY7URDetHJ3uMUQZv0k44XFelM=">AAAB+HicbVDLSsNAFJ1YH7U+GhVXbgaLIAgl6aK6LLhxWcE+oCnhZjpph04mYWYi1NAvceNCEbf+gb/gQnDlp+j0sdDWAxcO59zLvfcECWdKO86ntZJbXVvfyG8WtrZ3dov23n5TxakktEFiHst2AIpyJmhDM81pO5EUooDTVjC8nPitWyoVi8WNHiW0G0FfsJAR0Eby7eKZBzwZgF/xNIuo8u2SU3amwMvEnZNSLffx/Xb4Reu+/e71YpJGVGjCQamO6yS6m4HUjHA6LnipogmQIfRpx1ABZkk3mx4+xidG6eEwlqaExlP190QGkVKjKDCdEeiBWvQm4n9eJ9XhRTdjIkk1FWS2KEw51jGepIB7TFKi+cgQIJKZWzEZgASiTVYFE4K7+PIyaVbKbrVcvXZLNQfNkEdH6BidIhedoxq6QnXUQASl6B49oifrznqwnq2XWeuKNZ85QH9gvf4A9NeXBQ==</latexit>

+↵2⇥<latexit sha1_base64="rvY7URDetHJ3uMUQZv0k44XFelM=">AAAB+HicbVDLSsNAFJ1YH7U+GhVXbgaLIAgl6aK6LLhxWcE+oCnhZjpph04mYWYi1NAvceNCEbf+gb/gQnDlp+j0sdDWAxcO59zLvfcECWdKO86ntZJbXVvfyG8WtrZ3dov23n5TxakktEFiHst2AIpyJmhDM81pO5EUooDTVjC8nPitWyoVi8WNHiW0G0FfsJAR0Eby7eKZBzwZgF/xNIuo8u2SU3amwMvEnZNSLffx/Xb4Reu+/e71YpJGVGjCQamO6yS6m4HUjHA6LnipogmQIfRpx1ABZkk3mx4+xidG6eEwlqaExlP190QGkVKjKDCdEeiBWvQm4n9eJ9XhRTdjIkk1FWS2KEw51jGepIB7TFKi+cgQIJKZWzEZgASiTVYFE4K7+PIyaVbKbrVcvXZLNQfNkEdH6BidIhedoxq6QnXUQASl6B49oifrznqwnq2XWeuKNZ85QH9gvf4A9NeXBQ==</latexit>

+↵2⇥<latexit sha1_base64="/hIatESGxW7y6US6Az4TZbyHk9M=">AAAB9XicbVDJSgNBEK1JXGLcouLJS2MQPIUZD9FjwIvHCGaBzBhqOj1Jk56F7h4lDPkPLx4U8eo3+AseBE9+inaWg0YfFDzeq6Kqnp8IrrRtf1i5/NLyymphrbi+sbm1XdrZbao4lZQ1aCxi2fZRMcEj1tBcC9ZOJMPQF6zlD88nfuuGScXj6EqPEuaF2I94wClqI127KJIBdh1X85CpbqlsV+wpyF/izEm5ln//et3/ZPVu6c3txTQNWaSpQKU6jp1oL0OpORVsXHRTxRKkQ+yzjqERmiVeNr16TI6M0iNBLE1FmkzVnxMZhkqNQt90hqgHatGbiP95nVQHZ17GoyTVLKKzRUEqiI7JJALS45JRLUaGIJXc3EroACVSbYIqmhCcxZf/kuZJxalWqpdOuWbDDAU4gEM4BgdOoQYXUIcGUJBwBw/waN1a99aT9TxrzVnzmT34BevlGxMUlp4=</latexit>

↵1⇥<latexit sha1_base64="/hIatESGxW7y6US6Az4TZbyHk9M=">AAAB9XicbVDJSgNBEK1JXGLcouLJS2MQPIUZD9FjwIvHCGaBzBhqOj1Jk56F7h4lDPkPLx4U8eo3+AseBE9+inaWg0YfFDzeq6Kqnp8IrrRtf1i5/NLyymphrbi+sbm1XdrZbao4lZQ1aCxi2fZRMcEj1tBcC9ZOJMPQF6zlD88nfuuGScXj6EqPEuaF2I94wClqI127KJIBdh1X85CpbqlsV+wpyF/izEm5ln//et3/ZPVu6c3txTQNWaSpQKU6jp1oL0OpORVsXHRTxRKkQ+yzjqERmiVeNr16TI6M0iNBLE1FmkzVnxMZhkqNQt90hqgHatGbiP95nVQHZ17GoyTVLKKzRUEqiI7JJALS45JRLUaGIJXc3EroACVSbYIqmhCcxZf/kuZJxalWqpdOuWbDDAU4gEM4BgdOoQYXUIcGUJBwBw/waN1a99aT9TxrzVnzmT34BevlGxMUlp4=</latexit>

↵1⇥

Replaced with a
mixture of the

learned vectors

Figure 2: Method overview. Left) At training time, we employ SVF and RL to learn the “expert”
vectors z’s that scale the singular values of the weight matrices. Right) At inference time, we propose
three distinct methods to adaptively select/combine the learned expert vectors.

Singular value fine-tuning is a key building block in Transformer2. It offers an extremely efficient
parameterization for fine-tuning and provides inherent compositionality for adaptation. Conven-
tional fine-tuning techniques often aim to augment pre-trained models with new capabilities by mod-
ifying their weight matrices. However, in large-scale transformers, these weights are already rich
repositories of abstracted knowledge, thanks to the breadth of the pre-training data and expansive
architectural design. In fact, as evidenced in much of the prior literature, the requisite capabilities
for solving many downstream tasks appear to already exist within these pre-trained models (Sharma
et al., 2023). Therefore, instead of seeking to add new features, an efficient fine-tuning approach
should focus on making these latent capabilities more expressible. Motivated by these considera-
tions, for any weight matrix W , SVF learns a simple vector z ∈ Rr that provides targeted modifica-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

tions to each singular component of W independently, yielding a new weight matrix W ′ = UΣ′V ⊺,
where Σ′ = Σ⊗ diag(z). This essential parameterization enjoys several benefits:

Negligible parameters: Learning only a vector z for each weight matrix allows for very efficient
fine-tuning with orders of magnitudes fewer optimized parameters even when compared to prior
approaches specifically designed for efficiency. For example, the widely popular LoRA approach
requires (m+n)×r′ learnable parameters per weight matrix, where r′ is a hyper-parameter that gen-
erally needs to be set large enough for expressivity. While recent extensions, such LoRA-XS (Bałazy
et al., 2024), try to push efficiency even further, they often introduce limiting assumptions that curb
applicability in several practical scenarios (see examples in Appendix C). In contrast, while SVF
only needs r = min(m,n) parameters, we show it empirically does not display the same shortcom-
ings thanks to working on a highly-meaning space provided by the latent expressiveness compressed
in the weights of modern LLMs. SVF’s scaling only the singular values may seem to lead to limited
expressiveness, we wish to point out that the ability to affect the weight matrix in a full-rank manner
technically provides more information than low-rank approaches.

High compositionality: Decomposing the weights in independent singular components makes the
learned z vectors highly composable and interpretable, opening numerous possibilities for adapta-
tion via algebraic manipulations. Instead, LoRA-based methods inherently lack these properties. For
instance, even if two LoRAs learned on the same task were to learn exactly the same adjustments for
each W , directly interpolating between their compressed A and B matrices is unlikely to preserve
any of their original behavior, given the countless number of equivalent parameter permutations they
might have converged to.

Principled regularization: Exclusively modifying the magnitude of pre-existing singular compo-
nents provides a principled and effective form of regularization. In practice, this property enables
us to fine-tune for arbitrary downstream tasks with only hundreds of data points without the risk of
severe collapse or overfitting.

End-to-end optimization with RL. We train a set of SVF vectors θz = {z1, · · · , zN×M} to fine-
tune an arbitrary language model πθW parameterized by θW with RL, optimizing directly for task
performance. Here, θW = {W1, · · · ,WN×M} is the set of weight matrices, where N is the number
of layers and M is the number of weight matrices to fine-tune per layer. We use the seminal RE-
INFORCE algorithm (Williams, 1992) and label each generated answer yi (for the prompt xi ∈ D)
with a unitary reward based on its correctness r ∈ {−1, 1}. Inspired by related applications of RL
for optimizing LLMs (Ouyang et al., 2022), we regularize the REINFORCE objective by adding
a KL penalty for deviating from the original model’s behavior, weighted by a small coefficient
λ ∈ R+. Thus, our final objective function can be written as:

J(θz) = E
[
log

(
πθW ′ (ŷi | xi)

)
r(ŷi, yi)

]
− λDKL(πθW ′∥πθW), (1)

where we use πθW ′ to denote the resulting language model after substituting the original weight
matrices W with W ′. While RL is generally considered less stable than next-token prediction ob-
jectives, we find the regularization properties of SVF avoid many of the failure modes of prior less-
constrained parameterizations (see Section 4.3). Thus, combining these complementary components
effectively enables us to avoid relying on expensive fine-tuning procedures with large hand-designed
datasets as proxies, and directly maximize task performance end-to-end.

In general, SVF with RL puts lower requirement on the dataset it trains on. For example, LoRA
fine-tuning requires “explaining texts” to perform next token predictions, which puts a higher re-
quirement on the dataset (e.g., imagine LoRA fine-tuning on a GSM8K dataset where no reasoning
text but only the final number is provided). This benefit allows SVF to be more general and effective.
One possible caveat SVF can face is the sparse rewards caused by a weak base model, which we
discuss this further in Section 5.

Self-adaptation is a critical mechanism in nature that has established itself as a core guiding princi-
ple in modern system design (Klös et al., 2015). Our initial efforts toward self-adaptive foundation
models focus on the inference stage of LLMs, where we devise a simple two-pass adaptation strat-
egy that combines K sets of base “expert” vectors z1:K trained with SVF to provide different kinds
of capabilities (e.g., coding, math, etc). The mapping between a capability and the dataset we
train on can be acquired in the dataset’s meta data. In the first inference pass, given a task or an
individual input prompt, Transformer2 executes the model and observes its test-time behavior to
derive a new z′ vector tailored to its test-time conditions. This adapted z′ is then used in the second

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

inference pass to provide an actual response with the newly adapted weights. The interaction be-
tween SVF-trained expert vectors and the adaptation strategies ensures seamless integration, where
expert vectors provide modular capabilities, and the adaptation strategies dynamically determine
and compose the most suitable combination to address the input task. In this first work, we propose
three simple approaches to produce the vector z′ during the first inference pass, implementing self-
adaption with distinct methods and requirements. Below, we provide an outline of each method and
refer to Appendix A for additional implementation details.

A) Prompt engineering: Our most basic approach involves constructing a new “adaptation” prompt
which we use to directly ask the LLM to categorize the input prompt. Based on its response, we
then extract one category out of the set of domain topics used to pre-train each SVF expert and,
thus, we select the corresponding z′ directly from z1:K . In our adaptation prompt, we also explicitly
provide the option for a generic “others” category, allowing the model to use its base weights in case
no expert provides appropriate capabilities. We show the format used to construct the adaptation
prompt in Figure 3.

Analyze the given question and classify it into one of four categories:
'code', 'math', 'reasoning', or ‘others’. Follow these guidelines:

1. Code: Questions asking for programming solutions...

2. Math: Questions involving mathematical calculations...

3. Reasoning: Questions requiring logical thinking....

4. Others: Questions not clearly fit into above categories...

Instructions:

- Consider the primary focus, skills, and knowledge required to answer
the question.

- If a question spans multiple categories, choose the most dominant one.

- Provide your final classification within \\boxed{} notation. Example: \
\boxed{reasoning}

Format your response as follows:

Classification: \\boxed{category}

Figure 3: Prompt based adaptation. Self-
adaptation prompt used by Transformer2 to
classify the task prompt into pre-defined cat-
egories.

B) Classification expert: A direct extension of the
prompt engineering approach comes from using a
specialized system to handle task identification. Fol-
lowing the principles of self-adaptation, we ap-
ply SVF to fine-tune the base LLM itself to han-
dle this task. In particular, we collect a dataset
D = {(x1,1, 1), · · · , (xi,k, k), · · · } from the K SVF
training tasks, where xi,k is the i-th example from
the k-th expert task. Each tuple (xi,k, k) then forms
an example to pre-train an additional job classifica-
tion expert zc learned in the same fashion as the oth-
ers. During the first inference pass, we simply load
zc, intending to improve the inherent task classifica-
tion capabilities of the base model to select a more
appropriate z′ to handle the input prompt.

C) Few-shot adaptation: Our third approach leverages additional task information by assuming
extended access to its test-time conditions beyond individual prompts. Our approach is inspired by
popular few-shot prompting techniques, which have been shown to provide consistent performance
improvements and even allow LLMs to “in-context” learn tasks that were entirely unseen prior to
inference (Brown, 2020). For each optimized W , our approach entails producing an entirely new
z′ =

∑K
k=1 αkzk by linearly interpolating between the K learned SVF vectors, each weighted by

the coefficients αk. We employ CEM to search over the possible values of each αk based on the
performance on a set of “few-shot prompts”, which are specifically held out from the rest of the
test prompts and used to evaluate CEM’s population samples. In the case of multiple population
samples obtaining the same score on these held-out prompts, we break ties by favoring the one with
the highest average log-likelihood across its own generated correct answers. Crucially, we only need
to perform this process once for each target task, avoiding the need to increase the length of each
question prompt, a relevant downside of traditional few-shot prompting. We refer to Section A.4,
for additional details and an extended discussion of this final approach.

4 EXPERIMENTS

We extensively evaluate Transformer2 on multiple tasks and models with the purpose of: (1) as-
sessing the efficiency and effectiveness of SVF; (2) demonstrating self-adaptiveness through the
three proposed adaptation strategies; (3) conducting in-depth analysis and ablation studies aimed at
understanding and interpreting the properties of our new framework.

4.1 EXPERIMENTAL SETUPS

To validate the generality of Transformer2 we consider three pre-trained LLMs ranging across dif-
ferent model families and architecture sizes: LLAMA3-8B-INSTRUCT, MISTRAL-7B-INSTRUCT-
V0.3, and LLAMA3-70B-INSTRUCT. For each model, we obtain three sets of SVF-trained z vec-
tors to maximize performance for GSM8K (Cobbe et al., 2021), MBPP-pro (Austin et al., 2021),
and ARC-Easy (Clark et al., 2018), respectively. Additionally, we also train a set of z vectors

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 100 200 300 400
Epoch

0.70

0.75

0.80

0.85

0.90

Sc
or

e

Math

0 20 40 60 80
0.60

0.65

0.70

0.75

0.80

0.85
Coding

0 50 100 150

0.89

0.90

0.91

0.92

0.93

0.94
Reasoning

0 50 100 150

0.40

0.45

0.50

0.55

0.60

0.65
Vision Language

Train
Test

Figure 4: SVF learning curves. The dashed lines indicate the performance of LLAMA3-8B-
INSTRUCT on the test split of each task. SVF effectively fine-tunes to surpass the base performance.
While we use the best validation score to select our checkpoint for evaluation (marked by red dots),
we present the entire training curve without early stopping to demonstrate SVF’s learning capabili-
ties. Tasks with only hundreds of training samples like Coding and Reasoning were stopped early.
In our experiments, we update the parameters at the end of each epoch.

for LLAMA3-8B-INSTRUCT, when applied as the language backbone for TextVQA (Singh et al.,
2019), in order to assess SVF’s applicability to the vision-language modeling (VLM) domain. We
provide SVF’s main learning curves on each of these tasks in Figure 4. Finally, we evaluate the
full Transformer2 adaptation framework on four unseen tasks: MATH (Hendrycks et al., 2021),
Humaneval (Chen et al., 2021), ARC-Challenge (Clark et al., 2018), and OKVQA (Marino et al.,
2019). In all our adaptation experiments, we only consider experts obtained in the pure-language set-
tings, assessing its test-time applicability even for the distinctive vision domain. Please refer to the
Appendix A for additional details and a summary of the hyper-parameters used in the experiments.

4.2 EXPERIMENTAL RESULTS

SVF performance We provide results after training on each considered task with the LLAMA3-
8B-INSTRUCT, MISTRAL-7B-INSTRUCT-V0.3, and LLAMA3-70B-INSTRUCT base models in Ta-
ble 1. Remarkably, we find that SVF provides considerable and consistent performance gains across
nearly all tasks and base models. Instead, LoRA experts yield smaller gains and even sporadic per-
formance degradation. (These LoRA experts are trained with next token prediction. While we also
have LoRA experts trained with RL in Table 4, RL seems work less well with LoRA than with
SVF.) This observed trend extends also to the vision-language domain, as fine-tuning LLAMA3-
LLAVA-NEXT-8B with SVF bolsters the base model’s performance by over 39% (see Figure 5). To
ensure a fair comparison, we provide extensive ablations to both our model and the LoRA baseline
considering different architecture and optimization objectives in Appendix 4.3). Due to its essential
parameterization, we would like to note that training SVF requires considerably fewer resources,
with less than 10% of the training parameters of our LoRA implementation.

Adaptation performance With the SVF trained z vectors, we assess the self-adaptation capability
of Transformer2 on unseen tasks. For a fair comparison with LoRA, we record the performance
of this baseline using all checkpoints from the considered training tasks and report only its high-
est performance for each of the test tasks. As shown in Table 2, all of our Transformer2 adapta-
tion strategies demonstrate improvements across all tasks for LLAMA3-8B-INSTRUCT base models,
and in at least two out of three tasks for both MISTRAL-7B-INSTRUCT-V0.3 and LLAMA3-70B-
INSTRUCT. In contrast, even the best training LoRAs only provide marginal improvements on the
ARC-Challenge task and still significantly deteriorate performance on both MATH and Humaneval.

Table 1: Fine-tuning results. LLM performance on the test splits of math,
coding and reasoning. Normalized scores are in the parentheses.

Method GSM8K MBPP-Pro ARC-Easy

LLAMA3-8B-INSTRUCT 75.89 (1.00) 64.65 (1.00) 88.59 (1.00)
+ LoRA 77.18 (1.02) 67.68 (1.05) 88.97 (1.00)
+ SVF (Ours) 79.15 (1.04) 66.67 (1.03) 89.56 (1.01)

MISTRAL-7B-INSTRUCT-V0.3 42.83 (1.00) 49.50 (1.00) 81.65 (1.00)
+ LoRA 36.09 (0.84) 51.52 (1.04) 81.19 (0.98)
+ SVF (Ours) 49.74 (1.16) 51.52 (1.04) 85.14 (1.04)

LLAMA3-70B-INSTRUCT 85.29 (1.00) 80.81 (1.00) 89.10 (1.00)
+ LoRA 77.26 (0.91) 68.69 (0.85) 88.55 (0.99)
+ SVF (Ours) 88.32 (1.04) 80.81 (1.00) 88.47 (0.99)

TextVQA OKVQA
30

35

40

45

50

Llama3-8B
LoRA
SVF/Transformer2

Figure 5: Results for
the VLM domain.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Self-adaptation on unseen tasks. Normalized scores are in the parentheses.
Method MATH Humaneval ARC-Challenge

LLAMA3-8B-INSTRUCT 3 24.54 (1.00) 60.98 (1.00) 80.63 (1.00)
+ LoRA 24.12 (0.98) 52.44 (0.86) 81.06 (1.01)
+ Transformer2 (Prompt) 25.22 (1.03) 61.59 (1.01) 81.74 (1.01)
+ Transformer2 (Cls-expert) 25.18 (1.03) 62.80 (1.03) 81.37 (1.01)
+ Transformer2 (Few-shot) 25.47 (1.04) 62.99 (1.03) 82.61 (1.02)

MISTRAL-7B-INSTRUCT-V0.3 13.02 (1.00) 43.29 (1.00) 71.76 (1.00)
+ LoRA 11.18 (0.86) 37.80 (0.87) 75.77 (1.06)
+ Transformer2 (Prompt) 11.86 (0.91) 43.90 (1.01) 72.35 (1.01)
+ Transformer2 (Cls-expert) 11.60 (0.89) 43.90 (1.01) 74.83 (1.04)
+ Transformer2 (Few-shot) 13.39 (1.03) 47.40 (1.09) 75.47 (1.05)

LLAMA3-70B-INSTRUCT 40.64 (1.00) 78.66 (1.00) 87.63 (1.00)
+ LoRA 25.40 (0.62) 73.78 (0.94) 83.70 (0.96)
+ Transformer2 (Prompt) 40.44 (1.00) 79.88 (1.02) 88.48 (1.01)

This discrepancy suggests that LoRA’s parameterization and optimization might be particularly sen-
sitive to overfitting, especially when trained with the smaller GSM8K and MBPP-Pro datasets, the
tasks that provide information most related to MATH and Humaneval. In Figure 5, we find a sim-
ilar dichotomy in the OKVQA task, with the performance of the base LLAMA3-LLAVA-NEXT-8B
VLM only improving after applying Transformer2. We note that also in this setting, Transformer2

performs self-adaptation only from the expert vectors from GSM8K, MBPP-Pro, and ARC-Easy.
Thus, this result further underscores the high flexibility of self-adaptation, transferring knowledge
compressed for tasks entirely based on language even for unrelated vision-based problems.

Comparing the three proposed adaptation strategies, we highlight a clear monotonic trend – with
more involved strategies and additional information about the test-time condition, self-adaptation
appears to be increasingly effective. In particular, Transformer2 with few-shot self-adaptation is
almost always the highest-scoring method, providing notable improvements across all tested settings
except for LLAMA3-70B-INSTRUCT @MATH, where we have only SVF-tuned half of the layers
due to our limited GPU resources. This trend shows that providing additional or different kinds
of information seems to be highly beneficial to our framework, suggesting that Transformer2 could
provide foundation models with new means to continually improve performance when deployed in
lifelong settings.

Table 3: Time cost of 2-pass
inference in prompt adaptation
strategy of Transformer2 for the
entire problem set. 1st to 2nd pass
inference time ratios are shown in
parentheses.

Task 1st (s) 2nd (s)

MATH 42.64 (13%) 321.19
Humaneval 2.76 (19%) 14.28
ARC-Challenge 13.40 (47%) 28.51

Table 3 reports the inference time required by the prompt adap-
tation strategy of Transformer2, with the time spent on solving
the entire problem set presented separately for the 1st and 2nd
passes. Notice that the 2nd pass inference time is the time
spent on solving the problems, and the 1st pass inference time
is the time for self-adaptation, 1st to 2nd pass inference time
ratios are in the parentheses. While the additional inference
pass might appear to double the overall runtime, it is important
to note that inference time primarily depends on the number of
tokens generated. In our settings, it is O(n) where n is the
length of the input. ARC-challenge’s cost ratio is large because they are single choice problems
and therefore the cost of the 2nd pass is also O(n). In general settings, we think it is reasonable
to assume this ratio to be closer to those of MATH and Humaneval. For a detailed discussion on
improving the efficiency of CEM few-shot adaptation methods, please see Appendix D

4.3 ANALYSIS

Lastly, we analyze and discuss the properties of our adaptation strategies for which we provide
extensions and further discussion Appendix B.

Analysis 1: Job dispatching accuracy In Figure 6 we provide the confusion matrices of our
classification-based adaptation strategies. These results validate the effectiveness of both our
classification-based adaptation strategies to match each prompt with experts trained in similar do-
mains, as evidenced by the high values along the diagonals. Furthermore, the results from LLAMA3-
8B-INSTRUCT and MISTRAL-7B-INSTRUCT-V0.3 also show that using the classification expert

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Math Code Reasoning

M
AT

H
HU

M
AN

EV
AL

AC
R-

Ch
al

le
ng

e

1.00 0.00 0.00

0.04 0.96 0.00

0.17 0.00 0.77

Llama3-8B
Prompt Engineering

Math Code Reasoning

0.95 0.00 0.05

0.02 0.98 0.00

0.03 0.00 0.97

Llama3-8B
Classification Expert

Math Code Reasoning

0.96 0.00 0.00

0.00 0.99 0.00

0.06 0.00 0.95

Mistral-7B
Prompt Engineering

Math Code Reasoning

0.99 0.00 0.01

0.00 1.00 0.00

0.04 0.00 0.95

Mistral-7B
Classification Expert

Math Code Reasoning

1.00 0.00 0.00

0.01 0.99 0.00

0.05 0.00 0.95

Llama3-70B
Prompt Engineering

Figure 6: Confusion matrices. These matrices display the classification percentages, where rows
represent the task classes (ground truth) and columns indicate the predicted categories. Some sam-
ples are misclassified as “Others,” which is reflected in rows where the totals do not sum to one.

consistently provides higher classification accuracy than vanilla prompt engineering. While this dif-
ference could explain the higher performance of the relative self-adaptation strategy, we also note
that domain similarity might not be the only metric relevant to identifying the best expert for each
prompt or task. To this end, we believe many further unexplored extensions could be explored in
future work, using heuristics such as past expert performance or token-level analysis to further push
our framework’s scalability.

Analysis 2: Training tasks adaptation contribution In Figure 7, we show the normalized adap-
tive coefficients ak interpolating between our SVF vectors learned via CEM for LLAMA3-8B-
INSTRUCT and MISTRAL-7B-INSTRUCT-V0.3 across all the unseen downstream tasks. Intuitively,
we find that the expert vectors from the training tasks sharing similar topics to the unseen ones are of-
ten the highest contributors to the produced adaptive weights. However, we observe that the MATH
task appears as an interesting exception, as the ak for the expert obtained from GSM8K training is
actually the lowest out of the three in both models. We hypothesize this reflects the different nature
of the mathematics competition problems from MATH as compared to the grade-school problems
in GSM8K. In fact, not only is the difficulty of the MATH questions far beyond GSM8K, but a large
portion of its problems also hinges mainly on logical reasoning, for which a task like ARC might
actually be more aligned. Furthermore, we also note that the different z vectors appear to contribute
more uniformly to adaptation in the Llama model. This difference might indicate that, due to its
higher base performance, the Llama model does not need to rely on any particular set of skills as
much as Mistral, and can harness more holistic benefits from self-adaptation. Note that applying
ak uniformly is not a universal solution for leveraging expert vectors. This becomes evident when
we look at different model and task combinations (e.g. applying ak uniformly on LLAMA3-8B-
INSTRUCT for MATH tasks only achieves 24.47, while Transformer2 (Few-shot) achieves 25.47).

Analysis 3: Ablation studies

Module sensitivity: We first compare the performance of SVF when it is applied to different modules
(see trials 1-3). Under consistent conditions, both individual MLP and attention updates improve
performance, with MLP updates resulting in more pronounced gains. Simultaneous updates to both
module types yield even more significant enhancements.

Objective function: We are interested in the performance impact from different objective functions,
and we compare the RL objective with next-token prediction loss (see trials 2 and 4). For the latter,
we use instruction fine-tuning with official GSM8K solutions as target tokens. Results show clear
performance gains with RL, demonstrating its effectiveness in task-specific fine-tuning. Conversely,
next-token prediction even hinders performance. This highlights RL’s ability to handle cases lacking
detailed solutions, suggesting its superiority in this context.

SVF vs LoRA: Finally, we also evaluate LoRA using the RL objective (see trials 2 and 5). A sig-
nificant performance disparity is observed, primarily attributed to the severe instability of the LoRA
training process. Despite exploring a wide range of learning rates, LoRA’s performance consistently
lagged behind. For further illustrations, see Figure 9 in the appendix.

Analysis 4: Cross-model compatibility Finally, we explore the potential for our self-adaptation
framework to be applied across different LLMs. In particular, we evaluate whether the SVF ex-
pert vectors trained on LLAMA3-8B-INSTRUCT can benefit MISTRAL-7B-INSTRUCT-V0.3, and
whether we can perform adaptation across the expert vectors of these two models. We present our
main findings in Table 5 and refer to Appendix B for additional detailed results. Surprisingly, we
find that positive transfer occurs across the two models, with visible benefits in 2 out of 3 tasks. We

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Ablation studies. We fine-tune LLAMA3-8B-INSTRUCT on the GSM8K training split with
different settings and the results on the test split along with zero-shot transfer results on MATH.

Method Objective Function Module #Params (↓) GSM8K (↑) MATH (↑)

0 LLAMA-3-8B-INSTRUCT 75.89 (1.00) 24.54 (1.00)

1 SVF Policy gradient MLP 0.39M 78.62 (1.04) 24.20 (0.99)
2 SVF Policy gradient attention 0.16M 76.19 (1.00) 24.20 (0.99)
3 SVF Policy gradient MLP + attention 0.58M 79.23 (1.04) 25.04 (1.04)
4 SVF Next token pred attention 0.16M 60.50 (0.80) 18.52 (0.75)
5 LoRA Policy gradient attention 6.82M 57.92 (0.76) 15.72 (0.64)
6 LoRA Next token pred attention 6.82M 77.18 (0.98) 24.12 (0.96)
7 LoRA Next token pred MLP + attention 35.13M 75.66 (0.96) 22.12 (0.91)

Table 5: Cross-model z vector transfer. Results from transferring the expert vectors trained on
LLAMA3-8B-INSTRUCT to MISTRAL-7B-INSTRUCT-V0.3 with cross model few-shot adaptation.

Method MATH Humaneval ARC-Challenge
SVF training task GSM8K MBPP-pro ARC-Easy

MISTRAL-7B-INSTRUCT-V0.3 13.02 (1.00) 43.29 (1.00) 71.76 (1.00)

+ Llama SVF (ordered σi) 11.96 (0.92) 45.12 (1.04) 72.01 (1.00)
+ Llama SVF (shuffled σi) 10.52 (0.81) 40.24 (0.93) 70.82 (0.99)
+ Few-shot adaptation (cross-model) 12.65 (0.97) 46.75 (1.08) 75.64 (1.05)

note these improvements are due to the inherent ordering of the SVF parameterization, as randomly
shuffling each SVF vector before applying it to the Mistral model consistently degrades performance.

GSM8K

25.8%

MBPP

26.2%

Arc Easy48.0%MATH

Llama3-8B

GSM8K
31.1%

MBPP

36.2%

Arc Easy
32.8%

MATH

Mistral-7B

GSM8K 31.2%

MBPP

35.1%

Arc Easy

33.7%

HumanEval

GSM8K
33.3%

MBPP
64.1%

Arc Easy

2.6%

HumanEval

GSM8K

19.3%

MBPP
30.0%

Arc Easy50.7%Arc
Challenge

GSM8K

5.4%
MBPP

7.1%

Arc Easy

87.5%

Arc
Challenge

Figure 7: αk learned weights.

This operation leads to notable performance degradation across
each task. Finally, by performing few-shot adaptation using
the SVF vectors collected from both models, the performance
of MISTRAL-7B-INSTRUCT-V0.3 further improves across the
board. We observe that these gains even surpass the best score
from adapting MISTRAL-7B-INSTRUCT-V0.3 with all the SVF
vectors in the ARC-Challenge task reported in Table 2. While
these results appear promising, we note that the surprising com-
patibility discovered through our naive transfer approach is po-
tentially tied to the similarity between the architectures of the two
considered LLMs. To this end, whether similar transfer can be
replicated with models of different scales remains an open re-
search question that could open the doors to disentangling and
recycling task-specific skills for newer/larger models, with im-
portant implications for the democratization and sustainability.

5 CONCLUSION

In this paper, we introduced Transformer2, providing a novel blueprint toward realizing self-adaptive
LLMs. Within this framework, we first proposed SVF, offering superior performance than prior fine-
tuning recipes, together with reduced costs, high compositionality, and overfitting regularization –
all crucial properties to achieve scalable self-adaptation. Leveraging a set of SVF experts as building
blocks, we developed three effective strategies for self-adaptation, each offering unique benefits and
monotonic performance benefits with increasing access to the test-time conditions.

While Transformer2 demonstrates promising results, there remain exciting opportunities for future
work. One limitation is that the capabilities of SVF experts are tied to the latent components of the
base model. To address this, model merging offers a promising direction (Yu et al., 2024; Goddard
et al., 2024; Akiba et al., 2024), enabling specialized models to be combined into a single, more
capable model. Additionally, while our CEM-based adaptation effectively balances performance
and efficiency, scaling to a large number of specialized domains may introduce increased one-time
computational costs. However, this trade-off is offset by the benefits of improved performance and
enhanced self-adaptation capabilities. Advances in model merging and efficient adaptation tech-
niques have produced models dominating open leaderboards, making them strong candidates as
base models for Transformer2 and opening new possibilities for adaptive LLMs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of
model merging recipes. arXiv preprint arXiv:2403.13187, 2024.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Klaudia Bałazy, Mohammadreza Banaei, Karl Aberer, and Jacek Tabor. Lora-xs: Low-rank adapta-
tion with extremely small number of parameters. arXiv preprint arXiv:2405.17604, 2024.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Alberto Cetoli. Fine-tuning llms with singular value decomposition. Hugging Face Blog, June
2024. URL https://huggingface.co/blog/fractalego/svd-training. Ac-
cessed: 2024-07-01.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Elizabeth N Davison, Kimberly J Schlesinger, Danielle S Bassett, Mary-Ellen Lynall, Michael B
Miller, Scott T Grafton, and Jean M Carlson. Brain network adaptability across task states. PLoS
computational biology, 11(1):e1004029, 2015.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improv-
ing factuality and reasoning in language models through multiagent debate. arXiv preprint
arXiv:2305.14325, 2023.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vlad Karpukhin, Brian
Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit for merging large
language models. arXiv preprint arXiv:2403.13257, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Junmo Kang, Leonid Karlinsky, Hongyin Luo, Zhen Wang, Jacob Hansen, James Glass, David
Cox, Rameswar Panda, Rogerio Feris, and Alan Ritter. Self-moe: Towards compositional large
language models with self-specialized experts. arXiv preprint arXiv:2406.12034, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

11

https://huggingface.co/blog/fractalego/svd-training

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Verena Klös, Thomas Göthel, and Sabine Glesner. Adaptive knowledge bases in self-adaptive sys-
tem design. In 2015 41st Euromicro Conference on Software Engineering and Advanced Appli-
cations, pp. 472–478, 2015. doi: 10.1109/SEAA.2015.48.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki Markus Asano. Vera: Vector-based random
matrix adaptation. arXiv preprint arXiv:2310.11454, 2023.

Vijay Lingam, Atula Tejaswi, Aditya Vavre, Aneesh Shetty, Gautham Krishna Gudur, Joy-
deep Ghosh, Alex Dimakis, Eunsol Choi, Aleksandar Bojchevski, and Sujay Sanghavi. Svft:
Parameter-efficient fine-tuning with singular vectors. arXiv preprint arXiv:2405.19597, 2024.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv
preprint arXiv:2402.09353, 2024.

Lasse S Loose, David Wisniewski, Marco Rusconi, Thomas Goschke, and John-Dylan Haynes.
Switch-independent task representations in frontal and parietal cortex. Journal of Neuroscience,
37(33):8033–8042, 2017.

Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual
question answering benchmark requiring external knowledge. In Proceedings of the IEEE/cvf
conference on computer vision and pattern recognition, pp. 3195–3204, 2019.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Qwen Team. Qwen1.5-moe: Matching 7b model performance with 1/3 activated parameters, March
2024. URL https://qwenlm.github.io/blog/qwen-moe/. Blog post.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale. In International conference on machine
learning, pp. 18332–18346. PMLR, 2022.

Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified approach to com-
binatorial optimization, Monte-Carlo simulation, and machine learning, volume 133. Springer,
2004.

Pratyusha Sharma, Jordan T Ash, and Dipendra Misra. The truth is in there: Improving reasoning
in language models with layer-selective rank reduction. arXiv preprint arXiv:2312.13558, 2023.

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 8317–8326, 2019.

Chen Tianlong, Cheng Yu, Chen Beidi, Zhang Minjia, and Bansal Mohit. Mixture-of-experts in the
era of llms: A new odyssey. ICML 2024 presentation slides, 2024. International Conference on
Machine Learning (ICML).

Hanqing Wang, Zeguan Xiao, Yixia Li, Shuo Wang, Guanhua Chen, and Yun Chen. Milora:
Harnessing minor singular components for parameter-efficient llm finetuning. arXiv preprint
arXiv:2406.09044, 2024.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

12

https://qwenlm.github.io/blog/qwen-moe/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: Ab-
sorbing abilities from homologous models as a free lunch. In Forty-first International Conference
on Machine Learning, 2024.

Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei
Zhang, Anji Liu, Song-Chun Zhu, et al. Proagent: building proactive cooperative agents with large
language models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pp. 17591–17599, 2024.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023.

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan, Jingqi Tong, Conghui He, and Yu Cheng.
Llama-moe: Building mixture-of-experts from llama with continual pre-training. arXiv preprint
arXiv:2406.16554, 2024.

Mingchen Zhuge, Haozhe Liu, Francesco Faccio, Dylan R Ashley, Róbert Csordás, Anand
Gopalakrishnan, Abdullah Hamdi, Hasan Abed Al Kader Hammoud, Vincent Herrmann,
Kazuki Irie, et al. Mindstorms in natural language-based societies of mind. arXiv preprint
arXiv:2305.17066, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS AND HYPER-PARAMETERS

A.1 SVF TRAINING

We obtain the expert vectors z as the base components in Transformer2 by training the SVF fine-
tunes with a consistent recipe across the considered training tasks and language models. We divide
each dataset to produce equal-sized training and validation splits. We then apply our RL-based
approach, optimizing θz with AdamW using a learning rate of 2× 10−3 with cosine decay, a batch
size of 256, and gradient clipping. We employ early stopping and select the best λ (the coefficient
of the KL divergence term) based on validation performance. For the LLAMA3-70B-INSTRUCT
and Vision tasks experiments, we apply the SVF on half of the layers to reduce memory usage
while maintaining considerable performance improvement. During the training of LLAMA3-8B-
INSTRUCT on the vision language tasks, we apply a small negative reward (-0.1) for training stability.

A.2 LORA TRAINING

Below is an instruction that describes a task. Write a response that
appropriately completes the request.

Natalia sold clips to 48 of her friends in April, and then she sold half
as many clips in May. How many clips did Natalia sell altogether in
April and May?

Natalia sold 48/2 = <<48/2=24>>24 clips in May. Natalia sold 48+24
= <<48+24=72>>72 clips altogether in April and May. #### 72

Figure 8: Sample problem and answer. Math data
sample used for LoRA instruction fine-tuning, text in
blue is the unmasked solution.

We follow community best practices for
LoRA fine-tuning, applying it to query and
value projection layers with learning rates
around 5 × 10−5. We set 200 total itera-
tions with a 256 global batch size for suffi-
cient training. For feasible LoRA instruc-
tion training, we collect solutions for all
training tasks (GSM8K, MBPP, Arc-Easy,
TextVQA) from official sources and ap-
pend them to question prompts. Table 8
shows a sample math problem used for
LoRA fine-tuning. Despite extensive hy-
perparameter tuning, we often observe test
performance decay as discussed, which
can be attributed to the small number of training samples and potential model requirements for
instruction fine-tuning data (specifically, the highly detailed thinking process).

A.3 HYPER PARAMETERS

We present a summary of the hyperparameters used in our experiments in Table 6. To optimize
performance, we conducted sweeps across several hyperparameters and selected the most effective
combination based on validation results. For SVF, our primary focus was on adjusting the KL
coefficient to enhance training stability. In the case of LoRA, we concentrated on sweeping the
learning rate and maximum gradient clip norm to identify optimal settings.

A.4 FEW-SHOT ADAPTATION

As described in the main text, our few-shot adaptation approach entails producing an entirely new
z′ =

∑K
k=1 αkzk for each W by linearly interpolating between the K learned SVF vectors, each

weighted by the coefficients α ∈ RK . We employ CEM to search for αk’s based on the performance
on the few-shot prompts, which are specifically held out from the rest of the test prompts and used
to obtain the elite set at each iteration. In the case of multiple sample solutions obtaining the same
score on these held-out samples, we break ties by choosing the sample solution with the highest
average log-likelihood across the tokens of its generated correct answers.

In all of our main experiments we reserve only 10 samples of data for self-adaptation and perform up
to 100 CEM iterations. For each setting, we consider both per-layer and per-vector adaptation, where
the latter strategy has the advantage of greatly simplifying search (as we only have 3 α coefficients).
Moreover, we experiment with both normalizing across the α of different tasks (such that their sum
would be fixed to 1) or keeping them unconstrained. Due to the lack of a validation set, we simply
report the performance attained by our best sample from these test configurations at the end of
optimization, on the remaining unseen samples for each task.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 6: Hyper-parameters used for SVF and LoRA training. We perform a sweep on certain
sensitive hyper-parameters across methods for fair comparison.

SVF Hyperparameters
Initial mean value of z 0.1
Initial variance value of z 1× 10−3

Global batch size 256
Learning rate 2× 10−3

Clip max norm 1× 10−3

KL coefficient λ 0.0, 0.1, 0.2, 0.3

LoRA Hyperparameters
Rank 16
LoRA alpha 32
LoRA dropout 0.05
Global batch size 256
Learning rate 2× 10−4, 5× 10−4, 2× 10−5, 5× 10−5, 2× 10−6. 5× 10−6,
Clip max norm 1× 10−3, 1.0

Table 7: Additional Comparison Experiment. Normalized scores are in the parentheses.

Method GSM8K MBPP-Pro ARC-Easy

LLAMA3-8B-INSTRUCT 75.89 (1.00) 64.65 (1.00) 88.59 (1.00)
+ IA3 78.01 (1.03) 67.68 (1.05) 89.10 (1.01)
+ DORA 78.09 (1.03) 64.65 (1.00) 89.14 (1.01)
+ SVF(Ours) 79.15 (1.04) 66.67 (1.03) 89.56 (1.01)

Method MATH Humaneval ARC-Challenge

LLAMA3-8B-INSTRUCT 24.54 (1.00) 60.98 (1.00) 80.63 (1.00)
+ IA3 23.64 (0.96) 59.76 (0.98) 81.57 (1.01)
+ DORA 24.44 (0.99) 52.44 (0.86) 81.14 (1.01)
+ Transformer2 (Prompt) 25.22 (1.03) 61.59 (1.01) 81.74 (1.01)
+ Transformer2 (Cls-expert) 25.18 (1.03) 62.80 (1.03) 81.37 (1.01)
+ Transformer2 (Few-shot) 25.47 (1.04) 62.99 (1.03) 82.61 (1.02)

B ADDITIONAL RESULTS

B.1 BASELINE COMPARISON TO MORE PEFT METHODS

We conduct additional comparison studies against more parameter-efficient fine-tuning methods,
including IA3Liu et al. (2022), DORA. Liu et al. (2024).

As Table 7 shows, SVF still outperforms other methods and shows promising generalized perfor-
mance.

B.2 IMPACT FROM NUMBER OF FEW-SHOTS

Table 8: Few-shot adaptation scaling on the Arc-
Challenge task. Performance varies with number of
examples.

Method Transformer2 IA3 100 steps IA3 1000 steps
LLAMA3-8B-INSTRUCT 80.63 (1.00) 80.63 (1.00) 80.63 (1.00)

+ 3-shot adaptation 82.18 (1.02) 81.83 (1.01) 79.01 (0.98)
+ 5-shot adaptation 82.38 (1.02) 80.89 (1.00) 79.41 (0.98)
+ 10-shot adaptation 82.61 (1.02) 82.00 (1.02) 79.78 (0.99)
+ 20-shot adaptation 82.61 (1.02) 81.40 (1.01) 79.61 (0.99)

We investigate the relationship between
the number of samples available for few-
shot adaptation and downstream perfor-
mance. Our analysis focused on the
test task where LLAMA3-8B-INSTRUCT
demonstrates the highest baseline perfor-
mance, to prevent the potential for a null
signal in our CEM-based search.

As Table 8 shows, substantial benefits of
our few-shot strategy are evident with as few as 3 to 5 test samples. Moreover, performance appears
to plateau beyond 10 samples, underscoring how our essential and inherently regularized SVF pa-

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

rameterization effectively complements self-adaptation. This efficiency enables optimal use of data
to enhance understanding of the test task.

For completeness, we have also conducted experiments with identical settings on IA3 (Liu et al.,
2022), another method that leverages few-shot examples. All experiments were conducted with full
batch size, a learning rate of 5× 10−5, with 100 and 1000 training steps.

Our results indicate that the performance of IA3 on the unseen test tasks is inferior to CEM-based
adaptation for all numbers of few shots considered. We note that in our experiment, we have to
considerably limit the number of optimization steps to avoid overfitting the 500,000 parameters of
IA3 on the few-shot samples. However, we believe overfitting might still be occurring to some
degree even after only 100 steps, as also validated by the model’s perfect training accuracy on
this extremely small dataset. This limitation of fine-tuning-based adaptation highlights the superior
generalization capability of our CEM-based adaptation approach in Transformer2.

B.3 CROSS-MODEL SVF TRANSFER ON THE TRAINING TASKS

We provide complementary results to Table 5 in the main text, where we analyze the SVF cross-
model transfer performance from training on GSM8K, MBPP-pro, and ARC-Easy to our consid-
ered test tasks. In Table 9, we show the results in the same transfer setting this time evaluating
MISTRAL-7B-INSTRUCT-V0.3 on the same training tasks where the LLAMA3-8B-INSTRUCT SVF
vectors were obtained from. Overall, we recognize a similar trend, albeit with less consistent im-
provement from the original model (only in 1 out of 3 tasks), but still much higher performance than
the randomly shuffled baseline. These results further confirm that the canonical ordering of the SVF
parameterization is key for cross-model transfer, highlighting once more its inherent suitability to
empower self-adaptation.

Table 9: Cross-model z Vector Transfer. Results from transfering the SVF expert vectors trained
on LLAMA3-8B-INSTRUCT to MISTRAL-7B-INSTRUCT-V0.3 in the respective training tasks.

Method GSM8K MBPP-pro ARC-Easy
MISTRAL-7B-INSTRUCT-V0.3 42.83 (1.00) 49.50 (1.00) 81.65 (1.00)

+ Llama SVF (ordered σi) 42.61 (0.99) 48.48 (0.98) 81.78 (1.00)
+ Llama SVF (shuffled σi) 41.93 (0.98) 46.34 (0.94) 80.81 (0.99)

B.4 TRAINING CURVE OF LORA AND POLICY GRADIENT

Figure 9 gives the learning curves for LoRA training on the GSM8K task.

0 50 100 150 200 250 300
Iterations

0.55

0.60

0.65

0.70

0.75

0.80

Sc
or

e

Learning Curve on GSM8K with Lora and Policy gradient

Train Accuracy
Test Accuracy
Base Model Performance

Figure 9: Training LoRA with policy gradient. The dashed line shows the performance of
LLAMA3-8B-INSTRUCT on the test split. LoRA collapses at the beginning of the training stage
and fails to recover, leading to negative effects on test performance. We swept a wide range of learn-
ing rates (2× 10−4, 5× 10−4, . . . , 2× 10−2, 5× 10−2), and all learning curves were similar to the
one presented.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C PCA ON LLAMA3 AND MISTRAL

To investigate if the singular components that have the highest singular values are able to capture
most of the information of a weight matrix, we conducted Principle Component Analysis (PCA)
on the weight matrices in LLAMA3-8B-INSTRUCT and MISTRAL-7B-INSTRUCT-V0.3 (see Fig-
ures 10 and 11). In each figure, we plot the variance that is captured by the top r components across
all the layers in each type of modules for a weight matrix W ∈ Rm×n:

ratio =

∑r
i=1 σi∑min(m,n)

j=1 σj

Here, σ’s are the ordered (from largest to smallest) singular values on the weight matrix W . It is
easy to see from the figures that when r = 256, less than 50% of the variance is captured by these
top components on average. For the MLP layers, this fraction is even lower than 20%. On the
other hand, the ranks adopted by LoRA-XS or similar methods are much less than 256, resulting
in even more information loss and restrictions in their modeling power that relies mostly on these r
components.

0.0

0.2

0.4

0.6

q_proj
r=16
r=64
r=256

k_proj

0.0

0.2

0.4

0.6

v_proj o_proj

0.0

0.2

0.4

0.6

up_proj gate_proj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0.0

0.2

0.4

0.6

down_proj

Figure 10: PCA of LLAMA3-8B-INSTRUCT. We show the ratio of the variance captured by the
top r singular components on the y-axis, and the layer indices on the x-axis. Except for the Query,
Key and Value projection matrices, small r values only capture a tiny fraction of variance in singular
values in the parameter matrices.

D EFFICIENCY CONSIDERATIONS AND IMPROVEMENTS

Table 10: 3-shot and light variants Performance
with different inference-time adaptation budgets.

Method ARC-Challenge
LLAMA3-8B-INSTRUCT 80.63 (1.00)

+ CEM 10-shot adaptation 82.61 (1.02)
+ CEM 3-shot (30% of prompts) 82.18 (1.02)
+ CEM light (3% of prompts) 82.08 (1.02)

Our CEM-based adaptation method involves
running inference on a small number of sam-
ples for each target task (up to 10 in our ex-
periments). In a typical configuration, this pro-
cess is relatively efficient: for example, our
CEM-light approach (3-shot with 10 genera-
tions) completes the ARC-Challenge task in ap-
proximately 11 minutes. As shown in Table 10,
this lighter setup reduces the total number of samples to just 3% of the original setting while still
delivering substantial performance improvements over the base model.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0.0

0.2

0.4

0.6

0.8

q_proj
r=16
r=64
r=256

k_proj

0.0

0.2

0.4

0.6

0.8

v_proj o_proj

0.0

0.2

0.4

0.6

0.8

up_proj gate_proj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0.0

0.2

0.4

0.6

0.8

down_proj

Figure 11: PCA of MISTRAL-7B-INSTRUCT-V0.3. We show the ratio of the variance captured
by the top r singular components on the y-axis, and the layer indices on the x-axis. Except for the
Query, Key and Value projection matrices, small r values only capture a tiny fraction of variance in
singular values in the parameter matrices.

We acknowledge that CEM-based adaptation entails a trade-off between one-time overhead it spends
on searching the optimal combination weights for the SVF-tune vectors and performance. Increasing
the number of few-shot samples or the number of generations can yield higher performance, but this
comes at the cost of additional computational overhead. However, it is important to note that this
adaptation cost is a one-time overhead per task. The cost-per-prompt diminishes significantly when
applied to tasks with a large number of prompts.

Moreover, in practical scenarios, CEM-based adaptation offers better scalability than few-shot
prompting methods, which require increasing the length of every prompt, leading to much worse
scaling as task sizes grow. In contrast, our method focuses on determining optimal expert vector
combinations efficiently and avoids repetitive inference-time costs. However, we note that the over-
head might be significant for tasks with very few prompts. Thus, the other adaptations methods
might be more appropriate for these particular settings.

We also highlight two immediate directions for improving efficiency:

1. Reducing the number of few-shot samples: As shown in our ablation study in Ap-
pendix B.2, substantial benefits can be seen even in the 3-shot setting, which requires only
evaluation of only 30% of the number of prompts per generation.

2. Reducing the number of maximum generations: In the explored settings, the CEM param-
eters tend to converge early on, being very close to the final values after a much lower
number of generations than 100.

Finally, in this work we only considered CEM due to its simplicity, there exist several different
evolution algorithms empirically showing better efficiency and convergence properties that we hope
will be explored in future research.

18

	Introduction
	Related works
	Methods
	Preliminaries
	Transformer2

	Experiments
	Experimental setups
	Experimental results
	Analysis

	Conclusion
	Implementation details and hyper-parameters
	SVF training
	LoRA training
	Hyper parameters
	Few-shot adaptation

	Additional results
	Baseline Comparison to More PEFT Methods
	Impact from number of few-shots
	Cross-model svf transfer on the training tasks
	Training curve of LoRA and policy gradient

	PCA on llama3 and mistral
	Efficiency considerations and improvements

