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ABSTRACT

The surging interest in learning from preference data has resulted in an elaborate
landscape of methods and evaluations. This work offers a framework to simplify
this landscape, starting from the underlying sampling distribution for preference
data. First, we show that the only evaluation of a generative model that is grounded
in the preference data sampling distribution is win rate. Given that win rate is all
that can matter from preference data alone, we relate common preference learning
algorithms to direct win rate optimization (DWRO). We outline the theoretical ben-
efits of RLHF as a variant of DWRO; explain why checkpointing is difficult with
DPO as a non-DWRO objective; and characterize the limits of SFT on preferred
samples with regard to the extent of win rate improvement possible. Furthermore,
we provide closed-form expressions for the expected win rate improvement of the
above objectives, formalizing the role of a model’s starting point in the win rate im-
provement possible. Finally, we conduct an empirical analysis of existing methods
and alternative DWRO objectives which suggests that optimization improvements
are likely key to advancing preference learning.

1 INTRODUCTION

Learning from preference data, often referred to as human feedback, has emerged as a key step in
training large language models, particularly given the success of reinforcement learning from human
feedback (RLHF) (Christiano et al., 2017) on state-of-the-art and high-profile language models
such as GPT-4 (OpenAI, 2024). The goal of learning from preference data is to finetune powerful
base language models to output generations more in line with human preferences (Stiennon et al.,
2020; Ouyang et al., 2022), motivated by the fact that pretraining on internet-scale data has enabled
large language models to exhibit fluent generations of text (Minaee et al., 2024) but not necessarily
responses aligned with what humans prefer to see.

In recent years, the space of algorithms and evaluations for preference learning has grown substantially
(Kaufmann et al., 2023; Jiang et al., 2024), resulting in a complex landscape of methods and analyses.
Consequently, it can be difficult to pinpoint a clear, overarching framework to compare disparate
works and to guide progress. How can we understand preference learning from the ground up?

A common approach to describe preference learning is to focus on the historical development of
methods in the space. Such a description typically starts with reinforcement learning from human
feedback (RLHF) (Christiano et al., 2017), which involves learning a reward model from preference
data and optimizing the language model policy to maximize the learned rewards. Follow-up works can
generally be described as efforts to improve upon RLHF, among which direct preference optimization
(DPO) (Rafailov et al., 2024) was developed to estimate the same solution but via a single step
of direct finetuning rather than a two-step procedure of RLHF. In other words, the landscape of
preference learning can often be described by how methods relate to each other, typically connecting
back to RLHF as a focal point. In this work, in contrast, we ask: is there another way to understand
preference learning that does not center around the earliest or most popular methods?

We address this question by developing a framework for understanding the endeavor of learning from
preferences starting from the sampling distribution implied by pairwise preference data. We first show
that the only evaluation of a generative model rooted in the preference data sampling distribution
itself is win rate; any other notions of good are a function of outside assumptions (Section 3).
From this insight, we introduce a win rate-centric framework for understanding preference learning
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(Section 4, Section 5). Given win rate is the only relevant evaluation without additional assumptions,
we relate common preference learning algorithms (RLHF, DPO, SFT) to directly optimizing for win
rate, outlining benefits of RLHF for being a variant of direct win rate optimization (DWRO) and
limitations of DPO and SFT for not. Namely, as a variant of DWRO, RLHF confers benefits from
(1) optimizing train loss corresponds to optimizing for the test evaluation we care about (up to noise
and overfitting), which is not true of DPO and related variants; to (2) its solution can achieve the
maximum win rate possible over a competitor as regularization strength goes to zero, unlike SFT.
These insights are relevant not just to the three methods discussed, but also for other methods in
the same family (e.g., DWRO variants other than RLHF, Direct Alignment Algorithms other than
DPO). We then conduct an empirical comparison of different methods which offers complementary
insights to the theoretical analysis (Section 6). Namely, we show that despite their theoretical benefits,
direct win rate optimization methods underperform relative to expectations due to difficulties in
optimization. We conclude by discussing the takeaways from our combined theoretical and empirical
analysis (Section 7). These include explanations to ground specific strategies or current practices in
preference learning, as well as guidance for future research.

Our contributions can be summarized as follows:

1. We prove that the only evaluation of a generative model grounded in the preference data
distribution is win rate. This result justifies using win rate as a singular focal point to
understand the landscape of preference learning.

2. We present a win rate-centric framework to understand preference learning. From our
combined theoretical and empirical analysis under this framework, we:
(a) present theoretical benefits of methods which directly optimize for win rate (e.g.,

RLHF) and limitations of methods which do not (e.g., DPO, SFT);
(b) experimentally demonstrate the challenges of optimizing for win rate and the central

role of optimization success for the performance of different methods;
(c) discuss implications for the current practice of choosing methods;
(d) bring attention to connections between preference learning and probabilistic inference

to help inform future work.

2 RELATED WORK

Our work is most closely related to previous work in win rate evaluation and optimization as well as
analysis of RLHF and preference learning objectives.

Win rate evaluation and optimization. Win rate is already a central evaluation in preference learning
(Li et al., 2023; Zheng et al., 2024); however, our work goes further to underscore that it is the only
evaluation grounded in the sampling distribution itself, thus motivating its use as the central object
to understand the rest of the preference learning landscape, including analytically. Several works
have proposed methods that perform some form of win rate optimization (Munos et al., 2023; Swamy
et al., 2024; Rosset et al., 2024). Our work emphasizes that win rate optimization is central goal of
preference learning overall, analyzing a spectrum of preference learning methods through this lens
and pinpointing existing bottlenecks to address to better realize this goal.

Analyzing RLHF, DPO, and other preference learning methods. Our work is related to work that
seeks to better understand RLHF, DPO, and other existing methods in preference learning (e.g., best-
of-n). Examples include benchmarking generalization and diversity (Kirk et al., 2024), comparing
on- vs off-policy approaches (Tajwar et al., 2024), investigating length bias (Singhal et al., 2024),
and disentangling design choices empirically (Ivison et al., 2024). For RLHF in particular, existing
works consider the complexity of proximal policy optimization (Ahmadian et al., 2024), vanishing
gradients (Razin et al., 2024b), reward model overoptimization (Zhu et al., 2024), or limitations
of the Bradley-Terry assumption to relate preferences to rewards (Wang et al., 2024a; Azar et al.,
2023; Munos et al., 2023). For DPO, there exists not only large space of alternative direct alignment
algorithms (e.g., (Zhao et al., 2023; Azar et al., 2023; Xu et al., 2024a; Huang et al., 2024; Pal et al.,
2024; Xu et al., 2024b)) but also methods which analyze its limited ability to flip rankings (Chen
et al., 2024) or the decrease in chosen and rejected log probabilities (Razin et al., 2024a). Gui et al.
(2024) also analyze the target distributions of different preference learning algorithms but focuses on
the optimality of best-of-n while we showcase the limits of SFT as well. Our work is most closely
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related to Azar et al. (2023): their Ψ-Preference Optimization objective is direct win rate optimization
with a KL regularizer, and they are the first to show that RLHF falls within the family of DWRO-KL
objectives. However, while they use the analysis to motivate their proposed IPO as an alternative
to DPO, we use DWRO to contrast RLHF from direct alignment algorithms like DPO and IPO,
highlighting the theoretical benefits of the former and limitations of the latter. Moreover, rather than
focus a direct alignment algorithm variant of a particular instantiation within the family of objectives,
we run experiments on a wide range of DWRO objectives and demonstrate that design choices within
such objectives matter less to performance than the optimization success of a given training run.

3 PREFERENCE LEARNING SETUP

Here, we outline the setup for learning from pairwise preferences. We first describe the underlying
sampling distribution of the data used in preference learning (Section 3.1). Then we show why based
on the sampling distribution alone, the only evaluation which respects the underlying preference
environment and sampling prevalences is win rate (Section 3.2).

3.1 THE SAMPLING DISTRIBUTION

The goal of preference learning is to learn a generative model that performs well in a given context.
However, whereas typical maximum likelihood training employs samples from the distribution of
interest, the setup of preference learning does not: only samples from generation competitors and
their relative preference under the query-preference environment are available.

The sampling distribution for preferences involves input x, candidate outputs y0 and y1, and a label
ℓ ∈ {0, 1} denoting which of y0 or y1 is preferred. Let ℓ = 1 denote that y1 is preferred, and ℓ = 0
denote that y0 is preferred. Then, the overall sampling distribution can be defined as follows:
Definition 1. A sampling distribution for (pairwise) preference learning is a distribution over input
x ∈ X , candidate outputs y0, y1 ∈ Y , and preference label ℓ ∈ {0, 1} defined by:

1. Query distribution: p(x)

2. Generation competitor 0: p(y0 | x)

3. Generation competitor 1: p(y1 | x)

4. Preference classifier: p(ℓ | x, y0, y1).

1, 2, and 3 are user-specified distributions; 1 denotes the inputs of interest, and 2 and 3 are the
candidate competitors one chooses to evaluate. 4 is only distribution that cannot be directly specified,
rather it is defined by the environment in which the user choose to collect the preferences.

Generation competitor 0 and 1 can be the same distribution and often are in existing open-source
preference datasets (Lambert et al., 2023; Ethayarajh et al., 2022).

3.2 WIN RATE IS THE ONLY EVALUATION THAT CAN MATTER

The goal of preference learning is to learn some generative model p∗(y | x) that performs well under
the preference environment for a given query distribution (we refer to this as the query-preference
environment). Learning such a generative model requires a definition of what is good. Consider an
evaluation function ϕ which maps a generative model p(y | x), query-preference environment E =
(p(x), p(ℓ = 1 | x, y0, y1)), and anchor distribution p(y0 | x) to a scalar: ϕp(y0 | x)(p(y | x), E) ∈ R.
We will optionally write ϕp(y0 | x) as ϕ when the anchor is clear from the context.

Intuitively, an evaluation function ϕ should respect properties of the preference sampling distribution.
We formalize these properties for ϕ to respect in the definition below.
Definition 2. Any evaluation function ϕ is grounded in a given preference distribution if

1. (base case is a function of preference classification): given query environment p(x) =
1 [x = x′], generative model p(y | x) = 1 [y = y′], anchor distribution p(y0 | x) =
1 [y0 = y′0], and strictly monotonic increasing function h:

ϕ(p(y | x), E) = h · p(ℓ = 1 | x′, y′0, y
′); and
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2. (respects prevalences in generator, anchor, and query): for a, b ≥ 0 and a+ b = 1:

for generator p(y | x) = ap1(y | x) + bp2(y | x):

ϕ(p(y | x), E) = aϕ(p1(y | x), E) + bϕ(p2(y | x), E); (1)

for query distribution p(x) = ap1(x) + bp2(x), letting Ei = (pi(x), p(ℓ = 1 | x, y0, y1)):

ϕ(p(y | x), E) = aϕ(p(y | x), E1) + bϕ(p(y | x), E2); and (2)

for anchor distribution p(y0 | x) = ap1(y0 | x) + bp2(y0 | x) :

ϕp(y0 | x)(p(y | x), E) = aϕp1(y0 | x)(p(y | x), E) + bϕp2(y0 | x)(p(y | x), E). (3)

Condition 1 ensures that the evaluation can be reduced to a function of the preference classifier in the
limiting case where everything else is a point mass, and condition 2 ensures that the contribution of
the preference classification p(ℓ = 1 | x, y0, y1) for a given (x, y0, y1) gets weighted appropriately by
its prevalence in the query environment, anchor distribution, and generative model, respectively. The
only evaluation that satisfies Definition 2 is some form of win rate:
Proposition 1. ϕ is grounded, as defined in Definition 2, if and only if

ϕp(y0 | x)(p(y | x), E) = Ep(x)Ep(y | x)Ep(y0 | x)[h · p(ℓ = 1 | x, y0, y)] (4)

for some choice of p(y0 | x) and strictly monotonic increasing function h.

See Appendix A for proof. Equation (4) is the win rate of the generator p(y | x) against anchor
distribution p(y0 | x) under the query-preference environment E for some choice of order-preserving
transformation function h. When h is the identity, we have vanilla win rate under the preference
environment; we will refer to this variant as win rate and equivalently write Win Ratep(y0 | x)[p(y | x)].
Often in automated win rate evaluations, it is estimated via samples from the preference classifier,
i.e., Ep(x)Ep(y | x)Ep(y0 | x)ℓ, where ℓ ∼ p(ℓ | x, y0, y) (Li et al., 2023). When h is any other strictly
monotonic increasing function, we have an h-variant of win rate.

Note that placing non-identity functions in any other position in Equation (4), i.e., Ep(x)f · Ep(y | x)g ·
Ep(y0 | x)[h · p(ℓ = 1 | x, y0, y)], breaks the second property of respecting prevalences in Definition 2
by giving outsized priority to certain elements in the generator and query distribution.

Given the insight that the only evaluation grounded in preference data alone is some form of win
rate with respect to some anchor distribution, we next analyze the relationship between common
preference learning algorithms and win rate.

4 PREFERENCE LEARNING THROUGH THE LENS OF WIN RATE OPTIMIZATION

In the next two sections, we analyze existing preference learning algorithms based on how they relate
to directly optimizing for win rate. First, we introduce Direct Win Rate Optimization (DWRO) as a
focal point for understanding the preference learning landscape (Section 4.1). Then, we analyze how
existing preference learning algorithms relate to it, providing insights into the benefits and limitations
of different methods.

4.1 DIRECT WIN RATE OPTIMIZATION

The only grounded evaluation developed in Equation (4) immediately provides an objective to
optimize:

max
θ

Win Ratep(y0 | x)[pθ(y1 | x)] = max
θ

Ep(x)Epθ(y1 | x)Ep(y0 | x)[h · p(ℓ = 1 | x, y0, y1)]. (5)

This objective maximizes a function h of the preference probability in expectation over an anchor
distribution p(y0 | x). We refer to Equation (5) as the family of Direct Win Rate Optimization, or
DWRO, objectives. The solution to any objective in this family is the generator that maximizes the
h-win rate over a given anchor distribution.

While in general different choice of h can yield different solutions, under the Bradley-Terry assump-
tion, all DWRO-h objectives maximize win rate and all h-variants of it.

4
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Proposition 2. (informal) Under the Bradley-Terry assumption, all DWRO objectives with strictly
monotonic increasing h share the same optimal solution.

See Appendix B for proof. This result states that when pairwise preferences can be mapped to a
global ranking of sequences by preference, then perfectly optimizing any DWRO objective yields a
solution that is a perfect optimum of any other DWRO objective.

Regularization. Preference classifiers train on a fixed collection of data samples, which means there
will be inevitable estimation error in p(ℓ = 1 | x, y0, y1). Any DWRO objective would optimize
and overfit to these errors. Preventing this kind of overfitting requires regularization, which can be
accomplished with a divergence penalty with regularization parameter β:

−LDWRO-reg(θ) = max
θ

Ep(x)
[
Epθ(y1 | x)Ep(y0 | x)[h · p(ℓ = 1 | x, y0, y1)]− βD(pθ, pref)

]
. (6)

Options for D include sequence-level reverse KL divergence or chi-sq divergence, considered in Azar
et al. (2023) and Huang et al. (2024) respectively, and a sum of token-level divergences.

Benefits of DWRO objectives. There are two benefits to DWRO objectives:

1. A correspondence between the training objective and grounded evaluations

2. The ability to maximize the grounded evaluation of h-win rate up to any regularization

The first benefit follows directly from the fact that DWRO objectives optimize for the evaluation
of interest, so improvements in train loss correspond to improvements in the test evaluation, up to
overfitting and noise. The second benefit also follows from optimizing the evaluation of interest.
Directly optimizing for win rate means no limits on how much the evaluation can be improved. In
contrast, as we see in the section Section 5, these properties need not be true for other losses that are
not DWRO objectives.

Optimization of DWRO objectives. When the divergence D is tractable, DWRO can be optimized
by differentiating the divergence and using score function gradients (Mohamed et al., 2020a). When
the divergence is intractable but the entire objective can be written as the form Ep(x)Epθ(y | x)ϕ(x, y),
score function gradients or or another policy gradient algorithm (Weng, 2018) can still be used for
optimization.1

Optimization algorithms for DWRO of this type require estimating Ep(y0 | x)[h · p(ℓ = 1 | x, y0, y1)],
which can be done by first learning the preference distribution p(ℓ = 1 | x, y0, y1) from data and then
estimating the expectation Ep(y0 | x)[h · p(ℓ = 1 | x, y0, y1)] with a sample or samples from p(y0 | x)
during policy optimization. Alternatively, it can be possible to learn a model that estimates this
expectation directly in the first step, removing the need to additionally sample from p(y0 | x) during
the second policy optimization step.

Optimizing DWRO with reverse KL regularization is equivalent to minimizing the reverse KL diver-
gence between the model and the target distribution p∗DWRO-KL(y | x) ∝ pref(y | x) exp( 1βEp(y0|x)[h ·
p(ℓ = 1|x, y0, y)]); see Azar et al. (2023) or Appendix C.0.1 for derivation. As such, the reverse-KL
regularized DWRO objective is analogous to that of variational inference (Blei et al., 2017). In
particular, it is a form of black-box variational inference (Ranganath et al., 2014).

Benefits of RLHF as a DWRO Objective. KL-constrained RLHF utilizes the Bradley Terry (BT)
assumption (Bradley & Terry, 1952) to define a reward model r(x, y) such that p(ℓ = 1 | x, y0, y1) =
σ[r(x, y1)− r(x, y0)], then maximizes this reward with a KL penalty:

−LRLHF(θ) = max
θ

Ep(x)
[
Epθ(y | x)[r(x, y)]− βKL(pθ(y | x) ∥ pref(y | x))

]
. (7)

As proved in Azar et al. (2023), RLHF is a DWRO-KL objective under the BT assumption, where the
transformation function h is the logit function:

−LRLHF(θ) = max
θ

Ep(x)
[
Epθ(y | x)Ep(y0 | x)[logit p(ℓ = 1 | x, y0, y)]− βKL(pθ(y | x) ∥ pref(y | x))

]
.

1For instance, for DWRO-χ2, ϕ(x, y) = Ep(y0 | x)[h ·p(ℓ = 1 | x, y0, y1)]−
( pref(y | x)

pθ(y | x) −1
)2; for DWRO-KL,

ϕ(x, y) = Ep(y0 | x)[h · p(ℓ = 1 | x, y0, y1)]− log pθ(y | x) + log pref(y | x).
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This means that RLHF benefits from properties 1 and 2. In other words, under the Bradley-Terry
assumption, optimizing the RLHF objective is optimizing for the evaluation we care about. This
perspective offers an alternative motivation for RLHF as a central method in preference learning,
beyond its status as the first to popularize preference learning. However, RLHF is just one potential
method to capture the idea of optimizing directly for the evaluation we care about. Do RLHF’s
specific choices confer any additional benefits?

Benefits of RLHF relative to other DWRO objectives. While optimizing DWRO-KL objectives in
general require sampling from the current and initial model to estimate win rate, RLHF’s specific
choice of BT assumption and h = logit allows its objective to be computed as a function of the current
model output only: optimizing pθ(y | x) for Ep(y0 | x)[r(x, y)− r(x, y0)] is equivalent to optimizing
for r(x, y), since Ep(y0 | x)r(x, y0) is a constant with respect to pθ(y | x). In other words, the RLHF
variant of DWRO-KL offers a computational advantage that the other variants do not: its score can
be computed without sampling any reference model outputs. Dropping Ep(y0 | x)r(x, y0) from the
objective also confers optimization advantages with respect to variance of the gradient estimator.

Takeaways. The DWRO properties 1 and 2 confer important benefits for learning from preference
data. RLHF enjoys these benefits, as well as computational efficiency and reduced gradient variance
relative to other DWRO objectives.

Next we analyze to objectives that are used in preference learning but are not direct win rate
optimization objectives.

5 PREFERENCE ALGORITHMS THAT ARE NOT DWRO OBJECTIVES

5.1 DPO SHARES THE SAME TARGET AS RLHF BUT DOES NOT OPTIMIZE WIN RATE

Direct Preference Optimization (DPO) (Rafailov et al., 2024) shares the same target distribution as
RLHF but employs a different objective to optimize for that target, namely:

−LDPO(θ) = min
θ

Ep(x,y0,y1,ℓ)
[
KL(p(ℓ = 1 | x, y0, y1) ∥ pθ(ℓ = 1 | x, y0, y1))

]
, (8)

where pθ(ℓ = 1 | x, y0, y1) is parametrized to include a language model inside of it:

pθ(ℓ = 1 | x, y0, y1) = σ
[
β log

pθ(y1 | x)
pref(y1 | x)

− β log
pθ(y0 | x)
pref(y0 | x)

]
. (9)

DPO targets a DWRO-KL distribution (i.e., the same one as RLHF), but its objective is derived
by using the relationship between the target distribution and preference classifier to substitute the
former into an objective optimizing the latter. Notably, optimizing the estimation of the preference
classifier is not the same as optimizing for win rate. As a result, improvements in DPO loss do not
necessarily correspond to improvements in win rate, i.e. property 1 does not hold. This insight offers
an explanation for empirical results such as the loss vs. win rate misalignment observed in (Chen
et al., 2024), as well as the benefit of early stopping or checkpointing with win rate directly, as is
common in current practice (Rafailov et al., 2024; Yuan et al., 2024). This insight also applies to
alternative direct alignment algorithms which do not optimize the win rate objective (e.g., Azar et al.
(2023); Tang et al. (2024); Huang et al. (2024)).

Takeaways. DPO and other direct alignment algorithms do not directly optimize win rate. Thus even
if they target the same solution as a DWRO objective (i.e., property 2 holds, true for Rafailov et al.
(2024); Azar et al. (2023); Huang et al. (2024)), improvements in loss do not necessarily correspond
to improvements in win rate (i.e., property 1 does not hold), resulting in difficulties with model
selection without external evaluations outside of loss.

5.2 SUPERVISED FINETUNING ON PREFERRED SAMPLES IMPROVES WIN RATE WITH LIMITS

Supervised finetuning (SFT) on preferred samples is often viewed as an initial step or necessary
precursor to other preference learning algorithms such as RLHF (Wang et al., 2024b; Razin et al.,
2024b) but here, we place it on the equal footing to other preference learning algorithms. First,
we show that SFT on preferred samples is not a DWRO objective. Then, we compare its target

6
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distribution to that of DWRO-KL objectives and show that it is limited in its ability to yield sharp
distributions that concentrate on elements that win often. Moreover, we characterize the exact win
rate expected from SFT with online samples, as well as the insights it offers for self-improvement.

Supervised finetuning on preferred samples (sometimes denoted yw) seeks to maximize the likelihood
of sample y1 when ℓ = 1 and y0 when ℓ = 0. As p(yw | x) = p(y1 | x, ℓ = 1) = p(y0 | x, ℓ = 0), the
objective can be written as follows:

−LSFT(θ) = min
θ

Ep(x)KL(p(y1 | x, ℓ = 1)||pθ(y1 | x, ℓ = 1)). (10)

SFT optimizes for this target distribution through the forward KL objective, which is possible due
to the fact that one can obtain samples for the target distribution from the preference sampling
distribution directly. The analogous reverse KL objective for this target distribution is as follows (see
Appendix C.0.3 for derivation):

max
θ

Ep(x)
[
Epθ(y1 | x) logEp(y0 | x)[p(ℓ = 1 | x, y0, y1)]− KL(pθ(y | x) ∥ pref(y | x))

]
. (11)

While Equation (11) looks similar to a DWRO-KL objective, it is not. Concretely, the lack of β to
scale the KL divergence penalty, as well as the additional log outside of the innermost expectation,
differentiate this objective from DWRO-KL. The result is that neither property 1 or 2 hold.

What is the effect? The target distribution for SFT can be written as:
p∗SFT(y | x) ∝ p(y | x)Ep(y0 | x)[p(ℓ = 1 | x, y0, y1)], (12)

or equivalently

p(y1 | x, ℓ = 1) =
p(y1, ℓ = 1 | x)
p(ℓ = 1 | x)

=

∫
p(y1 | x)p(y0 | x)p(ℓ = 1 | x, y0, y1)dy0∫

p(y′1 | x)p(y′
0 | x)p(ℓ = 1 | x, y′0, y′

1)dy′0dy′1
. (13)

The distribution tilts the original distribution towards sequences with higher average preference
probabilities over the anchor, but there are limits to the amount of change Equation (12) can achieve.
In fact, we can characterize the exact win rate expected from SFT over the original model:
Theorem 1 (Win rate improvement of SFT). Let p(y0 | x) be the initial generative model, and
pSFT(y | x) be the target distribution of supervised finetuning on preferred samples (p(y1 | x, ℓ = 1),
p(y0 | x) = p(y1 | x)). Then,

Win Ratep(y0 | x)[pSFT(y | x)] = 0.5 + 2Ep(x)Varp(y1 | x)

[∫
p(y0 | x)p(ℓ = 1 | x, y0, y1)dy0

]
, (14)

which is less than 1.0 as long as there exist non-deterministic preference probabilities, p(ℓ =
1 | x, y0, y1) ∈ (0, 1).

See Appendix E for proof. The theorem states that variance in the average preference probability
of the sequences in the initial model dictates the extent of win rate improvement. Intuitively, one
should not expect any possible improvement in win rate if the existing model only outputs sequences
which are equally preferred to each other. On the other hand, there is more room for improvement
in win rate the more differentially preferred some of the model’s sequences are to others. The most
improvement in win rate occurs when the variance is high. The win rate would be optimized if the
variance were 1/4, but this is not possible for a random variable between 0 and 1 that with density
anywhere besides the endpoints. As a point of reference, if the average preference probabilities are
uniform between zero and one for every input, the improvement delta will be 2× 1

12 = 1
6 ≈ 0.167,

meaning a win rate of just 0.667.

Takeaways. SFT on preferred samples is a method that improves win rate but does not optimize it
nor targets a DWRO solution. Since neither property 1 or 2 hold, SFT has limits to the amount of win
rate improvement possible given preference annotations alone, and the improvement possible is a
function of how differentially preferred the starting model’s sequences are to each other.

An aside: Expected win rate improvement of other objectives. Similar to Theorem 1, closed-
form expressions can be derived for the target distributions of DWRO-KL objectives broadly (see
Appendix F). While it is difficult to obtain low-variance estimators these expressions (e.g., due
to multiple levels of nested expectations, a ratio of expectations), the analytical forms themselves
provide insight into what improvements we can expect from preference learning: for instance, for any
DWRO-KL with non-zero KL regularization, the expected win rate improvement over the starting
model is upper bounded by the maximum average preference probability over the model’s sequences:
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Corollary 1. For any DWRO-KL objective with non-zero KL regularization, the win rate improvement
expected over the starting model is upper bounded by:

Win Ratep(y0 | x)[p
∗(y | x)] ≤ Ep(x)

[
max

y∈supp(p(y0 | x))
Ep(y0 | x)p(ℓ = 1 | x, y0, y1)

]
.

See Appendix G for proof. This result pertains to RLHF, which is a variant of DWRO-KL, as
well as DPO, which shares the same target solution. This result, alongside the analytical win
rate improvement expressions, emphasizes the central role of the starting model in the win rate
improvement possible when learning from preference annotations alone (due to KL regularization).
In the case of SFT, the variance of the model’s output sequence preference probabilities over the
others on average dictates the win rate improvement possible. For DWRO-KL objectives, even though
they optimize win rate, the KL regularization forces the resulting target distribution to place mass only
over sequences already supported in the original distribution, meaning that the best query-conditional
win rate possible is a property of the best sequence’s performance relative to the rest.

6 INVESTIGATING THE EMPIRICAL IMPACT OF DIFFERENT DESIGN CHOICES

Here, we compare RLHF, DPO, and SFT, in order to complement our above theoretical analysis
with an empirical one. In particular, rather than compare the conventional two-stage SFT + RLHF or
DPO, we compare all three methods on the same footing by how much they are able to improve win
rate over the starting model. Moreover, as RLHF is just one version of a KL-regularized direct win
rate optimization objective, we also compare different variants of DWRO-KL. We vary h (identity,
log, and logit), β (1, 0.1, 0.01, 0.001), and the estimation of the preference classifier (perfect and
estimated with and without the Bradley Terry assumption).

6.1 EXPERIMENTAL SETUP

We employ Pythia-2.8b (Biderman et al., 2023) as our base model and the OpenAssistant (OASST)
(Kopf et al., 2023) and Anthropic Helpfulness and Harmlessness (HH) (Bai et al., 2022) datasets
for preference annotations. We train the base models on the data outputs and use these finetuned
models as our initial models. To simulate a preference environment, we train an oracle judge model
per dataset to estimate p(ℓ = 1 | x, y0, y1) and relabel the preference annotations in the dataset using
this judge model. We use this same oracle to evaluate win rate after training. See Appendix I for
further details on the judge model. We additionally train 1. a reward model on the oracle-labeled
judge annotations (accuracy is 82.8 for OASST and 81.36 for HH) and 2. an imperfect judge model
(accuracy is 80.47 for OASST and 85.16 for HH). As expected, the BT assumption is helpful for
preference classifier estimation in OASST but not in HH, as the OASST directly abides by this
assumption (outputs are globally ranked) whereas HH does not explicitly. For optimization, we use
the PPO algorithm implemented in the TRL library (von Werra et al., 2020). See Appendix J for
additional training and evaluation details.

Implementing DWRO-KL. Different variants of DWRO-KL can be implemented as different
choices for the function used to score outputs. Namely, each can be written in the form
maxθ Ep(x)Epθ(y | x)[ψ(x, y) − β log pθ(y | x) + β log pref(y | x)] for different choices of ψ. All ex-
pectations over generator distributions use a single-sample Monte-Carlo estimate. Concretely, for
given query we sample one response each from the current and original model to compute the score,
which is either a function of 1. the preference probability under the judge model which takes in
the pair as input, or 2. the BT preference probability under the reward model which takes each
sequence in as input separately. The one exception is DWRO-KL-logit-BT (i.e., RLHF), where we
drop Ep(y0|x)[r(x, y0)] and only optimize r(x, y).

6.2 RESULTS: COMPARING RLHF, DPO, AND SFT

Figure 1 compares methods across different values of β (not applicable for SFT). While SFT
performance aligns with expectations, as does DPO performance with more regularization, RLHF
substantially underperforms relative to expected given the aforementioned analysis, as does DPO
with less regularization (β=0.001). The non-monotonic nature of both point to the influence of factors
beyond target distribution for win rate improvements. To test if RLHF underfperformance is due to
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Figure 1: Expected versus observed win rates of RLHF, DPO, and SFT over the original model for
OASST. RLHF notably underperforms relative to expectations. Moreover, substituting the learned
reward model for the oracle preference classifier does not improve performance, suggesting other
factors are more important.

Table 1: Win rate results of different DWRO-KL variants over the reference model. Row correspond-
ing to RLHF is shaded grey. No choice of p̂ℓ, h, or β systematically outperforms all others.

Dataset p̂ℓ h β = 0.001 β = 0.01 β = 0.1 β = 1

HH non-BT log 38.36 (1.71) 46.38 (1.34) 63.94 (0.94) 67.00 (0.83)
logit 69.15 (0.91) 41.98 (1.45) 48.74 (0.97) 69.15 (0.93)
identity 69.94 (0.99) 69.94 (0.99) 65.92 (0.95) 43.21 (0.54)

BT log 35.41 (1.98) 33.80 (1.59) 41.76 (1.49) 49.49 (0.60)
logit 70.46 (0.87) 63.93 (1.24) 69.44 (0.90) 54.60 (0.67)
identity 65.71 (0.95) 64.59 (0.95) 69.94 (0.99) 51.72 (0.59)

oracle log 34.98 (1.74) 52.74 (0.26) 47.66 (1.09) 43.29 (0.65)
logit 41.99 (1.65) 55.13 (1.07) 50.28 (1.21) 48.55 (0.44)
identity 65.34 (0.93) 66.42 (1.01) 68.39 (0.94) 45.14 (0.44)

OASST non-BT log 59.51 (3.88) 59.02 (3.96) 61.98 (1.40) 58.63 (1.98)
logit 61.98 (3.53) 54.15 (3.20) 65.14 (1.20) 48.69 (1.33)
identity 56.65 (3.26) 54.20 (2.28) 64.90 (1.28) 53.64 (2.10)

BT log 63.10 (3.48) 62.80 (3.55) 60.94 (3.46) 54.64 (1.26)
logit 62.05 (3.65) 63.95 (3.38) 66.72 (1.16) 58.45 (1.82)
identity 62.00 (3.55) 51.98 (2.96) 54.29 (2.16) 50.42 (1.38)

oracle log 59.32 (3.79) 60.19 (3.69) 56.09 (1.65) 60.09 (1.21)
logit 49.55 (3.06) 44.34 (2.61) 53.66 (2.87) 46.15 (1.55)
identity 52.13 (2.47) 66.69 (1.29) 66.21 (1.22) 52.31 (1.25)

error from using an estimated reward model instead of the true preference classifier, we additionally
run a DWRO-logit variant with oracle preference classifier. However, this performs even worse,
suggesting that an alternative factor is at play.

6.3 RESULTS: COMPARING DWRO-KL VARIANTS

Table 1 compares different DWRO-KL objectives with different choices of h, β, and the estimation of
the classifier. Notably, no DWRO-KL method (i.e., choice of h) outperforms the others systematically
across settings. Moreover, the settings that correspond to better target distributions (i.e., using a
perfect preference classifier, low β, and h =logit) do not necessarily yield better win rates empirically.
These results suggest that there is a more important consideration than the target distribution implied
by the objective, namely the success of optimization. Indeed, we see that training loss correlates
more with test win rate across DWRO-KL more so than any of the target distribution design choices
p̂ℓ, h, or β (p-value of Spearman rank correlation test for train loss vs. win rate is 8.27e-5,
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Figure 2: Train loss vs. test win rate across all settings tested in Table 1. Whereas Table 1 does not
provide clear evidence that objectives with more favorable target distributions yield better win rates,
the above figure shows that the success of optimization is indicative of better win rates.

compared to 0.968, 0.885, and 0.133 for p̂ℓ, h, and β respectively). Figure 2 plots train loss vs.
test win rate for all DWRO-KL variants. Interestingly, even though the losses for different DWRO
variants differ due to choices in h and β, there still exists a surprisingly noticeable global trend of
better loss corresponding to better win rate.

7 DISCUSSION

Amidst the increasingly complex landscape around aligning language models to human preferences,
this work provides a simple insight: win rate is all that can matter from preference data alone.
We first illustrate that the only evaluation grounded in preference data alone is win rate under the
preference classifier dictated by the data, which means that the only goal for preference learning that
is based in the preference data distribution itself is win rate. This insight prompts us to explain how
common procedures in preference learning relate to win rate optimization. We see that, based on
their relationship to DWRO, RLHF should be preferred over DPO and SFT. In experiments, however,
we see that ease of optimization plays an important role in a method’s success. In this regard, SFT is
easiest to optimize, then DPO and finally RLHF.

What’s the value of so many preference learning algorithms? Our analysis may seem to suggest
that there is little benefit in developing many different preference learning methods; after all, directly
optimizing for win rate seems to be the theoretical ideal, and different choices for DWRO objectives
do not seem to currently play a significant role empirically. However, the combined overall theoretical
and empirical analysis paint a different picture: notably, no existing method is optimal with respect to
both the objective being optimized and the ease of optimization, suggesting why it might be useful to
combine methods (i.e., to take advantage of different strengths) as well as develop new ones (i.e., to
strike a better overall balance).

What’s next for preference learning? This work offers several takeaways for future work. First
and foremost, the analysis suggests that the most important improvements in preference learning will
likely fall under the umbrella of moving closer directly optimizing for win rate, either in the objective
itself or the practical optimization of it. How might we be able to make progress on either front?
For one, the connection between RLHF / DWRO-KL objectives and variational inference suggests
a rich field of inquiry to draw upon from the latter (variational inference, probabilistic inference)
to improve the former (preference learning), from variance reduction techniques (Mohamed et al.,
2020b) to alternative optimization objectives and algorithms altogether (e.g. (Naesseth et al., 2020)).
There are likely many other promising directions for future inquiry; as long as future work focuses on
connecting to the central goal of (better) win rate optimization, there is amply opportunity to advance
the endeavor of learning from preference data.
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A PROPOSITION 1 PROOF

Proposition 1. Under Definition 2, ϕ must be

ϕp(y0 | x)(p(y | x), E) = Ep(x)Ep(y | x)Ep(y0 | x)[h · p(ℓ = 1 | x, y0, y)] (15)

for some choice of p(y0 | x).

Proof. Property 1 forces ϕ to be a functional of the preference classifier, while Property 2 forces the
preference classifications to be aggregated linearly across query environment, generator, and anchor.
Starting from the base case implied by Property 1, we can define ϕ for query, generator, and anchor
distributions which are each a linear combination of two Dirac deltas. Let p(x) = ap1(x) + bp2(x),
p(y | x) = cxp1(y | x) + dxp2(y | x) for each x, and p(y0 | x) = exp1(y0 | x) + fxp2(y0 | x); assume
all constants yield normalized probability distributions. Then,

ϕp(y0 | x)(p(y | x), E) = aϕp(y0 | x)(p(y | x), E1) + bϕp(y0 | x)(p(y | x), E2) (16)

= a[cxaϕp(y0 | x)(p1(y | x), E1) + dxaϕp(y0 | x)(p2(y | x), E1)]
+ b[cxbϕp(y0 | x)(p1(y | x), E2) + dxbϕp(y0 | x)(p1(y | x), E2)] (17)

= a[cxa [exaϕp1(y0 | x)(p1(y | x), E1) + fxaϕp2(y0 | x)(p1(y | x), E1)]
+ dxa [exaϕp(y0 | x)(p2(y | x), E1) + fxaϕp(y0 | x)(p2(y | x), E2)]]

+ b[cxb [exbϕp1(y0 | x)(p1(y | x), E1) + fxbϕp2(y0 | x)(p1(y | x), E1)]
+ dxb [exbϕp(y0 | x)(p2(y | x), E1) + fxbϕp2(y0 | x)(p2(y | x), E2)]]

=
∑

i∈{a,b}

∑
j∈{ci,di}

∑
k∈{ei,fi}

ijk(h · ϕ(ℓ = 1 | xi, yj , yk)). (18)

Generalizing to any discrete distribution for query, generator, and anchor, we have Equation (4).

B PROPOSITION 2 PROOF

We provide both the informal statement in the main paper as well as its formal version.

Proposition 2. (informal) Under the Bradley-Terry assumption, all DWRO objectives with monotonic
h share the same optimal solution.

Proposition 2. (formal) Denote by P∗
h the set of distributions p(y | x) that optimize the DWRO-h

objective. Assume a hypothesis class induced by θ ∈ Θ such that all optima are realizable. Then,
for a given anchor distribution p(y0 | x), P∗

h = P∗
h′ for any monotonic h under the Bradley-Terry

assumption with finite rewards.

Proof. We first introduce the P∗
reward, the set of all distributions p(y | x) which for each x place all

their probability mass over only the highest-reward sequences or some subset of them. Then, we
show that P∗

reward = P∗
h for any monotonic h and any anchor distribution p(y0 | x). In other words,

any maximum-reward distribution p∗reward(y | x) ∈ P∗
reward maximizes any DWRO objective and vice

versa:

Ep(x)Ep∗
reward(y | x)Ep(y0 | x)[h ◦ p(ℓ = 1 | x, y0, y)] (19)

=Ep(x)Ep∗
reward(y | x)Ep(y0 | x)[h ◦ σ (r(x, y)− r(x, y0))] (20)

=max
θ

Ep(x)Epθ(y1 | x)Ep(y0 | x)[h ◦ σ (r(x, y1)− r(x, y0))] (21)

=max
θ

Ep(x)Epθ(y1 | x)Ep(y0 | x)[h ◦ p(ℓ = 1 | x, y0, y1)]. (22)

It follows that P∗
h = P∗

h′ for any monotonic h.
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C TARGET DISTRIBUTION DERIVATIONS

C.0.1 DWRO-KL

Here, we show that the DWRO-KL objective is equivalent to minimizing the reverse KL divergence
of the model and following target distribution:

p∗DWRO-KL(y | x) ∝ pref(y | x) exp(
1

β
Ep(y0|x)[h · p(ℓ = 1|x, y0, y)]). (23)

Derivation:
max

θ
Ep(x)

[
Epθ(y1 | x)Ep(y0 | x)[h · p(ℓ = 1 | x, y0, y1)]− βKL(pθ(y | x) ∥ pref(y | x))

]
(24)

=min
θ

−Ep(x)Epθ(y1 | x)

[
Ep(y0 | x)[h · p(ℓ = 1 | x, y0, y1)]− β log

pθ(y | x)
pref(y | x)

]
(25)

=min
θ

Ep(x)Epθ(y1 | x)

[
log

pθ(y | x)
pref(y | x)

− 1

β
Ep(y0 | x)[h · p(ℓ = 1 | x, y0, y1)]

]
(26)

=min
θ

Ep(x)Epθ(y1 | x)

[
log

pθ(y | x)
pref(y | x) exp( 1βEp(y0 | x)[h · p(ℓ = 1 | x, y0, y1)])

]
(27)

=min
θ

Ep(x)Epθ(y1 | x)

[
log

pθ(y | x)
1

Z(x)pref(y | x) exp( 1βEp(y0 | x)[h · p(ℓ = 1 | x, y0, y1)])
− logZ(x)

]
(28)

=min
θ

Ep(x)
[
KL(pθ(y | x) ∥ p∗DWRO-KL(y | x))

]
, (29)

p∗DWRO-KL(y | x) ∝ pref(y | x) exp
( 1

β
Ep(y0|x)[h · p(ℓ = 1|x, y0, y)]

)
. (30)

C.0.2 RLHF

Here, we show that, under the BT assumption, the RLHF objective is equivalent to minimizing the
reverse KL divergence with the following target distribution:

p∗RLHF(y | x) ∝ pref(y | x) exp(
1

β
Ep(y0|x)[logit p(ℓ = 1|x, y0, y)]). (31)

max
θ

Ep(x)
[
Epθ(y | x)[r(x, y)]− βKL(pθ(y | x) ∥ pref(y | x))

]
(32)

=max
θ

Ep(x)
[
Epθ(y | x)Ep(y0 | x)[logit p(ℓ = 1 | x, y0, y)]− βKL(pθ(y | x) ∥ pref(y | x))

]
(33)

=min
θ

Ep(x)Epθ(y | x)

[
log

(pθ(y | x)
pref(y | x))

− 1

β
Ep(y0 | x)[logit p(ℓ = 1 | x, y0, y)]

]
(34)

=min
θ

Ep(x)
[
KL(pθ(y | x) ∥ p∗RLHF(y | x))

]
, (35)

p∗RLHF(y | x) ∝ p(y | x) exp
( 1

β
Ep(y0|x)[logit p(ℓ = 1|x, y0, y)])

)
. (36)

C.0.3 REVERSE-KL OBJECTIVE FOR SFT TARGET DISTRIBUTION

Here, we show that the objective in Equation (11) is equivalent to optimizing for the SFT target
(Equation (12)) via minimizing the reverse KL divergence.

max
θ

Ep(x)
[
Epθ(y1 | x) logEp(y0 | x)[p(ℓ = 1 | x, y0, y1)]− KL(pθ(y | x) ∥ pref(y | x))

]
(37)

=min
θ

Ep(x)Epθ(y1 | x)
[
log

pθ(y | x)
pref(y | x)

− logEp(y0 | x)[p(ℓ = 1 | x, y0, y1)]
]

(38)

=min
θ

Ep(x)
[
KL(pθ(y | x) ∥ p∗SFT(y | x))

]
, (39)

p∗SFT(y | x) ∝ p(y | x)Ep(y0|x)[p(ℓ = 1|x, y0, y)]. (40)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A 
vs

 B
B 

vs
 C

A 
vs

 C
0.0

0.2

0.4

0.6

0.8

1.0

0.6
0.7

0.778

A B C
0.0

0.2

0.4

0.6

0.8

1.0

0.4
0.3

0.2
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(b) DWRO-KL, h = identity, β = 0.1
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(c) RLHF / DPO, h = logit, β = 0.1
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(d) SFT on preferred samples

Figure 3: Different preference learning objectives have different target distributions. Consider the
initial setting in (a). DWRO-KL with h = identity, β = 0.1 yields the target distribution depicted in
(b). RLHF (h = logit, β = 0.1) yields a sharper distribution given that average logit probabilities can
differ more from each other than average probabilities (c). SFT yields the least sharp distribution as it
can only apply weights between 0 and 1 (d).

D COMPARING TARGET DISTRIBUTIONS

In Figure 3, we present a visualization of the target distributions of different preference learning
objectives. Panel (a) shows an example preference environment defined by the true preference
probabilities between responses (left) and initial starting model (right). Panels (b), (c), and (d)
visualize the resulting target distribution of different objectives. In each, the figure on the left shows
how the average preference probabilities Ep(y0 | x)[p(ℓ = 1 | x, y0, y1] (red dots) are translated into the
tilt applied to the starting model, i.e. g(y, x) in p∗(y | x) ∝ p(y | x)g(y, x) (green dots). The figure on
the right shows the optimal distribution under the objective. Notably, among the DWRO-KL family,
the choice of h can make a substantial difference in the target distribution of the objective (panels b
vs. c). Moreover, SFT is limited in how much mass it can put on the preferred sample A, as g(y, x) is
only the average preference probabilities themselves (panel d).

E THEOREM 1 PROOF

We first provide results for a more general setting (Lemma 1); then we specialize to the setting in the
main paper.

Lemma 1. Let p(y0 | x) be the initial generative model, and pSFT(y | x) be the target distribution of
supervised finetuning on preferred samples y0, y1 ∼ p(y0, y1 | x) = p(y0 | x)p(y1 | x). Then,

Win Ratep(y0 | x)[pSFT(y | x)] = (41)

Win Ratep(y0 | x)[p(y1 | x)] +
∫
p(x)

[
Variancep(y1 | x)

[∫
p(y0 | x)p(ℓ = 1 | x, y0, y1)dy0)

]∫
p(y′1 | x)

∫
p(ℓ = 1|x, y′′0 , y′1)p(y0 | x)dy′′0dy′1

]
dx.

(42)
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Proof.

Win Ratep(y | x)[pSFT(y | x)] =
∫
p(x)p(y0 | x)pSFT(y | x)p(ℓ = 1 | x, y0, y1)y0y1dx (43)

=

∫
p(x)p(y0 | x)

p(y1 | x)
∫
p(ℓ = 1|x, y′0, y1)p(y′0 | x)dy′0∫

p(y′1 | x)
∫
p(ℓ = 1|x, y′′0 , y′1)p(y′′0 | x)dy′′0dy′

1

p(ℓ = 1 | x, y0, y1)dy0dy1dx

(44)

=

∫
p(x)

[
p(y0 | x)

p(y1 | x)
∫
p(ℓ = 1|x, y′0, y1)p(y′0 | x)dy′0∫

p(y′1 | x)
∫
p(ℓ = 1|x, y′′

0 , y′1)p(y′′0 | x)dy′′0dy′1
p(ℓ = 1 | x, y0, y1)dy0dy1

]
dx

(45)

=

∫
p(x)

[∫
p(y0 | x)

p(y1 | x)
∫
p(ℓ = 1|x, y′

0, y1)p(y′0 | x)dy′0∫
p(y′1 | x)

∫
p(ℓ = 1|x, y′′0 , y′1)p(y′′0 | x)dy′′

0dy′1
p(ℓ = 1 | x, y0, y1)dy0dy1

]
dx

(46)

=

∫
p(x)

[∫ ∫
p(y0 | x)p(ℓ = 1 | x, y0, y1)dy0p(y1 | x)

∫
p(ℓ = 1|x, y′

0, y1)p(y′0 | x)dy′0∫
p(y′1 | x)

∫
p(ℓ = 1|x, y′′0 , y′1)p(y0 | x)dy′′0dy′1

dy1

]
dx

(47)

=

∫
p(x)

[∫
(
∫
p(y0 | x)p(ℓ = 1 | x, y0, y1)dy0)

2p(y1 | x)dy1∫
p(y′1 | x)

∫
p(ℓ = 1|x, y′′

0 , y′1)p(y0 | x)dy′′0dy′
1

]
dx (48)

=

∫
p(x)

[(∫
(
∫
p(y0 | x)p(ℓ = 1 | x, y0, y1)dy0)p(y1 | x)dy1

)2∫
p(y′1 | x)

∫
p(ℓ = 1|x, y′′

0 , y′
1)p(y0 | x)dy′′

0dy′1

]
dx (49)

+

∫
p(x)

[
Variancep(y1 | x)

[∫
p(y0 | x)p(ℓ = 1 | x, y0, y1)dy0)

]∫
p(y′1 | x)

∫
p(ℓ = 1|x, y′′0 , y′1)p(y0 | x)dy′′0dy′1

]
dx (50)

=

∫
p(x)(

∫
p(y0 | x)p(ℓ = 1 | x, y0, y1)dy0)p(y1 | x)dy1dx (51)

+

∫
p(x)

[
Variancep(y1 | x)

[∫
p(y0 | x)p(ℓ = 1 | x, y0, y1)dy0)

]∫
p(y′1 | x)

∫
p(ℓ = 1|x, y′′0 , y′1)p(y0 | x)dy′′0dy′1

]
dx (52)

=Win Ratep(y0 | x)[p(y1 | x)] +
∫
p(x)

[
Variancep(y1 | x)

[∫
p(y0 | x)p(ℓ = 1 | x, y0, y1)dy0)

]∫
p(y′1 | x)

∫
p(ℓ = 1|x, y′′

0 , y′1)p(y0 | x)dy′′
0dy′

1

]
dx.

(53)

Theorem 1. (Win rate improvement of SFT) Let p(y0 | x) be the initial generative model, and
pSFT(y | x) be the target distribution of supervised finetuning on preferred samples (p(y1 | x, ℓ = 1),
p(y0 | x) = p(y1 | x)). Then,

Win Ratep(y0 | x)[pSFT(y | x)] = 0.5 + 2Ep(x)Varp(y1 | x)

[∫
p(y0 | x)p(ℓ = 1 | x, y0, y1)dy0

]
, (54)

which is less than 1.0 as long as there exist non-deterministic preference probabilities, p(ℓ =
1 | x, y0, y1) ∈ (0, 1).

Proof. We use the result of Lemma 1 and plug in the condition p(y0 | x) = p(y1 | x):

Win Ratep(y0 | x)[pSFT(y | x)] (55)

= 0.5 +

∫
p(x)

[
Variancep(y1 | x)

[∫
p(y0 | x)p(ℓ = 1 | x, y0, y1)dy0)

]∫
p(y′

1 | x)
∫
p(ℓ = 1|x, y′′0 , y′1)p(y0 | x)dy′′0dy′1

]
dx (56)

= 0.5 + 2

∫
p(x)Variancep(y1 | x)

[∫
p(y0 | x)p(ℓ = 1 | x, y0, y1)dy0)

]
dx. (57)
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Then,
∫
p(y0 | x)p(ℓ = 1 | x, y0, y1)dy0 can only take values between 0 and 1. The maximal variance

of a random variable supported between 0 and 1 is 1/4, achieved by placing mass equally on only
the endpoints 0 and 1. Any non-deterministic preference probability p(ℓ = 1 | x, y0, y1) will yield∫
p(y0 | x)p(ℓ = 1 | x, y0, y1)dy0 ∈ (0, 1), resulting in a variance less than 1/4 and a resulting win

rate less than 1.0.

F EXPECTED WIN RATE IMPROVEMENT EXPRESSIONS

Below, we present the expected win rate improvement over the original model for DWRO-KL
objectives. Letting p(y0 | x) = p(y′0 | x) = p(y′′

0 | x) and p(y1 | x) = p(y′1 | x), we have:

Win Ratep(y0 | x)[pDWRO-KL(y | x)]

=

∫
p(x)

Ep(y1 | x)

[
Ep(y0 | x)p(ℓ = 1 | x, y0, y1) exp

(
1
βEp(y′0 | x)h · p(ℓ = 1 | x, y′0, y1)

)]
Ep(y′1 | x) exp

(
1
βEp(y′′0 | x)h · p(ℓ = 1 | x, y′′0 , y′1)

)
 dx.

(58)

Consequently, assuming the BT assumption holds in the preference environment, the expected win
rate improvement for the target of RLHF/DPO is as follows:

Win Ratep(y0 | x)[pRLHF/DPO(y | x)]

=

∫
p(x)

Ep(y1 | x)

[
Ep(y0 | x)p(ℓ = 1 | x, y0, y1) exp

(
1
βEp(y′0 | x)[logit p(ℓ = 1 | x, y′

0, y1)]
)]

Ep(y′1 | x) exp
(

1
βEp(y′′0 | x)[logit p(ℓ = 1 | x, y′′0 , y′1)]

)
 dx.

(59)

For completion, we write the expected win rate improvement for SFT in the same form, connecting
the expressions in this section to the result of Theorem 1:

Win Ratep(y0 | x)[pSFT(y | x)]

=

∫
p(x)

[
Ep(y1 | x)

[
Ep(y0 | x)p(ℓ = 1 | x, y0, y1)Ep(y′0 | x)[p(ℓ = 1 | x, y′0, y1)]

]
Ep(y′1 | x)Ep(y′′0 | x)[p(ℓ = 1 | x, y′′0 , y′1)]

]
dx.

(60)

G WIN RATE IMPROVEMENT UPPER BOUND FOR DWRO-KL OBJECTIVES

Corollary 2. For any DWRO-KL objective with non-zero KL regularization, the win rate improvement
expected over the starting model is upper bounded by:

Win Ratep(y0 | x)[p
∗(y | x)] ≤ Ep(x)

[
max

y∈supp(p(y0 | x))
Ep(y0 | x)p(ℓ = 1 | x, y0, y1)

]
.

Proof. We can rewrite Equation (58) as a weighted average over y1 ∈ supp(p(y1 | x)), given p(y1 | x)
is a discrete distribution over sequences. Namely, letting i ∈ [1, ..., n] index each sequence y1 ∈
supp(p(y1 | x)), wix = p(y1 | x), and zix = exp

(
1
βEp(y′′0 | x)h · p(ℓ = 1 | x, y′′0 , y′

1)
)

, we can rewrite
Equation (58) as follows:

Win Ratep(y0 | x)[pDWRO-KL(y | x)] =
∑

x

p(x)
∑

i wixzixEp(y0 | x)p(ℓ = 1 | x, y0, y1 = y[i])∑
i wixzix

(61)

≤
∑

x

p(x)max
i

Ep(y0 | x)p(ℓ = 1 | x, y0, y1 = y[i]) (62)

= Ep(x)

[
max

y∈supp(p(y0 | x))
Ep(y0 | x)p(ℓ = 1 | x, y0, y1)

]
. (63)

Equation (62) follows from the fact that Equation (61) is a weighted average where wixzix∑
i wixzix

sums to
1. Then, a weighted average is bounded by its max value, concluding the proof.
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H COMPARING METHODS

In Table 2, we compare various preference learning methods along the axes of target distribution,
objective, and the method of estimating the preference classifier. Ideally, we want a method’s target
solution is able to put more probability mass over the more preferred sequences; its objective directly
seeks to approximate that target over some other goal; and its estimate of the preference classifier is
as accurate as possible.

Table 2: Comparison of preference learning algorithms along three dimensions of design choices:
target distribution, objective, and estimation of the preference classifier. For readability, we substitute
the preference classifier distribution p(ℓ = 1|x, y0, y) with pclf.

Target (unnormalized) Objective (per-query) Preference Classifier

DWRO-KL p(y | x) exp( 1βEp(y0|x)[h · pclf]) KL(pθ(y | x) ∥ p∗(y | x)) p̂clf

RLHF p(y | x) exp( 1βEp(y0|x)[logit pclf]) KL(pθ(y | x) ∥ p∗(y | x)) r̂(x, y), BT
DPO p(y | x) exp( 1βEp(y0|x)[logit pclf]) KL(p∗clf ∥ pθ,clf) Equation (9), BT
SFT p(y | x)Ep(y0|x)[pclf] KL(p∗(y | x) ∥ pθ(y | x)) Bypass

I JUDGE MODEL

To train the judge model, we finetune a Pythia-2.8b base model using the same pairwise training set
used to train all SFT models by simply modifying the prompt to take in x, y0, y1 into account. The
prompt template is as follows:

\n\n Human: + <Instruction> +
\n\n Candidate Response A: + <response a> +
\n\n Candidate Response B: + <response b> +
\n\n The better answer is Candidate Response

The model is trained with a language modeling loss on the output, which is either ‘A‘ or ‘B‘. For
each pair of responses y0, y1, the training set includes two rows, one where y0 is Response A, and
one where y1 is Response A.

The model is trained using RMSProp with a learning rate of 5e-7 and batch size of 64. The model
is trained with a maximum sequence length of 512 and a maximum input length of 511. On the
evaluation dataset, the model achieves a per-row classification accuracy of 68.8. (Training the same
judge model with a sequence length of 1024 achieves the same accuracy, so we choose to stick with
512 for efficiency.)

To obtain the preference probability of a pair of outputs, we run a forward pass through the judge
model twice, once with each order of output pairs, and average the results.

To simulate more opinionated preferences in this preference environment, we sharpen the judge
preference probabilities with temperature scaling on the logit-transformed probabilities, with T = 0.2:

p(ℓ = 1 | x, y0, y1) = σ (logit p̂judge(ℓ = 1 | x, y0, y1)/T ) . (64)

J EXPERIMENT DETAILS

Dataset processing. For the Open Assistant dataset (Kopf et al., 2023), we keep only the first turn
in each conversation and English-only examples, following Yuan et al. (2024). The dataset only
has a train and validation split, so we split the original train set into a train and validation set and
leave the validation set for testing / evaluation. The dataset includes multiple candidate responses for
each input, all ranked, and to match the pairwise preference learning setup, we create a dataset of all
possible pairs for each input. For instance, for a given input with three candidate responses (A, B,
C), our paired dataset includes all three pairs (AB, BC, AC). For SHP, we keep only pairs where the
score ratio is > 2, following Rafailov et al. (2024).
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Table 3: Comparison of win rates between RLHF (optimized) and DWRO-KL-BT-logit without
additional optimization (non-optimized). RLHF’s dropping of the constant in the objective decreases
variance in the gradient estimates and generally improves results with small enough β. However, this
change does not yield systematic benefits for every setting, suggesting that there is still room for
improvement.

β = 0.001 β = 0.01 β = 0.1 β = 1
Dataset

HH non-optimized 51.79 (1.12) 54.59 (0.90) 68.68 (0.80) 56.88 (0.46)
optimized 70.46 (0.87) 63.93 (1.24) 69.44 (0.90) 54.60 (0.67)

OASST non-optimized 60.74 (3.65) 61.79 (3.64) 73.11 (1.16) 60.41 (2.05)
optimized 62.05 (3.65) 63.95 (3.38) 66.72 (1.16) 58.45 (1.82)

Training the initial model. For each dataset, we finetune the base Pythia-2.8b models on all outputs,
preferred and dispreferred. The resulting finetuned models serve as our initial models for preference
learning. To train these models, we utilize a batch size of 64 and learning rate of 5e-7 chosen based
on hyperparameter sweep between [1e-8, 5e-8, 1e-7, 5e-7, 1e-6] on OASST. Following Rafailov
et al. (2024), we use the RMSProp optimizer with a learning rate warm up of 150 steps and constant
learning rate schedule otherwise. We evaluate every 100 steps and choose the best checkpoint based
on validation loss.

SFT and DPO experiments. SFT and DPO experiments follow the same learning rate training
configuration as the initial model.

RL experiments. We use the implementation of reward model training and PPO from the TRL library
(von Werra et al., 2020). For reward model training, we use a batch size of 64, learning rate of
5e-7 for Pythia2.8b, and checkpoint every 100 steps, matching the SFT and DPO experiments. For
PPO, we use a learning rate=1e-6 (obtained through a hyperparameter sweep of [1e-7, 5e-7, 1e-6]
on OASST), batch size=128, and PPOConfig defaults for all other hyperparameters. We checkpoint
every five steps and choose checkpoint with the best policy loss (namely, ignoring the estimation of
the value head).

Win rate evaluations. We sample a set of 100 input prompts from the test set of a given dataset
(same 100 prompts for all models) and perform win rate evaluation using the oracle judge for the
dataset.

K EXPLORING OPTIMIZATION BENEFITS OF RLHF

Below, we compare the win rate results when optimizing the RLHF objective versus a non-optimized
DWRO-KL-BT-logit objective that keeps the Ep(y0 | x)r(x, y0 term. Namely, the RLHF objective we
optimize is

−LRLHF(θ) = max
θ

Ep(x)
[
Epθ(y | x)[r(x, y)]− βKL(pθ(y | x) ∥ pref(y | x))

]
. (65)

The non-optimized DWRO-KL-BT-logit objective we optimize is

−LRLHF(θ) = max
θ

Ep(x)
[
Epθ(y | x)[r(x, y)− Ep(y0 | x)r(x, y0)]− βKL(pθ(y | x) ∥ pref(y | x))

]
.

(66)

Win rate results can be found in Table 3. All experimental details match that of the main paper.
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