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ABSTRACT

This paper presents Dynamic-Aware GAN (DAGAN) as a data-efficient self-
supervised paradigm for time-series data generation. To support sequential gener-
ation with sufficient clues of temporal dynamics, we explicitly model the transition
dynamics within the data sequence through differencing, thus refining the vanilla
sequence into one with inter-correlated triplets to characterize each time-step.
This localized triplet consistent structure contributes to a self-supervision mech-
anism, which can provide more aspects of supervision for the overall stepwise
dependencies encoded within the training data. Such a handy self-supervision
mechanism is simple but can be beneficial especially when a model is presented
with limited training data. Based on the insight, we present DAGAN which gener-
alizes the locally regularized triplet consistency to distributional-level via dynamic
encoding and joint distribution matching. Experiments on various synthetic and
real-world datasets verify that our model achieves superior generation results with
better quality and diversity compared with the state-of-the-art benchmarks, espe-
cially when the training data is scarce. Moreover, benefited from the dynamic-
conditional and dynamic-consistent design, our DAGAN is capable of performing
dynamic-controllable generation i.e. generating data with specified dynamics.

1 INTRODUCTION

With the wide popularity of smart devices and online services, we are facing and also producing
significant amounts of data every minute of the day. Such a situation poses a rapid explosion of
sequential data which greatly expedites the demand for time-series data analysis. While performing
effective time-series data analysis relies on full exploitation of historical data, there are often circum-
stances where we can hardly obtain adequate amounts of data for analysis, due to low-occurrences
issues (e.g. monitoring of system crash) or privacy reasons (e.g. medical sequential data in the ICU).
Time-series data generation provides an intuitive solution to tackle such data shortage dilemmas.

Due to its sequential property, the effectiveness of a sequential generation model highly relies on its
ability to make full use of the dynamic information encoded within the training data. To model tem-
poral dynamics, previous methods mainly resort to three strategies. Auto-regressive methods (Goyal
et al., 2016; Bahdanau et al., 2017) factorize the distribution of sequences into a product of stepwise
conditionals. These methods, fitting the observed data without extra conditioning, lack the flexibility
to generate arbitrary sequences. TimeGAN (Yoon et al., 2019), among all the prevalent Generative
Adversarial Networks (GANs)-based sequential generation models (Mogren, 2016; Esteban et al.,
2017; Ramponi et al., 2018) is the only one that explicitly regularizes the preservation of real-data
dynamics into generation. It captures the sequential stepwise dependencies through a supervised
loss imposed on the latent feature of consecutive observations. But, since it only relies on the clue
provided by the consecutive observations to supervise, it may lack the efficiency to well-capture and
mimic the original dynamics when the observed training data is scarce. ExtraMAE (Zha, 2022),
inspired by Masked-AutoEncoders (MAEs) (He et al., 2021), learns the temporal dynamics by re-
covering the masked patches of the original time-series. Although its AE-based structure enables
self-supervised dynamics exploration through imputation, this method lacks generation flexibility
compared with GAN-based methods which directly model data distribution from random noises.

In this paper, to incorporate the generation flexibility of GAN-based sequential generation and the
data-efficiency benefits of self-supervised learning, we propose Dynamic-Aware GAN (DAGAN).

1



Under review as a conference paper at ICLR 2023

Figure 1: Model comparison of our DAGAN to ExtraMAE (AEs-based) and TimeGAN (GANs-based).
To exploit sufficient clues of the temporal dynamics, we explicitly model the stepwise transition
dynamic with variable D1:T . This thus refines the traditional pairwise sequential modeling into
one with inter-correlated triplets characterizing each time-step t, i.e. (xt,xt+1) versus (xt,dt,xt+1).
Then, we establish consistency among these triplet variables at each time-step via differencing, a.k.a.
dt ≜ xt+1 − xt. This contributes to a localized triplet consistent structure that provides several new
aspects of clues to supervise the stepwise dependency for time-series modeling. Based on the insight,
we present DAGAN, which performs dynamic consistent time-series generation on a latent feature
space with our designed triplet consistency loss terms. It further benefits the capture of temporal
dynamics by mimicking the second-order dynamic within data, a.k.a. the dynamic within dynamic,
through recurrent transition encoding and generalizing the locally regularized triplet consistency to
distribution-level via joint distribution matching on data features and dynamics. Such design also
enables our DAGAN to facilitate dynamic consistent sequential generation tasks.

The contributions of this work can be summarized as follows.

• We provide a handy self-supervised mechanism for the generative modeling of time-series
data. To the best of our knowledge, this is the first attempt to facilitate self-supervision by
explicitly modeling the transitions, i.e. temporal dynamics within the sequential data.

• We propose DAGAN as a data-efficient time-series data generation model. Our model well
respects the temporal dynamics implied within the original data, and more importantly,
possess a speciality to perform dynamic controllable sequential generation.

• Extensive experiments on various datasets verify our model outperforms the SoTA bench-
marks in generating high-quality and diverse data sequences. Our superiority is evident in
both complete and limited data settings.

• We verify DAGAN’s ability to perform dynamic controllable generation with several syn-
thetic datasets. Our results demonstrate that we can get roughly consistent dynamics in the
generated data sequence by controlling the stepwise conditional variable.

2 RELATED WORK

Time-series generative modeling has witnessed great developments, due to the fast development and
deployment of Deep Generative Models (DGMs) (Goodfellow et al., 2020; Hazra & Byun, 2020;
Sutskever et al., 2011). Determined by the sequential property of time-series data, the key factor
for successful generative modeling is whether the model can well-capture the temporal dynamics
implied within the original data. To tackle the problem, existing methods mainly resort to three
generation strategies. 1). Auto-Regressive Networks (ARNs)-based methods, e.g. Teacher-forcing
(T-forcing) (Graves, 2013) and Professor Forcing (P-forcing) (Goyal et al., 2016), explicitly decom-
pose the distribution of sequences into a product of conditional probabilities, and form its model
under the maximum likelihood principle (Williams & Zipser, 1989; Bahdanau et al., 2017). To fit
the transition dynamics, these models guide the stepwise forecasting with additional conditional sig-
nals (e.g. multi-steps of previous guesses and ground-truth outputs (Bengio et al., 2015)). Since this
category of methods heavily relies on the autoregressive prior to control the generation, it lacks the
flexibility to generate arbitrary sequences. 2). AutoEncoders (AEs)-based methods perform sequen-
tial generation via a traditional encoder-decoder structure (Wu et al., 2021). ExtraMAE (Zha, 2022)
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is a recent and the most representative work of this category. This method performs explicit learning
of temporal dynamics, reformulates the sequential generation problem into a masked dynamic im-
putation task, and trains the model to recover the original training data without extra conditioning.
Such a solution would restrict the diversity of its synthesized sequences for mainly two reasons.
First, under an imputation formulation, the model needs to rely on an existing pattern to synthesize
new sequences (see Figure 2 in its paper). This not only reduces its usability, but also makes the
model prone to memorizing the training data. Second, without extra conditioning, the model lacks
the flexibility to perform arbitrary generation. 3). Generative Adversarial Networks (GANs)-based
methods (Wang et al., 2019; Sumiya et al., 2019; Ni et al., 2020; Sun et al., 2020), pose to directly
map the distribution of the original data sequences to random noise. since we can flexibly sampling
new sequences by mapping from arbitrary noise samples, this category of methods has inherent
advantage in performing arbitrary generation. Therefore, we make it the focus of our discussion.

To capture temporal dynamics, this category of methods seeks to guide their modules, i.e. the gen-
erator and discriminator, with more information, so that the model can learn a good joint probability
of the sequences. CRNN-GAN (Mogren, 2016) explicitly incorporates clues of stepwise dynamic
into its generator, by making the output of the previous cell as additional input. RCGAN (Esteban
et al., 2017) guide its generation with more clues on data features. It introduces extra knowledge
of the static feature of each sequence as an additional input of both the generator and discrimi-
nator. Inspired by these previous efforts, Yoon et al. (2019) present a general formulation for the
GANs-based time-series generation problem. Consider a general setting where each sequence is
characterized with two sets of features: static features (which remains unchanged over time), and
temporal features (which occurs over time). Given a training dataset D = {(sn,xn,1:Tn)}Nn=1, where
sn and xn denote the static feature and temporal feature of the instance indexed by n, respectively.
(For clarity, we omit the subscripts n unless required.) Let S and X be the random variable for the
static feature and the temporal features, respectively. The tuples of the form (S,X1:T ) define an un-
known joint distribution p. To equip a model with the ability to capture both the feature distribution
and the dynamics across time, the GAN-based generation objective is modeled in two aspects.

• Global sequence-level objective: to learn a density p̂(S,X1:T ) that best approximates the joint
distribution p(S,X1:T ) that operates on the entire sequence. This objective can be denoted as

min
p̂

D(p(S,X1:T ) ∥ p̂(S,X1:T ))

• Local stepwise objective: to capture stepwise dynamics across time. Inspired by autoregressive
decomposition of the joint distribution p(S,X1:T ) = p(S)

∏
tp(Xt|S,X1:t−1), a model also needs to

encourage stepwise conditional distribution matching for each time-step t. That is,

min
p̂

D(p(Xt|S,X1:t−1) ∥ p̂(Xt|S,X1:t−1),

where D is some appropriate measure of distance between distributions modeled via discrimination.
TimeGAN, depicted in Figure 1, instantiates the second objective by explicitly supervising the gen-
eration with the stepwise dependency of the training data in a latent space of data features. Although
this method is verified to be effective in generating high-quality samples, it only relies on the clue
provided by the consecutive observations to supervise (pairwise at each step). Therefore, in situa-
tions where we have scarce training data (e.g. system crash signals), such supervision clues would
be quite limited, making it hard for the model to learn and mimic the original data dynamics.
This consequently motivates us to incorporate self-supervised learning (SSL) into the exploitation of
temporal dynamics within data sequences. We seek to explicitly parameterize the transition dynamic
in each time-step with variable dt ≜ f(xt+1,xt), and exploit additional clues of stepwise dependency
within such localized triplet consistent structure. In this way, we can upgrade the above GAN-based
generative modeling by performing better conditional distribution matching with more supervision
clues on the stepwise dynamic, thus equipping a model with a data-efficiency property, i.e. the
ability to effectively learn and mimic temporal dynamics with a relatively small amount of data.
Compared with ExtraMAE, which enables SSL on temporal dynamics via masked dynamic imputa-
tion, our work is different and poses extra advantages. First, our self-supervision is handily exploited
from the data in a stepwise manner, while ExtraMAE should learn it through a complex imputation
task. This increases its computational cost. Second, our insight is formulated within the GAN-based
framework, which enjoys the flexibility to perform arbitrary generation, compared with imputation-
based AE models. Third, using the explicit dynamic variable for extra conditioning, we can enable
controllable generation for time-series data. We experimentally verify our advantages in section 5.
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3 PROBLEM FORMULATION

We explicitly parameterize the transition dynamic within data sequences with variable D, and char-
acterize it with the difference between consecutive observations. Therefore, the sequential observa-
tions are formed as (S,X1:T ,D1:T ) with dt ≜ xt+1−xt for ∀t. Our strategy of constructing dynamic
sequence as supervision is similar to the differencing technique adopted in traditional time-series
forecasting models, e.g. Autoregressive Integrated Moving Average (ARIMA) (Gilbert, 2005).

Under the reformulation, given training data D = {(sn,xn,1:Tn ,dn,1:Tn)}Nn=1, the global and local
consistent objectives of GAN-based sequential generation are defined as follows.

• Global sequence-level objective: to perform joint distribution matching on both the transition
dynamic and observed features, i.e. p(S,X1:T ,D1:T ). That is,

min
p̂

D(p(S,X1:T ,D1:T ) ∥ p̂(S,X1:T ,D1:T )). (1)

• Local stepwise objective: to perform stepwise conditional distribution matching for each time-step
t, with extra conditioning on the transition dynamic variable, denoted as

min
p̂

D(p(Xt|S,X1:t−1,D1:t−1) ∥ p̂(Xt|S,X1:t−1,D1:t−1)) (2)

4 DYNAMIC-AWARE GAN (DAGAN)

We construct a localized triplet consistent structure for each time-step, i.e. (xt,dt,xt+1) to benefit
the second objective: it helps to construct new clues of stepwise dependencies and thus benefits a
model with more supervision on temporal dynamics. Based on this insight, we present Dynamic-
Aware GAN (DAGAN), which similar to TimeGAN, learns the data temporal dynamics via a lower-
dimensional feature space, but specifically benefits the capture of temporal dynamics by mimicking
the second-order dynamic within data through recurrent transition encoding and generalizing an
overall locally regularized triplet consistency to distributional-level via joint distribution matching.

Our DAGAN consists of five network components: dynamic predictor P , embedding network E,
recovery network R, conditional generator G and a sequence discriminator D.

4.1 DYNAMIC PREDICTION FOR LOCALIZED TRIPLET CONSISTENCY

Suppose the dynamic observations {dn,1:Tn}Nn=1 are drawn from an unknown distribution pD, i.e.
d1:T ∼ pD(d1:T ), We first build a stochastic predictor P to serve two purposes: 1). predict the tran-
sition between consecutive observations, i.e. Pθ(xt,xt+1) → d̃t, for ∀t; 2). learn a distribution for
the dynamic variable D1:T with q functions, i.e. qϕ(dt|xt,xt+1) ≜ Pϕ(xt,xt+1), where ϕ denotes the
parameters of this stochastic encoding module (Kingma & Welling, 2013). We denote our learned
distribution as qϕ(d1:T ) for short. We implement P with a recurrent neural network, so that

d̃t = P (d̃t−1,xt,xt+1), (3)
d̃t ∼ qϕ(dt|dt−1,xt,xt+1). (4)

This recurrent transition encoding module plays a key role in our DAGAN. It facilitates better cap-
ture of temporal dynamics in two aspects: 1). it mimics the second-order dynamic within data, i.e.
the dynamic within dynamic sequence, through a recurrent design; 2). it bridges original data and its
step-wise dynamics, enabling additional clues to supervise temporal dynamics. We define the prior
over dynamic variable at each step to be centered isotropic multivariate Gaussian, i.e. dt ∼ N (0, I).

4.2 LATENT REPRESENTATION LEARNING THROUGH AUTO-ENCODING

We perform latent representation learning for static feature S and temporal feature X, with em-
bedding network ES and recurrent embedding network EX , respectively. Their obtained low-
dimensional features are denoted as hS and h1:T = E(s,x1:T ) respectively, where

hS = ES(s), ht = EX (hS ,ht−1,xt), ht+1 = EX (hS ,ht,xt+1).

In the opposite direction, we model the recovery network R with a feed-forward network to recon-
struct the latent codes back to their feature representations i.e. ŝ, x̂1:T = R(hS ,h1:T ), where

s̃ = RS(hs), x̃t = RX (ht), x̃t+1 = RX (ht+1).

Note that, the implementation of E and R are flexible, given that they are autoregressive and obey
causal ordering, i.e. output(s) at each step only depend on the preceding information.

4



Under review as a conference paper at ICLR 2023

4.3 CONDITIONAL GENERATION OF LATENT REPRESENTATIONS

We implement conditional generator G with a recurrent network, with the inputs of each cell aug-
mented with the dynamic variable as the conditional information. Therefore, G takes the concate-
nation [zt;dt] at each step as input and synthesizes latent codes h̃S , h̃1:T = G(zs, z1:T ,d1:T ), where

ĥS = GS(zs), ĥt = GX (hS ,ht−1, zt−1,dt−1), ĥt+1 = GX (hS ,ht, zt,dt).

With these generated latent codes, we can obtain newly generated data features by recovering them
back to the original feature space through the recovery network R, i.e. ŝ, x̂1:T = R(ĥS , ĥ1:T ), where

ŝ = RS(ĥs), x̂t = RX (ĥt) x̂t+1 = RX (ĥt+1).

The stepwise dynamic predicted for the generated data is obtained through

d̂t = P (d̂t−1,xt, x̂t+1).

The discriminator D is also designed in a conditional manner. It takes the static codes, temporal
codes and the dynamic condition as input, and returns classification ỹS , ỹ1:T = D(h̃S , h̃1:T , d̃1:T ), indi-
cating whether h̃1:T is a real latent sequence that truly reflects the dynamic implied with d1:T . The
h̃∗ notation denotes either real (h∗) or synthetic ĥ∗ latent codes; d̃∗ denotes either real (d∗) or the
predicted d̂∗ dynamic, similarly, the ỹ∗ notation denotes classifications of either real (y∗) or synthetic
(ŷ∗) data. We implement D via a bidirectional recurrent network with a feedforward output layer,

ỹS = DS(h̃S), ỹt = DX (
←−
U t,
−→
U t),

where ←−U t = ←−
C X (h̃S , h̃t, ũt−1) and −→U t = −→

C X (h̃S , h̃t, ũt+1) denote the sequences of forward and
backward hidden states, ←−C X ; −→C X are recurrent functions; dS , dX are the output of classification.

Note that, there are two synthetic paired sequences treated as ”fake” in our DAGAN: (ĥ1:T ,d1:T ) and
(h1:T , d̂1:T ). To distinguish them, we mark their classification result with ŷh

t and ŷd
t , respectively.

4.4 JOINTLY LEARNING THROUGH LOCALIZED CONSISTENCY AND DISCRIMINATION

We describe the objectives to jointly train each of these aforementioned schemes in turn.

For dynamic prediction, we enforce accurate prediction on stepwise dynamics via

LP = Es,x1:T ,d1:T∼p[
∑

t ∥ dt − P (dt−1,xt,xt+1) ∥2] (5)

For dynamic distribution learning, we adopt a KL-divergence (Federici et al., 2020) loss term,

Ldist
P = Ed1:T∼pD

[KL(qϕ(dt) ∥ pD(dt))]. (6)

For feature representation learning, we regularize data feature reconstruction with

Lx
R = Es,x1:T ,d1:T∼p[∥ s− s̃ ∥2 +

∑
t ∥ xt − x̃t ∥2], (7)

Ld
R =

∑
t ∥ x̃t+1 − x̃t − dt ∥2], (8)

where Ld
R regularizes the feed-forwardly reconstructed data feature to preserve the dynamic implied

with the original dt at each time-step.

For dynamic-conditional latent feature generation, we have

Lh
S = Es,x1:T ,d1:T∼p[

∑
t ∥ ht −G(hS ,ht−1, zt,dt) ∥2] (9)

For joint learning to encode data features, predict dynamics and iteratively generate, we have

Ld
S = Es,x1:T ,d1:T∼p[

∑
t ∥ dt − P (dt−1,xt, x̂t+1) ∥2]. (10)

The discrimination loss term designed for training D is given as

LD = Es,x1:T ,d1:T∼p[log yS +
∑

t log y
h
t +

∑
t log y

d
t ]

+Es,x1:T ,d1:T∼p̂[log(1− ŷS) +
∑

t log(1− ŷht ) +
∑

t log(1− ŷdt )] (11)
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Note that, among all these loss terms, Eq. 5, Eq. 8, Eq. 10, are supervision of temporal dynamics
induced by our explicitly modeling of transition dynamics, as stated in Eq. 3 and Eq. 4.

Optimization: Let θP , θE , θR, θG and θD represent the parameters of the dynamic predictor P ,
embedding network E, recovery network R, latent code generator G and sequence discriminator D.
P is trained with loss terms of dynamic prediction (Eq. 5), dynamic distribution learning (Eq. 6),
dynamic-conditional latent feature generation (Eq. 10), and joint training (Eq. 9), i.e.

min
θP

(λLh
S + (LP + Ldist

P + Ld
S)) (12)

where λ is a hyperparameter that balances the loss terms related to the stochastic dynamic encoding
and dynamic-conditioned generation. We then train E and R are trained with the loss terms of
feature representation learning (Eq. 7, Eq. 8) and joint training (Eq. 9). The objective function is

min
θE ,θR

(ηLh
S + (Ld

R + Lx
R)) (13)

where η is the hyperparameter that balances the two sets of loss terms.

The sequence generator G discriminator D are adversarially train through

min
θG

(γLh
S +max

θD
LD) (14)

where γ is another hyperparameter that balances the two loss terms for G and D.

Training details: DAGAN is trained by the Adam Optimizer (Kingma & Ba, 2014). The coeffi-
cients of the loss terms are set as: λ = η = 0.1, and γ = 10 to highlight the importance of the
supervised loss. The other parameters, such as batch size and number of iterations, require tuning
for different datasets. We provide more details of our DAGAN in the Supplementary.

5 EXPERIMENTS

To evaluate the quality of the generated data, we focus on three main criteria.

Fidelity: meaning that the generated data should retain the characteristics of the original data, thus
making them indistinguishable from the latter. We can quantitatively evaluate this via the discrim-
inative score. We define the score to be the classification accuracy of a classifier (a 2-layer LSTM
model) that discriminates between original data labelled ’real’, and synthetic data labelled ’fake’.
When presented with synthetic data of high fidelity, the discriminator would likely be fooled and
thus have low accuracy. Thus, a low discriminative score is indicative of faithful synthetic data.

Usefulness: Useful or practical characteristics of the original data, most notably their predictive
properties, should be preserved in the synthetic data. In this manner, synthetic data could be em-
ployed in practical applications to augment limited data for predictive purposes. As a quantitative
measure, the predictive score is calculated. Under the Train on Synthetic, Test on Real (TSTR)
framework (Esteban et al., 2017), a predictor (a 2-layer LSTM) is trained on the synthetic dataset
to predict the values of the sequence at the next time-step. The predictive score is defined to be the
mean absolute error of the prediction model when tested on the original dataset. A low predictive
score suggests that the generated data retains predictive properties from the original data.

Diversity: Finally, good generated data should be sufficiently diverse to cover the distribution of
the real data. PCA (Bryant & Yarnold, 1995) and t-SNE (Van der Maaten & Hinton, 2008) plots
containing the original and generated data, provide a qualitative assessment of diversity. Diverse
synthetic data should show significant overlap with the real data.

With these criteria as the basis of evaluation, DAGAN is tested on a range of datasets with varying
properties, e.g. different periods, temporal and feature correlations, number of feature dimensions
and noise level. We also vary the size of training data to simulate limited data settings.

5.1 AUTOREGRESSIVE GAUSSIAN MODELS WITH LINEAR TEMPORAL DYNAMICS

To underscore our advantage of capturing complex temporal dynamics via conditioning on the
additional dynamic variable, we implement DAGAN on sequences simulated from multivariate
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autoregressive (AR) Gaussian models of the forms xt = ϕxt−1 + n, where n ∼ N (0, σ1 +
(1 − σ)I, and ϕ ∈ [0, 1] is the temporal correlation coefficient and σ ∈ [−1, 1] is the fea-
ture correlation coefficient. This particular model is appropriate for closer scrutiny because we
can study the performance of DAGAN on datasets of different temporal dynamics by varying ϕ.

Table 1: Comparison of DAGAN (1st row) and TimeGAN (2st row)
regarding discriminative scores on AR toy datasets of different ϕ and σ.

Correlation ϕ = 0.2 ϕ = 0.5 ϕ = 0.8

σ = 0.2
.379 ± .058 .364 ± .028 .156 ± .010
.499 ± .001 .494 ± .003 .378 ± .033

σ = 0.5
.466 ± .015 .349 ± .045 .226 ± .020
.500 ± .000 .489 ± .010 .314 ± .034

σ = 0.8
.497 ± .004 .485 ± .009 .340 ± .024
.497 ± .001 .493 ± .493 .306 ± .056

The results in Table 1 show
that DAGAN performance im-
proves when there is a stronger
temporal connection between the
time-steps, as supported by the
falling discriminative scores for
higher values of ϕ. Compared
to TimeGAN, which similarly
claims to leverage supervision to
model transition dynamics, our
proposed model shows a consid-
erable decrease in discriminative
score in most settings. This supports our incorporation of dt as additional self-supervision informa-
tion to benefit time-series generation tasks.

5.2 RESULTS COMPARISON OF SEQUENCE GENERATION

On top of some toy datasets, we focus mainly on the following three datasets:

Stocks: Google’s historical stocks data from 2004 to 2019 are extracted to obtain continuous-valued
sequences (sto, 2021). The dataset included are volume and high, low opening, closing, and adjusted
closing prices. This data is aperiodic and the five features relating to price, are highly correlated.

Sine: We simulate five-dimensional sinusoidal sequences from the sine function, i.e. for i ∈
{1, . . . , 5}, we obtain xi(t) = sin(2πft+ ϕ), where f ∼ U [0, 1] denotes frequency, and ϕ ∼ U [−π, π]
denotes phase. The sine dataset exhibits fixed periods and amplitudes for each sequence, with the
features independent of each other.

Energy: For a more challenging task with high-dimensional and noisy data, the energy dataset is
used (ene, 2017). This dataset monitors energy consumption and various related variables over time,
including temperature and humidity within the building. The data displays some seasonality but has
a high degree of noise compared to the sine data.

5.2.1 COMPLETE DATA SETTING

From Table 2, we observe that DAGAN consistently outperforms TimeGAN across all the datasets in
terms of discriminative and predictive scores. In comparison to ExtraMAE, DAGAN shows better
results for the sine dataset and is comparable on the stocks data. In particular, the performance
of DAGAN shows the most improvement on the sine dataset with the discriminative score 60%
and 93%, and the predictive score 5% and 52% lower than TimeGAN and ExtraMAE respectively.
Although ExtraMAE’s performance is on par with DAGAN on the stocks dataset, the former is more
computationally intensive, taking on average approximately 50% longer to train on the same dataset.

Table 2: Discriminative and predictive scores of DAGAN and baseline methods.

Metric Method Sine Stocks Energy

Discriminative
Score

DAGAN .006 ± .004 .085 ± .044 .439 ± .013
TimeGAN .015 ± .010 .192 ± .023 .489 ± .005
ExtraMAE .090 ± .063 .074 ± .118 .500 ± .000

Predictive Score

DAGAN .093 ± .000 .038 ± .000 .328 ± .006
TimeGAN .098 ± .002 .039 ± .000 .314 ± .003
ExtraMAE .193 ± .006 .037 ± .000 .289 ± .006

Original .094 ± .001 .036 ± .001 .250 ± .003
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Complete Limited

Stocks Sine Energy Stocks Sine Energy

Figure 2: t-SNE visualization by DAGAN (1st row), TimeGAN (2nd row) and ExtraMAE (3rd row)
for the complete (left) and limited (right) datasets. Each column is the results for Stock, Sine, Energy.

5.2.2 LIMITED DATA SETTING

We testify the benefits of leveraging self-supervised information on transition dynamics when train-
ing data is scarce. In this section, we demonstrate the performance of DAGAN under a limited
data setting, where the datasets were decreased in size by 20 times, and compare it with the SOTA
methods. For example, the stocks dataset was randomly reduced from more than 3600 to under 200
observations. The discriminative and predictive scores are shown in Table 3.

Table 3: Discriminative and predictive scores of DAGAN and
baseline methods when trained on limited data.

Table 4: MMD scores of (limited)
stock dataset between X,Y, and Z.

In both settings, and especially the limited data case, DAGAN displays good overlap in the t-SNE
plots (see Figure 2). Although ExtraMAE seems to exhibit even more preferable overlap, for exam-
ple, on the energy data, we argue that this can be caused by its proneness to memorize the training
data, since it obtains the generated data through imputation. We assess this by evaluating the Max-
imum Mean Discrepancy (MMD) scores (Gretton et al., 2006) between the training data (X) and
synthetic data (Y ), and between the training data (X) and a test set (Z). These scores give an in-
dication of whether the synthetic data is too similar to the training data, i.e. simply memorized
them. Table 4 shows the MMD scores on the limited stocks dataset. We found that for ExtraMAE,
MMD(X , Z) was much higher than MMD(X ,Y ) while the two scores were more comparable for
our DAGAN. This means that ExtraMAE suffers low generation diversity compared with DAGAN.

5.3 DYNAMIC CONDITIONAL SEQUENCE GENERATION

Since DAGAN is constructed with a dynamic-consistent design, we expect, to some extent, it can
conditionally generate sequences displaying characteristics of the supplied dynamics. Here, we
test conditional generation on models trained on several toy datasets by varying the conditions dt.
Furthermore, as the conditions are a function of the differences between time-steps, they are inter-
pretable. Thus, we can evaluate the quality of the synthetic datasets by visual inspection to determine
whether the sequences are faithful to the original, and whether the conditions are well-captured.

8
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Figure 3 presents generated samples from various toy datasets of increasing complexity: (a) simple
sine curves with fixed periods and amplitudes; (b) Modified sine curves with changing periods and
amplitudes; (c) Smooth signals exhibiting some seasonality; (d) Sawtooth-shaped Fourier series;
and lastly (e) MNIST dataset by treating each 28x28 image as 28-dimensional sequences of length
28. The generated sequences resemble the original data, demonstrating that DAGAN is capable of
performing faithful reconstruction of data, conditioning on the original dynamic.

Subsequently, to investigate the effects of the conditional dynamic variable on the generated data,
we vary dt by increasing or decreasing it with a fixed constant. The results, shown in Figure 4, indi-
cate our generated sequences maintain the expected characteristics, and also capture the conditions
supplied. For instance, the sequences conditioned on the increased dt, signifying an increased (more
positive) difference at each time-step, tend to lie above the sequence generated based on the original
condition. This lends credence to our insight of utilizing dt for conditional sequence generation.

(a) Sine (b) Modified sine (c) Smooth signals (d) Fourier (e) MNIST

Figure 3: Samples generated by DAGAN trained on multiple toy datasets.

(a) Sine (b) Modified sine (c) Smooth signals (d) Fourier

Figure 4: Generated samples conditioned on the original, increased and decreased dt. The increased
and decreased dt were obtained by adding and subtracting a constant value from the original.

5.4 ABLATION STUDY

We conduct ablation studies to analyze the importance of performing joint distribution matching
in DAGAN. Our result suggests that data-dynamic joint distribution matching plays a crucial role
in improving the quality of the synthetic data of DAGAN. We present comparison results between
DAGAN and its variant without the joint distribution matching design in the Supplementary.

6 CONCLUSION

In this paper, we facilitate data-efficient GAN-based time-series generation with handy self-
supervised information provided by the differencing sequence. Modeling a distribution for dynamic
and enforcing a generalized local triplet consistency, our DAGAN mimic the second-order informa-
tion, i.e. the dynamic of dynamic, encoded within the data sequence to capture temporal dynamic.
This makes our model superior to capture and mimic original data dynamics with limited training
data. Moreover, DAGAN’s speciality in performing dynamic-controllable generation makes it of
great utility to generate sequences with specified dynamics in real applications.

9
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