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ABSTRACT

Graph neural networks (GNNs) have gained considerable success in graph-based
learning tasks, yet training GNNs on large graphs is still inefficient. The root cause
is the graph-based sparse operations are difficult to accelerate with commodity
hardware. Prior art reduces the computation cost of sparse matrix based operations
(e.g., linear) via sampling-based approximation. However, two under-explored
pain points still persist in this paradigm: ① Inefficiency Issue. The random-based
sampling approaches have the non-zero entries randomly distributing over adja-
cency matrix, which slows down memory access process and is difficult to ac-
celerate with commodity hardware. ② Under-fitting Problem. The previous sam-
pling methods only utilize the same subset of nodes during the training, which
may cause the under-fitting problem on other remain nodes. Aiming to sys-
tematically address these two pain points, we propose Structured Dropout, a.k.a,
StructDrop. This method involves the selective random sampling of columns
and rows from a sparse matrix for computation. Comprehensive experiments val-
idate the efficiency and generalization of our framework: StructDrop achieves
up to 5.09x speedup for a single sparse operation and 6.48x end-to-end speedup
with negligible accuracy loss or even better accuracy.

1 INTRODUCTION

Graph Neural Networks (GNNs) have made significant advancements in various graph-related tasks
(Hamilton et al., 2017; Hu et al., 2020; Ying et al., 2018; Jiang et al., 2022; Zhou et al., 2022; 2023).
Yet, training GNNs can be time-inefficient, especially on large graphs. This is largely due to their
two-phase execution: aggregation and update. During the aggregation phase, each node accumulates
messages from its neighboring nodes using sparse matrix-based operations. Following this, in the
update phase, nodes adjust their embeddings based on these messages through dense matrix-based
operations (Fey & Lenssen, 2019; Wang et al., 2019). As shown in Figure 1, SpMM represents
sparse operations and MatMul represents dense operations in their respective phases. It’s notable
that the aggregation phase can consume over 90% (Han et al., 2023) of the total GNN training
time. This inefficiency stems from the nature of sparse matrix operations, which require numerous
random memory accesses with minimal data reuse. Current hardware like CPUs and GPUs struggle
to accelerate these processes (Duan et al., 2022b; Han et al., 2016; Duan et al., 2022a; Liu et al.,
2023c). As a result, training GNNs on large-scale graphs is often very time consuming.

Research towards addressing this issue can be roughly grouped into three main categories. First,
some works propose distributed GNNs training systems. These approaches aim to design GNN train-
ing platforms that reduce communication costs between hardware (Zheng et al., 2020; Ramezani
et al., 2022; Wan et al., 2022b; Md et al., 2021; Wan et al., 2022a). Second, another line of research
focuses on improving the efficiency of sparse operations; they achieve this by reducing memory
access and combining consecutive operations (Zhang et al., 2022; Huang et al., 2020; Rahman et al.,
2021; Wang et al., 2021). Third, some other works try to accelerate the training process from the
optimization aspect, i.e., using fewer iterations to converge (Narayanan et al., 2022; Cong et al.,
2020; Xu et al., 2021; Han et al., 2023; Jin et al., 2021; Cai et al., 2021).
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In parallel, to cope with this challenge, previous work also tried to accelerate the sparse graph-based
operation with randomized matrix multiplication (Liu et al., 2023a). To illustrate, consider a linear
operation involving two matrices, A ∈ Rn×m and B ∈ Rm×q . Initially, we obtain A′ ∈ Rn×k

and B′ ∈ Rk×q (k < m) by selecting k representative columns from A and their corresponding
rows from B, which we term as column-row pairs (Drineas et al., 2006). Following this, the matrix
production AB ≈ A′B′. With this procedure, the number of floating-point operations (FLOPs) and
memory access are both reduced. This method sacrifices a degree of certainty to gain a reduction in
computational complexity. Yet, only the sparse operations in the backward pass are replaced with
their randomized counterparts to ensure the unbiasedness of gradient (Liu et al., 2023a;b). Given
that every training step contains two such sparse operations - one forward and one backward - the
maximum speedup from the prior method is limited to 2× (Liu et al., 2023a).
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Figure 1: The time profiling of a three-layer
GCNs on different datasets. SpMM may take
70∼90% of the total time. Our method
(StructDrop ) can reduce the total train-
ing time by 6.48×. We measure the time on
a NVIDIA A40 GPU. The detailed software and
hardware information can be found in Appendix
A.

In this paper, we further explore replacing
the matrix multiplication in the forward pass
with its randomized counterpart to obtain larger
speedup. Prior research suggests the probabil-
ity of choosing each column-row pair should
be in proportion to the production of the re-
spective row norm and column norm (Drineas
et al., 2006). Interestingly, we observed that
the column-row pairs selected in the forward
pass exhibited a remarkable consistency across
nearby iterations. We hypothesize that this
consistency will cause under-fitting problem as
they only utilize the same subset of nodes dur-
ing training. Drawing from this insight, we pro-
pose a straightforward strategy: the uniform
selection of column-row pairs. Namely, we
assign the same probability to be sampled for
each column-row pairs. Surprisingly, we found
that this simple strategy can often outperform
the complicated norm-based one in the graph
learning problem. To further reduce the nega-
tive impact of the variance from uniform sam-
pling, we propose to utilize instance normalization to stabilize the training process. In summary, our
contributions are summarized as follows:

• We observe that the norm-based column-row pairs selection tend to be the same across
nearby iterations. We hypothesize that this consistency will cause under-fitting problem.

• Based on the observation, we suggest one simple strategy - uniform sampling. We show that
the uniform sampling can beat the previous sampling methods in graph learning problems.

• Our approach can achieve 6.48x speedup with negligible accuracy loss or better accuracy.

2 PRELIMINARIES AND BACKGROUND

2.1 GRAPH NEURAL NETWORKS

We consider an undirected graph G = (V, E), where V and E denote the sets of nodes and edges,
respectively, of size N = |V| and E = |E| . Let A ∈ Rn×n denote the adjacency matrix, Ai,j =
1 if (vi, vj) ∈ E else Ai,j = 0, and let X ∈ Rn×d denotes the feature matrix. Based on the
spatial message passing, GNNs learn the node representation through aggregating the neighbors’
embeddings and combining with itself layer by layer. For example, the node embedding learning at
the lth layer of Graph Convolutional Network (GCN) (Kipf & Welling, 2017) is defined as:

H(l) = ÃX(l−1)W (l),X(l) = ReLU(H(l)) (1)
where X(l) ∈ RN×d is the node embedding matrix at the lth layer and X(0) = X; Ã = D̃− 1

2 (A+

I)D̃− 1
2 is normalized adjacency matrix, D̃ is the diagonal degree matrix of A+I; W (l) ∈ Rd×d is

trainable weight. In practice, Ã is often stored in sparse matrix format like compressed sparse row
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(CSR) to save the computation cost (Fey & Lenssen, 2019). In each training step of backpropagation,
it has exactly two phases, i.e., one forward phase and one backward phase. From the implementation
perspective, its computation can be written as:

Forward Pass J (l) = MatMul(X(l−1),W (l)),H(l) = SpMM(Ã,J (l)), (2a)

Backward Pass ∇J (l) = SpMM(Ã⊤,∇H(l)) (2b)

∇X(l−1) = MatMul(∇J (l),W (l)) (2c)

∇W (l) = MatMul(X(l−1)⊤,∇J (l)), (2d)

where SpMM(·, ·) is the Sparse-Dense Matrix Multiplication and MatMul(·, ·) is the normal Dense-
Dense Matrix Multiplication. From above, we can see that each training step has exactly two
SpMM operations. In practice, although using a sparse matrix format can reduce computational cost
compared to using a dense representation of the adjacency matrix, it is still notoriously inefficient
on commodity hardware due to the cache miss problem (Han et al., 2016). As shown in Figure 1,
we observed that SpMM can take more than half of the training time.

2.2 FAST MATRIX MULTIPLICATION WITH SAMPLING

Given matrices X ∈ Rn×m and Y ∈ Rm×q , our objective is to efficiently estimate the matrix
product XY . While the Truncated Singular Value Decomposition (SVD) provides an optimal low-
rank estimation of XY (Adelman et al., 2021), its computational cost is almost equivalent to matrix
multiplication. To overcome this issue, sampling algorithms have been proposed to approximate the
matrix product XY . The method involves sampling k columns from X and their corresponding
rows from Y , resulting in smaller matrices. These matrices are then multiplied in the traditional
manner (Drineas et al., 2006). Such an approach cuts down the computational complexity from
O(mnq) to O(knq). Mathematically, the approximation is given by:

XY ≈
k∑

t=1

1

st
X:,itYit,: = approx(XY ), (3)

where X:,i and Yi,: represent the ith column of X and the ith row of Y , respectively. Within this
context, we define the (X:,i,Yi,:) as the ith column-row pair. The term k denotes the number of
samples, and st is a scale factor. k is the number of samples (1 ≤ k ≤ m). {pi}mi=1 is a probability
distribution over the column-row pairs. it ∈ {1, · · ·m} is the index of the sampled column-row pair
at the tth trial. st is the scale factor. (Drineas et al., 2006) indicates that setting st =

1
kpit

ensures
the expectation the approximation is equal to the actual matrix multiplication results. Moreover, the
approximation error is minimized when the sampling probabilities are proportional to the product of
the norms of the column-row pairs:

pi =
||X:,i||2 ||Yi,:||2∑m
j=1 ||X:,j ||2 ||Yj,:||2

. (4)

Though the above sampling method effectively accelerates matrix multiplication (Drineas et al.,
2006), its direct application to neural networks might not be optimal. This is because it overlooks
the unique distribution of neural network weights. Observations indicate that neural network weight
distributions tend to remain centered around zero during training (Glorot & Bengio, 2010; Han et al.,
2015). Using this insight, (Adelman et al., 2021) introduced the top-k sampling method: determin-
istically selecting the k column-row pairs that have the highest values according to Equation 4,
without any scaling. This equates to setting the probability pi of the top k column-row pairs to 1,
and to 0 for the others, with the scale factor sit being consistently 1.

Furthermore, (Liu et al., 2023a) adapted the top-k sampling technique to the domain of graph learn-
ing. To guarantee gradient unbiasedness, they restricted the use of randomized matrix multi-
plication to the backward pass only, i.e., ∇J (l) = SpMM(Ã⊤,∇H(l)) in Equation 2b. This
decision was influenced by the understanding that the non-linear activation functions can alter the
expected outcome of the approximated matrix multiplication (Liu et al., 2023a). While this approach
preserves the final model accuracy, its potential for computational speedup is limited at 2×, given
that it optimizes only the backward computations.
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Table 1: Preliminary results on three datasets. “+Top-k Sampling” means we replace both the
forward and backward SpMM with their approximated version. Here we set the k as 0.1|V| across
different layers. All reported results are averaged over six random trials.

Reddit ogbn-Arxiv ogbn-Product

GCN Baseline 95.30 ± 0.05 72.09 ± 0.26 76.05 ± 0.10
+Top-k Sampling 93.53 ± 0.44 70.33 ± 0.86 74.73 ± 1.81

GraphSAGE Baseline 96.59 ± 0.03 70.44 ± 0.31 78.05 ± 0.90
+Top-k Sampling 90.35 ± 1.22 62.10 ± 0.52 70.17 ± 0.32

In the next section, we explore the possibility of employing randomized matrix multiplication in the
forward pass, aiming to achieve even higher acceleration.

3 METHODOLOGY

In this section, we first analyze why top-k sampling cannot maintain the accuracy in Section 3.1.
Specifically, we found that the top-k sampling tends to select the same subset of nodes during the
training, which may cause the under-fitting problem on other remain nodes. Based on this ob-
servation, we propose a simple yet effective strategy called StructDrop in Section 3.2, which
uniformly select column-row pairs. Then in Section 3.3 we propose to incorporate instance normal-
ization to further boost the stability of the training process with StructDrop .

3.1 MOTIVATION
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Figure 2: The Jaccard Similarity
of selected column-row pairs across
the iterations in Top-k Sampling.

Here we explore the possibility of accelerating the SpMM op-
erations (Equation 2a) in both the forward and backward pass
(Equation 2b). Specifically, we replace both the forward and
backward SpMM with their approximated version using top-k
sampling. Here we set the k as 0.1|V| across different lay-
ers. The model configuration is given in Appendix A. The
performance is summarized in Table 1. We have observed
a significant drop in performance, consistent with previous
findings (Liu et al., 2023a). Upon closer examination, as
shown in Figure 2, we found that the top-k sampling, as de-
scribed in Equation 4, selects almost the same column-row
pairs across nearby iterations. Namely, the Jaccard similarity
across nearby iterations is around 90%. This indicates that the
top-k sampling only utilizes the same subset of nodes during
the training, which may cause the under-fitting problem on
other remain nodes.
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Figure 3: The training accuracy and test accuracy com-
parison between different methods, where we train a
three-layer GCN on ogbn-Products

To verify our hyperthesis, we plot the
training accuracy and test accuracy of a
three-layer GCN on ogbn-Products with
different methods in Figure 3. The “under-
fitting” hyperthesis is supported by Figure
3a, where the training accuracy with top-
k sampling is noticeably lower than that
of the baseline. As a consequence, Figure
3b shows that the test accuracy of GNNs
trained with top-k sampling is also sub-
stantially inferior to the baseline.

In the next section, we explore how to
cope with this under-fitting problem.
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3.2 STRUCTDROP : DROP COLUMN-ROW PAIRS UNIFORMLY

Motivated by the observation that top-k sampling leads to under-fitting—stemming from the consis-
tent selection of the same node subset throughout training—we introduce a straightforward strategy:
uniformly selecting each column-row pair. Namely, each column-row pair shares the same prob-
ability of being sampled, and we totally sample k column-row pairs without replacement. In
this paper, we call this simple strategy StructDrop . Below we analyze the potential of our
method from the generalization aspect.

Generalization Analysis. As shown in Figure 2, StructDrop utilizes different set of nodes dur-
ing training. This suggests that StructDrop is effective in integrating information from the entire
graph. StructDrop drops entire columns in the adjacency matrix while keeping the number of
rows unchanged. It means that all of the out edges for a set of nodes are dropped out. The production
over sampled adjacency matrix and node embeddings creates randomness during aggregation, and
can be considered as a data augmentation mechanism. As a result, there is more randomness and
deformations in the aggregated nodes, increasing generalizability. As a consequence, both Figure
3a and Figure 3b show that the training and test accuracy of StructDrop closely align those of
the baseline. This indicates that StructDrop effectively addresses the under-fitting problem.

3.3 INSTANCE NORMALIZATION AT CRITICAL POSITION

Despite the prominent efficiency brought by the fast matrix multiplication with random sampling,
a side effect is the significant distribution shift of node embeddings during training. In particular,
given the random sampling of column-row pairs, the node embeddings are learned from the diverse
sets of neighbors between epochs. It is widely found the acute distribution shift impedes learning
rate and even misleads model to the convergence of poor-performing points Bjorck et al. (2018);
Ioffe & Szegedy (2015); Bjorck et al. (2018).

To address the above issue, we propose to apply instance normalization right after the fast ma-
trix multiplication. Mathematically, recalling the forward pass in Equation 2a, we use H(l) =
SpMM(StructDrop(Ã,J (l))) denote the node embeddings after neighbor aggregation, which is
obtained by uniformly dropping the column-row pairs over matrices Ã and J (l) and conducting
sparse matrix multiplication on them. Considering embedding h

(l)
i ∈ Rd of node vi i.e., the ith row

in H(l), the instance normalization rescales it by Ulyanov et al. (2016):
h̃
(l)
i = [h

(l)
i − E(h

(l)
i )] / Sqrt(Var(h

(l)
i ) + ϵ) ∗ γ + β. (5)

E(·), Sqrt(·), and Var(·) denote operations of expectation, squared root, and variance, respectively;
γ,β ∈ Rd denote the trainable weights of running variance and mean, respectively. Each node em-
bedding is rescaled to alleviate the sampling randomness and thereby converge model with superior
generalization. The detailed experiments in discussing the node embedding shifting and generaliza-
tion performance are provided in experiment section to support our proposals.

4 EXPERIMENTS

In our experiments, we evaluate our proposed framework through answering the following research
questions: Q1: How well does StructDrop maintain accuracy with the reduced training time?
Q2: How does the sampling ratio impact the final performance? Q3: What’s the importance of
instance normalization in the sampling scheme?

4.1 IMPLEMENTATION DETAILS

Datasets, Backbones and Baselines To evaluate StructDrop , we adopt four large scale graph
benchmarks which are commonly used in different domains: Reddit (Hamilton et al., 2017), Reddit2
(Zeng et al., 2020) 1, ogbn-Arxiv (Hu et al., 2020) and ogbn-Products (Hu et al., 2020). We evaluate
StructDrop using the full-batch training settings. We intergate StructDrop with two popular

1This is a sparser version of the original Reddit dataset ( 23M edges instead of 114M edges), and is used in
paper GraphSAINT (Zeng et al., 2020)
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Table 2: Comparison on the test accuracy on four datasets. The hardware for experiments is NVIDIA
A40 (48GB). All results are averaged over six random trials.

# nodes 232,965 232,965 169,343 2,449,029
# edges 114,615,892 23,213,838 1,166,243 61,859,140

Model Methods Reddit Reddit2 ogbn-Arxiv ogbn-Products

Accuracy Speedup Accuracy Speedup Accuracy Speedup Accuracy Speedup

GCN

Vanilla 95.3 ± 0.05 1 × 95.38 ± 0.06 1 × 72.09 ± 0.26 1 × 76.05 ± 0.10 1 ×
Top-k Sampling 93.21 ± 0.15 6.99 × 94.21 ± 0.25 2.72 × 70.84 ± 0.63 1.33 × 77.94 ± 2.47 1.96 ×

DropEdge 95.44 ± 0.01 1.87 × 95.47 ± 0.02 1.72 × 72.55 ± 0.33 1.21 × 78.96 ± 0.60 1.2 ×
StructDrop 95.47 ± 0.05 3.87 × 95.46 ± 0.03 2.4 × 72.46 ± 0.23 1.29 × 79.24 ± 0.74 1.8 ×

GraphSAGE

Vanilla 96.59 ± 0.03 1 × 96.67 ± 0.03 1 × 70.44 ± 0.31 1 × 78.05 ± 0.90 1 ×
Top-k Sampling 92.73 ± 0.33 9.66 × 93.84 ± 0.28 3.08 × 63.75 ± 0.42 1.39 × 73.22 ± 0.23 3.31 ×

DropEdge 96.65 ± 0.03 2.65 × 96.55 ± 0.03 1.54 × 70.23 ± 0.19 0.81 × 78.57 ± 0.09 1.33 ×
StructDrop 96.65 ± 0.04 4.26 × 96.56 ± 0.03 2.33 × 70.03 ± 0.26 1.15 × 78.97 ± 0.17 2.47 ×

models: GCN and GraphSAGE. Both models are trained with the whole graph at each training step.
We use SUM aggregator in GCN and MEAN aggregator for GraphSAGE throughout this paper for
fair comparison.

Hyperparameter settings StructDrop only has one hyperparameter, i.e., the sampling ratio.
We present comprehensive sample ratio ablation study in Sec 4. We follow previous work Liu et al.
(2023a) to sample the adjacency matrix every ten training steps, and reuse the sampled sparse matrix
for multiplication within these ten steps. Due to the space limit, more experiments results regarding
to this hyperparameter are included in the Appendix.

4.2 SUPERIOR EFFICIENCY AND GENERALIZATION OF STRUCTDROP

We start by evaluating the efficiency and accuracy of StructDrop comparing with different base-
lines sampling mechanisms. StructDrop accelerates the sparse operations in both forward and
backward paths, thus largely reducing computational overhead. In the meantime, the accuracy of
StructDrop is preserved, evidenced by the negligible accuracy loss or even better performance.

4.2.1 OPERATIONAL LEVEL ACCELERATION

Figure 1 shows the operation level performance gain of StructDrop . We measure the wall clock
completion time of different operators on different datasets. With StructDrop , computation
complexity in sparse matrix multiplication is largely reduced, so as leading to faster completion.
Across datasets, the SpMM in forward path is accelerated by 1.9 ∼ 5.5×, and SpMM in backward is
accelerated by 2.62 ∼ 4.8×. Overall, StructDrop achieves up to 5.09× wall clock time speedup
compare to the vanilla baseline.

4.2.2 END-TO-END PERFORMANCE ANALYSIS

Next we evaluate StructDrop ’s end-to-end training time speedup as well as model accuracy
comparing against different baselines. Specifically, we benchmark our approach against the stan-
dard training process without any approximations or accelerations. Additionally, we evaluate
StructDrop alongside other sampling techniques such as Top-k sampling and DropEdge (Rong
et al., 2019). We present results with the same sample ratio across to those sampled based baselines
for fair comparison.

Comparison against vanilla training scheme StructDrop achieves negligible accuracy loss
(within 0.5%) or even better accuracy comparing to vanilla training scheme. The retained or boosted
accuracy comes from StructDrop ’s random sampling strategy during message aggregation
phase. Such randomness acts as data augmentation, increasing the generalizability of StructDrop
. We visualize the gap between training loss and testing loss on ogbn-Products dataset in Figure 3
to measure the generalizability of different mechanisms. The randomness and diversity in message
aggregation leads to higher generalizability. In the meantime, StructDrop ’s end-to-end wall
clock training completion time achieves up to 6.48× speedup compare to vanilla training scheme.
To summarize, StructDrop is a new and effective acceleration scheme that makes GNN training
process more efficient with retained accuracy. We next compare our training scheme with other
sampling based mechanism.
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(b) GCN 3rd layer
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(c) GraphSage 2nd layer
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Figure 4: Embedding sparsity on different layers during training on Reddit2 dataset.

Comparison against Top-k sampling We now compare StructDrop with Top-k sampling. We
highlight the accuracy gain of StructDrop over Top-k sampling here. Top-k sampling induces
unacceptable performance loss compare to both vanilla baseline and StructDrop . This is be-
cause such Euclidean norm based sampling suffers from over-focusing on several columns and rows
as analyzed in previous section, hence losing global graph information and leads to the underfitting
behavior. On the other hand, random sampling in StructDrop is able to collect and utilize the
global graph knowledge during message aggregation, thus achieves more comprehensive learning.
Another important reason of poor performance in Top-k sampling is the information loss. We profile
the embedding sparsity after message aggregation with vanilla, Top-k sampling and StructDrop
in Figure 4. We found that after sampling and message passing, the embedding with Top-k sampling
based mechanism has the highest zeros entry rate. Although Euclidean norm maintains minimal
reconstruction error with vanilla sparse matrix multiplication, it tends to select columns/rows with
lower degree (Liu et al., 2023a), which translates into higher sparsity and leads to larger embed-
ding information loss in the aggregating phase, thus causing underfit. StructDrop doesn’t have
the concern of graph information loss. As we can see in Figure 4, the embedding sparsity of
StructDrop and vanilla scheme is comparable on the other hand, leading to fewer information
loss during message passing.

Comparison against DropEdge DropEdge (Rong et al., 2019) is an effective method to alleviate
overfitting and oversmoothing in graph neural network training. Similar to StructDrop , DropE-
dge randomly samples edges in the input graph basing on certain probability at each epoch. For
fair comparison in this experiment, we set the dropping ratio to be 80% so that 20% of edges are
retained, which is same with the StructDrop setting. Across different datasets, StructDrop
achieves comparable accuracy(within 0.5%) with DropEdge, which reflects the effectiveness of data
augmentation with sampled message passing. However, StructDrop achieves much higher ef-
ficiency comparing to DropEdge(up to 2.07x speedup), which mainly comes from the hardware
efficiency. Though the number of edges preserved during training in each epoch is the same, the
dropping granularity of Dropedge is smaller than StructDrop , that it only masks the value in ad-
jacency matrix to zero. In sparse matrix multiplication, the matrix involved in calculation retains the
same dimension. However, StructDrop randomly drops the entire columns and rows, leading to
reduced adjacency matrix and node embeddings, which finally translates into lower level hardware
performance gain while executing sparse matrix multiplication.

4.2.3 OVERFITTING AND GENERALIZATION

We have covered the overall performance comparison among StructDrop and different base-
lines in the previous section. Next, we want to understand more about the generalizability of
StructDrop . We use ogbn-Products as an example to experimentally plot the training loss and
generalization gap for different baselines and neural network architectures in Figure 5. The gener-
alization gap is measured with the gap between training loss and testing loss. Thus higher general-
ization gap means better generalizability. Despite Top-k sampling mechanism with highest training
loss and underfiting in training on GCN architecture, StructDrop achieves largest generalization
gap. These results are aligning with our previous analysis, that the randomness and diversity caused
by StructDrop can be served as data augmentation to increase the model generalizability.
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Table 3: Accuracy and speedup regarding to different sample ratios on GCN architecture.

Model Ratio Reddit Reddit2 ogbn-Arxiv ogbn-Products

Accuracy Speedup Accuracy Speedup Accuracy Speedup Accuracy Speedup

GCN

0.1 95.44 ± 0.04 5.63 × 95.39 ± 0.05 2.81 × 72.16 ± 0.21 1.35 × 79.51 ± 1.07 2.04 ×
0.2 95.47 ± 0.05 3.87 × 95.46 ± 0.03 2.40 × 72.46 ± 0.23 1.29 × 79.24 ± 0.74 1.8 ×
0.3 95.47 ± 0.04 2.89 × 95.48 ± 0.03 2.05 × 72.44 ± 0.24 1.22 × 78.95 ± 0.46 1.6 ×
0.4 95.43 ± 0.04 2.26 × 95.46 ± 0.04 1.78 × 72.66 ± 0.23 1.17 × 78.63 ± 0.29 1.43 ×
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Figure 5: Training loss and generalization gap on ogbn-Products dataset

4.2.4 ABLATION STUDIES OF DROPPING RATIO

In this part, we presents comprehensive accuracy and speedup evaluation of StructDrop . Table 3
shows StructDrop ’s results over different sampling ratios and datasets on GCN architecture. The
effect of sample ratio with regards to accuracy are dependent to the datasets. For samll dataset like
ogbn-Arxiv, it contains small number of edges. Higher sample ratio leads to higher accuracy as there
will be less information loss. For obgn-Product with large number of edges, accuracy is reversed
proportional to the sample ratio, as redundant edges causes the node embeddings to be smoothened
by its neighbors, thus lose node features in its converged embedding. Regarding efficiency, lower
sampling ratio leads to a higher computation speeds. The trend for GraphSAGE is similar to GCN,
We delay the GraphSAGE results to the appendix section for more information.

4.3 BENEFITS FROM INSTANCE NORMALIZATION

We now evaluate the benefits brought by adapting instance normalization. Instance normalization
acts as an distribution shifts mitigator that decrease the shifts of embeddings induced by random
samplinng between epochs. Our experimental results show that instance normalization acts as ef-
fective factor that smooth the training process for better accuracy.

Ablation study of instance normalization In this part, we evaluate the accuracy gain brought by
instance normalization. We summarize the accuracy of GCN and GraphSAGE on different datasets
w/o instance normalization. As shown in table 4, the accuracy with instance normalization applied
is larger than that without instance normalization across different datasets. Instance normalization
helps with StructDrop and leads to better accuracy on different architectures and datasets.

Effect for smooth training Next we make a deep dive into the inner reason of instance normaliza-
tion that helps boost the accuracy. We plot the distribution shift of the embedding after message
aggregation with sampled columns/rows in 6. We use the norm of embedding difference between
subsequent epochs to measure the smoothness of training. As shown in the Figure, training without
instance normalization causes much larger embedding shifts between epochs, making the training

Table 4: Ablation study of instance normalization on different model architectures.

Reddit ogbn-Arxiv ogbn-Products

GCN w/ instance norm 95.47 ± 0.05 72.46 ± 0.23 79.24 ± 0.74
w/o instance norm 94.01 ± 1.04 69.30 ± 1.19 74.55 ± 3.51

GraphSAGE w/ instance norm 96.65 ± 0.04 70.03 ± 0.26 78.97 ± 0.17
w/o instance norm 96.52 ± 0.04 69.00 ± 0.45 78.25 ± 0.21
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(c) GraphSAGE 2nd layer
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Figure 6: Embedding shift between different epochs on Reddit2 dataset

process not smooth as the model needs to constantly adapt to new inputs distribution, which is sig-
nificant as the random samples causes message aggregation in different epochs varies drastically.
Instance normalization successfully lowers the shifts between embeddings through different epochs,
thus stablize the training process and leads to better accuracy.

5 RELATED WORK

Large-scale Graph Learning. Mathematically, the massage passing over graph could be de-
scribed by sparse matrix multiplication, which is manipulated on graph adjacency and node embed-
ding matrices. It is notorious that such message passing is resource consuming, where the memory
and time complexities depend on the amounts of nodes and edges, respectively. To address the
scalability issue on large graphs, numerous families of algorithms have been explored, including
the subgraph-based GNN training Hamilton et al. (2017); Huang et al. (2018) , graph precompu-
tation Wu et al. (2019); Klicpera et al. (2018); Yu et al. (2020), and distributed training Zha et al.
(2023; 2022); Yuan et al. (2022); Wang et al. (2022). The common merit of them is to divide the
large graph into many pieces, each of which could be handled by the resource-limited GPU.

Efficient Training Algorithms. Based on the above scalable training frameworks, another or-
thogonal line is to further reduce the memory and time consumption by approximating the message
passing, which can be divided into following two categories. First, the adjacency matrix based ap-
proximation aims to compress the non-zero entries or matrix dimension. For example, Sketch-GNN
proposes to sketch the graph adjacency matrix into a smaller one using hashing approach Chamber-
lain et al. (2022); DSpar expurgates the non-zero elements based on node degrees to obtain a sparse
substitute Liu et al. (2023c). Second, the node embedding based approximation targets at compress
the memory storage of hidden representations. For example, EXACT stocastically quantizes the
node embeddings into low precision number Liu et al. (2022); GNNAutoScale stores the whole list
of node embeddings in CPU and retrieve from it in forward propagation Fey et al. (2021).

Random Dropout. To improve the generalization performance on graph data, there are two main
categories of dropout solutions. Edge-oriented dropout randomly samples a subset of edges at
each epoch to avoid the over-fitting and over-smoothing, such as DropEdge Rong et al. (2019),
Grand Feng et al. (2020b), etc. On the other hand, Node-oriented dropout removes node features
and links connected to the dropped nodes. The node-oriented dropout approaches are originally mo-
tivated in sampling subgraph for scalable training and in augmenting graphs for contrastive learning,
such as DropNode Feng et al. (2020a), FastGCN Chen et al. (2018), and LADIES Zou et al. (2019).

6 CONCLUSIONS

In this work we propose StructDrop to replace the time-consuming message passing with the
fast and sparse matrix multiplication in forward and backward passes of GNNs. Particularly,
StructDrop uniformly samples column-row pairs from graph adjacency matrix and node em-
bedding matrix, reducing the computational complexity required in the sparse matrix multiplication
SpMM. Furthermore, to address the distribution shift brought from random sampling, we propose to
apply the instance normalization after SpMM to rescale node embeddings and stablize training dy-
namics. Extensive experiments on the benchmark datasets validate the effectiveness of our proposals
in achieving the superior trade-off between efficiency and generalization performance.
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A CONFIGURATION

Table 5: Configuration of Full-Batch GCN.

Dataset Training Archtecture
Learning

Rates Epochs Dropout BatchNorm Layers Hidden
Dimension

Reddit 0.01 400 0.5 No 3 256
Reddit2 0.01 400 0.5 No 3 256
ogbn-
Arxiv 0.01 500 0.1 No 3 512

ogbn-
Products 0.001 400 0.5 No 3 256

Table 6: Configuration of Full-Batch GraphSAGE.

Dataset Training Archtecture
Learning

Rates Epochs Dropout BatchNorm Layers Hidden
Dimension

Reddit 0.01 400 0.5 No 3 256
Reddit2 0.01 400 0.5 No 3 256
ogbn-
Arxiv 0.01 500 0.1 No 3 512

ogbn-
Products 0.001 500 0.5 No 3 256

B GRAPHSAGE ACCURACY AND EFFICIENCY

Table 7: Accuracy and speedup regarding to different sample ratios on GraphSAGE architecture

Model Ratio Reddit Reddit2 ogbn-Arxiv ogbn-Products
Acc. Speedup Acc. Speedup Acc. Speedup Acc. Speedup

0.1 96.53 ± 0.04 6.48 96.42 ± 0.04 2.93 68.83 ± 0.30 1.33 79.29 ± 0.07 2.96

GraphSAGE
0.2 96.65 ± 0.04 4.26 96.56 ± 0.03 2.33 70.03 ± 0.26 1.15 78.97 ± 0.17 2.48
0.3 96.69 ± 0.04 3.13 96.63 ± 0.04 2.01 70.35 ± 0.24 1.12 78.63 ± 0.12 2.1
0.4 96.68 ± 0.02 2.42 96.67 ± 0.03 1.79 70.65 ± 0.34 1.06 78.31 ± 0.09 1.81

C CONVERGENCE ANALYSIS FOR TRAINING WITHOUT INSTANCE
NORMALIZATION ON GCN
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(a) Training on Arxiv without in-
stance normalization

0 100 200 300 400
Epoch

40

50

60

70

80

90

100

A
cc

ur
ac

y 
%

Train
Valid
Max valid acc point

(b) Training on Reddit without
instance normalization
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Figure 7: Convergence analysis for different datasets
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Table 8: The experiments for GCN2 architecture with different datasets and training mechanisms

Dataset Sample ratio Vanilla Speedup Top-k Speedup StructDrop Speedup DropEdge Speedup DropNode Speedup
Reddit2 0.1 96.80 ± 0.02 1 93.55 ± 0.07 2.32 96.65 ± 0.03 2.19 96.62 ± 0.02 1.96 96.21 ± 0.06 1.97

0.2 1 93.51 ± 0.58 2.1 96.72 ± 0.03 1.97 96.72 ± 0.01 1.6 96.31 ± 0.03 1.63
ogbn-Arxiv 0.1 72.12 ± 0.24 1 70.30 ± 0.32 1.26 71.52 ± 0.07 1.23 71.78 ± 0.23 1.16 71.76 ± 0.07 1.17

0.2 1 71.09 ± 0.09 1.21 72.16 ± 0.12 1.19 72.24 ± 0.30 1.13 72.35 ± 0.01 1.13
Reddit 0.1 96.81 ± 0.03 1 88.61 ± 0.83 6.29 96.72 ± 0.03 4.57 96.76 ± 0.03 3.16 96.24 ± 0.04 3.36

0.2 1 91.46 ± 1.00 5.14 96.82 ± 0.02 3.42 96.81 ± 0.07 2.01 96.39 ± 0.05 2.16

Table 9: The experiments for GraphSaint with different datasets and training mechanisms

Dataset Sample ratio Vanilla Speedup Top-k Speedup StructDrop Speedup DropEdge Speedup DropNode Speedup
ogbn-product 0.1 78.67± 0.23 1 72.88 ± 0.13 1.4 79.42 ± 0.12 1.35 79.71 ± 0.14 0.58 79.47 ± 0.20 0.55

0.2 1 75.59 ± 0.37 1.32 79.59 ± 0.37 1.27 79.50 ± 0.18 0.53 79.27 ± 0.33 0.52
reddit2 0.1 96.22 ± 0.05 1 87.31 ± 0.58 1.1 95.89 ± 0.01 1.1 95.90 ± 0.08 0.77 95.95 ± 0.07 0.76

0.2 1 91.27 ± 0.50 1.07 96.09 ± 0.03 1.05 96.12 ± 0.03 0.67 96.05 ± 0.11 0.68
ogbn-arxiv 0.1 70.72 ± 0.17 1 63.38 ± 0.20 1.13 68.94 ± 0.62 1.13 69.70 ± 0.23 0.84 68.70 ± 0.31 0.87

0.2 1 65.77 ± 0.41 1.11 69.40 ± 0.94 1.07 69.56 ± 0.06 0.79 69.47 ± 1.08 0.82
reddit 0.1 95.85 ± 0.13 1 87.30 ± 1.24 1.66 95.75 ± 0.08 1.47 95.81 ± 0.06 0.98 95.65 ± 0.03 0.98

0.2 1 90.36 ± 0.84 1.56 95.87 ± 0.05 1.35 95.92 ± 0.06 0.7 95.73 ± 0.08 0.73

Figure 7 specifically to check the convergence level with respect to the training epoch for training
without instance normalization on GCN. As shown in the figure, the training of Reddit and ogbn-
Arxiv without instance normalization has converged and the highest validation point is achieved
far before the training ends. For ogbn-Product dataset, we plot a training curve with 1200 epochs
(far more than commonly used configuration), and we see it converge very slowly during training
without instance normalization. Note that the number we report in the Section 4.3 is following the
configuration of experiments with instance normalization for ablation study. In ogbn-Product exper-
iment, even with much larger epoch number for training, the accuracy finally achieves 76.73 ± 2.30,
which is far less than with instance normalization. The results show that instance normalization does
help with convergence speed as it contributes to the stabilized training under the randomized sam-
pling training mechanism. Meanwhile, the smooth training process contributes to the final accuracy.
Nonetheless, The variance of accuracy could be due to the instability of the training process, that
because of the randomness the model converges to different points. With instance normalization,
the smoother internal shifts (as shown in 6) lead to more robust training.

D EXPERIMENT FOR GCN2 ARCHITECTURE

Here we present another GNN architecture that is widely used — GCN2 for validating our results.
The experiments compares StructDrop with different baselines performance on GCN2. Due to
resource limitation, we didn’t present the ogbn-Product experiment here. The results show a con-
sistent conclusion with all other architectures, that StructDrop accelerates the sparse operations,
and largely reduces the computation complexity while preserving the accuracy. The experiment
results for GCN2 is shown in 8

E EXPERIMENT FOR GRAPHSAINT

Here we present GraphSaint experiment to validate whether we can accelerate the subgraph training
mechanism effectively with StructDrop . Similar to previous experiments we compare different
baselines. Through different baselines, StructDrop is the most Robust mechanism that it accel-
erate the training while maintaining the accuracy, which is consistent with other experiments. The
experiment results for GraphSaint is shown in 9
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Table 10: DropNode experiment for GCN and GraphSage

Experiments Dataset Sample ratio Vanilla Speedup StructDrop Speedup DropNode Speedup
GCN Reddit2 0.1 95.38 ± 0.06 1 95.39 ± 0.05 2.82 95.24 ± 0.02 2.32

0.2 1 95.46 ± 0.03 2.40 95.35 ± 0.05 1.70
0.3 1 95.48 ± 0.03 2.05 95.42 ± 0.03 1.40
0.4 1 95.46 ± 0.04 1.78 95.41 ± 0.09 1.11

ogbn-Product 0.1 76.05 ± 0.10 1 79.51 ± 1.07 2.05 76.31 ± 1.56 1.70
0.2 1 79.24 ± 0.74 1.80 78.29 ± 2.15 1.17
0.3 1 78.95 ± 0.46 1.60
0.4 1 78.63 ± 0.29 1.44

ogbn-Arxiv 0.1 72.09 ± 0.26 1 72.16 ± 0.21 1.36 71.99 ± 0.25 1.29
0.2 1 72.46 ± 0.23 1.29 72.36 ± 0.20 1.23
0.3 1 72.44 ± 0.24 1.22 72.54 ± 0.27 1.18
0.4 1 72.66 ± 0.23 1.17 72.50 ± 0.35 1.13

Reddit 0.1 95.30 ± 0.05 1 95.44 ± 0.04 5.64 95.21 ± 0.04 3.48
0.2 1 95.47 ± 0.05 3.87 95.34 ± 0.06 2.07
0.3 1 95.47 ± 0.04 2.89 95.32 ± 0.03 1.43
0.4 1 95.43 ± 0.04 2.26 95.39 ± 0.03 1.08

GraphSage Reddit2 0.1 96.67 ± 0.03 1 96.42 ± 0.04 2.94 96.05 ± 0.02 2.19
0.2 1 96.56 ± 0.03 2.33 96.33 ± 0.01 1.78
0.3 1 96.63 ± 0.04 2.01 96.46 ± 0.04 1.50
0.4 1 96.67 ± 0.03 1.79 96.53 ± 0.02 1.30

ogbn-Product 0.1 78.05 ± 0.90 1 79.29 ± 0.07 2.96 78.30 ± 0.17 1.95
0.2 1 78.97 ± 0.17 2.48 78.93 ± 0.20 1.32
0.3 1 78.63 ± 0.12 2.10
0.4 1 78.31 ± 0.09 1.81

ogbn-Arxiv 0.1 70.44 ± 0.31 1 68.83 ± 0.30 1.33 68.81 ± 0.21 1.05
0.2 1 70.03 ± 0.26 1.15 69.99 ± 0.29 1.02
0.3 1 70.35 ± 0.24 1.12 69.87 ± 0.42 0.98
0.4 1 70.65 ± 0.34 1.06 70.29 ± 0.14 0.94

Reddit 0.1 96.59 ± 0.03 1 96.53 ± 0.04 6.48 96.11 ± 0.07 4.68
0.2 1 96.65 ± 0.04 4.27 96.36 ± 0.06 2.72
0.3 1 96.69 ± 0.04 3.13 96.50 ± 0.05 1.89
0.4 1 96.68 ± 0.02 2.42 96.53 ± 0.06 1.43

F DROPNODE EXPERIMENT

We further conduct the experiments with DropNode across all different architectures with the same
experimental setting. For fair comparison, we set the ratio of edge dropped to the same across differ-
ent baselines in all experiments. The experiment results for DropNode is shown in 10. As shown in
the results, DropNode experiment results share similar features with DropEdge, where StructDrop
achieves a comparable accuracy with DropNode. Same as DropEdge, StructDrop achieves higher
efficiency because of hardware efficiency as discussed in Section 4.2.2, StructDrop drops the entire
columns and rows, leading to reduced adjacency matrix and node embeddings and finally translates
into performance gain during training. The DropNode experiments for GCN2 and GraphSaint are
shown in 8 and 9. Due to resource limitation, we didn’t present the DropNode experiment for
ogbn-Product datasets at sample ratio 0.3 and 0.4.
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