Under review as a conference paper at ICLR 2025

NEURAL NETWORK ADAPTIVE QUANTIZATION BASED
ON BAYESIAN DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a novel approach to solve the adaptive quantization problem in neu-
ral networks based on epistemic uncertainty analysis. The quantized model is
treated as a Bayesian neural network with stochastic weights, where the mean
values are employed to estimate the corresponding weights. Standard deviations
serve as an indicator of uncertainty and the number of corresponding bits — i.e.,
a larger number of bits indicate lower uncertainty, and vice versa. We perform
an extensive analysis of several algorithms within a novel framework for differ-
ent convolutional and fully connected neural networks based on open datasets
demonstrating the main advantages of the proposed approach. In particular, we
introduce two novel algorithms for mixed-precision quantization. Quantile In-
form utilizes uncertainty to allocate bit-width across layers, while RandomBits
employs stochastic gradient-based optimization techniques to maximize the full
likelihood of quantization. Using our approach, we reduce the average bit-width
of the VGG-16 model to 3.05 with the 90.5% accuracy on the CIFAR-10 dataset
compared to 91.9% for the non-quantized model. For the LeNet model trained on
the MNIST dataset, we reduce the average bit-width to 3.16 and achieve 99.0%
accuracy, almost equal to 99.2% for the non-quantized model.

1 INTRODUCTION

Compression of neural network models are typically addressed using pruning (Blalock et al.,|2020),
quantization (Gholami et al., 2021)), decomposition of weight matrices into factors (Sainath et al.,
2013) and distillation (Hinton et al.| 2015) technique. If the architecture of a model is fixed, distil-
lation cannot be applied, while pruning and decomposition of weight matrices can lead to certain
complications. The quantization approach may be the only promising way to compress a model.

Quantization can be applied during (Courbariaux et al.,[2015) and after model training (Fang et al.,
2020), as well as during retraining (Nagel et al., |2021). According to the weights manipulation
approach, these methods can be divided into several classes. One can either manipulate weight
values or change the number of bits of a particular weight. In our work we focus on the latter class,
where different granularity levels can be implemented. One can quantize the entire model (Yang
et al.| 2019)), each layer (Wang et al.||2020; |Xiao et al.| 2022])), or each channel (Chmiel et al., 2020;
Zhong et al., 2020). The smaller the granularity, the better the quantization. Layered and channeled
granularity levels require adaptive quantization methods (Langroudi et al., 2021) that are able to
determine which weights need more bits and which ones need fewer.

Most existing methods of quantization are based on heuristic criteria or deterministic optimization,
which may not capture the uncertainty and variability of network parameters (Zhou et al., 2018;
Guo, [2018). Moreover, most methods such as TWN (Li et al.,[2016), LR-Net (Shayer et al.,|2017),
RQ (Louizos et al., 2018)), PACT (Choi et al.| 2018) and Dorefa (Zhou et al., 2016)) use a fixed
bit-width for all network layers, ignoring the potential benefits of applying different bit-widths to
different layers (Liang et al.,2021)). A flexible framework for quantization that could account for
the probabilistic nature of a network parameters and adapt the bit-width to a layer characteristics is
desirable (Cheng et al., [2017} |Garg et al., 2021).

Among the approaches, a group of reinforcement learning-based algorithms, such as (He et al.,
2018)), have been proposed for adaptive quantization. However, these methods are computationally



Under review as a conference paper at ICLR 2025

expensive, making them less suitable for practical applications where efficiency is crucial. There-
fore, they have been excluded from consideration.

To address the challenge of the adaptive quantization problem, we propose two novel algorithms
based on Bayesian neural networks (BNNs), which can capture the uncertainty of the network pa-
rameters and outputs, referred further as Quantile Inform and Random Bits. Quantile Inform is an
informativeness-based algorithm that defines bit-widths of each layer based on informativeness cal-
culated using mean values and standard deviations of Bayesian neural network parameters. Random
Bits is based on BNN post-training in terms of maximization of the likelihood of optimal quantiza-
tion with a limit on the average bit-width of a quantized model.

We evaluate proposed algorithms on several benchmark datasets and show that they achieve compa-
rable or better accuracy than the existing quantization methods while using fewer bits. We show that
informativeness based on weights of a trained BNN strongly correlates with the optimal bit-width
for layers. Different methods of aggregation and smoothing of informativeness are evaluated in a
few benchmarks and the best one is used in Quantile Inform to calculate bit-widths. Alternative
informativeness values based on variances are tested as well. We also demonstrate the advantages
of BNN for quantization, such as robustness to noise and calibration of uncertainty.

2 RELATED WORK

BNNss are able to explicitly model uncertainty, thus may be also suitable for adaptive quantization.
There is a number of papers where quantization relies either on the measure of uncertainty obtained
as a result of model training or on the application of uncertainty estimation to the weights of a trained
model. We employ some of these methods as described below.

Blundell et al.|(2015)) experimentally confirmed the possibility of using averages and variances ob-
tained by BNN training to assess the informativeness of network weights and the effectiveness of
pruning (zeroing) the least informative ones. It is applied to research pruning of a trained network
based on the magnitude of the signals. The authors defined the signal as the ratio of the average to
the variance. It is argued that the smaller the ratio, the less meaningful the weight. Accordingly,
after calculating the signals for all weights, the authors zeroed out the weights with the smallest
signals. Such an experiment on the MNIST classification problem using an architecture of two fully
connected layers confirmed that it is possible to zero 75% of the weights without degradation of the
error value on the test subset. At zeroing 95%, there is a degradation from 1.24% to 1.29%, and at
98%, the error reaches 1.39%. Consequently, 48,000 of the original 2.467 million weights remain
non-zero.

A few researchers propose a method for neural network compression based on quantization of
weights using a mixture of Gaussian distributions. This approach allows the model to be trained
in such a way that the weights tend to move towards one of the K centroids, forming K clusters
which is vector quantization (Gong et al., 2014} [Park et al., 2017; [Stock et al., [2019; Razani et al.,
2021).

After the weights of the model form sufficiently distinct clusters, they can be replaced by the corre-
sponding centroids of these clusters, and the centroids themselves can be encoded with log, K bits.
Moreover, if one of the centroids is zero, corresponding weights do not have to be stored or consid-
ered in calculations. This method agrees with the principle of minimum description length (MDL)
proposed by |Griinwald (2007), which states that the best model for data is the one that requires the
smallest number of bits to describe it. According to |Louizos et al.| (2017), the most effective way
to solve the problem of compression and computational efficiency in deep learning is the Bayesian
approach. The latter states that it is possible to remove a large number of weights or neurons in a
neural network using a prior distribution that encourages sparsity.

There is an innovative approach (Van Baalen et al 2020) to decompose a particular weight into
terms that determine the final bit-width of the quantized weight. This decomposition is individual
for each weight and is trained using the variational Bayesian inference (Chappell et al.,[2008)). Thus,
using Bayesian methods, the most probable number of bits for each weight is determined. Each of
these terms is a learnable parameter and reflects the confidence of the algorithm that the correspond-
ing weight should have at least the bit-width with the associated matching parameter. The above



Under review as a conference paper at ICLR 2025

approach ensures a higher accuracy with a better quantization of weights compared to other models.
However, the limitation is that the bit-width has to be the powers of 2 (i.e. 2, 4, 8, 16, or 32 bits).

These results suggest that BNNs and approaches to their training open up new opportunities for
adaptive quantization based on the measure of uncertainty, a side-product of Bayesian network train-
ing, which is leveraged by all our algorithms to measure uncertainty.

3 QUANTIZATION DETAILS

3.1 QUANTIZATION OF BNNs

A common method for training BNNs is Variational Inference (Kingma et al., 2015). Suppose we
train a BNN model M on a dataset D via Variational Inference. The model M has NV layers, i.e.
w = [y Uly U ... Uly, where each layer [; is treated as a set of its weights, with [; N [; = 0 at
i # j. Bach weight w € w of the model M is a Gaussian random variable w ~ N (py, o).
We can utilize it to construct a conventional neural network by replacing each stochastic weight w
with a certain real value. In this transformation, an attractive choice for each weight w is its mean
value yi,,. Therefore, further layer quantization of the trained M into specified bit-widths by, ..., by
is performed as follows: each stochastic weight w is replaced by its average value ji,,, resulting in
Mdet, which is a deterministic version of M. Then, every j-th layer of Mdet is quantized using b;
bits.

3.2 UNIFORM QUANTIZATION

We perform layer by layer quantization of Mge. To do this, we select a layer of this model and
call it /;. Notably, for the BNN model M, the layer [, is a set of stochastic weights {w}, while for
the deterministic model Mg, the layer [; is a set of average weight values {1, }. Let us set the
quantization interval [a;, 3;] for the layer ;. Then, we apply the quantization layer ; into b; bit as
follows:

Q(Mwa bj) =qj + S(b])Chp<M1;j(b_j)aj>a S(bj) = %7

where the function clip(z) = clamp(round(z),0,2% — 1). The operation clamp restricts a value
to lie within the range from 0 to 2% — 1. When using such quantization on the interval [, B5], a
uniform grid of 2% nodes is specified and each 4, € [; is rounded to the nearest grid point. For
each layer [; we consider the boundaries of the quantization interval a;; and ; as the 5th percentile
and the 95th percentile of the set {y,,|w € [;}, respectively.

3.3 NON-UNIFORM QUANTIZATION: QUANTILIZATION

Quantilization offers an alternative to uniform interval quantization by leveraging quantiles. It is
supposed to address a possible drawback in uniform quantization grids by ensuring an even distri-
bution of {,, } among quantized values through the use of quantiles.

Let us consider the scenario where we aim to quantize a set of average weight values {,, } from
layer I; of Mge into m; = 2% values, i.e. into b; bit. Calculated directly from data, empirical
quantiles, provide the best possible partition of {1, } into even groups. Unfortunately, they can be
impractical to compute and store for large datasets. Therefore, we opt for a more efficient approach
by relying on computing quantiles derived from the theoretical distribution F; that can be defined
by only its type and parameters. For the sake of definiteness, we shall consider only Gaussian
distributions.

Assuming the distribution represented by F; spans an entire real number line, we can establish a
following relationship by defining ay := Fj_l(k‘/mj) for0 < k < my:

P(Wl S (—oo,al)) = ]P)(Wl S (CL17CL2)) =...= ]P)(Wl S (amj,1,+00)).

This indicates that all quantization intervals will, on average, contain equal number of elements.



Under review as a conference paper at ICLR 2025

The next step is to decide how to quantize the {1, } from each interval (a;_1, a;) into a single value
a;. For finite intervals (a;_1, a;), we can minimize the absolute quantization error by selecting the
midpoint as @; = (a;—1+a;)/2. In case of infinite intervals (—oo, a1) and (a,; 1, +00), additional
considerations may be necessary, particularly when dealing with outlier values. Otherwise, we can
use medians @, = F; '(1/2m;) and G, = Fj_l((Qmj —1)/2m,). This ensures that approxi-
mately the same numl?)er of values are quantized upwards and downwards. Additional information
is presented in Appendix [B]

4 QUANTIZATION ALGORITHMS

4.1 WEIGHT INFORMATIVENESS

Consider a trained BNN M, and define weight informativeness as the ratio of the absolute mean
value to the corresponding variance:

info(w) = M (D

O—U)

Blundell et al.| (2015) showed that informativeness in pruning can preserve the quality of predictions
with a high percentage of pruning. For a quantization algorithm, as in the case of the pruning
criterion, one can use informativeness weights. If we employ a computationally expensive method
of finding optimal bit-widths for each layer of the neural network, such as Bayesian optimization
described by [Snoek et al.| (2012), bit-widths correlate with the informativeness of each layer. The
following experiment was carried out on the CIFAR-10 dataset with VGG-7 (with an additional fully
connected layer containing 10 neurons) and VGG-16 models and the MNIST dataset with LeNET
model to confirm this hypothesis.

We extended the use of informativeness to pruning and developed a quantization method that assigns
an optimal bit-width to each layer, proportional to its informativeness. Our analysis revealed a
strong positive correlation between the optimal bit-width produced by the complete brute-force of all
possible bit-widths for each layer and informativeness produced by a fitted Bayesian version of the
network. All experiments proved this, see Figure[T] as measured by the coefficient of determination
R2. The calculated R-measures of correlation between layer informativeness and bit-width obtained
through Bayesian optimization are 0.823 for the VGG-7 model, 0.867 for VGG-16, and 0.854 for
LeNet. These findings suggest that informativeness can be used as a reliable predictor of bit-width
in adaptive quantization.

Analysis of experimental data revealed that the initial and final layers of the neural network play
a more critical role, which is expressed in the need for higher bit resolution. It confirms the well-
known heuristics to avoid the quantization of the first and last layers discussed in [Louizos et al.
(2017) and |Gholami et al| (2021). We can try to explain this phenomenon as follows. The last
layer can be regarded as a classifier based on features extracted with the first and intermediate layers
of a neural network. Thus, the last layers should be sensitive, which may also be related to their
capacity. Typically, the last layers are not as large as the layers in the middle of the model. It is not
unlikely that only a small part of these weights is useful for solving the task. In this case, the mean
bit-width of the intermediate layer should be small enough. The same reasoning applies to the first
layers which usually have a significantly fewer weights than the intermediate ones. Additionally, the
first layer requires a larger bit-width for quantization in order to correctly extract low-level features,
which are important for constructing more complex features and training the network.

4.2 INFORMATION-BASED QUANTIZATION: QUANTILE INFORM

Let us denote the quantized version of the model Mge; by Mguans. We assume that the average
bit-width of the quantized model Mguan can be no more than the desired y bit. At the same time,
we aim to perform quantization while preserving the model’s performance as much as possible.

Our algorithm based on informativeness is called Quantile Inform. Given a desired average bit-
width for the network, we solve an optimization problem to find the informativeness thresholds that
yield the target bit-width. The method includes the following steps, see Figure



Under review as a conference paper at ICLR 2025

—— bits -+~ informative criterium —— bits -=- informative criterium

Bits per layer
Informative criterium
Bits per layer
Informative crlmtenum

4

3 o » 5 " 3 B v 5 s P o,
o, o, g g e <, <, <, <, £ n o
o o NS 12 R T2y ™, " e ", ", g e
%y <y 5 5 5 Gy ey g o ey Ry, e es,

(@) comparison on MNIST, LeNet architecture (b) comparison on CIFAR-10, VGG-7 architecture

21 —a— bits -+~ informative criterium [0

Informative criterium

Bits per layer

lo, e do. L. e, 5, 5,
2y Oy, Oy Py Oy ey g e

o, o, GO P73 " S, 3,
gy ez, gy Ry Ry ey, oty oy o

o P Few By T O Pin O o
- Py oy Top Sy By o o 9y,
00,5 O, On, O, On,, On, O, Con,. o
e e I B )

%,
o oy ey legy Cegy (e, e,

() comparison on CIFAR-10, VGG-16 architecture

Figure 1: Correlation between informativeness of layers and bit-width obtained through Bayesian
optimization

1) Training BNN. First, the BNN must be trained to estimate the uncertainty of predictions. This
is achieved by applying Bayesian learning methods, such as Variational Inference or Monte Carlo
dropout in Gal & Ghahramani| (2016)).

2) Informativeness calculation. After training the BNN, the informativeness of each neuron can be
calculated.

3) Quantization. More important neurons have higher informativeness, which means that they con-
tain more significant and stable activations. These neurons can be selected for preservation with
full precision, whereas less informative ones can be quantized with a loss of precision. Since all
weights of layer [; quantize into the same number of bits, we will aggregate the informativeness of
its weights for any layer /; as follows:

1
1151

where |[;| is the number of weights in the layer [;. To determine the set of bits, the informativeness

I; = Z info(w), )

wel;

is normalized to [0, 1]: fj + (I; — ming I},)/(maxy I, — minyg Iy;). Next, we extract a root from
normalized informativeness as I; < (I j)l/ 2. Consequently, k thresholds are selected within the
interval [0, 1], where & is the number of bit-widths available for the quantization process. The
thresholds are evenly spaced on the range and then scaled. This allows one to obtain and test different
sets of bits by changing only one scaling factor.

4) Repeated iterations. Steps 2 and 3 can be repeated several times with different thresholds to
determine the bits based on informativeness, thereby achieving the desired level of quantization and
accuracy.

4.3 RANDOM BITS

Let us consider the quantization problem in a probabilistic formulation. Suppose we have a trained
BNN model M, which consists of N layers: w = [; Ul U ... Uly. Consider a certain layer [;
of an M. Each weight w of this layer has a normal distribution with trained parameters g(w) =
N (w]fty, o). Our aim is to quantize the mathematical expectations { ., } of this layer into b; bit.



Under review as a conference paper at ICLR 2025

. . Informativites
Fitted Bayesian of each weigth
Network Informativities Bit-widths proportional
averaged by layers to informativities
D | el | Ll
/N g o o
A | = (R | = ey =
SN sl ol Dy == bit-width
Jel | Je | Il "
g (2 o

Figure 2: Quantile Inform assigns bit-widths proportional to the average per-layer informativeness
based on uncertainties of a fitted Bayesian neural network.

We also need to choose a quantization interval [a;, 3;], where the quantized values are located.
After quantization, we obtain the deterministic layer version [; (i.e. w — ). When its weights are
independent, the likelihood function will be equal to

l |b H q ,Ufwv
wel;

However, all the weights in the layer are quantized into the same bit-width. For this reason, we
have to reject the assumption of independence of its weights. Thus, when layer weights [; are
independent, we can approximate their joint density by the linear combination:

p(l;]b;) = Z ¢ (w)q(Q(tw, b;)), where Z ¢j(w) =1,¢j(w) > 0.
wEL wEl;
As coefficients {c;(w)} we can take the normalized informativeness of the weights:

info(w)
ZkaZj info(wk) '

The likelihood of model quantization with weights when quantized in bits b = (b1, ...,by) is ex-
pressed by the formula

N
p quam|b Hp l |b H Z (Uwab )) 3)

Jj=1lwel;

cj(w) =

Note that maximizing the expression . means that the quantized averages Q(ft.,, b;) will be close
to L. In this case, the model will maintain its accuracy. Therefore, we would like to maximize (3).
One should bear in mind that bit-widths are discrete. Consequently, gradient optimization methods
are not applicable in this case. To solve this issue, we propose to consider bits as random discrete
values. This allows us to use gradient optimization techniques.

We will assume that the bit-width b; of each layer [; is a discrete random variable (for simplicity,
we say that the maximum bp,;, and the minimum b,,x quantization bits are 1 and 32, respectively):

32 32
bj=> k-lb;=4k, Elb]=> k-Pb; =kl
k=1 k=1

Let us introduce for each b; a set of trainable parameters (¢; 1, ®; 2, ..., #j32) = ¢;. Probability
events {b; = k} are modeled using the Softmax function:
P[b; = k] = Softmax(g;) o )
; = k| =dottmax(@; )y = —s5—-
! ’ Z?il edri

Let A = {1,2,...,32}. Then, the distribution p(b) of the random vector b = (b1, ..., bx) has the
form

pa) =Pb =a] =Pby = a1,....bx = an] = [[Pb; = a;], aec AV,



Under review as a conference paper at ICLR 2025

Interpreting bits as random variables allows us to maximize the full likelihood of quantization:
P(Mauant) = bzA:N P(Mauan[D)p(D) = Epp () [p(Mguant )] — max, 5)
€

where ® = (¢1, ..., ¢n). Now that we let the quantization intervals [, §;] change, the function Q)
also changes, so maximization of (5) will also include & = (avy, ..., an), B = (B1, ..., BN)-

Instead of maximizing (3)), the following minimization problem can be solved (see Appendix [A.T))
N 32

ZZT]Z [b; =1 — mlnﬁ (6)

j=11i=1

where coefficients {7; ;} are calculated as follows:

Thi = ) cj(w) (R, by = 1) = pu)” (7

o2
wEl; w
Note that this problem has a solution when for each j probability P[b; = 32] — 1. Let us define the

mean bit-width of the quantized model as

1 N
bmean = —— b:ll; 8
mean IW\]Z;: 11, (8)

where |[;| is the number of weights in the j-th layer. If we have the desired average bit-width ~ of
the quantized model, we can add L2 penalty between by, and . Then, we get the following loss

function
quantization error

N 32
- Z Z 75,iP[bj = 1] + 1(Epb)[bmean] — 7)? = q])moltnﬁ 9)
j=1i=1

regularizer
where the first term is responsible for the quality of quantization, and the second one is for the
proximity between byeq, and 7.

The loss function (9) has computable derivatives with respect to the parameters ®, but the derivatives
with respect to the boundaries o = (v, ..., an) and B8 = (f1, ..., Bn) of the quantization intervals
are extremely complex. Therefore, we introduce a second loss function to calculate these derivatives.

Let us assume that we know the specific parameters ®. Then we can express quantization bits as
rounded mathematical expectations of random bits:

/b\j = rOund(Ep(b )[ round <Z k ]P) ) (10)

where the probabilities P[b; = k] are calculated via ( . In this case, we can rewrite the conditional
likelihood H expressed in terms of quantization bits b = (b1, ..., by ):

N
p(Mquamb:B):Hp(zﬂb Hzc] 2(QUuu. b)) — max. (1n

J=1wel;

The solution of (TI]) 1eads to the adaptation of the quantization intervals boundarles « and 3 to the

found quantization bits bl, . b ~ - Instead of maximizing the expressmn , we can minimize the
following loss function (see Appendlx A2)

N -~
a /@) — Z Z cj(w) (Q(Mwybj7aj2a B]) — :U/w)2. (12)

g,
j=1lwel; w

The derivatives of 7 (c, 3) with respect to boundaries v, 3 can be approximated as follows (see
Appendix [A.3):

T o 2 5 ow) (QUuu b)) — pr)® 0T 0T

= . N 13
9B; B — o Ocj 9B "

J wel; w




Under review as a conference paper at ICLR 2025

The algorithm works in the following manner. At each iteration of the algorithm, the first loss
function is calculated using (@) The quantization bits b = (by, ..., by ) and mean model bit bpean
are then calculated via and . Next, if bpean 1S less than the desired model mean bit -, the
quantization interval boundaries are updated using gradient minimization of the second loss function
(T2). Let us denote the number of boundary updates as K.

Algorithm 1: Random Bits
Input:
trained BNN model M
desired quantization mean bit y
number of boundary update iterations K

initialize:
P+ (¢1a a(bN)
a <+ (ag,...,an)
/3 — (ﬂla "'aﬁN)
repeat

recalculate {7; ;} coefficients using

compute first loss £(®) via

calculate bits b = (by, ..., by ) using R
get mean quantization bit byean ﬁ Zjvzl 15165
if biean < v then

set Tpest equal to +o0
for iteration in range(X) do

calculate second loss Teyrr < T (at, B, 3) via |i
if 7Zu’r7' < ﬂ)est then ~
save best result bpest, Qpest, Bpest < b, a, B

end if R
calculate gradients Vo g7 (¢, 8, b) via 1)
update
a+—a—0V,T
B+ B—-0VsT
end for
end if

update parameters ¢ < ¢ — TVa L(P)
until loss £(®) converges

5 EXPERIMENTS

In this section, we present the results of our experiments for the LeNet, VGG-7, VGG-16 and
ResNet-20 models in the classification problems on the CIFAR-10 and MNIST datasets, and for
multilayer perceptron for the regression problem on the Weather dataset. In the classification prob-
lems, we used accuracy as metrics, while in the regression problem, we use MSE and MAE as
metrics. Additionally, we apply a non-uniform quantization (3.3)) in the Quantile Inform algorithm.
Next, we introduce the following notation for the algorithms: Bayesian Bits as BB, Quantile Inform
with uniform quantization as QIU, non-uniform Quantile Inform as QINU, and Random Bits as RB.
The parameters of the algorithms are described in Appendix

5.1 CLASSIFICATION TASKS

We conducted a comparative analysis of our algorithms with Bayesian Bits (Van Baalen et al., 2020)
serving as the baseline for Bayesian quantization methods. In all our experiments, we quantized the
models to the same number of mean bits. Additionally, we used a non-uniform quantization (3.3)) in
the Quantile Inform algorithm.

For the LeNet, VGG-7, VGG-16 and ResNet-20 models we set the desired mean quantization bits
equal to 4. The LeNet model was trained on the MNIST dataset. The VGG-7, VGG-16 and
ResNet-20 were trained on the CIFAR-10 dataset. The training parameters for these models and
their Bayesian variants are provided in Appendix [B.I] The experimental results for these models are



Under review as a conference paper at ICLR 2025

presented in Tables [T} [2]and[3] Additional experiments on the quantization of the ResNet-20 model
on the CIFAR-100 dataset are presented in Table[5]in AppendixD]

Table 1: Results of our quantization methods on LeNet and VGG-7 compared to TWN (Li et al.,
2016), LR-Net (Shayer et al.| 2017, RQ (Louizos et al., 2018)), WAGE (Wu et al.| [2018) and BB
(Van Baalen et al.| 2020)

LENET (MNIST) VGG-7 (CIFAR-10)
ALGORITHM
MEAN BIT ACCURACY MEAN BIT ACCURACY
TWN 2 99.35 2 92.56
LR-NET 1.7 99.47 2.4 93.18
RQ 2 99.37 8 93.80
WAGE 2 99.60 2 93.22
BB 4 96.40 4.01 83.42
QIU (OUR) 3.17 99.05 4.45 91.51
QINU (OUR) 3.17 98.44 5 80.37
RB (OUR) 3.95 98.75 4.12 91.21
| FLoaT MODEL | 32 99.23 | 32 937 |

Table 2: Results of our quantization methods on VGG-16 and CIFAR-10 compared to BB

ALGORITHM MEAN BIT ACCURACY
BB 3.28 70.10
QIU (OUR) 4.02 91.45
QINU (OUR) 4.02 88.00
RB (OUR) 4.01 91.61
| FLOAT MODEL | 32 ¢ 91.94 |

Table 3: Results of our quantization methods on ResNet-20 compared to LQ-Nets (Zhang et al.,
2018), HAWQ (Yao et al., 2021), PACT (Choi et al., 2018])), Dorefa (Zhou et al., 2016) and AdaBin
(Tu et al., [2022)

ALGORITHM MEAN BIT ACCURACY
LQ-NETS 3 92.00
HAWQ 2.7 92.22
PACT 3 91.10
DOREFA 3 89.90
ADABIN 1 88.20
QIU (OUR) 3.91 87.65
QINU (OUR) 3.91 79.69
RB (OUR) 4.01 90.72

| FLoAT MODEL | 32 ¢ 92.98 |

The performance of the proposed algorithms is comparable to that of other quantization methods.
Notably, our methods QIU, QINU, and RB, which are also based on Bayesian neural networks
like BB, demonstrate superior performance in several cases. For instance, on LeNet, QIU achieves
99.05% accuracy with 3.17 bits, outperforming BB with 96.40% accuracy for 4 bits. Similarly, on
VGG-7, our RB method achieves 91.21% accuracy with 4.12 bits, closely matching the floating-
point model with 93.7%.



Under review as a conference paper at ICLR 2025

For the VGG-16 model, our methods demonstrated a significant improvement over BB. QIU
achieved 91.45% accuracy with an average bit-width of 4.02, compared to BB with 70.10% ac-
curacy and 3.28 bits. For ResNet-20, our algorithms achieve results that are comparable to those of
other leading quantization methods.

5.2 REGRESSION TASK

We performed a comparative analysis on the regression task. We used the BB algorithm on the
Weather dataset from Yandex Shifts Challenge 2021 (Malinin et al.| |2021) with a four-layer per-
ceptron as the baseline. The MLP model is structured as 123FC - 512FC - 256FC - 64FC, where
each "FC” denotes a fully connected layer with ReLLU activation, containing 123, 512, 256, and
64 hidden units, respectively. The training parameters for the MLP model and its Bayesian vari-
ant are provided in Appendix The results of quantization of this model to 8 mean bit-width by
algorithms are shown in Table 4]

Table 4: Results of our quantization methods on MLP and Weather compared to BB

ALGORITHM MEAN BIT MAE MSE
BB 8.1 1.8-1072  5.98.107¢
QIU (OUR) 6.00 3.1-1072 1.39-1073
QINU (OUR) 6.00 1.8-107%2  6.07-107%
RB (OUR) 6.92 2.10-107%2 7.46-107*%
| FLoATMODEL | 32 1.7-102 5.95-10°% |

In the regression task on the Weather dataset using an MLP model, our methods demonstrate results
comparable to those of BB. Although, BB achieves slightly better mean absolute error (MAE) and
mean squared error (MSE) values, our QINU method performs almost as well, with an MAE of
1.8 - 1072 and MSE of 6.07 - 10~* using only 6 bits on average, compared to BB with 8.1 bits.
This demonstrates that our methods provide a more efficient quantization while maintaining high
accuracy, even in regression tasks.

6 DISCUSSION AND CONCLUSIONS

To address the challenge of adaptive quantization, we introduced two novel algorithms based on
uncertainty modeling in Bayesian neural networks. Our results demonstrate that these algorithms
effectively reduce model size while maintaining low quantization error, all within a single pass and
with minimal computation after the initial training phase.

A key advantage of our method is that it follows a post-training quantization paradigm while deliver-
ing results comparable to quantization-aware training approaches. This makes it particularly suitable
for quantizing pre-trained models without requiring additional extensive training. Our method also
offers flexible and efficient quantization by allowing neural network layers to be quantized to any
discrete bit-width, resulting in reduced computational requirements.

In conclusion, our proposed approach advances model compression techniques by providing a
computationally efficient and adaptable quantization method. The demonstrated performance and
flexibility suggest promising avenues for further research and practical applications in resource-
constrained machine learning environments.

REFERENCES

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? Proceedings of machine learning and systems, 2:129-146, 2020.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural network. In International conference on machine learning, pp. 1613—-1622. PMLR, 2015.

10



Under review as a conference paper at ICLR 2025

Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W Mahoney, and Kurt Keutzer.
Zeroq: A novel zero shot quantization framework. arXiv preprint arXiv:2001.00281, 2020.

Michael A Chappell, Adrian R Groves, Brandon Whitcher, and Mark W Woolrich. Variational
bayesian inference for a nonlinear forward model. IEEE Transactions on Signal Processing, 57
(1):223-236, 2008.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration
for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

Brian Chmiel, Ron Banner, Gil Shomron, Yury Nahshan, Alex Bronstein, Uri Weiser, et al. Robust
quantization: One model to rule them all. Advances in neural information processing systems,
33:5308-5317, 2020.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srini-
vasan, and Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quantized neural
networks. arXiv preprint arXiv:1805.06085, 2018.

Kanghyun Choi, Deokki Hong, Noseong Park, Youngsok Kim, and Jinho Lee. Qimera: Data-
free quantization with synthetic boundary supporting samples. arXiv preprint arXiv:2111.02625,
2021.

Kanghyun Choi, Hye Yoon Lee, Deokki Hong, Joonsang Yu, Noseong Park, Youngsok Kim, and
Jinho Lee. It’s all in the teacher: Zero-shot quantization brought closer to the teacher. arXiv
preprint arXiv:2203.17008, 2022.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. Advances in neural information processing
systems, 28, 2015.

Chunxiao Fan, Ziqi Wang, Dan Guo, and Meng Wang. Data-free quantization via pseudo-label
filtering. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2024.

Jun Fang, Ali Shafiee, Hamzah Abdel-Aziz, David Thorsley, Georgios Georgiadis, and Joseph H
Hassoun. Post-training piecewise linear quantization for deep neural networks. In Computer
Vision—ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings,
Part 11 16, pp. 69-86. Springer, 2020.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050—1059.
PMLR, 2016.

Sahaj Garg, Anirudh Jain, Joe Lou, and Mitchell Nahmias. Confounding tradeoffs for neural net-
work quantization. arXiv preprint arXiv:2102.06366, 2021.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.
A survey of quantization methods for efficient neural network inference. arXiv preprint
arXiv:2103.13630, 2021.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional net-
works using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

Peter D Griinwald. The minimum description length principle. MIT press, 2007.

Yunhui Guo. A survey on methods and theories of quantized neural networks. arXiv preprint
arXiv:1808.04752, 2018.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European conference on
computer vision (ECCV), pp. 784-800, 2018.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

11



Under review as a conference paper at ICLR 2025

Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameteri-
zation trick. Advances in neural information processing systems, 28, 2015.

Hamed F Langroudi, Vedant Karia, Zachariah Carmichael, Abdullah Zyarah, Tej Pandit, John L
Gustafson, and Dhireesha Kudithipudi. Alps: adaptive quantization of deep neural networks with
generalized posits. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3100-3109, 2021.

Fengfu Li, Bin Liu, Xiaoxing Wang, Bo Zhang, and Junchi Yan. Ternary weight networks. arXiv
preprint arXiv:1605.04711, 2016.

Huantong Li, Xiangmiao Wu, Fanbing Lv, Daihai Liao, Thomas H Li, Yonggang Zhang, Bo Han,
and Mingkui Tan. Hard sample matters a lot in zero-shot quantization. arXiv preprint
arXiv:2303.13826, 2023.

Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. Pruning and quantization
for deep neural network acceleration: A survey. Neurocomputing, 461:370—403, 2021.

S.P. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 28:
129-137, 1982.

Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep learning. Ad-
vances in neural information processing systems, 30, 2017.

Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Efstratios Gavves, and Max Welling. Re-
laxed quantization for discretized neural networks. arXiv preprint arXiv:1810.01875, 2018.

Andrey Malinin, Neil Band, Alexander Ganshin, German Chesnokov, Yarin Gal, Mark J. F.
Gales, Alexey Noskov, Andrey Ploskonosov, Liudmila Prokhorenkova, Ivan Provilkov, Vatsal
Raina, Vyas Raina, Mariya Shmatova, Panos Tigas, and Boris Yangel. Shifts: A dataset of
real distributional shift across multiple large-scale tasks. CoRR, abs/2107.07455, 2021. URL
https://arxiv.org/abs/2107.07455.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart Van Baalen,
and Tijmen Blankevoort. A white paper on neural network quantization. arXiv preprint
arXiv:2106.08295, 2021.

Eunhyeok Park, Junwhan Ahn, and Sungjoo Yoo. Weighted-entropy-based quantization for deep
neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 5456-5464, 2017.

Biao Qian, Yang Wang, Richang Hong, and Meng Wang. Adaptive data-free quantization. arXiv
preprint arXiv:2303.06869, 2023a.

Biao Qian, Yang Wang, Richang Hong, and Meng Wang. Rethinking data-free quantization as a
zero-sum game. In Proceedings of the AAAI Conference on Artificial Intelligence, 2023b.

Ryan Razani, Grégoire Morin, Eyyub Sari, and Vahid Partovi Nia. Adaptive binary-ternary quanti-
zation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 4613-4618, 2021.

Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran. Low-
rank matrix factorization for deep neural network training with high-dimensional output targets.
In 2013 IEEE international conference on acoustics, speech and signal processing, pp. 6655—
6659. IEEE, 2013.

Oran Shayer, Dan Levi, and Ethan Fetaya. Learning discrete weights using the local reparameteri-
zation trick. arXiv preprint arXiv:1710.07739, 2017.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine
learning algorithms. Advances in Neural Information Processing Systems 25 (NIPS 2012), 2012.

Pierre Stock, Armand Joulin, Rémi Gribonval, Benjamin Graham, and Hervé Jégou. And the bit
goes down: Revisiting the quantization of neural networks. arXiv preprint arXiv:1907.05686,
2019.

12


https://arxiv.org/abs/2107.07455

Under review as a conference paper at ICLR 2025

Zhijun Tu, Xinghao Chen, Pengju Ren, and Yunhe Wang. Adabin: Improving binary neural net-
works with adaptive binary sets. In Shai Avidan, Gabriel Brostow, Moustapha Cissé, Gio-
vanni Maria Farinella, and Tal Hassner (eds.), Computer Vision — ECCV 2022, pp. 379-395,
Cham, 2022. Springer Nature Switzerland. ISBN 978-3-031-20083-0.

Mart Van Baalen, Christos Louizos, Markus Nagel, Rana Ali Amjad, Ying Wang, Tijmen
Blankevoort, and Max Welling. Bayesian bits: Unifying quantization and pruning. Advances
in neural information processing systems, 33:5741-5752, 2020.

Tianzhe Wang, Kuan Wang, Han Cai, Ji Lin, Zhijian Liu, Hanrui Wang, Yujun Lin, and Song Han.
Apq: Joint search for network architecture, pruning and quantization policy. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2078-2087, 2020.

Shuang Wu, Guogqi Li, Feng Chen, and Luping Shi. Training and inference with integers in deep
neural networks. CoRR, abs/1802.04680, 2018. URL http://arxiv.org/abs/1802.
04680.

Lirui Xiao, Huanrui Yang, Zhen Dong, Kurt Keutzer, Li Du, and Shanghang Zhang. Csq: Grow-
ing mixed-precision quantization scheme with bi-level continuous sparsification. arXiv preprint
arXiv:2212.02770, 2022.

Shoukai Xu, Haokun Li, Bohan Zhuang, Jing Liu, Jiezhang Cao, Chuangrun Liang, and Mingkui
Tan. Generative low-bitwidth data free quantization. arXiv preprint arXiv:2003.03603, 2020.

Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li, Bing Deng, Jiangiang Huang, and Xian-
sheng Hua. Quantization networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, Leyuan Wang, Qi-
jing Huang, Yida Wang, Michael Mahoney, et al. Hawq-v3: Dyadic neural network quantization.
In International Conference on Machine Learning, pp. 11875-11886. PMLR, 2021.

Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lqg-nets: Learned quantization
for highly accurate and compact deep neural networks. CoRR, abs/1807.10029, 2018. URL
http://arxiv.org/abs/1807.10029.

Xiangguo Zhang, Haotong Qin, Yifu Ding, Ruihao Gong, Qinghua Yan, Renshuai Tao, Yuhang Li,
Fengwei Yu, and Xianglong Liu. Diversifying sample generation for accurate data-free quantiza-
tion. arXiv preprint arXiv:2103.01049, 2021.

Yunshan Zhong, Mingbao Lin, Gongrui Nan, Jianzhuang Liu, Baochang Zhang, Yonghong Tian,
and Rongrong Ji. Intraq: Learning synthetic images with intra-class heterogeneity for zero-shot
network quantization. arXiv preprint arXiv:2111.09136,2021.

Zhisheng Zhong, Hiroaki Akutsu, and Kiyoharu Aizawa. Channel-level variable quantization net-
work for deep image compression. arXiv preprint arXiv:2007.12619, 2020.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

Yiren Zhou, Seyed-Mohsen Moosavi-Dezfooli, Ngai-Man Cheung, and Pascal Frossard. Adaptive
quantization for deep neural network. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 32, 2018.

Baozhou Zhu, Peter Hofstee, Johan Peltenburg, Jinho Lee, and Zaid Alars. Autorecon: Neural archi-

tecture search-based reconstruction for data-free compression. arXiv preprint arXiv:2105.12151,
2021.

13


http://arxiv.org/abs/1802.04680
http://arxiv.org/abs/1802.04680
http://arxiv.org/abs/1807.10029

Under review as a conference paper at ICLR 2025

A RANDOM BITS

A.1 DERIVATION OF THE FIRST LOSS FUNCTION

Instead of maximizing the full likelihood (5), we can minimize its negative logarithm:
L(®) = —In p(Mguant) = — InEp (1) [p(Mquanc|b)] = rrgn.

However, the expression L(®) is still difficult to optimize. Therefore, it is proposed to use Jensen’s
inequality and minimize the upper bound:

L(®) = —InEpp) [p(Mguant) [P)] < —Epp) [In p(Mguant)|b)] = F(P) — rrgn.

Let us write (%) in more detail:

N
-F((ﬁ) = _]Ep(b) [lnp(Mquanl|b)] = _Ep(b) In H Z Cj(w)q(Q(vabj)) =

j=1lwel;

N N
== ZEp(b) In Z ¢j(w)q(Q(pw, ;)| = _Z]Ep(bj) In Z ¢j(w)q(Q(pw, bj)) | <
j=1 j=1

wEl; wEl;

N
< {Jensen’s inequality } < — ZEp(bj) Z cj(w) Ing(Q(pw, bj)) | =

j=1 wel;

- 1 wi ) = fw)?
BEERG P (Wz* S )1

Note that the constants {In 1/1/27¢2 } do not depend on the parameters ®. Consequently, they can
be removed. After removing them, we arrive the following expression:

L) =- .ZEP(bj) > ei(w) (_(Q(uw,l;) — ) ) _

’welj
N
(Q(MUH b) - :u’w)2
= ZEP(b ) Z cj(w) ;2 =
Jj=1 wel;
N 32 . N 32
Q Haw by =1) — Hw 2 . .
= Z Z cj(w)( ( ng ) ) P[bj = Z] = ZZTj’iP[bj = Z].
j=11i=1 \w€l; w j=11i=1

T
In this manner, we obtain the expression @) Therefore, instead of the maximization problem @),
we can solve the minimization problem ().

A.2 DERIVATION OF THE SECOND LOSS FUNCTION

Note that, as before, instead of maximizing the conditional likelihood (11), we can minimize its
negative logarithm, for which we also find the upper bound using Jensen’s inequality

N
_ lnp(./\/lquamHS) = —Zln Z q(w)q(Q(uw,gj)) <

wel;

N
< {Jensen’s inequality } < — Z Z ¢;(w) lnq(Q(uw,gj)) =

j=1wel,
N ~
1 wHy b - Mw 2 .
Zch(w)<1n > _ (O j)2 ) )%mm.
J=1wel; V2mag, 20, e

14



Under review as a conference paper at ICLR 2025

The constants {In1/4/2702} do not depend on the parameters &« = (ay,...,ay) and 3 =
(81, ..., Bn). By removing these constants, we formulate the following expression for the second

loss function N R
w bj) — w 2
ﬂ) — Z Z cj(w) (Q(M ;2) 1% ) )

j=1wel;

A.3 DERIVATIVES OF THE SECOND LOSS FUNCTION

Next, we derive T (e, 3)/dc and OT (ax, B) /93 derivatives. First, we calculate the derivatives of
the with respect to 3;:

8,BJ

,Uun ) MwaQ(Mwﬂg')
_22 ) o5, .

wel;

We need to calculate 8Q(uw,3j) /0B;. To do this we use the straight-through estimator approach,
i.e. ignore the rounding operation:

iclip Hw — O ~ 0 M — Q5
0B; s(b;) 9p; s@) '

Hence, we arrive at the following equation:

aQ(Hwagj)_ 0 ~ 1 Py — :63(33) i How — O
op;  _ag |V T )Clp< s(;) >] 95, Clp( 5(,) >+

~. 0 Hy — O 9s(b;) .. { pw — ~. 0 | pw —
bj)=—-cli — | = 22 cli —2 | +5(b)=— | ——2 |.
+ o), p( 5(5) ) 9, p( @) ) T\ )
Let us describe the derivative 0Q)( uw,gj) /0B; in detail:
0Quuby) _ 9s(by) (o (pw =05\ o O (pw—ay
~ cli = +5bj) s | —=— | =
o5, o5, P\ "y ) T a5\

- ) (chp<ﬂw :_aj> - :_%) = 7 g (@) ).

0p;
Notably,

as(@);@(ﬁj—aj): 1
dp; 9B \ 265 — 1 2b; 1

or _ 2 Qs b)) = )’
375], = ﬁjf Z cj(w) D) .

J’UJ
In a similar way, one can obtain the following equation:

As aresult,

s
J wel,;

T 2 QU by) — pr)?
o ; cj(w) ) .

B DETAILS OF MODEL TRAINING

In all experiments, the parameters for the Random Bits algorithm were:

* Number of epochs: 1000

* Learning rate (LR): 1072

* Regularization parameter: 3 - 103
Delta: 0.2

15



Under review as a conference paper at ICLR 2025

B.1 CLASSIFICATION TASKS

The LeNet model was trained on the MNIST dataset. The VGG-7, VGG-16 and ResNet-20 were
trained on the CIFAR-10 dataset. These models were trained with the following parameters:

» Batch size: 128

* Number of epochs: 300

* Optimizer: Stochastic Gradient Descent (SGD)
* Learning rate (LR): 1071

» Weight decay: 5- 104

* Momentum: 0.9

* Loss function: Cross Entropy Loss
For training the Bayesian variants of the models, the following parameters were used:

* Batch size: 128

* Number of epochs: 500

* Optimizer: Stochastic Gradient Descent (SGD)
* Learning rate (LR): 1073

+ Weight decay: 5- 1074

* Momentum: 0.9

* Loss function: ELBO Loss

— Criterion: Cross Entropy Loss
— Beta parameter: 10~°

Evidence Lower BOund (ELBO) is the standard loss function for Bayesian neural networks training.
This loss has the following form:

ELBO(q(w|A)) = Eq(wix)[In p(Pw)] — D (g(w|A)[[p(w)) — max,

where g(w|) is posterior distribution on model weights w, A is set of parameters of this distribu-
tion, p(w) is the prior distribution and Dy, is Kullback-Leibler divergence.

B.2 REGRESSION TASK

We trained an MLP model using the same parameters as in the previous section (see Appendix B.I).
However, the batch size was set to 512, the loss function was MSE, and the learning rate was set to
1073,

For training the Bayesian variant of the MLP model, the batch size was also set to 512, and the
learning rate was set to 1074,

C NON-UNIFORM QUANTIZATION

In this section we provide another justification for the information criterion. Consider our objective
of representing weights of some layer [; within b; bits. This can be achieved by selecting a set of 20
values, denoted as )M, and subsequently approximating each ., with ¢;(ft,,) 1= argmin|u,, — z|.
r€EM;
Let us approach the task of selecting the optimal set M; from a probabilistic standpoint. Assume that
I and o, are independently drawn from absolutely continuous distributions, given by a cumulative
distribution functions F; and G/, respectively. To evaluate the efficacy of our quantization, we can
use the mean squared quantization error:

N
D B —ei(ud)?,
j=1

16



Under review as a conference paper at ICLR 2025

(4) ;

where p;° is drawn from Fj.

As discussed in the preceding section, not all weights carry equal significance. When o, is substan-
tial, indicating uncertainty in the neural network regarding a specific weight, the preservation of the
precise value of 1, may not be a critical consideration. To address this, we incorporate o, into our
optimization, thereby obtaining the following refined formula:

§ﬁ<mu_% ) Eﬁﬂw@(Mﬁ_ in

U}

(

where o/’ is drawn from G;.

The challenge of computing the set M; to optimize E(,ug ) q; (ug )))2 has been addressed in|Lloyd
(1982). However, this solution is impractical for real-time computation and is also burdensome to
store, particularly for large values of |M;| = 2%. Consequently, we require a more straightforward
method to construct M}, even if it turns out to be less optimal.

Could be another way to define the quantization error:

N . .
S B[RS = e (ud)]-
j=1

To minimize it, consider ordered elements of M;: g1 < g2 < ... < qp, " where m; = |MJ\ = 2b5,
Also, consider sequence ag = —00 < a1 < ... < Gy, = +0o such that if ¢ belongs to interval
(a;i—1; a;], then ¢(t) = ¢;. Then,

i . +oo m; z;
MWL%%WZ[ H%NMM&=Z/.WWMW&

where f;(¢) is the density of F;: F}( f fj(s)ds. As mentioned before, for finite intervals

(a;i—1, a;], the absolute quantization error is mlmmlzed if a; is the midpoint of the interval (¢;, ¢;+1].
Therefore, we can instead consider

(qi+qit1)/2

Elu$) — c;(u@)| = Z/ |t — qi| f;(t)dt. (14)

(git+gqi—1)/2
To find the values {qz}ygl we need to find the extrema of 1) with respect to each g;
9 i plaitaivn)/2 (¢itqiv1)/2 ]
> | = a0t = [ signlt = il ()t =0,
% ;3 J(gitai1)/2 (qi+qi-1)/2

The last integral is equal to zero exactly when ¢; is the median of the segment ((¢; + ¢;—1)/2; (¢; +
¢i+1)/2). This gives us the following set of equations:

qi—1+tq; G + qi+1
= (B8 (1)

2F;(q1) = FJ<Q1JQF"2),

dm;—1 + qm;
2F;(qm;) = F} (JQJ)

This system is non—trivial to solve; however, once solved, only one value ¢; needs to be recorded
since a full solution can be easily restored from it.

Following |Lloyd| (1982), another way to find an optimal solution is through an iterative process,
where one has to start with some initial choice of parameters {q;}.-;, {a;}.-, and then repeat
following two steps:

1. set {a;}.-, to be of midpoints between corresponding {g; } 7, ,

2. set {g;}., to be of medians between corresponding {a;}. 7.

Each step of this algorithm can only improve the solution. A good initial estimation can be obtained
through quantiles of the distribution F}: {q; := F~1(i/m;)}2,.

17



Under review as a conference paper at ICLR 2025

D ADDITIONAL EXPERIMENTS

Table [5] presents a comprehensive comparison of our quantization methods, QIU and RB, with sev-
eral state-of-the-art algorithms on the ResNet-20 model trained on CIFAR-100. The results are re-
ported for two quantization configurations: W3A3 (3-bit weights and activations) and W4 A4 (4-bit
weights and activations). The floating-point baseline accuracy is 70.81%.

Table 5: Results of our quantization methods for ResNet-20 on CIFAR-100 (accuracy of float model
is 70.81) compared to ZeroQ (Cai et al., 2020), GDFQ (Xu et al.,|2020), DSG (Zhang et al.,|2021),
Qimera (Choi et al.l [2021)), ARC (Choi et al., 2022), ARC+AIT (Zhu et al., 2021), IntraQ (Zhong
et al.,[2021), AdaSG (Qian et al., 2023b), AdaDFQ (Qian et al.,[2023a), HAST (L1 et al.| 2023) and
DFQ (Fan et al.| [2024)

ALGORITHM ACCURACY
W3A3 W4A4
ZEROQ 15.38 58.42
GDFQ 43.87 63.58
DSG 25.48 62.36
OIMERA 46.13 65.10
ARC 40.15 62.76
ARC+AIT 41.34 61.05
INTRAQ 48.25 64.98
ADASG 52.76 66.42
ADADFQ 52.74 66.81
HAST 55.67 66.68
DFQ 57.03 66.94
QIU (OUR) 14.23 (3.13 BITS)  54.45 (4.13 BITS)
RB (OUR) 48.64 (3.27 BITS) 62.97 (4.19 BITS)
| FLoaT MODEL | 7081 |

To enhance performance and accelerate the training of Bayesian models, we initialized p with a
checkpoint from the original model. This approach reduced the required iterations from 600 to 300
while improving accuracy from 54.5% to 65.5%. Additionally, we improved quantization results in
each experiment by approximately 10%.

While the QIU method struggles, particularly under the W3A3 setting, where it achieves only
14.23% accuracy due to extreme compression (mean bit-width of 3.13 bits), the RB method demon-
strates competitive performance. In the W4 A4 configuration, QIU improves to 54.45%, but its accu-
racy remains lower than that of state-of-the-art methods, highlighting the need for further refinement
to enhance stability and performance in aggressive quantization scenarios.

Note that for these experiments in QIU algorithm, we used the method of aggregating the informa-
tiveness of the weights, which differs from For each weight w in the layer [;, we can evaluate the
model confidence that this weight is important for the j-th layer as follows:

Hw /o
Zﬁelj ‘M{JVU{E

w =

Next, for this layer, we can find its entropy
Hj=—> pulogpu.
wEL
The high value of entropy H; means that the model is uncertain and does not know which weights
are most important for this layer. Note that the maximum value of entropy: maxH; = log|l;]|.
Next, we move from the entropy of a layer to the confidence indicator I; of the model in this layer
as
H;

max’Hj’

L=1- (15)

18



Under review as a conference paper at ICLR 2025

The higher the I; value, the lower the uncertainty of ;. Therefore, if a layer has a high I; value
(close to 1), then a large number of quantization bit can correspond to this layer. In Figure |3| we
present a comparison of the informativeness of ResNet-20 layers for different datasets and aggre-
gation methods. For CIFAR-100 aggregation using averaging gives the internal layers of the model
approximately the same informativeness, which complicates the work of the algorithm. Aggregation

using entropy avoids this problem.

agg method: mean

10 —&— CIFARLO
—8- CIFAR100

informativeness
o
B
|

o
[N}
L

=4
=}
L

1 T ‘ —

Ry > &
zoo:o% p"o o) %:%,) %;%O “oo‘)of,f . " o %, z 25 4p ¢
VRN "1:,'1:,
o o e o o o

(a)

agg method: entropy_score

101 & —&— CIFARLO
\ —®- CIFAR100

0.8

0.6

informativeness
o
B
|

o
[N}
L

=4
=}
L

‘ T
s eoz‘,zeeez zJ\zO‘z

T
RO > & o Lo v < \—‘
G G G [RCNGS ¢ 9 o ¢
o, G, %, © %, %, [+% . o (o % o G o G //
2, %, %, %, %, %, %, %, %, %, %, @, %G, %, B, B, G, O, %
"’é "’é “\J 1‘\-‘ ‘1—‘ "é b "’é ‘(—5 ”1;, Vs ey ey ey ey S s Yy s ey S
@ ¢ o ¢ @ o o e

(b)

Figure 3: Comparison of layer informativeness (ResNet-20) for different aggregation approaches:
(a) corresponds to the averaging method@, (b) corresponds to the entropy method

In contrast, the RB method shows strong results, achieving 48.64% accuracy under the W3A3 set-
ting. This performance is comparable to methods like IntraQ (48.25%) and surpasses others such as
GDFQ (43.87%) and DSG (25.48%). For the W4A4 configuration, RB achieves 62.97%, remain-
ing competitive with leading methods like DFQ (66.94%) and AdaDFQ (66.81%). These results
demonstrate that RB effectively balances compression and accuracy, making it a robust choice for

memory-constrained environments.

E COMPUTATIONAL AND MEMORY COSTS OF APPROACH

E.1 ESTIMATION OF ALGORITHMS COMPLEXITY

Next, we will evaluate the complexity of the approach relative to the number of M restarts of the
experiment. Then our approach with Random Bits or Quantile Inform algorithms have a compu-
tational complexity of O(1), since it is enough to train the Bayesian model only once to use them.
The HAWQ quantization approach also has a complexity of O(1), since HAWQ analyzes the spec-

19



Under review as a conference paper at ICLR 2025

tral properties of the matrix Hesse, which does not require training restarts to calculate. Adaptive
quantization based on reinforcement learning, it has a complexity of O(M) due to the stochastic
properties of this quantization.

E.2 ESTIMATION OF MEMORY COSTS

Next, we will estimate the memory costs of quantization approach relative to the number of param-
eters IV of the model. Out approach with Random Bits and Quantile Inform algorithms require a
trained Bayesian model that contains 2N parameters (mathematical expectations and variances of
the weights), therefore the memory costs will be O(N). The HAWQ approach does not explic-
itly store the Hesse matrix, but analyzes some features of the Hessian spectrum, for example, the
top eigenvalue or the Hessian trace, which can be approximated without quadratic memory costs.
Therefore, the total memory cost of the HAWQ algorithm is O(NN). For quantization based on
reinforcement learning it will require O(/N') memory costs.

E.3 SCALABILITY OF APPROACH

Our approach scales linearly in terms of memory consumption depending on the number of param-
eters. The time complexity of our method increases linearly with increasing dataset.

F COMPUTATIONAL AND MEMORY COSTS OF QUANTIZATION ALGORITHMS

F.1 TIME COMPLEXITY OF RANDOM BITS

Next, we will obtain an estimate of the computational complexity of one iteration of Random Bits
algorithm. To do this, we first find the time complexity of calculating the coefficients 7; ;:

Qs bj = 1) — prw)®
= cj(w) — :
wel; w
Since ¢;(w) is a constant, and the quantization calculation is performed with a single complexity,
then 7T'(7;;) = O(]{;]). Let’s denote Ab = bmax — bmin. Then the calculation of all elements of the
j—th row of the matrix {7; ;} has complexity: O(|l;|Ab).

Further, the calculation of all elements of the matrix has complexity: 77 = >, O(|l;|Ab) =
O3, |lj|Ab) = O(|W|Ab), where |W|— the number of all weights of the model.
Pji

Next, let’s assume that the calculation of probabilities P[b; = i] = Ze s is performed for a

constant. To do this, it is enough to pre-calculate the amount ) %3 for each 7.

Now let’s estimate the time complexity of calculating the first loss function:

quantization error

N 32
L®) =) > 7Pl = i) + 0By 0] =) — min, (16)
j=11i=1 D

regularizer

where NN is the number of layers of the neural network.

The complexity of calculating the quantization error is O(IN Ab), since the coefficients {7;;} have
already been calculated, and the calculation of probabilities is performed for a constant.

To estimate the complexity of regularizer calculation, we need to describe its terms:

N N
1 1
B o) [omean] = Epo) | 177 > billl| = iG] D LBy, )] =
=t =t (17)

1 N 32
= WZMZ’?'P[% = k.
j k=1

Jj=1

20



Under review as a conference paper at ICLR 2025

Therefore, the calculation of E,, ) [bmean| has complexity is O(NAb). Squaring is performed for a

constant, so the final complexity of the regularizer is O(NAb). Therefore, the full complexity of
calculating the function £(®) is To = O(NAb).

Calculations of the bits b = (31, ...,BN) for each layer /; according to the formula:

gj = round(E,,)[b;]) = round <Z k-P[b )

have complexity is O(NAbD).
Next, calculation of average quantization bit byean < HWI 27:1 |1;1b; has compexity is O(N).
Therefore, the final complexity of the calculations is T5 = O (N Ab).

At each external iteration of Random Bits algorithm, there is an additional internal loop. Next, we
will evaluate its time complexity. Random Bits algorithm is supplied with the parameter K - the
number of internal iterations, per each of which needs to calculate a second loss function

) b 2
B)=2. 2 cilw) (Q(“w’ba’vij; Bi) = )

j=1wel,

Since each term T (cx, B) is calculated as a constant, the complexity of its calculation is O(|W]).

Next, we estimate the complexity of calculating the approximate gradients of the function 7 (e, 3),
which are calculated using the formulas:

oT 2 ws0i) — phw)?

2~ ZC](U))(Q(M j) M ) ,

B; B —ay 2

g
welj w
3T 2 (Q(Uwa 5]) - /U'w)2
e— Cilw .
da;  Bj—a 1%;] i) o2,

Calculating these gradients for an arbitrary layer [; has a complexity of O(|/;]). Hence, the total
complexity of calculating all gradients is O(|WV|).

Therefore, the complexity of one internal iteration is O(|W]). Since the inner iterations are /C, the
total complexity of the entire inner loop is T, = O(K|W]).

Next, to estimate the complexity of the calculation of V.L(®) (16), we first estimate the complexity
of calculating the probability derivative in two different cases:

Plb; =i b, ®j,it Pk
ﬂk#ta[] i__9 - ___° M
P DS (g )
aP[b = k] 0 ePi.k e®i.k e2%i.k

ifk=1: - - .
a¢]7 6¢J k Ze 1 6¢7 ° Zfil 64)]"5 (232 1 e% 5)2

Since we have previously calculated the value of 232:1 %3, then taking this derivative has a com-
plexity of O(1).

Next, we find the complexity of the derivative of the quantization error in (I6):

N 32 32 oPD; = i]
9 Z Z ¢4 lP[bs = 1] Z i g = complexity is O(Ab). (18)
d) ik t=1i=1 i=1 ¢

Now let’s find the computational complexity for the derivative of the regularizer of the function (T6).
To do this, first evaluate the complexity of the derivative of the expression (17):

OB, [07] _ _ Gl
l; P . 19
90,1 aqu, \Wl Z' |;@ ~ W& Z &m {19

21



Under review as a conference paper at ICLR 2025

Taking into account , the complexity of calculating this derivative is O(Ab). Now let’s estimate
the computational complexity for the regularizer:

0 Oy [b°]
0b;,k 0djk

Since the value of E,,,)[b*] — v was previously found, then taking into account the computa-
tional complexity for the derivative of the regularizer O(Ab).

(Epn) 0] = 7)? = 2(Epay 0] =)

This means that the computation of the derivative of the loss function (T6) for one argument ¢; ; has
complexity O(Ab). Since there are only N Ab arguments, the complexity T5 of computing the full
gradient VL(®) is equal to O(NAb?).

The total complexity of Random Bits algorithm at one iteration is:

Tresuy = T1 + 1o + T3 + Ty + T5 = O(|W|Ab) + O(NAb)+
+ O(NAb) + O(K|W|) + O(NAK) = O(|W|(Ab + K) + NAK).

F.2 MEMORY COST OF RANDOM BITS

To work, Random Bits algorithm requires a trained Bayesian neural network for input, so there
are the following memory costs O(|W]). On the other hand, memory is required to store matrices
of algorithm parameters ® = (¢, ..., ¢n) and coefficients {7;;}, the sizes of both of which is
N x Ab, where N - number of model layers, Ab - the number of possible bits for quantization. All
additional storage pre-calculations, which reduce the time complexity of Random Bits, require less
than O(INAb) memory costs. Hence the total memory cost of Random Bits is O(|W| + NAb).

F.3 TIME COMPLEXITY OF QUANTILE INFORM

To assess the complexity of Quantile Inform algorithm, we will write its pseudocode. The algorithm
allows finding suitable sets of quantization bits.

Algorithm 2: Quantile Inform
Input:
scaled informativeness of BNN layers - infos] |
required average quantization bit rate - y
acceptable deviation for the average bit rate - §
form=1,...,Abdo
for by = bmim 23 bmax do
borders] | - [0,1/m,2/m,...,1] /* m is the number of intervals */
calculate bits b = (b1, ..., by) < getBits(borders, infos, b, )
get mean quantization bit bean < [y Ejvzl 1110,
if")/ —40< ll[nean SA"Y then
save bits by, ..., by
end if
end for
end for

The iteration time of the inner loop is fully estimated by the computational complexity of the func-
tion getBits. This function finds for each j-th layer the interval A; = [borders[k], borders[k + 1]]
such that infos[j] € A;. Next, the layer I; will be assigned k + bini¢ bit for quantization. If the array
infos[ ] is pre-sorted (which takes O (N log V), then the time costs of getBits is O(Ab+ N), where
N is the number of layers. Taking into account the nesting of the loop, the time complexity of the
algorithm is O(Ab*(Ab+ N) + Nlog N).

F.4 MEMORY COST OF QUANTILE INFORM

The memory cost is fully estimated by the number of model weights, i.e. O(|W]).

22



Under review as a conference paper at ICLR 2025

G ABOUT COMPUTATIONAL OVERHEAD AND PRACTICAL IMPLEMENTATION
CONSIDERATIONS

All experiments were conducted using an NVIDIA Tesla A100 GPU (40GB RAM). the training
time for models are presented in Table[6]

Table 6: Training time for models (in hours)

ARCHITECTURE DATASET ORIGINAL MODEL  BAYESIAN MODEL
LENET MNIST 0.27 0.46
VGG-7 CIFAR-10 0.92 2.87
VGG-16 CIFAR-10 1.10 3.36
RESNET-20 CIFAR-10 0.67 2.14
RESNET-20 CIFAR-100 0.98 4.22
MLP WEATHER 0.04 0.23

Quantization algorithm runtime:

* QI: 20 to 120 seconds.
* RB: 1.5 to 7 minutes.

The proposed quantization methods rely on the estimation of weight importance, which is derived
from the Bayesian framework. In this context, the informativeness of each weight is quantified as
the ratio of its mean (1) to its variance (c2). This metric is essential for the algorithms, as it allows
the identification of the most critical weights in the network.

To compute these values, the neural network needs to be trained as a Bayesian model, where each
weight is represented by a distribution (typically Gaussian) instead of a single point estimate. This
training process requires optimizing both the means (1) and variances (c2) of the weights, which
adds complexity compared to traditional neural network training.

One way to mitigate the additional computational overhead of training a Bayesian neural network is
to initialize the means (u) of the Bayesian weights using the weights of a pretrained standard model.
This approach offers several advantages:

* Faster Convergence: The pretrained weights provide a well-tuned starting point for p, re-
ducing the time required for the Bayesian network to converge during training.

* Better Performance: Starting from pretrained weights ensures that the model is initialized
closer to a good solution, potentially leading to higher final accuracy.

* Reduced Variance Exploration: Since p starts with meaningful values, the optimization
focuses more on fine-tuning the variances (o'2), further streamlining the process.

To enhance performance and accelerate the training of Bayesian models, we performed an experi-
ment with ResNet-20 on CIFAR-100, initializing ;4 with a checkpoint from the original model. This
approach reduced the required iterations from 600 to 300 while improving accuracy from 54.5% to
65.5%. Additionally, we improved quantization results in each experiment by approximately 10%.

This initialization technique effectively leverages the progress made during the training of the origi-
nal model, making the transition to the Bayesian variant more practical for large-scale applications.

23



	Introduction
	Related work
	Quantization details
	Quantization of BNNs
	Uniform quantization
	Non-uniform quantization: quantilization

	Quantization algorithms
	Weight informativeness
	Information-Based Quantization: Quantile Inform
	Random Bits

	Experiments
	Classification tasks
	Regression task

	Discussion and conclusions
	Random Bits
	Derivation of the first loss function
	Derivation of the second loss function
	Derivatives of the second loss function

	Details of model training
	Classification tasks
	Regression task

	Non-uniform quantization
	Additional experiments
	Computational and memory costs of approach
	Estimation of algorithms complexity
	Estimation of memory costs
	Scalability of approach

	Computational and memory costs of quantization algorithms
	Time complexity of Random Bits
	Memory cost of Random Bits
	Time complexity of Quantile Inform
	Memory cost of Quantile Inform

	About computational overhead and practical implementation considerations

