
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NEURAL NETWORK ADAPTIVE QUANTIZATION BASED
ON BAYESIAN DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a novel approach to solve the adaptive quantization problem in neu-
ral networks based on epistemic uncertainty analysis. The quantized model is
treated as a Bayesian neural network with stochastic weights, where the mean
values are employed to estimate the corresponding weights. Standard deviations
serve as an indicator of uncertainty and the number of corresponding bits — i.e.,
a larger number of bits indicate lower uncertainty, and vice versa. We perform
an extensive analysis of several algorithms within a novel framework for differ-
ent convolutional and fully connected neural networks based on open datasets
demonstrating the main advantages of the proposed approach. In particular, we
introduce two novel algorithms for mixed-precision quantization. Quantile In-
form utilizes uncertainty to allocate bit-width across layers, while RandomBits
employs stochastic gradient-based optimization techniques to maximize the full
likelihood of quantization. Using our approach, we reduce the average bit-width
of the VGG-16 model to 3.05 with the 90.5% accuracy on the CIFAR-10 dataset
compared to 91.9% for the non-quantized model. For the LeNet model trained on
the MNIST dataset, we reduce the average bit-width to 3.16 and achieve 99.0%
accuracy, almost equal to 99.2% for the non-quantized model.

1 INTRODUCTION

Compression of neural network models are typically addressed using pruning (Blalock et al., 2020),
quantization (Gholami et al., 2021), decomposition of weight matrices into factors (Sainath et al.,
2013) and distillation (Hinton et al., 2015) technique. If the architecture of a model is fixed, distil-
lation cannot be applied, while pruning and decomposition of weight matrices can lead to certain
complications. The quantization approach may be the only promising way to compress a model.

Quantization can be applied during (Courbariaux et al., 2015) and after model training (Fang et al.,
2020), as well as during retraining (Nagel et al., 2021). According to the weights manipulation
approach, these methods can be divided into several classes. One can either manipulate weight
values or change the number of bits of a particular weight. In our work we focus on the latter class,
where different granularity levels can be implemented. One can quantize the entire model (Yang
et al., 2019), each layer (Wang et al., 2020; Xiao et al., 2022), or each channel (Chmiel et al., 2020;
Zhong et al., 2020). The smaller the granularity, the better the quantization. Layered and channeled
granularity levels require adaptive quantization methods (Langroudi et al., 2021) that are able to
determine which weights need more bits and which ones need fewer.

Most existing methods of quantization are based on heuristic criteria or deterministic optimization,
which may not capture the uncertainty and variability of network parameters (Zhou et al., 2018;
Guo, 2018). Moreover, most methods such as TWN (Li et al., 2016), LR-Net (Shayer et al., 2017),
RQ (Louizos et al., 2018), PACT (Choi et al., 2018) and Dorefa (Zhou et al., 2016) use a fixed
bit-width for all network layers, ignoring the potential benefits of applying different bit-widths to
different layers (Liang et al., 2021). A flexible framework for quantization that could account for
the probabilistic nature of a network parameters and adapt the bit-width to a layer characteristics is
desirable (Cheng et al., 2017; Garg et al., 2021).

Among the approaches, a group of reinforcement learning-based algorithms, such as (He et al.,
2018), have been proposed for adaptive quantization. However, these methods are computationally
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expensive, making them less suitable for practical applications where efficiency is crucial. There-
fore, they have been excluded from consideration.

To address the challenge of the adaptive quantization problem, we propose two novel algorithms
based on Bayesian neural networks (BNNs), which can capture the uncertainty of the network pa-
rameters and outputs, referred further as Quantile Inform and Random Bits. Quantile Inform is an
informativeness-based algorithm that defines bit-widths of each layer based on informativeness cal-
culated using mean values and standard deviations of Bayesian neural network parameters. Random
Bits is based on BNN post-training in terms of maximization of the likelihood of optimal quantiza-
tion with a limit on the average bit-width of a quantized model.

We evaluate proposed algorithms on several benchmark datasets and show that they achieve compa-
rable or better accuracy than the existing quantization methods while using fewer bits. We show that
informativeness based on weights of a trained BNN strongly correlates with the optimal bit-width
for layers. Different methods of aggregation and smoothing of informativeness are evaluated in a
few benchmarks and the best one is used in Quantile Inform to calculate bit-widths. Alternative
informativeness values based on variances are tested as well. We also demonstrate the advantages
of BNN for quantization, such as robustness to noise and calibration of uncertainty.

2 RELATED WORK

BNNs are able to explicitly model uncertainty, thus may be also suitable for adaptive quantization.
There is a number of papers where quantization relies either on the measure of uncertainty obtained
as a result of model training or on the application of uncertainty estimation to the weights of a trained
model. We employ some of these methods as described below.

Blundell et al. (2015) experimentally confirmed the possibility of using averages and variances ob-
tained by BNN training to assess the informativeness of network weights and the effectiveness of
pruning (zeroing) the least informative ones. It is applied to research pruning of a trained network
based on the magnitude of the signals. The authors defined the signal as the ratio of the average to
the variance. It is argued that the smaller the ratio, the less meaningful the weight. Accordingly,
after calculating the signals for all weights, the authors zeroed out the weights with the smallest
signals. Such an experiment on the MNIST classification problem using an architecture of two fully
connected layers confirmed that it is possible to zero 75% of the weights without degradation of the
error value on the test subset. At zeroing 95%, there is a degradation from 1.24% to 1.29%, and at
98%, the error reaches 1.39%. Consequently, 48,000 of the original 2.467 million weights remain
non-zero.

A few researchers propose a method for neural network compression based on quantization of
weights using a mixture of Gaussian distributions. This approach allows the model to be trained
in such a way that the weights tend to move towards one of the K centroids, forming K clusters
which is vector quantization (Gong et al., 2014; Park et al., 2017; Stock et al., 2019; Razani et al.,
2021).

After the weights of the model form sufficiently distinct clusters, they can be replaced by the corre-
sponding centroids of these clusters, and the centroids themselves can be encoded with log2 K bits.
Moreover, if one of the centroids is zero, corresponding weights do not have to be stored or consid-
ered in calculations. This method agrees with the principle of minimum description length (MDL)
proposed by Grünwald (2007), which states that the best model for data is the one that requires the
smallest number of bits to describe it. According to Louizos et al. (2017), the most effective way
to solve the problem of compression and computational efficiency in deep learning is the Bayesian
approach. The latter states that it is possible to remove a large number of weights or neurons in a
neural network using a prior distribution that encourages sparsity.

There is an innovative approach (Van Baalen et al., 2020) to decompose a particular weight into
terms that determine the final bit-width of the quantized weight. This decomposition is individual
for each weight and is trained using the variational Bayesian inference (Chappell et al., 2008). Thus,
using Bayesian methods, the most probable number of bits for each weight is determined. Each of
these terms is a learnable parameter and reflects the confidence of the algorithm that the correspond-
ing weight should have at least the bit-width with the associated matching parameter. The above
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approach ensures a higher accuracy with a better quantization of weights compared to other models.
However, the limitation is that the bit-width has to be the powers of 2 (i.e. 2, 4, 8, 16, or 32 bits).

These results suggest that BNNs and approaches to their training open up new opportunities for
adaptive quantization based on the measure of uncertainty, a side-product of Bayesian network train-
ing, which is leveraged by all our algorithms to measure uncertainty.

3 QUANTIZATION DETAILS

3.1 QUANTIZATION OF BNNS

A common method for training BNNs is Variational Inference (Kingma et al., 2015). Suppose we
train a BNN modelM on a dataset D via Variational Inference. The modelM has N layers, i.e.
w = l1 ∪ l2 ∪ ... ∪ lN , where each layer li is treated as a set of its weights, with li ∩ lj = ∅ at
i ̸= j. Each weight w ∈ w of the model M is a Gaussian random variable w ∼ N (µw, σw).
We can utilize it to construct a conventional neural network by replacing each stochastic weight w
with a certain real value. In this transformation, an attractive choice for each weight w is its mean
value µw. Therefore, further layer quantization of the trainedM into specified bit-widths b1, ..., bN
is performed as follows: each stochastic weight w is replaced by its average value µw, resulting in
Mdet, which is a deterministic version ofM. Then, every j-th layer ofMdet is quantized using bj
bits.

3.2 UNIFORM QUANTIZATION

We perform layer by layer quantization of Mdet. To do this, we select a layer of this model and
call it lj . Notably, for the BNN modelM, the layer lj is a set of stochastic weights {w}, while for
the deterministic model Mdet, the layer lj is a set of average weight values {µw}. Let us set the
quantization interval [αj , βj ] for the layer lj . Then, we apply the quantization layer lj into bj bit as
follows:

Q(µw, bj) = αj + s(bj)clip

(
µw − αj

s(bj)

)
, s(bj) =

βj − αj

2bj − 1
,

where the function clip(x) = clamp(round(x), 0, 2bj − 1). The operation clamp restricts a value
to lie within the range from 0 to 2bj − 1. When using such quantization on the interval [αj , βj ], a
uniform grid of 2bj nodes is specified and each µw ∈ lj is rounded to the nearest grid point. For
each layer lj we consider the boundaries of the quantization interval αj and βj as the 5th percentile
and the 95th percentile of the set {µw|w ∈ lj}, respectively.

3.3 NON-UNIFORM QUANTIZATION: QUANTILIZATION

Quantilization offers an alternative to uniform interval quantization by leveraging quantiles. It is
supposed to address a possible drawback in uniform quantization grids by ensuring an even distri-
bution of {µw} among quantized values through the use of quantiles.

Let us consider the scenario where we aim to quantize a set of average weight values {µw} from
layer lj of Mdet into mj := 2bj values, i.e. into bj bit. Calculated directly from data, empirical
quantiles, provide the best possible partition of {µw} into even groups. Unfortunately, they can be
impractical to compute and store for large datasets. Therefore, we opt for a more efficient approach
by relying on computing quantiles derived from the theoretical distribution Fj that can be defined
by only its type and parameters. For the sake of definiteness, we shall consider only Gaussian
distributions.

Assuming the distribution represented by Fj spans an entire real number line, we can establish a
following relationship by defining ak := F−1

j (k/mj) for 0 < k < mj :

P(W1 ∈ (−∞, a1)) = P(W1 ∈ (a1, a2)) = . . . = P(W1 ∈ (amj−1,+∞)).

This indicates that all quantization intervals will, on average, contain equal number of elements.
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The next step is to decide how to quantize the {µw} from each interval (ai−1, ai) into a single value
āi. For finite intervals (ai−1, ai), we can minimize the absolute quantization error by selecting the
midpoint as āi = (ai−1+ai)/2. In case of infinite intervals (−∞, a1) and (amj−1,+∞), additional
considerations may be necessary, particularly when dealing with outlier values. Otherwise, we can
use medians ā1 = F−1

j (1/2mj) and āmj
= F−1

j ((2mj − 1)/2mj). This ensures that approxi-
mately the same number of values are quantized upwards and downwards. Additional information
is presented in Appendix B.

4 QUANTIZATION ALGORITHMS

4.1 WEIGHT INFORMATIVENESS

Consider a trained BNN M, and define weight informativeness as the ratio of the absolute mean
value to the corresponding variance:

info(w) =
|µw|
σw

. (1)

Blundell et al. (2015) showed that informativeness in pruning can preserve the quality of predictions
with a high percentage of pruning. For a quantization algorithm, as in the case of the pruning
criterion, one can use informativeness weights. If we employ a computationally expensive method
of finding optimal bit-widths for each layer of the neural network, such as Bayesian optimization
described by Snoek et al. (2012), bit-widths correlate with the informativeness of each layer. The
following experiment was carried out on the CIFAR-10 dataset with VGG-7 (with an additional fully
connected layer containing 10 neurons) and VGG-16 models and the MNIST dataset with LeNET
model to confirm this hypothesis.

We extended the use of informativeness to pruning and developed a quantization method that assigns
an optimal bit-width to each layer, proportional to its informativeness. Our analysis revealed a
strong positive correlation between the optimal bit-width produced by the complete brute-force of all
possible bit-widths for each layer and informativeness produced by a fitted Bayesian version of the
network. All experiments proved this, see Figure 1, as measured by the coefficient of determination
R2. The calculated R-measures of correlation between layer informativeness and bit-width obtained
through Bayesian optimization are 0.823 for the VGG-7 model, 0.867 for VGG-16, and 0.854 for
LeNet. These findings suggest that informativeness can be used as a reliable predictor of bit-width
in adaptive quantization.

Analysis of experimental data revealed that the initial and final layers of the neural network play
a more critical role, which is expressed in the need for higher bit resolution. It confirms the well-
known heuristics to avoid the quantization of the first and last layers discussed in Louizos et al.
(2017) and Gholami et al. (2021). We can try to explain this phenomenon as follows. The last
layer can be regarded as a classifier based on features extracted with the first and intermediate layers
of a neural network. Thus, the last layers should be sensitive, which may also be related to their
capacity. Typically, the last layers are not as large as the layers in the middle of the model. It is not
unlikely that only a small part of these weights is useful for solving the task. In this case, the mean
bit-width of the intermediate layer should be small enough. The same reasoning applies to the first
layers which usually have a significantly fewer weights than the intermediate ones. Additionally, the
first layer requires a larger bit-width for quantization in order to correctly extract low-level features,
which are important for constructing more complex features and training the network.

4.2 INFORMATION-BASED QUANTIZATION: QUANTILE INFORM

Let us denote the quantized version of the model Mdet by Mquant. We assume that the average
bit-width of the quantized modelMquant can be no more than the desired γ bit. At the same time,
we aim to perform quantization while preserving the model’s performance as much as possible.

Our algorithm based on informativeness is called Quantile Inform. Given a desired average bit-
width for the network, we solve an optimization problem to find the informativeness thresholds that
yield the target bit-width. The method includes the following steps, see Figure 2:

4
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(a) comparison on MNIST, LeNet architecture (b) comparison on CIFAR-10, VGG-7 architecture

(c) comparison on CIFAR-10, VGG-16 architecture

Figure 1: Correlation between informativeness of layers and bit-width obtained through Bayesian
optimization

1) Training BNN. First, the BNN must be trained to estimate the uncertainty of predictions. This
is achieved by applying Bayesian learning methods, such as Variational Inference or Monte Carlo
dropout in Gal & Ghahramani (2016).

2) Informativeness calculation. After training the BNN, the informativeness of each neuron can be
calculated.

3) Quantization. More important neurons have higher informativeness, which means that they con-
tain more significant and stable activations. These neurons can be selected for preservation with
full precision, whereas less informative ones can be quantized with a loss of precision. Since all
weights of layer lj quantize into the same number of bits, we will aggregate the informativeness of
its weights for any layer lj as follows:

Ij =
1

|lj |
∑
w∈lj

info(w), (2)

where |lj | is the number of weights in the layer lj . To determine the set of bits, the informativeness
is normalized to [0, 1]: Ĩj ← (Ij − mink Ik)/(maxk Ik − mink Ik). Next, we extract a root from
normalized informativeness as Îj ← (Ĩj)

1/2. Consequently, k thresholds are selected within the
interval [0, 1], where k is the number of bit-widths available for the quantization process. The
thresholds are evenly spaced on the range and then scaled. This allows one to obtain and test different
sets of bits by changing only one scaling factor.

4) Repeated iterations. Steps 2 and 3 can be repeated several times with different thresholds to
determine the bits based on informativeness, thereby achieving the desired level of quantization and
accuracy.

4.3 RANDOM BITS

Let us consider the quantization problem in a probabilistic formulation. Suppose we have a trained
BNN model M, which consists of N layers: w = l1 ∪ l2 ∪ ... ∪ lN . Consider a certain layer lj
of an M. Each weight w of this layer has a normal distribution with trained parameters q(w) =
N (w|µw, σw). Our aim is to quantize the mathematical expectations {µw} of this layer into bj bit.

5
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Figure 2: Quantile Inform assigns bit-widths proportional to the average per-layer informativeness
based on uncertainties of a fitted Bayesian neural network.

We also need to choose a quantization interval [αj , βj ], where the quantized values are located.
After quantization, we obtain the deterministic layer version lj (i.e. w → µw). When its weights are
independent, the likelihood function will be equal to

p(lj |bj) =
∏
w∈lj

q(Q(µw, bj)).

However, all the weights in the layer are quantized into the same bit-width. For this reason, we
have to reject the assumption of independence of its weights. Thus, when layer weights lj are
independent, we can approximate their joint density by the linear combination:

p(lj |bj) =
∑
w∈lj

cj(w)q(Q(µw, bj)), where
∑
w∈lj

cj(w) = 1, cj(w) ≥ 0.

As coefficients {cj(w)} we can take the normalized informativeness of the weights:

cj(w) =
info(w)∑

wk∈lj
info(wk)

.

The likelihood of model quantization with weights when quantized in bits b = (b1, ..., bN ) is ex-
pressed by the formula

p(Mquant|b) =
N∏
j=1

p(lj |bj) =
N∏
j=1

∑
w∈lj

cj(w)q(Q(µw, bj)). (3)

Note that maximizing the expression (3) means that the quantized averages Q(µw, bj) will be close
to µw. In this case, the model will maintain its accuracy. Therefore, we would like to maximize (3).
One should bear in mind that bit-widths are discrete. Consequently, gradient optimization methods
are not applicable in this case. To solve this issue, we propose to consider bits as random discrete
values. This allows us to use gradient optimization techniques.

We will assume that the bit-width bj of each layer lj is a discrete random variable (for simplicity,
we say that the maximum bmin and the minimum bmax quantization bits are 1 and 32, respectively):

bj =

32∑
k=1

k · I[bj = k], E[bj ] =
32∑
k=1

k · P[bj = k].

Let us introduce for each bj a set of trainable parameters (ϕj,1, ϕj,2, ..., ϕj,32) = ϕϕϕj . Probability
events {bj = k} are modeled using the Softmax function:

P[bj = k] = Softmax(ϕϕϕj)k =
eϕj,k∑32
i=1 e

ϕj,i

. (4)

Let A = {1, 2, ..., 32}. Then, the distribution p(b) of the random vector b = (b1, ..., bN ) has the
form

p(a) = P[b = a] = P[b1 = a1, ..., bN = aN ] =

N∏
j=1

P[bj = aj ], a ∈ AN .

6
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Interpreting bits as random variables allows us to maximize the full likelihood of quantization:

p(Mquant) =
∑

b∈AN

p(Mquant|b)p(b) = Ep(b)[p(Mquant|b)]→ max
Φ

, (5)

where Φ = (ϕ1, ...,ϕN ). Now that we let the quantization intervals [αj , βj ] change, the function Q
also changes, so maximization of (5) will also include α = (α1, ..., αN ), β = (β1, ..., βN ).

Instead of maximizing (5), the following minimization problem can be solved (see Appendix A.1)
N∑
j=1

32∑
i=1

τj,iP[bj = i]→ min
Φ,α,β

, (6)

where coefficients {τj,i} are calculated as follows:

τj,i =
∑
w∈lj

cj(w)
(Q(µw, bj = i)− µw)

2

σ2
w

. (7)

Note that this problem has a solution when for each j probability P[bj = 32]→ 1. Let us define the
mean bit-width of the quantized model as

bmean =
1

|W |

N∑
j=1

bj |lj |, (8)

where |lj | is the number of weights in the j-th layer. If we have the desired average bit-width γ of
the quantized model, we can add L2 penalty between bmean and γ. Then, we get the following loss
function

L(Φ) =

quantization error︷ ︸︸ ︷
N∑
j=1

32∑
i=1

τj,iP[bj = i] + η(Ep(b)[bmean]− γ)2︸ ︷︷ ︸
regularizer

→ min
Φ,α,β

, (9)

where the first term is responsible for the quality of quantization, and the second one is for the
proximity between bmean and γ.

The loss function (9) has computable derivatives with respect to the parameters Φ, but the derivatives
with respect to the boundaries α = (α1, ..., αN ) and β = (β1, ..., βN ) of the quantization intervals
are extremely complex. Therefore, we introduce a second loss function to calculate these derivatives.

Let us assume that we know the specific parameters Φ. Then we can express quantization bits as
rounded mathematical expectations of random bits:

b̂j = round(Ep(bj)[bj ]) = round

(
32∑
k=1

k · P[bj = k]

)
, (10)

where the probabilities P[bj = k] are calculated via (4). In this case, we can rewrite the conditional
likelihood (3) expressed in terms of quantization bits b̂ = (̂b1, ..., b̂N ):

p(Mquant|b = b̂) =

N∏
j=1

p(lj |̂bj) =
N∏
j=1

∑
w∈lj

cj(w)q
(
Q(µw, b̂j)

)
→ max

α.β
. (11)

The solution of (11) leads to the adaptation of the quantization intervals boundaries α and β to the
found quantization bits b̂1, ..., b̂N . Instead of maximizing the expression (11), we can minimize the
following loss function (see Appendix A.2)

T (α,β) =

N∑
j=1

∑
w∈lj

cj(w)
(Q(µw, b̂j , αj , βj)− µw)

2

σ2
w

. (12)

The derivatives of T (α,β) with respect to boundaries α, β can be approximated as follows (see
Appendix A.3):

∂T
∂βj
≈ 2

βj − αj

∑
w∈lj

cj(w)
(Q(µw, b̂j)− µw)

2

σ2
w

,
∂T
∂αj

≈ − ∂T
∂βj

. (13)
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The algorithm works in the following manner. At each iteration of the algorithm, the first loss
function is calculated using (9). The quantization bits b̂ = (̂b1, ..., b̂N ) and mean model bit bmean
are then calculated via (10) and (8). Next, if bmean is less than the desired model mean bit γ, the
quantization interval boundaries are updated using gradient minimization of the second loss function
(12). Let us denote the number of boundary updates as K.

Algorithm 1: Random Bits
Input:

trained BNN modelM
desired quantization mean bit γ
number of boundary update iterations K

initialize:
Φ← (ϕ1, ..., ϕN )
α← (α1, ..., αN )
β ← (β1, ..., βN )

repeat
recalculate {τj,i} coefficients using (7)
compute first loss L(Φ) via (9)
calculate bits b̂ = (̂b1, ..., b̂N ) using (10)
get mean quantization bit bmean ← 1

|W |
∑N

j=1 |lj |̂bj
if bmean < γ then

set Tbest equal to +∞
for iteration in range(K) do

calculate second loss Tcurr ← T (α,β, b̂) via (12)
if Tcurr < Tbest then

save best result bbest,αbest,βbest ← b̂,α,β
end if
calculate gradients∇α,βT (α,β, b̂) via (13)
update
α← α− θ∇αT
β ← β − θ∇βT

end for
end if
update parameters ϕ← ϕ− τ∇ΦL(Φ)

until loss L(Φ) converges

5 EXPERIMENTS

In this section, we present the results of our experiments for the LeNet, VGG-7, VGG-16 and
ResNet-20 models in the classification problems on the CIFAR-10 and MNIST datasets, and for
multilayer perceptron for the regression problem on the Weather dataset. In the classification prob-
lems, we used accuracy as metrics, while in the regression problem, we use MSE and MAE as
metrics. Additionally, we apply a non-uniform quantization (3.3) in the Quantile Inform algorithm.
Next, we introduce the following notation for the algorithms: Bayesian Bits as BB, Quantile Inform
with uniform quantization as QIU, non-uniform Quantile Inform as QINU, and Random Bits as RB.
The parameters of the algorithms are described in Appendix B.

5.1 CLASSIFICATION TASKS

We conducted a comparative analysis of our algorithms with Bayesian Bits (Van Baalen et al., 2020)
serving as the baseline for Bayesian quantization methods. In all our experiments, we quantized the
models to the same number of mean bits. Additionally, we used a non-uniform quantization (3.3) in
the Quantile Inform algorithm.

For the LeNet, VGG-7, VGG-16 and ResNet-20 models we set the desired mean quantization bits
equal to 4. The LeNet model was trained on the MNIST dataset. The VGG-7, VGG-16 and
ResNet-20 were trained on the CIFAR-10 dataset. The training parameters for these models and
their Bayesian variants are provided in Appendix B.1. The experimental results for these models are

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

presented in Tables 1, 2 and 3. Additional experiments on the quantization of the ResNet-20 model
on the CIFAR-100 dataset are presented in Table 5 in AppendixD.

Table 1: Results of our quantization methods on LeNet and VGG-7 compared to TWN (Li et al.,
2016), LR-Net (Shayer et al., 2017), RQ (Louizos et al., 2018), WAGE (Wu et al., 2018) and BB
(Van Baalen et al., 2020)

ALGORITHM
LENET (MNIST) VGG-7 (CIFAR-10)

MEAN BIT ACCURACY MEAN BIT ACCURACY

TWN 2 99.35 2 92.56

LR-NET 1.7 99.47 2.4 93.18

RQ 2 99.37 8 93.80

WAGE 2 99.60 2 93.22

BB 4 96.40 4.01 83.42

QIU (OUR) 3.17 99.05 4.45 91.51

QINU (OUR) 3.17 98.44 5 80.37

RB (OUR) 3.95 98.75 4.12 91.21

FLOAT MODEL 32 99.23 32 93.7

Table 2: Results of our quantization methods on VGG-16 and CIFAR-10 compared to BB

ALGORITHM MEAN BIT ACCURACY

BB 3.28 70.10

QIU (OUR) 4.02 91.45

QINU (OUR) 4.02 88.00

RB (OUR) 4.01 91.61

FLOAT MODEL 32 91.94

Table 3: Results of our quantization methods on ResNet-20 compared to LQ-Nets (Zhang et al.,
2018), HAWQ (Yao et al., 2021), PACT (Choi et al., 2018), Dorefa (Zhou et al., 2016) and AdaBin
(Tu et al., 2022)

ALGORITHM MEAN BIT ACCURACY

LQ-NETS 3 92.00

HAWQ 2.7 92.22

PACT 3 91.10

DOREFA 3 89.90

ADABIN 1 88.20

QIU (OUR) 3.91 87.65

QINU (OUR) 3.91 79.69

RB (OUR) 4.01 90.72

FLOAT MODEL 32 92.98

The performance of the proposed algorithms is comparable to that of other quantization methods.
Notably, our methods QIU, QINU, and RB, which are also based on Bayesian neural networks
like BB, demonstrate superior performance in several cases. For instance, on LeNet, QIU achieves
99.05% accuracy with 3.17 bits, outperforming BB with 96.40% accuracy for 4 bits. Similarly, on
VGG-7, our RB method achieves 91.21% accuracy with 4.12 bits, closely matching the floating-
point model with 93.7%.
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For the VGG-16 model, our methods demonstrated a significant improvement over BB. QIU
achieved 91.45% accuracy with an average bit-width of 4.02, compared to BB with 70.10% ac-
curacy and 3.28 bits. For ResNet-20, our algorithms achieve results that are comparable to those of
other leading quantization methods.

5.2 REGRESSION TASK

We performed a comparative analysis on the regression task. We used the BB algorithm on the
Weather dataset from Yandex Shifts Challenge 2021 (Malinin et al., 2021) with a four-layer per-
ceptron as the baseline. The MLP model is structured as 123FC - 512FC - 256FC - 64FC, where
each ”FC” denotes a fully connected layer with ReLU activation, containing 123, 512, 256, and
64 hidden units, respectively. The training parameters for the MLP model and its Bayesian vari-
ant are provided in Appendix B.2 The results of quantization of this model to 8 mean bit-width by
algorithms are shown in Table 4.

Table 4: Results of our quantization methods on MLP and Weather compared to BB

ALGORITHM MEAN BIT MAE MSE

BB 8.1 1.8 · 10−2 5.98 · 10−4

QIU (OUR) 6.00 3.1 · 10−2 1.39 · 10−3

QINU (OUR) 6.00 1.8 · 10−2 6.07 · 10−4

RB (OUR) 6.92 2.10 · 10−2 7.46 · 10−4

FLOAT MODEL 32 1.7 · 10−2 5.95 · 10−4

In the regression task on the Weather dataset using an MLP model, our methods demonstrate results
comparable to those of BB. Although, BB achieves slightly better mean absolute error (MAE) and
mean squared error (MSE) values, our QINU method performs almost as well, with an MAE of
1.8 · 10−2 and MSE of 6.07 · 10−4 using only 6 bits on average, compared to BB with 8.1 bits.
This demonstrates that our methods provide a more efficient quantization while maintaining high
accuracy, even in regression tasks.

6 DISCUSSION AND CONCLUSIONS

To address the challenge of adaptive quantization, we introduced two novel algorithms based on
uncertainty modeling in Bayesian neural networks. Our results demonstrate that these algorithms
effectively reduce model size while maintaining low quantization error, all within a single pass and
with minimal computation after the initial training phase.

A key advantage of our method is that it follows a post-training quantization paradigm while deliver-
ing results comparable to quantization-aware training approaches. This makes it particularly suitable
for quantizing pre-trained models without requiring additional extensive training. Our method also
offers flexible and efficient quantization by allowing neural network layers to be quantized to any
discrete bit-width, resulting in reduced computational requirements.

In conclusion, our proposed approach advances model compression techniques by providing a
computationally efficient and adaptable quantization method. The demonstrated performance and
flexibility suggest promising avenues for further research and practical applications in resource-
constrained machine learning environments.
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A RANDOM BITS

A.1 DERIVATION OF THE FIRST LOSS FUNCTION

Instead of maximizing the full likelihood (5), we can minimize its negative logarithm:
L(Φ) = − ln p(Mquant) = − lnEp(b)[p(Mquant|b)]→ min

Φ
.

However, the expression L(Φ) is still difficult to optimize. Therefore, it is proposed to use Jensen’s
inequality and minimize the upper bound:

L(Φ) = − lnEp(b)[p(Mquant)|b)] ≤ −Ep(b)[ln p(Mquant)|b)] = F(Φ)→ min
Φ

.

Let us write F(Φ) in more detail:

F(Φ) = −Ep(b)[ln p(Mquant|b)] = −Ep(b)

ln N∏
j=1

∑
w∈lj

cj(w)q(Q(µw, bj))

 =

= −
N∑
j=1

Ep(b)

ln ∑
w∈lj

cj(w)q(Q(µw, bj))

 = −
N∑
j=1

Ep(bj)

ln ∑
w∈lj

cj(w)q(Q(µw, bj))

 ≤
≤ {Jensen’s inequality} ≤ −

N∑
j=1

Ep(bj)

∑
w∈lj

cj(w) ln q(Q(µw, bj))

 =

= −
N∑
j=1

Ep(bj)

[∑
w∈lj

cj(w)

(
ln

1√
2πσ2

w

− (Q(µw, bj)− µw)
2

2σ2
w

)]
.

Note that the constants {ln 1/
√
2πσ2

w} do not depend on the parameters Φ. Consequently, they can
be removed. After removing them, we arrive the following expression:

L(Φ) = −
N∑
j=1

Ep(bj)

∑
w∈lj

cj(w)

(
− (Q(µw, bj)− µw)

2

σ2
w

) =

=

N∑
j=1

Ep(bj)

∑
w∈lj

cj(w)
(Q(µw, bj)− µw)

2

σ2
w

 =

=

N∑
j=1

32∑
i=1

∑
w∈lj

cj(w)
(Q(µw, bj = i)− µw)

2

σ2
w


︸ ︷︷ ︸

τj,i

P[bj = i] =

N∑
j=1

32∑
i=1

τj,iP[bj = i].

In this manner, we obtain the expression (6). Therefore, instead of the maximization problem (5),
we can solve the minimization problem (6).

A.2 DERIVATION OF THE SECOND LOSS FUNCTION

Note that, as before, instead of maximizing the conditional likelihood (11), we can minimize its
negative logarithm, for which we also find the upper bound using Jensen’s inequality

− ln p(Mquant|b̂) = −
N∑
j=1

ln

∑
w∈lj

cj(w)q
(
Q(µw, b̂j)

) ≤
≤ {Jensen’s inequality} ≤ −

N∑
j=1

∑
w∈lj

cj(w) ln q
(
Q(µw, b̂j)

)
=

= −
N∑
j=1

∑
w∈lj

cj(w)

(
ln

1√
2πσ2

w

− (Q(µw, b̂j)− µw)
2

2σ2
w

)
→ min

α,β
.
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The constants {ln 1/
√
2πσ2

w} do not depend on the parameters α = (α1, ..., αN ) and β =
(β1, ..., βN ). By removing these constants, we formulate the following expression for the second
loss function

T (α,β) =

N∑
j=1

∑
w∈lj

cj(w)
(Q(µw, b̂j)− µw)

2

σ2
w

.

A.3 DERIVATIVES OF THE SECOND LOSS FUNCTION

Next, we derive ∂T (α,β)/∂α and ∂T (α,β)/∂β derivatives. First, we calculate the derivatives of
the with respect to βj :

∂T
∂βj

= 2
∑
w∈lj

cj(w)
Q(µw, b̂j)− µw

σ2
w

∂Q(µw, b̂j)

∂βj
.

We need to calculate ∂Q(µw, b̂j)/∂βj . To do this we use the straight-through estimator approach,
i.e. ignore the rounding operation:

∂

∂βj
clip

(
µw − αj

s(̂bj)

)
≈ ∂

∂βj

(
µw − αj

s(̂bj)

)
.

Hence, we arrive at the following equation:

∂Q(µw, b̂j)

∂βj
=

∂

∂βj

[
αj + s(̂bj)clip

(
µw − αj

s(̂bj)

)]
=

∂s(̂bj)

∂βj
clip

(
µw − αj

s(̂bj)

)
+

+ s(̂bj)
∂

∂βj
clip

(
µw − αj

s(̂bj)

)
≈ ∂s(̂bj)

∂βj
clip

(
µw − αj

s(̂bj)

)
+ s(̂bj)

∂

∂βj

(
µw − αj

s(̂bj)

)
.

Let us describe the derivative ∂Q(µw, b̂j)/∂βj in detail:

∂Q(µw, b̂j)

∂βj
≈ ∂s(̂bj)

∂βj
clip

(
µw − αj

s(̂bj)

)
+ s(̂bj)

∂

∂βj

(
µw − αj

s(̂bj)

)
=

=
∂s(̂bj)

∂βj

(
clip

(
µw − αj

s(̂bj)

)
− µw − αj

s(̂bj)

)
=

1

s(̂bj)

∂s(̂bj)

∂βj

(
Q(µw, b̂j)− µw

)
.

Notably,
∂s(̂bj)

∂βj
=

∂

∂βj

(
βj − αj

2b̂j − 1

)
=

1

2b̂j − 1
.

As a result,
∂T
∂βj

=
2

βj − αj

∑
w∈lj

cj(w)
(Q(µw, b̂j)− µw)

2

σ2
w

.

In a similar way, one can obtain the following equation:

∂T
∂αj

= − 2

βj − αj

∑
w∈lj

cj(w)
(Q(µw, b̂j)− µw)

2

σ2
w

.

B DETAILS OF MODEL TRAINING

In all experiments, the parameters for the Random Bits algorithm were:

• Number of epochs: 1000
• Learning rate (LR): 10−2

• Regularization parameter: 3 · 103

• Delta: 0.2
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B.1 CLASSIFICATION TASKS

The LeNet model was trained on the MNIST dataset. The VGG-7, VGG-16 and ResNet-20 were
trained on the CIFAR-10 dataset. These models were trained with the following parameters:

• Batch size: 128
• Number of epochs: 300
• Optimizer: Stochastic Gradient Descent (SGD)
• Learning rate (LR): 10−1

• Weight decay: 5 · 10−4

• Momentum: 0.9
• Loss function: Cross Entropy Loss

For training the Bayesian variants of the models, the following parameters were used:

• Batch size: 128
• Number of epochs: 500
• Optimizer: Stochastic Gradient Descent (SGD)
• Learning rate (LR): 10−3

• Weight decay: 5 · 10−4

• Momentum: 0.9
• Loss function: ELBO Loss

– Criterion: Cross Entropy Loss
– Beta parameter: 10−6

Evidence Lower BOund (ELBO) is the standard loss function for Bayesian neural networks training.
This loss has the following form:

ELBO(q(w|λ)) = Eq(w|λ)[ln p(D|w)]−DKL(q(w|λ)||p(w))→ max
λ∈Λ

,

where q(w|λ) is posterior distribution on model weights w, λ is set of parameters of this distribu-
tion, p(w) is the prior distribution and DKL is Kullback–Leibler divergence.

B.2 REGRESSION TASK

We trained an MLP model using the same parameters as in the previous section (see Appendix B.1).
However, the batch size was set to 512, the loss function was MSE, and the learning rate was set to
10−3.

For training the Bayesian variant of the MLP model, the batch size was also set to 512, and the
learning rate was set to 10−4.

C NON-UNIFORM QUANTIZATION

In this section we provide another justification for the information criterion. Consider our objective
of representing weights of some layer lj within bj bits. This can be achieved by selecting a set of 2bj
values, denoted as Mj , and subsequently approximating each µw with cj(µw) := argmin

x∈Mj

|µw − x|.

Let us approach the task of selecting the optimal set Mj from a probabilistic standpoint. Assume that
µw and σw are independently drawn from absolutely continuous distributions, given by a cumulative
distribution functions Fj and Gj , respectively. To evaluate the efficacy of our quantization, we can
use the mean squared quantization error:

N∑
j=1

E(µ(j)
w − cj(µ

(j)
w ))2,
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where µ
(j)
w is drawn from Fj .

As discussed in the preceding section, not all weights carry equal significance. When σw is substan-
tial, indicating uncertainty in the neural network regarding a specific weight, the preservation of the
precise value of µw may not be a critical consideration. To address this, we incorporate σw into our
optimization, thereby obtaining the following refined formula:

N∑
j=1

E

(
µ
(j)
w − cj(µ

(j)
w )

σ
(j)
w

)2

≈
N∑
j=1

1

|lj |
∑
w∈lj

(
µw − cj(µw)

σw

)2

,

where σ
(j)
w is drawn from Gj .

The challenge of computing the set Mj to optimize E(µ(j)
w −qj(µ

(j)
w ))2 has been addressed in Lloyd

(1982). However, this solution is impractical for real-time computation and is also burdensome to
store, particularly for large values of |Mj | = 2bj . Consequently, we require a more straightforward
method to construct Mj , even if it turns out to be less optimal.

Could be another way to define the quantization error:
N∑
j=1

E|µ(j)
w − cj(µ

(j)
w )|.

To minimize it, consider ordered elements of Mj : q1 < q2 < . . . < qmj
, where mj = |Mj | = 2bj .

Also, consider sequence a0 = −∞ < a1 < . . . < amj
= +∞ such that if t belongs to interval

(ai−1; ai], then c(t) = qi. Then,

E|µ(j)
w − cj(µ

(j)
w )| =

∫ +∞

−∞
|t− cj(t)|fj(t)dt =

mj∑
i=1

∫ xi

xi−1

|t− qi|fj(t)dt,

where fj(t) is the density of Fj : Fj(t) =
∫ t

−∞ fj(s)ds. As mentioned before, for finite intervals
(ai−1, ai], the absolute quantization error is minimized if ai is the midpoint of the interval (qi, qi+1].
Therefore, we can instead consider

E|µ(j)
w − cj(µ

(j)
w )| =

mj∑
i=1

∫ (qi+qi+1)/2

(qi+qi−1)/2

|t− qi|fj(t)dt. (14)

To find the values {qi}
mj

i=1, we need to find the extrema of (14) with respect to each qi

∂

∂qi

mj∑
i=1

∫ (qi+qi+1)/2

(qi+qi−1)/2

|t− qi|fj(t)dt =
∫ (qi+qi+1)/2

(qi+qi−1)/2

sign|t− qi|fj(t)dt = 0.

The last integral is equal to zero exactly when qi is the median of the segment ((qi + qi−1)/2; (qi +
qi+1)/2]. This gives us the following set of equations:

2Fj(qi) = Fj

(
qi−1 + qi

2

)
+ Fj

(
qi + qi+1

2

)
,

2Fj(q1) = Fj

(
q1 + q2

2

)
,

2Fj(qmj
) = Fj

(
qmj−1 + qmj

2

)
.

This system is non–trivial to solve; however, once solved, only one value q1 needs to be recorded
since a full solution can be easily restored from it.

Following Lloyd (1982), another way to find an optimal solution is through an iterative process,
where one has to start with some initial choice of parameters {qi}

mj

i=1, {ai}
mj

i=0 and then repeat
following two steps:

1. set {ai}
mj

i=0 to be of midpoints between corresponding {qi}
mj

i=1,

2. set {qi}
mj

i=1 to be of medians between corresponding {ai}
mj

i=0.

Each step of this algorithm can only improve the solution. A good initial estimation can be obtained
through quantiles of the distribution Fj : {qi := F−1(i/mj)}

mj

i=1.
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D ADDITIONAL EXPERIMENTS

Table 5 presents a comprehensive comparison of our quantization methods, QIU and RB, with sev-
eral state-of-the-art algorithms on the ResNet-20 model trained on CIFAR-100. The results are re-
ported for two quantization configurations: W3A3 (3-bit weights and activations) and W4A4 (4-bit
weights and activations). The floating-point baseline accuracy is 70.81%.

Table 5: Results of our quantization methods for ResNet-20 on CIFAR-100 (accuracy of float model
is 70.81) compared to ZeroQ (Cai et al., 2020), GDFQ (Xu et al., 2020), DSG (Zhang et al., 2021),
Qimera (Choi et al., 2021), ARC (Choi et al., 2022), ARC+AIT (Zhu et al., 2021), IntraQ (Zhong
et al., 2021), AdaSG (Qian et al., 2023b), AdaDFQ (Qian et al., 2023a), HAST (Li et al., 2023) and
DFQ (Fan et al., 2024)

ALGORITHM
ACCURACY

W3A3 W4A4
ZEROQ 15.38 58.42

GDFQ 43.87 63.58

DSG 25.48 62.36

OIMERA 46.13 65.10

ARC 40.15 62.76

ARC+AIT 41.34 61.05

INTRAQ 48.25 64.98

ADASG 52.76 66.42

ADADFQ 52.74 66.81

HAST 55.67 66.68

DFQ 57.03 66.94

QIU (OUR) 14.23 (3.13 BITS) 54.45 (4.13 BITS)

RB (OUR) 48.64 (3.27 BITS) 62.97 (4.19 BITS)

FLOAT MODEL 70.81

To enhance performance and accelerate the training of Bayesian models, we initialized µ with a
checkpoint from the original model. This approach reduced the required iterations from 600 to 300
while improving accuracy from 54.5% to 65.5%. Additionally, we improved quantization results in
each experiment by approximately 10%.

While the QIU method struggles, particularly under the W3A3 setting, where it achieves only
14.23% accuracy due to extreme compression (mean bit-width of 3.13 bits), the RB method demon-
strates competitive performance. In the W4A4 configuration, QIU improves to 54.45%, but its accu-
racy remains lower than that of state-of-the-art methods, highlighting the need for further refinement
to enhance stability and performance in aggressive quantization scenarios.

Note that for these experiments in QIU algorithm, we used the method of aggregating the informa-
tiveness of the weights, which differs from 2. For each weight w in the layer lj , we can evaluate the
model confidence that this weight is important for the j-th layer as follows:

pw =
|µw|/σw∑

w̃∈lj
|µw̃|/σw̃

.

Next, for this layer, we can find its entropy

Hj = −
∑
w∈lj

pw log pw.

The high value of entropy Hj means that the model is uncertain and does not know which weights
are most important for this layer. Note that the maximum value of entropy: maxHj = log |lj |.
Next, we move from the entropy of a layer to the confidence indicator Ij of the model in this layer
as

Ij = 1− Hj

maxHj
. (15)
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The higher the Ij value, the lower the uncertainty of lj . Therefore, if a layer has a high Ij value
(close to 1), then a large number of quantization bit can correspond to this layer. In Figure 3 we
present a comparison of the informativeness of ResNet-20 layers for different datasets and aggre-
gation methods. For CIFAR-100 aggregation using averaging gives the internal layers of the model
approximately the same informativeness, which complicates the work of the algorithm. Aggregation
using entropy avoids this problem.

(a)

(b)

Figure 3: Comparison of layer informativeness (ResNet-20) for different aggregation approaches:
(a) corresponds to the averaging method 2, (b) corresponds to the entropy method 15.

In contrast, the RB method shows strong results, achieving 48.64% accuracy under the W3A3 set-
ting. This performance is comparable to methods like IntraQ (48.25%) and surpasses others such as
GDFQ (43.87%) and DSG (25.48%). For the W4A4 configuration, RB achieves 62.97%, remain-
ing competitive with leading methods like DFQ (66.94%) and AdaDFQ (66.81%). These results
demonstrate that RB effectively balances compression and accuracy, making it a robust choice for
memory-constrained environments.

E COMPUTATIONAL AND MEMORY COSTS OF APPROACH

E.1 ESTIMATION OF ALGORITHMS COMPLEXITY

Next, we will evaluate the complexity of the approach relative to the number of M restarts of the
experiment. Then our approach with Random Bits or Quantile Inform algorithms have a compu-
tational complexity of O(1), since it is enough to train the Bayesian model only once to use them.
The HAWQ quantization approach also has a complexity of O(1), since HAWQ analyzes the spec-
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tral properties of the matrix Hesse, which does not require training restarts to calculate. Adaptive
quantization based on reinforcement learning, it has a complexity of O(M) due to the stochastic
properties of this quantization.

E.2 ESTIMATION OF MEMORY COSTS

Next, we will estimate the memory costs of quantization approach relative to the number of param-
eters N of the model. Out approach with Random Bits and Quantile Inform algorithms require a
trained Bayesian model that contains 2N parameters (mathematical expectations and variances of
the weights), therefore the memory costs will be O(N). The HAWQ approach does not explic-
itly store the Hesse matrix, but analyzes some features of the Hessian spectrum, for example, the
top eigenvalue or the Hessian trace, which can be approximated without quadratic memory costs.
Therefore, the total memory cost of the HAWQ algorithm is O(N). For quantization based on
reinforcement learning it will require O(N) memory costs.

E.3 SCALABILITY OF APPROACH

Our approach scales linearly in terms of memory consumption depending on the number of param-
eters. The time complexity of our method increases linearly with increasing dataset.

F COMPUTATIONAL AND MEMORY COSTS OF QUANTIZATION ALGORITHMS

F.1 TIME COMPLEXITY OF RANDOM BITS

Next, we will obtain an estimate of the computational complexity of one iteration of Random Bits
algorithm. To do this, we first find the time complexity of calculating the coefficients τj,i:

τj,i =
∑
w∈lj

cj(w)
(Q(µw, bj = i)− µw)

2

σ2
w

.

Since cj(w) is a constant, and the quantization calculation is performed with a single complexity,
then T (τj,i) = O(|lj |). Let’s denote ∆b = bmax − bmin. Then the calculation of all elements of the
j−th row of the matrix {τj,i} has complexity: O(|lj |∆b).

Further, the calculation of all elements of the matrix has complexity: T1 =
∑

j O(|lj |∆b) =

O(
∑

j |lj |∆b) = O(|W |∆b), where |W |− the number of all weights of the model.

Next, let’s assume that the calculation of probabilities P[bj = i] = eϕj,i∑
s eϕj,s

is performed for a

constant. To do this, it is enough to pre-calculate the amount
∑

s e
ϕj,s for each j.

Now let’s estimate the time complexity of calculating the first loss function:

L(Φ) =

quantization error︷ ︸︸ ︷
N∑
j=1

32∑
i=1

τj,iP[bj = i] + η(Ep(b)[b
∗]− γ)2︸ ︷︷ ︸

regularizer

→ min
Φ

, (16)

where N is the number of layers of the neural network.

The complexity of calculating the quantization error is O(N∆b), since the coefficients {τj,i} have
already been calculated, and the calculation of probabilities is performed for a constant.

To estimate the complexity of regularizer calculation, we need to describe its terms:

Ep(b)[bmean] = Ep(b)

 1

|W |

N∑
j=1

bj |lj |

 =
1

|W |

N∑
j=1

|lj |Ep(bj)[bj ] =

=
1

|W |

N∑
j=1

|lj |
32∑
k=1

k · P[bj = k].

(17)
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Therefore, the calculation of Ep(b)[bmean] has complexity is O(N∆b). Squaring is performed for a
constant, so the final complexity of the regularizer is O(N∆b). Therefore, the full complexity of
calculating the function L(Φ) is T2 = O(N∆b).

Calculations of the bits b̂ = (̂b1, ..., b̂N ) for each layer lj according to the formula:

b̂j = round(Ep(bj)[bj ]) = round

(
32∑
k=1

k · P[bj = k]

)
,

have complexity is O(N∆b).

Next, calculation of average quantization bit bmean ← 1
|W |

∑N
j=1 |lj |b̄j has compexity is O(N).

Therefore, the final complexity of the calculations is T3 = O(N∆b).

At each external iteration of Random Bits algorithm, there is an additional internal loop. Next, we
will evaluate its time complexity. Random Bits algorithm is supplied with the parameter K - the
number of internal iterations, per each of which needs to calculate a second loss function

T (α,β) =

N∑
j=1

∑
w∈lj

cj(w)
(Q(µw, b̂j , αj , βj)− µw)

2

σ2
w

.

Since each term T (α,β) is calculated as a constant, the complexity of its calculation is O(|W |).
Next, we estimate the complexity of calculating the approximate gradients of the function T (α,β),
which are calculated using the formulas:

∂T
∂βj
≈ 2

βj − αj

∑
w∈lj

cj(w)
(Q(µw, b̄j)− µw)

2

σ2
w

,

∂T
∂αj

≈ − 2

βj − αj

∑
w∈lj

cj(w)
(Q(µw, b̄j)− µw)

2

σ2
w

.

Calculating these gradients for an arbitrary layer lj has a complexity of O(|lj |). Hence, the total
complexity of calculating all gradients is O(|W |).
Therefore, the complexity of one internal iteration is O(|W |). Since the inner iterations are K, the
total complexity of the entire inner loop is T4 = O(K|W |).
Next, to estimate the complexity of the calculation of∇L(Φ) (16), we first estimate the complexity
of calculating the probability derivative in two different cases:

if k ̸= i:
∂P[bj = i]

∂ϕj,k
=

∂

∂ϕj,k

eϕj,i∑32
s=1 e

ϕj,s

= − eϕj,i+ϕj,k(∑32
s=1 e

ϕj,s

)2 ;
if k = i:

∂P[bj = k]

∂ϕj,k
=

∂

∂ϕj,k

eϕj,k∑32
s=1 e

ϕj,s

=
eϕj,k∑32
s=1 e

ϕj,s

− e2ϕj,k(∑32
s=1 e

ϕj,s

)2 .
Since we have previously calculated the value of

∑32
s=1 e

ϕj,s , then taking this derivative has a com-
plexity of O(1).

Next, we find the complexity of the derivative of the quantization error in (16):

∂

∂ϕj,k

N∑
t=1

32∑
i=1

τt,iP[bt = i] =

32∑
i=1

τj,i
∂P[bj = i]

∂ϕj,k
⇒ complexity is O(∆b). (18)

Now let’s find the computational complexity for the derivative of the regularizer of the function (16).
To do this, first evaluate the complexity of the derivative of the expression (17):

∂Ep(b)[b
∗]

∂ϕj,k
=

∂

∂ϕj,k

 1

|W |

N∑
j=1

|lj |
32∑
i=1

i · P[bj = i]

 =
|lj |
|W |

32∑
i=1

i
∂P[bj = i]

∂ϕj,k
. (19)
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Taking into account (18), the complexity of calculating this derivative is O(∆b). Now let’s estimate
the computational complexity for the regularizer:

∂

∂ϕj,k
(Ep(b)[b

∗]− γ)2 = 2(Ep(b)[b
∗]− γ)

∂Ep(b)[b
∗]

∂ϕj,k

Since the value of Ep(b)[b
∗] − γ was previously found, then taking into account (19) the computa-

tional complexity for the derivative of the regularizer O(∆b).

This means that the computation of the derivative of the loss function (16) for one argument ϕj,i has
complexity O(∆b). Since there are only N∆b arguments, the complexity T5 of computing the full
gradient∇L(Φ) is equal to O(N∆b2).

The total complexity of Random Bits algorithm at one iteration is:

Tresult = T1 + T2 + T3 + T4 + T5 = O(|W |∆b) +O(N∆b)+

+O(N∆b) +O(K|W |) +O(N∆b2) = O
(
|W |(∆b+K) +N∆b2

)
.

F.2 MEMORY COST OF RANDOM BITS

To work, Random Bits algorithm requires a trained Bayesian neural network for input, so there
are the following memory costs O(|W |). On the other hand, memory is required to store matrices
of algorithm parameters Φ = (ϕ1, ...,ϕN ) and coefficients {τj,i}, the sizes of both of which is
N ×∆b, where N - number of model layers, ∆b - the number of possible bits for quantization. All
additional storage pre-calculations, which reduce the time complexity of Random Bits, require less
than O(N∆b) memory costs. Hence the total memory cost of Random Bits is O(|W |+N∆b).

F.3 TIME COMPLEXITY OF QUANTILE INFORM

To assess the complexity of Quantile Inform algorithm, we will write its pseudocode. The algorithm
allows finding suitable sets of quantization bits.

Algorithm 2: Quantile Inform
Input:

scaled informativeness of BNN layers - infos[ ]
required average quantization bit rate - γ
acceptable deviation for the average bit rate - δ

for m = 1, ...,∆b do
for binit = bmin, ..., bmax do

borders[ ]← [0, 1/m, 2/m, ..., 1] /* m is the number of intervals */

calculate bits b̂ = (̂b1, ..., b̂N )← getBits(borders, infos, binit)

get mean quantization bit bmean ← 1
|W |

∑N
j=1 |lj |̂bj

if γ − δ < bmean ≤ γ then
save bits b̂1, ..., b̂N

end if
end for

end for

The iteration time of the inner loop is fully estimated by the computational complexity of the func-
tion getBits. This function finds for each j-th layer the interval ∆j = [borders[k], borders[k + 1]]
such that infos[j] ∈ ∆j . Next, the layer lj will be assigned k + binit bit for quantization. If the array
infos[ ] is pre-sorted (which takes O(N logN)), then the time costs of getBits is O(∆b+N), where
N is the number of layers. Taking into account the nesting of the loop, the time complexity of the
algorithm is O(∆b2(∆b+N) +N logN).

F.4 MEMORY COST OF QUANTILE INFORM

The memory cost is fully estimated by the number of model weights, i.e. O(|W |).
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G ABOUT COMPUTATIONAL OVERHEAD AND PRACTICAL IMPLEMENTATION
CONSIDERATIONS

All experiments were conducted using an NVIDIA Tesla A100 GPU (40GB RAM). the training
time for models are presented in Table 6.

Table 6: Training time for models (in hours)

ARCHITECTURE DATASET ORIGINAL MODEL BAYESIAN MODEL

LENET MNIST 0.27 0.46

VGG-7 CIFAR-10 0.92 2.87

VGG-16 CIFAR-10 1.10 3.36

RESNET-20 CIFAR-10 0.67 2.14

RESNET-20 CIFAR-100 0.98 4.22

MLP WEATHER 0.04 0.23

Quantization algorithm runtime:

• QI: 20 to 120 seconds.
• RB: 1.5 to 7 minutes.

The proposed quantization methods rely on the estimation of weight importance, which is derived
from the Bayesian framework. In this context, the informativeness of each weight is quantified as
the ratio of its mean (µ) to its variance (σ2). This metric is essential for the algorithms, as it allows
the identification of the most critical weights in the network.

To compute these values, the neural network needs to be trained as a Bayesian model, where each
weight is represented by a distribution (typically Gaussian) instead of a single point estimate. This
training process requires optimizing both the means (µ) and variances (σ2) of the weights, which
adds complexity compared to traditional neural network training.

One way to mitigate the additional computational overhead of training a Bayesian neural network is
to initialize the means (µ) of the Bayesian weights using the weights of a pretrained standard model.
This approach offers several advantages:

• Faster Convergence: The pretrained weights provide a well-tuned starting point for µ, re-
ducing the time required for the Bayesian network to converge during training.

• Better Performance: Starting from pretrained weights ensures that the model is initialized
closer to a good solution, potentially leading to higher final accuracy.

• Reduced Variance Exploration: Since µ starts with meaningful values, the optimization
focuses more on fine-tuning the variances (σ2), further streamlining the process.

To enhance performance and accelerate the training of Bayesian models, we performed an experi-
ment with ResNet-20 on CIFAR-100, initializing µ with a checkpoint from the original model. This
approach reduced the required iterations from 600 to 300 while improving accuracy from 54.5% to
65.5%. Additionally, we improved quantization results in each experiment by approximately 10%.

This initialization technique effectively leverages the progress made during the training of the origi-
nal model, making the transition to the Bayesian variant more practical for large-scale applications.
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