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ABSTRACT

We propose semantic fusion, a lightweight scheme that augments a Transformer language model
(LM) with a parallel, fuzzy-membership feature channel that encodes token-level semantics. Each
token is represented by a vector of interpretable features (e.g. part-of-speech cues, shallow roles,
boundary flags, sentiment polarity and strength) whose values are graded degrees from differentiable
membership functions (e.g. power kernels). These per-token vectors form a sentence-level semantic
matrix fused via a gated adapter into the LM. Training uses standard next-token prediction, an auxiliary
loss that reconstructs the semantic features from hidden states, and a lightweight “uniformizer” that
regularizes adjective-class distributions. On a synthetic two-clause corpus with held-out adjectives
for out-of-distribution (OOD) control, semantic fusion improves perplexity and enables precise,
user-controllable generation of polarity and punctuation while maintaining model simplicity. This
approach adds only small overhead, remains fully compatible with tied input-output embeddings, and
provides an interpretable pathway for conditioned natural language generation.

1 BACKGROUND

Conventional token embeddings entangle many factors (syntax, semantics, style), which can limit both controllability
and interpretability Mikolov et al.| (2013); |Peters et al.| (2018)); |[Ethayarajh| (2019). We ask whether interpretable
semanticgﬂ can be exposed as an auxiliary channel that both improves modeling accuracy and provides handles for
controllable generation Keskar et al.|(2019); |Dathathri et al.| (2020); Krause et al.| (2021)); [Hokamp & Liu (2017). In
standard neural LMs, each token w € V is represented by an index and mapped to a dense vector ¢ = E[w] via an
embedding table F' € RIVI¥4: these embeddings, combined with positional signals (e.g. sinusoidal Vaswani et al.| (2023)
or rotary Su et al.| (2023))), are processed by a Transformer|Vaswani et al.|(2023)). While effective, this representation is
implicit: part-of-speech, syntactic role, polarity, and stylistic cues are folded into e and must be discovered from data
Tenney et al.|(2019); [Hewitt & Manning|(2019), and conditioning is typically imposed externally through prompts or
control codes |Keskar et al.| (2019), whose effects can be brittle.

Fuzzy logic offers a complementary view in which concepts are expressed by membership functions that assign graded
degrees of truth|Zadeh|(1965). A fuzzy set on a universe U is defined by p : U — [0, 1], and linguistic categories such
as low/medium/high intensity are modeled by overlapping memberships (e.g. triangular, trapezoidal, or Gaussian [Klir &
Yuan|(1994)) that softly partition a scalar variable. We leverage this idea at the token level: predicates such as is_adj,
pos_high, or str_med are encoded as fuzzy memberships and used as differentiable targets. Concretely, for a scalar
signal = (e.g. sentiment magnitude) and center ¢ with temperature 7, we use the membership function

;e r) = 0.912=¢/7 ¢ (0,1]
which decreases smoothly with distance and is amenable to gradient-based learning.

We then fuse these graded, interpretable features with the text stream, so the model learns next-token prediction while
aligning hidden states to an explicit semantic scaffold. This brings three benefits: (i) a low-variance supervisory signal
that guides the backbone toward useful abstractions at the positions where they matter (e.g. adjective and punctuation
slots), (ii) continuous control variables (real-valued scalars in [0, 1]) for test-time steering (e.g. increasing str_high
smoothly raises the probability of higher-intensity completions), and (iii) a bias towards class-level generalization (e.g.
the set of positive adjectives) rather than memorization of individual words. Importantly, the predicates used for training
are the same ones used for control at inference, aligning supervision with steering and improving both perplexity and
the reliability of conditioned generation.

'We use “semantic” to denote interpretable token-level features (e.g. roles, POS-ish cues, boundary/style, and sentiment
polarity/strength). This differs from formal, truth-conditional semantics in logic/knowledge representation.
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2 METHOD

Fuzzy semantic features. Let a sentence have length L and tokens {w; }_ ;. For each position ¢ we build a semantic
feature vector s; € [0,1]¥, where F is the number of predicates in a fixed feature bank: POS-like cues (is_noun,
is_verb, is_adj), shallow syntax (is_subject, is_object, is_head), boundary flags (is_bos, is_eos, is_comma,
is_question), sentiment triplets (pos_low/med/high, neg_low/med/high), a strength triplet (str_low/med/high),
and light discourse/style (coref_subject, is_capitalized, is_pronoun). Binary predicates take values in {0, 1};
graded predicates use a power-law triangular membership function. Given any scalar attribute value = € [0, 1], a
bandwidth 7 > 0, and centers C = {cy, c2, c3}, we define

wlwie,m) =09V (0,1],  Tri(w;C,7) = [u(wser, ), plw; ea,7), plws c5,7)] M
We fix C = {0.2,0.6,1.0} and 7 = 0.35 so that low/med/high correspond to the three centers.

Sentiment instantiation. Let s*(w;) € {—1,0,+1} be a token-level polarity score derived from the adjective lexicon
(positive/negative/neutral). We decompose it into nonnegative channels zpos(t) = max{0, s*(w;)} and Zpeg(t) =
max{0, —s*(w;)}, and set

(pos_low, pos_med, pos_high); = Tri(zpes(t);C,7)

(neg_low, neg_med, neg_high); = Tri (xneg(t); C, T)

Strength instantiation. Let r*(w;) € [0, 1] encode intensity (e.g. slightly— 0.2, moderately— 0.5, very— 0.8,
extremely— 1.0), with an optional +0.2 nudge (capped at 1) when the final punctuation is “!”. At the adjective slot,
r* is derived from the immediately preceding intensifier. We set

(str_low,str_med,str_high), = Tri(r*(w;); C, )

Stacking the per-token vectors yields the sentence-level semantic matrix S = [s{;...;s]] € [0,1]%*F, which we fuse
with the LM.

Gated semantic fusion. Let x1.7, be token ids over a vocabulary V of size V' = |V| (including specials <bos>, <eos>,
<pad>). Let E € RV*? be the embedding table, e; = E[r;] € R? the standard token embedding, and s; € [0, 1]F
the fuzzy-membership feature vector at position ¢ (with F' the number of predicates in the feature bank). We project
semantics with u; = Wys; € R4, compute a token-conditioned gate, and fuse additively:

90 = o (Wylew s1]) € (0,1)7, 2)

WO = e, +up + g © up, 3)

H = TransformerEnc (PosEnc(h(l%)) (€))

where [-; -] denotes concatenation and © the elementwise (Hadamard) product. The term g; ® u; acts as a per-dimension

gate on the semantic projection: since h§°) = e; + (1 + g;) ® ug with g; € (0,1)%, the semantic contribution is
ampliﬁe by a factor in (1, 2) in each dimension (approaching 1 when g; ~ 0 and 2 when g; ~ 1). The LM head
is weight—tie(ﬂ p(y: | ¥<¢) = softmax(E " Hy;). An auxiliary head predicts semantics §; = o(MLP(Hy)), aligning
hidden states with interpretable features.

Fusion here refers to early, gated integration of two parallel token representations (i.e. the usual, learned text embedding

e; and the explicit fuzzy-semantic feature vector s;) into a single representation h§0> consumed by the Transformer.
The gate g; learns how much semantic signal to inject per dimension and position (e.g. near INTENS/ADJ/PUNCT
slots), while the residual path e;+u; preserves a strong fallback when semantics are unhelpful. This design yields both
better perplexity (the model gets low-variance cues when they matter) and controllability (the same predicates used at
training time are available to steer decoding at test time).

>For example, if us,; = 0.30 and g¢,; = 0.8, then the semantic contribution on dimension j becomes 0.30 + 0.8 x 0.30 = 0.54;
if g¢,; ~ 0, it stays near 0.30. Because g; = o(Wy]es; s¢]), the gate is token- and feature-conditioned and tends to be higher at
INTENS/ADJ/PUNCT slots.

By “tied input-output embeddings” we reuse the input embedding matrix £ € RY*? as the output softmax weight, i.e.,
logits, = H:E' + b. Our fusion keeps the hidden size d unchanged and injects the semantic projection Wss; € R? before the
Transformer, so the tied LM head (E ) remains valid. This preserves the parameter savings and regularization benefits of tying
while adding the semantic channel, and no extra vocabulary-sized output layer is introduced.
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Training objective: label smoothing + auxiliary + uniformizer losses. Let y;.7, be the target next-token sequence,
and let pg(- | z<;) denote the model’s predictive distribution at position ¢ (obtained by softmax over the LM head
logits). For each token ¢, let s; € [0, 1]¥ be the ground-truth semantic feature vector and 3; € [0, 1]¥" the model’s
prediction from hidden states. We minimize the total loss

‘C = £LM +)\aux Laux +)\uni £uni (5)
N~~~ S~~~ ~~
label-smoothed cross-entropy BCE on §; vs. s¢ adjective-class uniformizer

where we use A\ ux = 0.5 and A\y,; = 0.01. BCE is the binary cross-entropy, a negative log-likelihood for a Bernoulli
target and is used when each output dimension is an independent yes/no label (e.g. each semantic feature is present or
not). For a target y € {0, 1} and a predicted probability p € (0, 1), we have [}

BCE(y,p) = —[ylogp + (1 —y)log(1 — p)]

For a feature vector s; € [0, 1]F with predictions §; € (0,1)¥, we compute BCE per feature and then average over
features f =1,..., F.

Label-smoothed LM loss. With label-smoothing e = 0.02, the smoothed target for y; over vocabulary V is ¢.(v) =
(1 —e)1[v = y¢] + ¢/|V|. The loss is the average cross-entropy over non-pad positions:

L = Z CE(g(-),po(- | w<s)), Z = # of non-pad tokens 6)

This smoothing reduces overconfident peaks on the target token, improving calibration and generalization, which is
particularly helpful with small vocabularies and synthetic data.

Auxiliary semantic reconstruction. The auxiliary head predicts §; € [0, 1]¥" and is trained with binary cross-entropy
(BCE) per feature:

L F
1 .
['aux = E § E BCE(St,f7 St,f) (7)

t=1 f=1

where Z = L - F normalizes over all token-feature pairs. We treat fuzzy memberships as soft Bernoulli targets
(st,y € [0,1]), which standard BCE supports. This loss term explicitly aligns hidden states with the interpretable
semantic matrix .S, reducing representation ambiguity and ensuring that the same features used for test-time control
(e.g. polarity/strength) are reliably present in the model’s internal states, which in turn improves next-token prediction
and stabilizes controllable decoding.

Adjective-class uniformizer. Let A C {1,..., L} be positions whose target token is an adjective. For t € A, let

C; C V be the corresponding adjective class (positive or negative). Let £, € RIVI be the pre-softmax logits at ¢, and

define the class-restricted distribution pgc‘) = softmax(£;[C;]). We penalize deviation from the uniform distribution
¢, on that class using the Kullback-Leibler (KL) divergence:

Z KL (p || uc,) 8)

unl =
M =

where uc, (w) = 1/|C| for w € C; (zero otherwise). This term acts as a mild, class-conditional entropy regularizer
that prevents mode collapse onto a few frequent adjectives, thereby improving calibration and enabling controllable
selection of rare or held-out adjectives at test time without materially damaging perplexity.

Controllable decoding with OOD-friendly sampling. We use a finite-state grammar (FSG) to constrain a clause:

SUBJ — VERB — “the” — OBJ — “” = INTENS — ADJ — PUNCT.

At each state we apply (i) a grammar mask that keeps only allowable tokens, (ii) a state-aware logit steer at ADJ/PUNCT
that adds small, control-driven shifts to the logits (controls are scalar features in [0, 1], e.g. pos_high or is_question),
and (iii) a last-k repetition penalty, with k = 3 by default. Under strong requests we optionally hard-restrict adjectives
to the desired polarity and deterministically set punctuation (“!”” or “?”).

“For example, if a model outputs a logit z with p = o(z), then BCE(y, 0 (2)) = —[ylogo(2) + (1 — y)log (1 — o(2))].
This differs from (multi-class) cross-entropy, which assumes exactly one class is correct; BCE allows multiple features to be “on”
simultaneously.
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At the ADJ state, let C C V be the indices of the active adjective class (positive or negative), and let {¢ € RI€l be the
class-restricted logits from the LM head. With temperature 7>0 we define the pre-mix distribution p = softmax(¢c/T).
To promote OOD adjectives within the class, we sample from the convex group-uniform mixture

qg=(1—a)p+ aUnif(C), a€[0,1] ©)
where Unif (C) is the uniform distribution on C:

. 1/IC|, weCcC,
Unif(€)(w) = {0, otherwise.
We form ¢ as a convex mixture of p and Unif(C) with a € [0,1]; in our experiments, p is the class-restricted,
renormalized softmax p = softmax(¢/T') on indices in C. Then we apply nucleus (top-p) sampling to ¢ with threshold
p € (0,1]. This “mix-then-truncate” step preserves probability mass for rare or held-out adjectives: the uniform
component prevents collapse onto a few high-probability seen adjectives so held-out ones retain meaningful probability,
and applying nucleus to ¢ (rather than to the raw softmax) ensures these boosted tokens survive the truncation.

3 TESTS

3.1 EXPERIMENTAL SETUP

Data. We construct a synthetic corpus of clause-structured sentences. With probability 0.6, a second clause is appended
that corefers to the first-clause subject via a pronoun (“she/he/they”). The vocabulary is small and fixed: subjects
{Alice, Bob, Carol, Dave, Eve}; verbs {finishes, reviews, trains, starts, cooks}; objects {task, paper, model, project,
meal }; intensifiers {slightly, moderately, very, extremely }; positive-polarity adjectives (pof]) {good, great, excellent,
pleasant, wonderful }; and negative-polarity adjectives (neg) {bad, poor, terrible, unpleasant, awful}. To evaluate OOD
control, we hold out roughly half of the adjectives (from both polarity classes) during training while keeping them
available at validation time and during controlled decoding; for example, we hold out wonderful/excellent/great (pos)
and terrible/awful/unpleasant (neg). We generate 8, 000 training and 1, 200 validation sentences and cap the sequence
length at 28 tokens, including the BOS/EOS markers.

Models and training. Both the baseline and the fusion models use the same encoder-only Transformer with tied
input/output embeddings. The backbone has hidden size d = 128, L = 4 encoder layers, H = 4 attention heads per
layer, feed-forward width 256 (dropout 0.1). We train for 6 epochs with AdamW [Loshchilov & Hutter| (2019) (learning
rate 3 x 10~%, weight decay 0.01), batch size 64, a warmup+cosine learning-rate schedule (10% warmup), gradient
clipping at norm 1.0, and label smoothing € = 0.02 on the LM loss. The fusion variant adds a linear projection of the
semantic features and a learned gate for fusion, plus an auxiliary head that reconstructs semantics (weight A\,.x = 0.5).
Both models are trained with a small adjective-class uniformizer (weight Ay, = 0.01) that encourages within-class
coverage.

Evaluation. We report: overall perplexity (PPL; evaluated without label smoothing), seen-only PPL computed after
masking out held-out adjectives (see Appendix[C); mean-squared error (MSE) of the auxiliary semantic predictions;
per-token cross-entropy on a set of focus tokens (e.g., intensifiers and punctuation); control success rates for adjective
polarity and punctuation; confusion matrices (intended vs. realized polarity); and the OOD control hit rate, i.e., the
fraction of trials where the generator selects a held-out adjective when asked for a given polarity class.

To prevent the fusion model from gaining an advantage via decoding alone, the baseline uses the same finite-state
grammar and a last-k repetition penalty [°|during generation (Section}2). This “fair” baseline ensures that qualitative
differences are attributable to the semantic channel rather than grammar constraints.

3.2 RESULTS

Language modelling. Fusion reduces overall PPL from 2.249 to 2.152 (= 4.3% relative) and seen-only PPL from
1.511 to 1.431 (= 5.3%), indicating that the semantic channel contributes predictive structure beyond what the backbone
infers, even when held-out adjectives are excluded.

SWe use PoS for part-of-speech (noun/verb/adj) and pos/neg for positive/negative polarity. Thus “adjectives (pos)” denotes
positive-polarity adjectives (not PoS tags).

%In our samples, the baseline uses a stronger last-3 penalty and top-k = 20, while Fusion uses a moderate penalty and nucleus
only. See Appendix for details.
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Model PPL | Seen-only PPL| Sem.MSE | Adj.ctrl. acc. T Punct. ctrl. acc. T OOD hit (POS/NEG) 1
Baseline 2.249 1.511 - - - -
semantic fusion 2.152 1.431 0.0087 1.00 1.00 0.62/0.43

Table 1: Main metrics on the synthetic task (validation). “Seen-only” excludes held-out adjectives. OOD hit is the
probability of producing a held-out adjective under strong class-appropriate control.

I I
8 —e— Baseline

- & - Fusion+Aux

Validation Perplexity (PPL)

Figure 1: Validation perplexity across epochs for Baseline and Fusion+Aux models.

Training dynamics. Fig[I|plots validation perplexity (evaluated without label smoothing) across epochs. Both models
converge smoothly, with semantic fusion below the baseline from the first epoch (5.474 vs. 8.346) and retaining a gap
through epoch 6 (2.152 vs. 2.249). Most gains accrue early (by epoch 3 Fusion reaches 2.208), after which both curves
plateau. A small wobble at epoch 4 for Fusion (2.208—2.213) is within normal validation noise.

Controllability. Under hard control, adjective polarity and punctuation both reach 100% success (200/200 for
POS and NEG; punctuation also perfect), and the intended-vs. realized confusion matrix is strictly diagonal. This
demonstrates precise, user-controllable generation when explicit constraints are applied (Tables[2] and [3).

Setting (N=200) Adj. control acc. T Punct. control acc. 1

Positive control (pos_high) 1.00 (200/200) 1.00 (200/200; 1)
Negative+question (neg_high+is_question) 1.00 (200/200) 1.00 (200/200; “?7*)

Table 2: Hard-control success for the fusion generator. Each row evaluates N = 200 completions under the indicated
control. Adj. control acc. = fraction whose final adjective belongs to the requested polarity class; Punct. control acc. =
fraction whose final punctuation matches the request. Hard control enforces class restriction at ADJ and deterministic
punctuation at PUNCT within the one-clause FSG. Both settings achieve 1.00 (200/200), i.e. perfect execution.

Out-of-distribution control. With half the adjectives held out per polarity, the fusion model selects held-out positive
adjectives in 62% of controlled runs and negative held-outs in 43% (Table[d). The positive rate is on par with a
class-uniform reference of 60% (3/5 held-out), indicating class-level generalization rather than memorization. The
lower NEG rate likely reflects (i) a less aggressive uniform-mixture setting and slightly stronger nucleus truncation
during NEG decoding, and (ii) the use of medium strength (str_med), which co-occurs more with seen negatives
(badlpoor) than with stronger held-outs (awful/terrible). These behaviors are consistent with the uniformizer and
group-uniform mixture in Section[2} in practice, we can increase the NEG mix weight o (and/or relaxing nucleus on the
mixture) and steer to higher strength to raise the NEG OOD hit rate.

Qualitative generations (unprompted). We first show unprompted one-clause generations that start from <bos>
(no prefix). Some examples are shown in Table[2] It is evident that, neutral samples are grammatical and coherent;
under positive control the model reliably realizes high-intensity positive adjectives (e.g. “extremely wonderful!”), while
negative+question control yields consistent interrogatives (e.g. “moderately bad?”). The baseline, even with the fair
grammar, tends to repeat safe patterns (e.g. “Dave starts the paper, moderately good.”), whereas the fusion model
exhibits more varied adjective choices consistent with the requested semantics.
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Realized
Intended POS NEG OTHER
POS 200 (1.00) 0 (0.00) 0 (0.00)
NEG 0 (0.00) 200 (1.00) 0 (0.00)

Table 3: Confusion matrix under hard control with the fusion generator. Rows are the intended adjective polarity;
columns are the realized polarity. “OTHER” denotes any adjective not in the POS/NEG lists. Each row aggregates
N = 200 generations. The strictly diagonal matrix (200 on-class, O off-class) indicates no polarity flips and no
off-class/invalid adjectives.

Class (held-out set) OOD hitrate T  Trials
POS (wonderful, excellent, great) 0.62 200
NEG (terrible, awful, unpleasant) 0.43 200

Table 4: OOD control: probability of producing a held-out adjective under the correct class control.

Prompted continuation (prefix-conditioned). In a separate setting we provide a fixed prefix that matches the
grammar (e.g. “Carol starts the model,”). This prompted case is different from Fig[2} here decoding begins at INTENS
given the prefix, so the subject/verb/object are held fixed by the prompt. The results presentedin Fig[5|shows that, the
baseline continues with safe completions (e.g. “slightly good.”), whereas the fusion model yields “extremely pleasant!”
under no control and respects requested controls (e.g. “extremely excellent!” or “extremely bad?”).

Prompt (fixed prefix): Carol starts the model,

Baseline (fair): Carol starts the model, slightly good.

Fusion (no control): Carol starts the model, extremely pleasant!
Fusion (positive & strong): Carol starts the model, extremely excellent!
Fusion (negative & question): Carol starts the model, extremely bad?

Table 5: Prefix-conditioned completions with a fixed prefix. Unlike Fig[2] which shows unprompted generations (no
prefix), these examples condition on the prefix and begin decoding at INTENS. Settings: baseline 7' = 0.7, top-p = 0.9,
top-k = 20; fusion T' = 0.7, top-p = 0.9; controls as indicated.

Focus-CE analysis. Tablel6|reports per-occurrence token-wise cross-entropy (CE). semantic fusion substantially
improves key control and boundary tokens: ! (—34.8%), ? (—26.1%), very (—30.8%), good (—31.4%), and slightly
(—17.9%) relative to the baseline. For held-out adjectives, CE remains high as expected; great (held-out POS) increases
(+30.3%), reflecting a trade-off where the uniformizer flattens within-class distributions to improve coverage for OOD
control rather than concentrating probability on any single held-out item. Additionally, terrible (held-out NEG) shows
a small improvement (—0.5%). A minor regression on commas (+21.1%) has negligible impact on controllability or
well-formedness.

Semantic reconstruction. The auxiliary head attains an MSE of 0.0087 (averaged over non-pad token-feature pairs),
confirming that it reconstructs the fuzzy-membership vector and the hidden states encode the fuzzy semantics with low
error, which in turn supports reliable test-time control.

We therefore observe that, semantic fusion (i) improves PPL and seen-only PPL with minimal overhead, (ii) delivers
perfect execution under hard polarity/punctuation control, (iii) generalizes control to held-out adjectives at substantial
rates, and (iv) reduces token-level CE where control matters most (intensity and punctuation), with minor, explainable
regressions on certain held-out or low-salience tokens.

3.3 EXPERIMENT ON THE REAL DATASET

In order to check that our mechanism is useful beyond the synthetic setting, we run a sanity check on the SST-
2 dataset [Socher et al.| (2013); |[Wang et al.| (2019a). The baseline and fusion models use the same encoder-only
Transformer with tied input/output embeddings (hidden size 128; 4 encoder layers; 4 attention heads per layer; feed-
forward 256; dropout 0.1). We train for 6 epochs with AdamW (learning rate 3 x 10~4, weight decay 0.01), batch
size 64, warm-up + cosine schedule (10% warm-up), gradient clipping at norm 1.0, and label smoothing € = 0.02 on



Under review as a conference paper at ICLR 2026

Baseline (fair): Dave starts the paper, moderately good.

Fusion (neutral):
e Alice cooks the model, moderately pleasant!
e Alice reviews the model, moderately pleasant!

Fusion (positive & strong):

e Alice reviews the paper, moderately excellent!

e Carol finishes the model, extremely wonderful!
e Alice reviews the model, moderately pleasant!

Fusion (negative & question):

* Carol finishes the model, moderately bad?

¢ Alice cooks the model, moderately terrible?

e Alice reviews the model, extremely awful?

Figure 2: Representative unprompted generations under different controls (decoding starts at <bos>). Each Fusion block
shows three independent samples. All runs use the one-clause finite-state grammar and nucleus sampling (p = 0.9).
Baseline (fair): temperature 0.7, top-k = 20, last-3 repetition penalty (strong). Fusion (neutral): temperature 0.7,
no control. Fusion (positive): control {pos_high= 0.95, str_high= 0.9}, with “!” at PUNCT. Fusion (negative
& question): control {neg_high= 0.95, is_question= 1.0, str_med= 0.6}, with “?”” at PUNCT. “Baseline (fair)”
denotes decoding under the same FSG, sampling settings, and repetition guard as Fusion, but without semantic steering
or class-mixture, ensuring differences are not due to decoding.

Token Baseline CE | Fusion CE | A (%) ] Hold-out?
good 0.00258 0.00177 —31.4 No
great 6.86868 8.94856 +30.3 Yes (POS)
terrible 7.02154 6.98764 —0.5 Yes (NEG)
slightly 0.00309 0.00254 —17.9 No
very 0.00277 0.00191 —-30.8 No
! 4.42129 2.88172 —34.8 No
? 3.94640 2.91456 —26.1 No
, 0.00293 0.00354 +21.1 No

Table 6: Focus-token cross-entropy (CE; lower better, in nats) on the validation set, computed per occurrence
of the token (i.e. conditioning on positions where that token is the gold next token). A is the relative change
(Fusion — Baseline)/Baseline x 100%. Held-out adjectives in this run: POS={wonderful, excellent, great},
NEG={terrible, awful, unpleasant}.

the LM loss. The fusion variant adds a linear projection of the fuzzy semantic features and a learned gate for fusion,
plus an auxiliary head that reconstructs the semantics (weight A\,ux = 0.5). To keep decoding fair, the baseline uses the
same finite-state grammar and repetition guard as Fusion (“fair” baseline).

We report four metrics: (i) validation perplexity (PPL), computed without label smoothing; (ii) mean-squared error
(MSE) of the auxiliary semantic predictions; (iii) control success rates for adjective polarity and punctuation; and
(iv) a polarity confusion matrix comparing intended versus realised adjectives at the control slot. We do not evaluate
out-of-distribution (OOD) performance on SST-2 because no held-out adjective split is imposed on this real-world
corpus; OOD remains part of the synthetic benchmark where lexical hold-outs are cleanly defined.

Model PPL| Sem.MSE| Adj.ctrl. acc. T Punct. ctrl. acc.
Baseline 3.885 - - -
Semantic Fusion  1.111 0.0039 1.00 1.00

Table 7: Main metrics on the SST-2 dataset (validation).

As shown in Table Semantic Fusion reduces the validation PPL from 3.885 (Baseline) to 1.111 (Fusion), ~ 71.4%
relative decrease. The auxiliary semantic MSE = 0.0039, confirming that the model learns the intended fuzzy features.
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Figure 3: SST-2 validation perplexity across epochs (log scale). Fusion+Aux converges faster and remains better than
the baseline.

4 DISCUSSION

Semantic fusion improves language modeling accuracy by injecting an explicit, interpretable semantic channel alongside
the text stream. The sentence-level matrix .S provides structure at positions with salient choices for this task (e.g.
INTENS, ADJ, PUNCT), allowing the backbone to condition on cues it would otherwise have to infer implicitly.
A lightweight gated adapter learns to weight this signal where helpful and ignore it where not, while the auxiliary
head (with MSE = 0.0087) encourages hidden states to align with S. Empirically, this corresponds to lower validation
perplexity overall and on the seen-only subset, and to reduced token-wise cross-entropy on intensity and punctuation
tokens, indicating that gains are not confined to directly supervised adjectives but reflect a broader inductive bias.

The same semantic predicates that the model learns to reconstruct at training time are reused at test time to steer
decoding, which makes control robust and transparent. A finite-state grammar mask enforces the one-clause template;
state-aware logit steering targets the adjective and punctuation states; and fuzzy triplets (e.g. str_low/med/high)
expose graded knobs rather than brittle one-hot tags. Under hard constraints (class restriction and deterministic
punctuation), polarity and punctuation control are perfect (see Table[2} Table 3| being strictly diagonal). Without hard
restriction, soff steering is qualitatively effective while preserving diversity (Fig[2).

Beyond accuracy and control, the method generalizes to OOD adjectives by promoting class semantics rather than
memorized lexemes. A small adjective-class uniformizer discourages within-class mode collapse, and group-uniform
mixture sampling (with nucleus applied after mixing) preserves probability mass for rare/held-out items; together they
yield OOD hit rates of 62% for positive and 43% for negative adjectives (TableE]). The positive rate is on par with a
class-uniform reference (3 of 5 held-out items), while the lower negative rate likely reflects milder mixture/truncation
settings and the use of medium strength (str_med). Practically, the approach is simple and compatible with standard
encoder-only LMs (weight tying retained by injecting semantics pre-encoder) and common optimization (AdamW, label
smoothing, cosine schedule), and it remains interpretable: the feature bank exposes human-readable controls and the
auxiliary head’s low MSE (0.0087) quantifies how well those semantics are encoded.

5 CONCLUSION, LIMITATIONS AND FUTURE WORK

Conclusion. We introduced semantic fusion, a lightweight mechanism that augments a Transformer LM with a
parallel, fuzzy-membership feature channel fused by a gated adapter and regularized with an auxiliary reconstruction
head plus a small adjective-class uniformizer. On a controlled synthetic task, it consistently lowers validation perplexity,
delivers perfect polarity and punctuation control under hard constraints, generalizes control to held-out adjectives at
substantial rates, and yields remarkable reductions in token-level cross-entropy for intensity and punctuation. These
gains come with minimal architectural overhead, preserve tied input-output embeddings, and align training-time
supervision with test-time controls, providing an interpretable pathway for conditioned natural language generation.

Limitations. Our evaluation uses a synthetic, templated corpus with a small vocabulary and a one-clause decoding
grammar (for clarity), which limits ecological validity. The semantic features are hand-specified and depend on fuzzy
heuristics (e.g. polarity/strength maps and fixed membership kernels) and our strongest controllability results use
hard class restriction at decoding; purely soft steering on natural text is more challenging. We also report automatic
metrics only; human evaluations of fluency, faithfulness, and perceived control are absent. Finally, while training data
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often contain two clauses, our qualitative decoding demonstrations predominantly use one-clause FSG, and we did not
explore prefix-conditioned prompting in the main experiments.

Future work. To scale beyond synthetic data, we plan to (i) induce the semantic channel from raw text via weak
supervision (e.g. lightweight taggers, distant lexicons) or an end-to-end auxiliary predictor trained jointly; (ii) expand
the feature bank to tense/aspect, modality, discourse markers, factuality/hedging, coreference, and pragmatic cues; and
(iii) replace fixed memberships with learnable, monotonic kernels (e.g. temperature-annealed power laws or spline-based
functions) with calibration. For controllability, we aim to strengthen soft-only control using contrastive or energy-based
heads (or classifier-free-style logit fusion) at designated states, infer grammar state from prefixes, and move beyond a
hand-crafted FSG to learned multi-clause constraints. Broader evaluation will include human studies, robustness/safety
analyses (e.g. bias-aware features and guardrails), systematic ablations of the gate/auxiliary/uniformizer components,
and comparisons against controllable-LM baselines (e.g. CTRL [Keskar et al.|(2019), PPLM |Dathathri et al.|(2020), GeDi
Krause et al.|(2021)), DExperts [Liu et al.|(2021)), etc). Finally, we will transfer the approach to open-domain corpora
and larger backbones (including causal decoders), explore multilingual settings, and integrate with parameter-efficient
adapters, where semantic fusion could complement prompt-based and RLHF-style conditioning.

6 RELATED WORK

Transformer LMs and training practices. Modern language modeling is dominated by the Transformer architecture
Vaswani et al.|(2023)), whose scalability and capacity to learn from data with minimal inductive bias have enabled strong
generative performance across domains such as machine translation|Wang et al.|(2019b), abstractive summarization
Pilault et al.| (2020); [Kumar & Solanki| (2023)), open-domain dialogue [Roller et al.|(2020), and code generation |Chen
et al.| (2021), etc. Several training practices, as adopted in our work, are standard: tying the input and output embeddings
reduces parameters and often improves perplexity Shehper et al.| (2025); [Press & Wolf] (2017); [Inan et al.|(2017); label
smoothing mitigates overconfidence and improves generalization Szegedy et al.|(2015); [Pereyra et al.| (2017); AdamW
Loshchilov & Hutter|(2019) decouples weight decay from the adaptive update and is now a default optimizer for LMs
Guan| (2023)); warmup schedules stabilize early training for Transformers |[Vaswani et al|(2023)); and cosine annealing
(with or without restarts) is a widely used schedule for large-scale models [Loshchilov & Hutter| (2017)). In our work, we
integrate our semantic channel before the encoder and keep the hidden width unchanged, so weight tying remains valid
by construction |Press & Wolf| (2017); Inan et al.| (2017).

Controllable generation and decoding. Control over style or attributes has been pursued via control codes (condi-
tioning on special tokens) |[Keskar et al.|(2019), plug-and-play guidance with external discriminators that steer logits at
inference [Dathathri et al.| (2020), and classifier-guided priors such as GeDi |[Krause et al.|(2021). Orthogonal to these,
constrained decoding restricts the hypothesis space using lexical or grammar constraints Hokamp & Liu/(2017). To
maintain fluency and reduce degeneration, sampling strategies such as top-k [Fan et al.| (2018)) and nucleus (top-p)
Holtzman et al.| (2020) sampling are commonly used |[Holtzman et al.| (2020), along with repetition penalties and
coverage-style heuristics Holtzman et al|(2020). Our approach differs from prior control methods by (i) exposing
an interpretable feature channel (polarity, strength, roles) that the model learns to predict and (ii) reusing those same
features for test-time steering, while optionally combining with finite-state grammar masks and nucleus sampling for
reliability.

Fuzzy logic and auxiliary supervision. Fuzzy sets provide graded membership functions for linguistic categories
Zadeh| (1965), with standard triangular/Gaussian/trapezoidal parametrizations widely used in fuzzy systems |Klir & Yuan
(1994). We draw on this formalism to encode token-level predicates as differentiable membership degrees, supplying a
low-variance supervisory signal aligned with human-interpretable semantics. Using auxiliary objectives to shape internal
representations traces back to multitask learning (Caruanal (1997); in this work, our auxiliary head predicts the fuzzy
feature bank, encouraging hidden states to retain interpretable cues that can be leveraged both for language modeling
and for controllable decoding. Finally, our adjective-class “uniformizer” connects to confidence-penalty/entropy-style
regularization that discourages overconfident, peaky distributions |Pereyra et al.|(2017), but is applied class-conditionally
to promote coverage within a semantic class, aiding OOD control.
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A APPENDIX

B IMPLEMENTATION DETAILS

Compute environment. Experiments were run in Google Colab, on a Linux x86_64 virtual machine (KVM) with a
single-socket Intel Xeon CPU @ 2.20 GHz (6 physical cores / 12 threads), 179 GB RAM, and ~253 GB local storage.
The host supports AVX2/AVX-512 (incl. VNNI). No discrete GPU was available, so all training/inference used the
PyTorch CPU backend.
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Backbone and parameterization. Both baseline and fusion models use an encoder-only Transformer with tied
input/output embeddingsﬂ Hidden size d = 128, layers L = 4, heads H = 4, feed-forward width 256, dropout 0.1,
sinusoidal positional encodings.

Semantic feature bank. For each token we compute s; € [0, 1] over interpretable predicates: is_noun, is_-
verb, is_adj, is_subject, is_object, is_head, is_bos, is_eos, is_comma, is_question, pos_low/med/high,
neg_low/med/high, str_low/med/high, coref_subject, is_capitalized, is_pronoun. Graded predicates use
fuzzy/triangular memberships with a power kernel

(e, ) =097/ Tri(z;{0.2,0.6,1.0},7), 7=0.35
Fusion module. Lete; = E[x], uy = Wysy, and g4 = O'(Wg [es; st]) The fused input to the encoder is

hEO) =er T U+ g: ©ug

followed by positional encoding and the Transformer encoder. The LM head is tied: p(y:|z<;) = softmax(E " H;).
An auxiliary MLP predicts §; = o(MLP(Hy)).

Optimization and schedule. We train for 6 epochs with AdamW Loshchilov & Hutter| (2019) (learning rate 3 x 104,
weight decay 0.01), batch size 64, gradient clipping at norm 1.0, and a warmup+-cosine schedule (10% warmup). Label
smoothing € = 0.02 is applied to the LM loss during training (turned off for validation metrics). The auxiliary semantic
head uses BCE with weight A\,,x = 0.5. The adjective-class uniformizer has coefficient A, = 0.01:

1 ()
‘Cuni = T KL
PR

uct) o ue (w) = gy

Data generation. Synthetic corpus with probability 0.6 of adding a second clause that corefers via pronoun
(she/he/they). Vocabulary: subjects {Alice, Bob, Carol, Dave, Eve}; verbs {finishes, reviews, trains, starts,
cooks}; objects {task, paper, model, project, meal}; intensifiers {slightly, moderately, very, extremely};
adjectives (pos) {good, great, excellent, pleasant, wonderful} and (neg) {bad, poor, terrible, unpleasant,
awful}. We hold out roughly half of the adjectives (both polarities) for OOD control; e.g. pos hold-out {wonderful,
excellent, great}, neg hold-out {terrible, awful, unpleasant}. Train/val sizes: 8,000/1,200; max length 28
(incl. BOS/EOS).

Prompted decoding. If a user-supplied prefix matches the one-clause FSG (e.g. Carol starts the model,), we validate
it, set the next grammar state accordingly (here, INTENS), and continue decoding from that state. For fusion, semantic
features are recomputed for the prefix before continuation.

Decoding. Finite-state grammar (FSG) for one clause:
SUBJ — VERB — “the” — OBJ — “” — INTENS — ADJ — PUNCT.

We apply a grammar mask (allowed tokens only), a last-k repetition penalty (k = 3; stronger for the baseline, factor
= 2.5, vs. fusion ~ 1.5), and state-aware logit steering at INTENS/ADJ/PUNCT. Under strong requests we optionally
hard-restrict adjectives to the desired polarity and deterministically set punctuation. To encourage OOD coverage at
ADJ we sample from a group-uniform mixture and then apply nucleus filtering:

p = softmax(lc/T), ue(w) = ﬁl[weC], ¢g=(1—-a)p+auc, ac]|0,1].

Sample using nucleus (top-p) applied to g

Typical settings: baseline fair decoding uses temperature 0.7, top-p = 0.9, top-k = 20; fusion neutral uses 7' = 0.7,
p = 0.9; fusion (positive & strong) uses control {pos_high= 0.95, str_high= 0.9} with mixture T" = 1.5, p = 1.0,
a = 0.97; fusion (negative & question) uses {neg_high= 0.95, is_question= 1.0, str_med= 0.6} with T' = 1.3,
p = 0.95, a = 0.85 (and at PUNCT choose “?”” deterministically).

"Tied input/output embeddings. The output softmax weights reuse the input embedding matrix: if £ € RY* is the token
embedding table, set Wou = E | so logits are z; = hyE ' + b. This reduces parameters and aligns input/output geometry; it requires
hidden size d to equal the embedding dimension.
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Metrics. Validation PPL is computed with label smoothing off. Seen-only PPL masks positions whose gold token is
in the held-out adjective set before averaging cross-entropy (Appendix Semantic MSE averages (3; — s;)? over
non-pad positions. Focus-token CE is the mean cross-entropy conditioned on positions where a given token is the gold
target. Control accuracy is measured over N = 200 generations per setting (adjective polarity and punctuation). OOD
hit rate is the fraction of controlled generations that realize a held-out adjective.

Seen-only PPL computation. Let 7 be the set of held-out adjective ids. For each position ¢, we drop the loss if the
gold token y; € H and average cross-entropy over the remaining positions; perplexity is exp of this average. See also

Appendix[C]

Reproducibility & configuration. We fix the random seed for random, numpy, and torch, and set the device to cuda
if available, else cpu. All other architectural choices (tied embeddings; 4-layer encoder, d = 128, H = 4, FFN width
256) and decoding settings are specified in the corresponding sections above to avoid duplication.

C SEEN-ONLY PERPLEXITY

This appendix formalizes the seen-only perplexity reported in our experiments and matches the implementation of
eval_perplexity_seen_only in the code.

Setup and notation. Let x1.;, be a validation sequence with gold next-token targets y;.;, over vocabulary V), and let
po(- | £<¢) denote the model’s next-token distribution (evaluated without label smoothing). Let # C V be the set of
held-out adjective token ids used for OOD testing:

H = {stoi(w) : w € ADJ_POS_HOLD U ADJ_NEG_HOLD}
Define the per-position cross-entropy (natural log)

CE; = —logpy (yt|$§t)
and a binary weight that drops padding and held-out targets:

wy = L[y # <pad>] - 1y, ¢ H]

Metric. Aggregate the masked loss and token count

L L
Lseen = § wtCEt» Nseen = § W
t=1 t=1

and report

L
PPLseen-unly = €exp (Nii:)

Batch form. For a batch with logits Z € RE*L*IVI gold y € VB*L, and non-pad mask m € {0,1}5*L, define
Kot = Lyps & H], cor = CE(softmax(Zb,t’;), yb’t)

Then
Dbyt Co, M tKb g

PPLseen—only = eXp(Eseen)
Zb,t My, 1Ko,

Cseen =

Implementation notes. (i) Label smoothing is disabled for this evaluation (true one-hot targets). (i) If
Zb)t my Ky, = 0 (no eligible positions), the implementation returns NaN. (iii) Context filtering is not applied:
held-out adjectives may appear in the inputs x<.; we only exclude positions whose fargets are held-out.

Rationale. This metric isolates predictive quality on the seen portion of the vocabulary under realistic contexts, which
is why PPLgcen-onty s typically lower than overall PPL in our runs.
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