
RLJ | RLC 2024

More Efficient Randomized Exploration for Rein-
forcement Learning via Approximate Sampling

Haque Ishfaq∗

haque.ishfaq@mail.mcgill.ca
Mila, McGill University

Yixin Tan∗

yixin.tan@duke.edu
Duke University

Yu Yang
Duke University

Qingfeng Lan
University of Alberta

Jianfeng Lu
Duke University

A. Rupam Mahmood
Amii, University of Alberta

Doina Precup
Mila, McGill University

Pan Xu
Duke University

Abstract

Thompson sampling (TS) is one of the most popular exploration techniques in rein-
forcement learning (RL). However, most TS algorithms with theoretical guarantees
are difficult to implement and not generalizable to Deep RL. While the emerging
approximate sampling-based exploration schemes are promising, most existing al-
gorithms are specific to linear Markov Decision Processes (MDP) with suboptimal
regret bounds, or only use the most basic samplers such as Langevin Monte Carlo. In
this work, we propose an algorithmic framework that incorporates different approxi-
mate sampling methods with the recently proposed Feel-Good Thompson Sampling
(FGTS) approach (Zhang, 2022; Dann et al., 2021), which was previously known
to be computationally intractable in general. When applied to linear MDPs, our
regret analysis yields the best known dependency of regret on dimensionality, sur-
passing existing randomized algorithms. Additionally, we provide explicit sampling
complexity for each employed sampler. Empirically, we show that in tasks where
deep exploration is necessary, our proposed algorithms that combine FGTS and
approximate sampling perform significantly better compared to other strong base-
lines. On several challenging games from the Atari 57 suite, our algorithms achieve
performance that is either better than or on par with other strong baselines from
the deep RL literature.

1 Introduction

A fundamental problem in reinforcement learning (RL) is balancing exploration-exploitation trade-
off. One effective mechanism for addressing this challenge is Thompson Sampling (TS) (Thompson,
1933; Strens, 2000; Osband et al., 2016b), which gained popularity due to its simplicity and strong
empirical performance (Osband et al., 2016a; 2018; Ishfaq et al., 2024). While there have been
numerous works on TS in both RL theory (Osband et al., 2013; Russo, 2019; Zanette et al., 2020a;
Ishfaq et al., 2021; Xiong et al., 2022) and deep RL literature (Osband et al., 2016a; 2018; Fortunato
et al., 2018; Plappert et al., 2018; Ishfaq et al., 2024; Li et al., 2024), there remains a substantial gap
between algorithms that excel in theoretical properties and those that demonstrate strong empirical
performance. This disparity highlights the need for a unified framework that provides the ultimate
unification of theory and practice for Thompson sampling.

In particular, heuristic RL algorithms that are motivated by TS (Osband et al., 2016a; 2018; Fortu-
nato et al., 2018) have shown great empirical potential while often lacking any theoretical guarantee.
Existing RL theory works on TS suffer from sub-optimal dimension dependency compared to its up-
per confidence bound (UCB) counterparts (Jin et al., 2020; Zanette et al., 2020a; Ishfaq et al., 2021;

∗Equal contribution

RLJ | RLC 2024

2024). Recently proposed Feel-Good Thompson sampling (FGTS) (Zhang, 2022; Dann et al., 2021)
bypasses this issue by incorporating an optimistic prior term in the posterior distribution of Q func-
tion. However, these works fail to provide any computationally tractable sampling procedure from
this posterior distribution.

Recently there has been some works that use Langevin Monte Carlo (LMC) (Dwaracherla & Van Roy,
2020; Xu et al., 2022; Ishfaq et al., 2024; Hsu et al., 2024) to implement TS which are both provably
efficient and practical. However, these works lack generality by confining only to LMC and it
remains unclear whether many other advanced approximate sampling methods are compatible with
this algorithmic scheme for implementing TS. Moreover, the theoretical analyses of these works
are limited to linear MDPs (Jin et al., 2020) while having sub-optimal regret bound. Thus, it is
unclear how the sampling error of LMC would affect the theoretical regret guarantee under more
general structural assumptions. This shows a clear divergence between the RL theory and the
deep RL literature when it comes to TS. To this end, we aim to design an approximate TS based
RL algorithm that is generalizable and flexible enough to use different approximate samplers while
achieving optimal dependency in the regret bound.

With this aim, we propose several FGTS class of algorithms that incorporates different approximate
samplers from the Markov Chain Monte Carlo (MCMC) literature. Unlike previous works that
assume exact posterior sampling (e.g., Zhang (2022); Dann et al. (2021); Agarwal & Zhang (2022a;b))
by assuming access to unrealistic sampling oracle, we propose practically implementable approximate
posterior sampling scheme under FGTS framework using different approximate samplers.

1.1 Key Contributions

We highlight the main contributions of the paper below:

• We present a class of practical and efficient TS based online RL algorithms that prioritizes
easy implementation and computational scalability. Concretely, we present practically imple-
mentable FGTS style algorithms that are based on approximate samplers from the MCMC lit-
erature. Our proposed algorithm allows flexible usage of different approximate samplers such
as Langevin Monte Carlo (LMC) (Durmus et al., 2019) or Underdamped Langevin Monte Carlo
(ULMC) (Chen et al., 2014; Cheng et al., 2018) and is easy to implement compared to other
state-of-the-art exploration focused deep RL algorithms.

• Our main theoretical result provides regret bound under general Markov decision processes and
value function classes. Our general analytical framework decomposes the regret bound into two
components: 1) the idealistic regret bound assuming exact TS (as addressed in many previous
works such as Agarwal & Zhang (2022b;a)), and 2) the additional term introduced by using
approximate samplers. This generalizable and fine-grained analysis allows us to analyze the
impact of sampling error for any RL setting with an existing exact-sampling regret bound and
known convergence rates for the approximate samplers.

• When applied to linear MDPs (Jin et al., 2020), our proposed algorithm achieves a regret bound
of Õ(dH

3
2
√

T), where d is the dimension of the feature mapping, H is the planning horizon, and
T is the total number of steps. This regret bound has the best known dimension dependency for
any randomized and UCB based algorithms.

• We provide extensive experiments on both N -chain environments (Osband et al., 2016a) and
challenging Atari games (Bellemare et al., 2013) that require deep exploration. Our experiments
indicate our proposed algorithms perform similarly or better than state-of-the-art exploration
algorithms from the deep RL literature.

1.2 Additional Related Work

Randomized least-squares value iteration (RLSVI) based algorithms induce deep exploration by
injecting judiciously tuned random noise into the value function (Russo, 2019; Zanette et al., 2020a;
Ishfaq et al., 2021; Xiong et al., 2022). Osband et al. (2016a; 2018) propose deep RL variant of
RLSVI wherein they train an ensemble of randomly initialized neural networks and view them as

RLJ | RLC 2024

approximate posterior samples of Q functions. Another deep RL variant of RLSVI is Noisy-Net
(Fortunato et al., 2018) that directly injects noise to neural network parameters during the training
phase. More recently, Dwaracherla & Van Roy (2020); Ishfaq et al. (2024) propose using LMC to
perform approximate TS. While Ishfaq et al. (2024) provides regret bound for their proposed LMC-
LSVI algorithm under linear MDP, their regret bound, like other existing randomized exploration
algorithms, has sub-optimal dependency on the dimension of the linear MDP. Hsu et al. (2024)
further extends LMC-LSVI to the cooperative multi-agent reinforcement learning setting. Dann et al.
(2021) proposes conditional posterior sampling based on FGTS (Zhang, 2022) with a regret bound
that has optimal dependency on the dimension in linear MDPs, but their algorithm is intractable
due to the need to access to some unknown sampler oracle.

2 Preliminary

In this paper, we consider an episodic discrete-time Markov decision process (MDP), denoted by
(S,A, H,P, r), with S being the state space, and A the action space. The MDP is non-stationary
across H different stages, which form an episode. H is also often referred to as the episode length.
P = {Ph}H

h=1 is the collection of the state transition probability distributions, Ph(· | x, a) denotes
the transition kernel at stage h ∈ [H]. Let r = {rh}H

h=1 be the collection of reward functions, which
we assume to be deterministic and bounded in [0, 1] for the simplicity of the presentation.

We define a policy π in this MDP as a collection of H functions {πh : S → A}h∈[H], where πh(x)
means the action at state x given by policy π at stage h of the episode.

At stage h ∈ [H], we define the value function V π
h : S → R as the total expected rewards col-

lected by the agent if it starts at state xh = x and follows policy π onwards, i.e., V π
h (x) =

Eπ,P
[∑H

h′=h rh′(xh′ , ah′)
∣∣xh = x

]
.

We also define the action-value function (or Q function) Qπ
h : S × A → R as the total expected

rewards by the agent if it starts at state xh = x and action ah = a and follows policy π onwards,
i.e., Qπ

h(x, a) = Eπ,P
[∑H

h′=h rh′(xh′ , ah′)
∣∣xh = x, ah = a

]
.

To simplify the notation, we denote operator [PhV π
h+1](x, a) = Ex′∼Ph(·|x,a)V

π
h+1(x′). Thus, we write

the Bellman equation associated with a policy π as

Qπ
h(x, a) = (rh + PhV π

h+1)(x, a), V π
h (x) = Qπ

h(x, πh(x)), V π
H+1(x) = 0. (2.1)

We denote the optimal policy as π∗ = {π∗
h}H

h=1, which is the collection of the optimal policies at
each stage h. We further denote V ∗

h (x) = V π∗

h (x) and Q∗
h(x, a) = Qπ∗

h (x, a). It can be shown that
π∗ is a deterministic policy and it satisfies Qπ∗

h (s, a) = maxπ Qπ(s, a) and V π∗

h (s) = maxπ V π
h (s) for

all s ∈ S and a ∈ A (Bertsekas, 2019).

We denote the Bellman optimality operator by T ∗
h that maps any function Q over S ×A to

[T ∗
h Q](x, a) = rh(x, a) + Ex′∼Ph(·|x,a)

[
maxa′∈A Qh+1(x′, a′)

]
. (2.2)

Note that the optimal Q function satisfies T ∗
h Q∗

h+1 = Q∗
h, for all h ∈ [H].

The agent follows the following iterative interaction protocol. At the beginning of each episode
k ∈ [K], an adversary picks an initial state xk

1 for stage 1, and the agent executes a policy πk and
updates the policy in the next stage according to the received rewards. We measure the suboptimality
of the agent by the total regret defined as

Regret(K) =
K∑

k=1
REGk :=

K∑
k=1

[
V ∗

1 (xk
1)− V πk

1 (xk
1)
]
.

2.1 Notations

We use a = O(b) to indicate that a ≤ Cb for a universal constant C > 0. Also, we write a = Θ(b) if
there are universal constants c′ > c > 0 such that cb ≤ a ≤ c′b, and the notation Õ(·) and Θ̃(·) mean

RLJ | RLC 2024

Algorithm 1 Least-Squares Value Iteration with Approximate Sampling Exploration (LSVI-ASE)
1: Input: feel-good prior weight η, step sizes {τk,h > 0}k,h≥1, temperature β, friction coefficient γ,

loss function Lk(w).
2: Initialize w1,0

h = 0 for h ∈ [H], J0 = 0.
3: for episode k = 1, 2, . . . , K do
4: Receive the initial state sk

1 .
5: for step h = H, H − 1, . . . , 1 do
6: wk,0

h = w
k−1,Jk−1
h

7: for j = 1, . . . , Jk do
8: Generate wk,j

h via a sampler in Section 3.2
9: end for

10: Qk
h(·, ·)← min{Q(wk,Jk

h ; ϕ(·, ·)), H − h + 1}+

11: V k
h (·)← maxa∈A Qk

h(·, a).
12: end for
13: for step h = 1, 2, . . . , H do
14: Take action ak

h ← argmaxa∈A Qk
h(sk

h, a).
15: Observe reward rk

h(sk
h, ak

h), get next state sk
h+1.

16: end for
17: end for

they hide polylog factors in the parameters. For two probability distributions p and q on the same
probability space, we denote their total variation (TV) distance by TV (p, q). For T : Rd → Rd,
the pushforward of a distribution p is denoted as T#p, such that T#p(A) = p(T −1(A)) for any
measurable set A.

3 Algorithm Design

In this section, we present our core algorithm, a general framework that leverages Feel-Good Thomp-
son Sampling (FGTS) (Zhang, 2022; Dann et al., 2021) alongside various approximate sampling
techniques such as Langevin Monte Carlo (LMC) (Durmus et al., 2019) and Underdamped Langevin
Monte Carlo (ULMC) (Chen et al., 2014; Cheng et al., 2018). The proposed general algorithm is
displayed in Algorithm 1.

Our algorithm design resembles that of Ishfaq et al. (2024) in the sense that, unlike other approximate
TS algorithms (Russo, 2019; Zanette et al., 2020a; Ishfaq et al., 2021), it performs exploration by
coupling approximate sampling into value iteration step. However, our design choice offers significant
flexibility of the algorithm: it allows us to employ a wide range of prior distributions and integrate
different samplers, enabling us to tailor the exploration process to specific problem characteristics.
The generality of our framework allows it to address suboptimality observed in existing exploration
approaches (Ishfaq et al., 2024). By incorporating a flexible prior selection mechanism, we can
overcome limitations inherent in specific prior choices employed by other methods. This flexibility
enables us to potentially achieve better performance across diverse exploration problems.

3.1 Feel-Good Thompson Sampling

Assume we have collected data trajectories in the first k − 1 episodes as Dk−1 =
{(xτ

1 , aτ
1 , r(xτ

1 , aτ
1)), . . . , (xτ

H , aτ
H , r(xτ

H , aτ
H))}k−1

τ=1. To estimate the Q-function for stage h at the k-th
episode of the learning process, we define the following loss function for h ∈ [H]:

Lk
h(wh) = η

∑k−1
τ=1

[
rh(xτ

h, aτ
h) + maxa∈AQk

h+1(xτ
h+1, a)−Q(wh; ϕ(xτ

h, aτ
h))
]2

, (3.1)

where ϕ(·, ·) is a feature vector of the corresponding state-action pair and Q(wh; ϕ(xτ
h, aτ

h)) denotes
any possible approximation of the Q function that is parameterized by wh and takes ϕ(xτ

h, aτ
h) as

RLJ | RLC 2024

input. Qk
h is defined in Line 10 of Algorithm 1 and is the truncated estimated Q function. Moreover,

we let Lk
0(w1) = −λmaxa∈AQ(w1; xk

1 , a), where Lk
0 is the Feel-Good exploration prior term (Zhang,

2022). The posterior distribution at episode k and stage h > 1 is then given by

qh
k (wh) ∝ ph

0 (wh) exp(−Lk
h(wh)),

where ph
0 is the prior distribution of wh. And at stage h = 1, we have q1

k(w1) ∝ p1
0(w1) exp(−Lk

1(w1)−
Lk

0(w1)). Then at episode k, the exact target (joint) posterior of Q, which is denoted by qk, is given
by

qk(w) ∝ p0(w) exp(−
∑H

h=0 Lk
h(wh)), (3.2)

where p0(w) =
∏H

h=1 ph
0 (wh). Compared to standard TS (Thompson, 1933; Osband et al., 2013),

FGTS incorporates an additional exploration term exp(−Lk
0(w1)) in the likelihood function. This

term encourages the selection of value functions at the first time step that yield large values for the
initial state. This bias is particularly beneficial during early learning stages when wider exploration
is crucial.

Challenges of FGTS in practice: Despite the regret of FGTS has been proven to be achieving the
optimal dependency on the dimension in bandits (Zhang, 2022) and reinforcement learning (Dann
et al., 2021), existing FGTS algorithms are often computationally intractable as they assume access
to sampling oracles for sampling from a high-dimensional distribution at each iteration. Specifically,
previous FGTS based algorithms proposed by Zhang (2022); Dann et al. (2021) simply sample Q
function from the posterior distribution defined in (3.2) in the beginning of each episode and then
follow a greedy policy with respect to the sampled Q function. However, this assumes access to a
sampling oracle which allows one to sample from (3.2) that is not generally available in practice. Since
we cannot directly sample from the true posterior distribution qk, we propose using approximating
samplers to generate posterior estimates which we describe next.

3.2 Approximate Samplers

In this subsection, we present different approximate sampling methods which we use to approxi-
mately sample from the posterior distribution defined in (3.2). Let p ∝ e−L be a probability density
on Rd such that L is continuously differential. The goal is to generate samples from p.

Langevin Monte Carlo. LMC leverages the Euler discretization method to approximate the
continuous-time Langevin diffusion process, making it a popular sampling algorithm in machine
learning (Welling & Teh, 2011). Langevin diffusion with stationary distribution p is the stochastic
process defined by the stochastic differential equation (SDE) dwt = −∇L(wt)dt +

√
2dBt, where Bt

is a standard Brownian motion in Rd. To obtain the LMC algorithm, we take the Euler-Murayama
discretization of the SDE. For a fixed step size τ > 0, temperature β and w0 ∈ Rd, LMC is defined
by the iteration

wk+1 = wk − τ∇L(wk) +
√

2β−1τξk,

where ξk ∼ N (0, Id). Previous works have thoroughly established strong theoretical guarantees for
the convergence of LMC (Dalalyan, 2017; Xu et al., 2018; Zou et al., 2021).

In Line 8 of Algorithm 1, we can use LMC to approximately sample wk,Jk

h from the posterior defined
in (3.2). In our deep RL experiment in Section 5, we also incorporate adaptive bias term for the
gradient of loss function as introduced in Ishfaq et al. (2024).

Underdamped Langevin Monte Carlo. While LMC offers an elegant approach, its scalability
suffers as the problem dimension, error tolerance, or condition number increases (Zheng et al.,
2024; Zhang et al., 2023). To mitigate these limitations, we exploit Underdamped Langevin Monte
Carlo (ULMC), which exhibits enhanced scalability in such high-dimensional or poorly conditioned
settings. The appeal of ULMC lies in its connection to Hamiltonian Monte Carlo (HMC) (Brooks

RLJ | RLC 2024

et al., 2011). Since underdamped Langevin diffusion (ULD) incorporates a Hamiltonian component,
its discretization can be viewed as a form of HMC. Notably, HMC has been empirically observed to
converge faster to the stationary distribution compared to LMC (Cheng et al., 2018). Introducing
a balance of exploration and exploitation through momentum, the ULD is given by the SDE

dwt = Ptdt,

dPt = −∇L(wt)dt + γPtdt +
√

2β−1γdBt,

where γ, β > 0 are friction coefficient and temperature respectively. We note that instead of using
Euler-Maruyama as for LMC, the ULMC can be implemented in the following way:

dwt = Ptdt,

dPt = −∇L(wkτ)dt + γPtdt +
√

2β−1γdBt, (3.3)

for t ∈ [kτ, (k + 1)τ], where τ > 0 is the step-size. This formulation of ULMC can be integrated in a
closed form (Cheng et al., 2018; Zhang et al., 2023), and hence our theoretical analysis is based on
this scheme. However, obtaining the closed-form solution is computationally expensive in our setting
due to the cubic cost O(d3) of Cholesky decomposition. So, we employ an adapted Euler-Maruyama
method in our experiments for efficient numerical integration. Applying Euler-Maruyama with step
size τ > 0, we obtain the following iteration scheme of wk and Pk:

wk+1 = wk + τPk,

Pk+1 = Pk − τ∇L(wk)− γτPk +
√

2β−1γτξk, (3.4)

where ξk ∼ N (0, Id). In practice, to improve the performance, we follow Ishfaq et al. (2024) to
incorporate adaptive bias term to the gradient, which leads to the following update:

mk = α1mk−1 + (1− α1)∇L(wk)
vk = α2vk−1 + (1− α2)∇L(wk)⊙∇L(wk)

Pk = (1− γτ)Pk−1 + τ
(
∇L(wk) + amk ⊘

√
vk + λ1

)
+
√

2β−1γτξk

wk+1 = wk − τPk,

(3.5)

where the hyperparameters α1, α2 ∈ [0, 1) control the exponential decay rates of the moving aver-
ages (Kingma & Ba, 2014).

4 Theoretical Analysis

This section presents the theoretical analysis of our proposed algorithm. We begin by establishing a
regret bound for general function classes, shedding light on the impact of sampling error on regret.
Subsequently, we focus on linear MDPs (Jin et al., 2020), providing a detailed analysis of both the
regret bound and the corresponding sampling complexity.

4.1 Regret Bound for General Function Classes

Assume that the agent is given a Q-function classQ = Q1×Q2×. . .×QH of functions Q = {Qh}h∈[H]
where Qh : X × A → R. For any Q ∈ Q, h ∈ [H] and state-action pair x, a, we define the Bellman
residual as

Eh(Q; x, a) = E(Qh, Qh+1; x, a) = Qh(x, a)− T ∗
h Qh+1(x, a). (4.1)

We have the following assumptions on the value-function class:
Assumption 4.1. [Realizability]. Assume that Q∗ ∈ Q.
Assumption 4.2. [Boundedness] Assume that ∃b ≥ 1 such that for all Q ∈ Q and h ∈ [H],
Qh(x, a) ∈ [0, b− 1], for all (x, a) ∈ S ×A.

RLJ | RLC 2024

Assumption 4.3. [Completeness] For all h ∈ [H] and Qh+1 ∈ Qh+1, there is a Qh ∈ Qh such that
Qh = T ∗

h Qh+1.

It’s important to note that these assumptions are only necessary for general function classes. One
can verify that these assumptions are satisfied in some specific settings, such as linear MDPs (Jin
et al., 2020) defined in Section 4.3.

We first introduce two metrics following Dann et al. (2021) that characterizes the structural com-
plexity of the MDP and the effective size of the value-function class Q respectively.
Definition 4.4. [Decoupling Coefficient] Let KDC be the smallest quantity so that for any sequence
of functions {Qk}k∈N ⊂ Q and h ≥ 0, it holds that,

H∑
h=1

K∑
k=1

E[xh,ah]∼p(·|Qk,x1)
[
Eh(Qk; xh, ah)

]
≤ inf

µ∈(0,1]

[
µ

H∑
h=1

K∑
k=1

k−1∑
s=1

E[xh,ah]∼p(·|Qs,x1)[Eh(Qk; xh, ah)]2 + KDC

4µ

]
.

The decoupling coefficient, KDC, measures the growth rate of average Bellman residuals compared
to cumulative squared Bellman residuals. We refer the readers to Dann et al. (2021) for further
details on relationship between decoupling coefficient and other complexity measures typically used
in RL such as Bellman-Eluder dimension (Jin et al., 2021).
Definition 4.5. For any function Q′ ∈ Qh+1, we define the set Qh(ϵ, Q′) = {Q ∈ Qh :
supx,a |Q(x, a) − T ∗

h Q′(x, a)| ≤ ϵ} of functions that have small Bellman error with Q′ for all state-
action pairs. Using this set, we define κ(ϵ) = supQ∈Q

∑H
h=1− ln ph

0 (Qh(ϵ, Qh+1)).

The set Qh(ϵ, Qh+1) includes the functions that approximately satisfy the Bellman equation and
ph

0 (Qh(ϵ, Qh+1)) denotes the probability that is assigned on this set by the prior. From the definition,
it is clear that the complexity κ(ϵ) takes a small value if the prior is high for any Q ∈ Q and in that
case, it is equivalent to an approximate completeness assumption. Please refer to Dann et al. (2021)
for further details on this metric.

We denote the sampled posterior by Algorithm 1 at episode k by q′
k, which generally deviates

from the true posterior qk defined in (3.2) due to the inherent limitations of approximate samplers
discussed in Section 3.2. At each episode k, we define the sampling error δk = TV (qk, q′

k) as the TV
distance between the true posterior and the approximate posterior generated by our sampler.

Using the quantities defined above, we present our first theorem: a frequentist (worst-case) expected
regret bound for Algorithm 1:
Theorem 4.6. Under Assumption 4.1, 4.2 and 4.3, if η ≤ 2/5b2, then

E[Regret(K)] ≤ λ

η
KDC + 2K

λ
κ(b/K2) + 6H

λ
+ b

K
+

K∑
k=1

[(η

4λ
b2H(k − 1) + b

)
· δk

]
,

where the expectation incorporates the inherent randomness of the MDP through samples drawn
from it and the algorithm’s own stochastic elements. If we further set η = 1/4b2, λ =√

Kκ(b/K2)/b2KDC and assume λb2 ≥ 1 and without loss of generality that b ≥ 16, then the
bound becomes

E[Regret(K)] = O

(
b
√
KDCκ(b2/K)K + b2H + b

K

)
+ 1

16b2
K∑

k=1
kδk. (4.2)

Remark 4.7. It is important to emphasize that the theorem establishes the relationship between
the regret and the sampling error, without necessarily asserting that the sampling error δk is small
for general function classes. In Section 4.3, we delve deeper into controlling the sampling error with
respect to the sampling complexity for linear MDPs.
Remark 4.8. The final term in (4.2) highlights that during initial episodes (small k), our approxi-
mate samplers can have relaxed accuracy requirements. This aligns with the algorithm’s exploratory

RLJ | RLC 2024

phase, where precise posterior estimates are less crucial compared to later exploitation stages when
accurate value estimation becomes critical.
Remark 4.9. The derived regret bound from Theorem 4.6, can be decomposed into two parts:

Rorigin = λ

η
KDC+ 2K

λ
κ(b/K2)+ 6H

λ
+ b

K
, and Rsample =

K∑
k=1

[(η

4λ
b2H(k − 1) + b

)
· δk

]
. (4.3)

Here Rsample accounts for the sampling error. It is noteworthy that Rorigin mirrors Theorem 1
from Dann et al. (2021), and consequently, we adhere to their analytical framework for deriving this
part. For Rsample, we separately examine different samplers for their respective sampling complexi-
ties.
Remark 4.10. Note that if we can do TS exactly at each step, i.e. δk = 0 for all k, then Theorem 4.6
reduces to Theorem 1 in Dann et al. (2021). Also as discussed in their work, the decoupling coefficient
KDC can vary in different settings.

4.2 Analysis of Errors Induced by Approximating Samplers

It is important to note that δk within Theorem 4.6 cannot be directly controlled by the chosen
approximating samplers employed in Algorithm 1. Therefore, a further decomposition of this term
is necessary (see details in Appendix A.3):
Proposition 4.11. Let δh

k be the sampling error (in the total variation sense) induced by our
sampler at step h ∈ [H] and episode k ∈ [K] and let δk be as defined in Section 4.1. Then
δk ≤

∑H
h=1 δh

k .
Remark 4.12. Proposition 4.11 allows us to decompose the sampling error δk into individual com-
ponents δh

k , representing the total variation distance at step h within episode k. Notably, these
individual components δh

k are directly controllable by our approximate samplers. This translates to
the overall sampling error δk ≤

∑H
h=1 δh

k highlighting the crucial role of sampler accuracy in each
step in managing the cumulative error

∑H
h=1 δh

k .
Remark 4.13. One should expect both sampling error and truncation error to contribute to the
total error δk, however, by considering truncation as a transport map between probability distribu-
tions and assuming that the exact target distribution is invariant with respect to the truncation due
to its belonging to the given function class Q, we are able to disregard the effect of truncation error
using the data-processing inequality. See Appendix A.3 for details.

The proposition implies that the regret arising from the approximate sampler defined in (4.3) is
upper-bounded by Rsample ≤

∑K
k=1

[
(η/4λ)b2H(k − 1) + b) ·

∑H
h=1 δh

k

]
.

4.3 Applications to Linear MDPs

A concrete example where we can interpret the regret bound from Theorem 4.6 is the linear MDP
(Jin et al., 2020; Yang & Wang, 2020; 2019) setting.
Definition 4.14. (Linear MDP). An MDP (S,A, H,P, r) is said to be a linear MDP with a feature
ϕ : S × A → Rd, if for any h ∈ [H], there exist d unknown (signed) measures µh = (µ(1)

h , . . . , µ
(d)
h)

over S and an unknown vector θh ∈ Rd such that for any (x, a) ∈ S × A, we have Ph(·|x, a) =
⟨ϕ(x, a), µh(·)⟩ and rh(x, a) = ⟨ϕ(x, a), θh⟩.

Without loss of generality, we assume ∥ϕ(x, a)∥2 ≤ 1 for all (x, a) ∈ S × A, and
max{∥µh(S)∥2, ∥θh∥2} ≤

√
d for all h ∈ [H].

We first bound κ(ϵ) defined in Definition 4.5 for linear MDP. While previous work by Dann et al.
(2021) provides bounds with a uniform prior distribution over the function class, it does not align
with the way TS algorithms are implemented in practice. For this, we consider a Gaussian distri-
bution as the prior distribution.

RLJ | RLC 2024

Computational SamplingAlgorithm Regret Exploration Tractability Complexity
LSVI-UCB (Jin et al., 2020) Õ(d3/2H3/2√

T) UCB Yes NA
OPT-RLSVI (Zanette et al., 2020a) Õ(d2H2√

T) TS Yes NA
ELEANOR (Zanette et al., 2020b) Õ(dH3/2√

T) Optimism No NA
CPS (Dann et al., 2021) Õ(dH2√

T) FGTS No NA
LSVI-PHE (Ishfaq et al., 2021) Õ(d3/2H3/2√

T) TS Yes NA
LMC-LSVI (Ishfaq et al., 2024) Õ(d3/2H3/2√

T) LMC Yes Θ̃(κ3K3H3

d ln(dT))
LSVI-ASE with LMC sampler Õ(dH3/2√

T) FGTS & LMC Yes Θ̃(κ3K3H3

d ln(dT))
LSVI-ASE with ULMC sampler Õ(dH3/2√

T) FGTS & ULMC Yes Θ̃(κ3/2K2H2√
d ln(dT)

)

Table 1: Regret upper bound for episodic, non-stationary, linear MDPs. Here, computational
tractability refers to the ability of a computational problem to be solved in a reasonable amount of
time using a feasible amount of computational resources.

Lemma 4.15. If the stage-wise priors ph
0 are chosen as N (0,

√
dHId), then κ(ϵ) = dHO(ln(dH/ϵ)).

Remark 4.16. While Gaussian priors are commonly used (He et al., 2015; Goodfellow et al., 2016),
we highlight that the prior distribution ph

0 can be any distribution in practice, as long as a suitable
bound for κ(ϵ) exists. This flexibility allows for incorporating domain-specific knowledge into the
prior.

We can now illustrate Theorem 4.6 for linear MDP:
Corollary 4.17. If we set η = 2/5H2 and λ =

√
Kκ(H/K2)/dH3(1 + ln(2T)), then the expected

regret of Algorithm 1 after K episodes in a linear MDP is bounded as

E[Regret(K)] = O(dH
3
2
√

T ln(dT)) +
∑K

k=1 αk

(∑H
h=1 δh

k

)
,

where αk = O(
√

ln(dT)/KH2k) and T = HK is the total number of steps.

4.4 Sampling Complexity of Different Samplers

In this section, we characterize the sampling complexity of the proposed algorithms to demonstrate
that we can achieve the desired regret bound as long as the chosen sampler is executed a sufficient
number of times. We begin by establishing an appropriate notion of complexity.
Definition 4.18. (Sampling Complexity) The agent has access to the gradient ∇wQ(w; ϕ(x, a)) for
any w ∈ Rd. Then, if ∇wQ is evaluated Gk times at any episode k ∈ [K], then we define Gk as the
sampling complexity at episode k, and SC =

∑
k∈[K] Gk be the cumulative sampling complexity.

Remark 4.19. In Algorithm 1, Gk specifically represents the total number of iterations employed
by our approximate samplers from line 5 to line 9 during episode k. It follows that within our
analysis, Gk = Jk and SC =

∑
k∈[K] Gk =

∑
k∈[K] Jk.

Theorem 4.20. Consider a linear MDP defined in Definition 4.14. Assume that there exists κ > 0
such that for any (k, h) ∈ [K] × [H], the loss function defined in (3.1) satisfies Mk,hI ≥ ∇2Lk

h ≥
mk,hI and Mk,h/mk,h ≤ κ for some Mk,h ≥ mk,h > 0. Then we can achieve the regret bound of
O(dH

3
2
√

T ln(dT)) using our approximate samplers with the cumulative sampling complexity stated
below:
(1) LMC: SC = Θ̃(κ3K3H3

d ln(dT)) with step size τk,h = Θ̃(d ln(dT)
Mk,hH2k2κ);

(2) ULMC: SC = Θ̃(κ3/2K2H2√
d ln(dT)

) with step size τk,h = Θ̃(
√

d ln(dT)
Mk,hHk).

Remark 4.21. Theorem 4.20 reveals a critical relationship between the choice of sampling method
and the sampling complexity of Algorithm 1. Leveraging established results on demonstrating the
faster mixing of ULMC over LMC in strongly log-concave settings (see Appendix B for details),

RLJ | RLC 2024

the theorem confirms that Algorithm 1, when employing ULMC, achieves the desired accuracy with
lower data requirements than its LMC-based counterpart. This aligns with the intuitive notion that
ULMC’s momentum-based exploration enables faster learning, thereby reducing the necessary data
for effective Thompson sampling.

5 Experiments

In this section, we provide an empirical evaluation of our proposed algorithms with deep Q-networks
(DQNs) (Mnih et al., 2015) in two sets of environments: (1) the N-chain environment (Osband
et al., 2016a) and (2) the Atari game suite (Bellemare et al., 2013; Taiga et al., 2019). We evaluate
our algorithms with different implementations. In particular, we implement the Algorithm 1 with
different choices of prior terms and samplers. By choosing Feel-Good exploration prior term in
(3.1) and underdamped Langevin Monte Carlo sampler with adaptive bias term in (3.5), we imple-
ment the Algorithm 1 named as Feel-Good Underdamped Langevin Monte Carlo Deep Q-Network
(FG-ULMCDQN). We implement the Algorithm 1 with the Feel-Good exploration prior term and
the adaptive Langevin Monte Carlo sampler introduced in Ishfaq et al. (2024), named Feel-Good
Langevin Monte Carlo Deep Q-Network (FG-LMCDQN). We also provide an implementation for the
Algorithm 1 without the Feel-Good exploration prior term named Underdamped Langevin Monte
Carlo Deep Q-Network (ULMCDQN). Then we evaluate our implementations in the above men-
tioned environments. Our code is available at https://github.com/panxulab/LSVI-ASE.

5.1 Experiments in N-Chain

We demonstrate that our proposed algorithms can explore effectively in sparse-reward environment
by conducting experiments in N -Chain environment (Osband et al., 2016a) that demands deep
exploration capabilities to perform well. An N -chain environment can be constructed by a chain of
N > 3 states denoted by s1, s2, . . . , sN . Each episode of interaction, which starts at state s2, lasts
for N + 9 steps and in each step the agent can either move to the left or right. A myopic agent
would gravitate toward state s1 which has a small reward of r = 0.001 whereas an efficient agent
with deep exploration capabilities would try to reach state sN which has a larger reward of r = 1.
As each episode runs for N + 9 steps, the optimal return for an episode is 10. We refer the reader
to Appendix C.1 for a depiction of the environment.

25 50 75 100
N

0

2

4

6

8

10

12

R
et

ur
n

DQN
Noisy-Net
Bootstrapped DQN
Adam LMCDQN
ULMCDQN
FG-LMCDQN
FG-ULMCDQN

Figure 1: A comparison of different methods in
N -chain with different chain lengths N . As N
increases, the exploration hardness increases. All
results are averaged over 20 runs and the shaded
areas represent 95% confidence interval.

In our experiments, we progressively increase
the difficulty level by setting N to be 25, 50,
75, and 100. For each chain length, we run each
learning algorithm for 105 steps across 20 seeds.
As baseline algorithms, we use DQN (Mnih
et al., 2015), Bootstrapped DQN (Osband et al.,
2016a), Noisy-Net (Fortunato et al., 2018) and
Adam LMCDQN (Ishfaq et al., 2024). The per-
formance of each algorithm in each run is mea-
sured by the mean return of the last 10 evalu-
ation episodes. We sweep the learning rate and
pick the one with the best performance for each
algorithm. For our algorithms which use ULMC
as a sampler, we sweep the friction coefficient
γ. For FG-LMCDQN and FG-ULMCDQN, we
sweep the weight for the feel-good prior term η
in the loss function. Please check Appendix C.1 for further details.

Figure 1 shows the performance of our proposed algorithms as well as the baseline algorithms under
different chain lengths. The solid lines represent the average return over 20 random seeds and
the shaded areas represent the 95% confidence interval. For all of our proposed algorithms, namely
ULMCDQN, FG-ULMCDQN and FG-LMCDQN, we set Jk = 4 in Algorithm 1 for all chain lengths.

https://github.com/panxulab/LSVI-ASE

RLJ | RLC 2024

0

1000

2000

3000

4000

Re
tu

rn

Alien

0

10

20

30

40
Freeway

0

250

500

750

1000

1250
Gravitar

0

5000

10000

15000

20000
H.E.R.O.

0 10 20 30 40 50
Frame (millions)

1500

1000

500

0

Re
tu

rn

Pitfall!

0 10 20 30 40 50
Frame (millions)

0

5000

10000

15000

20000
Q*bert

0 10 20 30 40 50
Frame (millions)

0

1000

2000

3000
Solaris

0 10 20 30 40 50
Frame (millions)

0

500

1000

1500
Venture

FG-ULMCDQN FG-LMCDQN ULMCDQN Adam LMCDQN NoisyNet DQN Prioritized DQN C51 Bootstrapped DQN IQN

Figure 2: The return curves of various algorithms in eight hard Atari tasks over 50 million training
frames. Solid lines correspond to the median performance over 5 random seeds, and the shaded
areas correspond to 95% confidence interval.

From Figure 1, we see that as the chain length N increases, the performance of the baselines drops
drastically. Whereas, our FGTS based algorithms FG-LMCDQN and FG-ULMCDQN are able to
maintain steady performance. In particular, we would like to highlight that FG-ULMCDQN is able
to get almost close to the optimal return of 10 for all values of N , showing the benefit of using
Feel Good prior along with underdamped LMC together in environments where deep exploration is
absolutely necessary to perform well.

5.2 Experiments in Atari Games

We evaluate our algorithms in 8 visually complicated hard exploration games, namely Alien, Freeway,
Gravitar, H.E.R.O., Pitfall, Qbert, Solaris, and Venture from the Atari game suite (Bellemare et al.,
2013; Taiga et al., 2019). As classified in Taiga et al. (2019), among these games, Alien, H.E.R.O., and
Qbert are dense reward environments and Freeway, Gravitar, Pitfall, Solaris, and Venture are sparse
reward environments. In our experiments, we set Jk = 1 in Algorithm 1 to finish the training in a
reasonable time. Following (Ishfaq et al., 2024), we also incorporate the double Q trick (Van Hasselt,
2010; Van Hasselt et al., 2016) in our implementation. As baselines we consider Adam LMCDQN
(Ishfaq et al., 2024), Noisy-Net (Fortunato et al., 2018), Prioritized DQN (Schaul et al., 2015),
C51 (Bellemare et al., 2017), Bootstrapped DQN (Osband et al., 2016a) and IQN (Dabney et al.,
2018). All algorithms are trained for 50M frames (i.e., 12.5M steps) and run for 5 different random
seeds. We refer the reader to Appendix C.2.1 for further details on training and hyper-parameter
choices. Figure 2 depicts the learning curves of all algorithms in 8 Atari games. Compared to the
baseline algorithms, our algorithms appear to be quite competitive despite being much simpler in
implementation. We highlight the advantages of approximate sampling based algorithms in Gravitar
and Venture.

Sensitivity Analysis. In Figure 3a, we draw the learning curves of FG-ULMCDQN with different
weight factor η for the FG prior term. We observe that as long the value of η is not too high, the
performance of FG-ULMCDQN is less sensitive to the value of η. In Figure 3b, we observe that for
very high or low value of friction coefficient γ, the performance of ULMCDQN collapses.

6 Conclusion

This work introduces a novel algorithmic framework that leverages efficient approximate samplers
to make FGTS practical for real-world RL. Unlike prior approaches reliant on unrealistic sampling
oracles, our framework enables computationally feasible exploration. Furthermore, our theoretical

RLJ | RLC 2024

0 10 20 30 40 50
Frame (millions)

0

250

500

750

1000

1250

1500

1750

2000

2250

Re
tu

rn

η= 1
η= 10−1

η= 10−2

η= 10−3

η= 10−4

η= 10−5

(a) Different FG prior weight η in FG-ULMCDQN

0 10 20 30 40 50
Frame (millions)

0

200

400

600

800

1000

1200

1400

1600

1800

Re
tu

rn

γ= 100
γ= 10
γ= 1

γ= 0.1
γ= 0.01
γ= 0.001

(b) Different friction coefficient γ in ULMCDQN

Figure 3: (a) A comparison of FG-ULMCDQN with different values of weight η for the feel good
prior term in Alien. Solid lines correspond to the average performance over 5 random seeds, and
shaded areas correspond to 95% confidence interval. The performance of FG-ULMCDQN is not
very sensitive to the values of η as long it is not very large. (b) A comparison of ULMCDQN with
different values of the friction coefficient γ in Alien.

analysis provides a deeper understanding of the relationship between samplers and regret in FGTS
algorithms. This newfound knowledge paves the way for practical exploration strategies with strong
provable guarantees. Notably, our algorithm achieves an improved regret bound in linear MDPs,
and showcases consistent performance in deep exploration environments.

Future directions include exploring the integration of alternative approximate samplers within our
framework. Promising candidates include Metropolis-adjusted Langevin Acceptance (MALA) (Be-
sag et al., 1995) and various proximal sampling algorithms (Lee et al., 2021). Investigating effi-
cient methods to incorporate these samplers into the RL setting while maintaining the framework’s
strengths will further enhance its applicability to diverse exploration problems.

Acknowledgments

We gratefully acknowledge funding from the Canada CIFAR AI Chairs program, the Reinforcement
Learning and Artificial Intelligence (RLAI) laboratory, Mila - Quebec Artificial Intelligence Institute,
the Natural Sciences and Engineering Research Council (NSERC) of Canada, the US National
Science Foundation (DMS-2323112) and the Whitehead Scholars Program at the Duke University
School of Medicine. Qingfeng Lan would also like to acknowledge Alberta Innovates for the support
they provided him for his research.

References
Alekh Agarwal and Tong Zhang. Model-based RL with optimistic posterior sampling: Structural

conditions and sample complexity. In Advances in Neural Information Processing Systems, 2022a.
(p. 2.)

Alekh Agarwal and Tong Zhang. Non-linear reinforcement learning in large action spaces: Structural
conditions and sample-efficiency of posterior sampling. In Conference on Learning Theory, pp.
2776–2814. PMLR, 2022b. (p. 2.)

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013. (pp. 2, 10, and 11.)

RLJ | RLC 2024

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, pp. 449–458. PMLR, 2017. (pp. 11
and 25.)

Dimitri Bertsekas. Reinforcement learning and optimal control. Athena Scientific, 2019. (p. 3.)

Julian Besag, Peter Green, David Higdon, and Kerrie Mengersen. Bayesian computation and stochas-
tic systems. Statistical science, pp. 3–41, 1995. (p. 12.)

Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of Markov Chain Monte
Carlo. Chapman and Hall/CRC, May 2011. ISBN 9780429138508. doi: 10.1201/b10905. URL
http://dx.doi.org/10.1201/b10905. (p. 5.)

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient Hamiltonian Monte Carlo. In
International Conference on Machine Learning, pp. 1683–1691. PMLR, 2014. (pp. 2 and 4.)

Xiang Cheng, Niladri S Chatterji, Peter L Bartlett, and Michael I Jordan. Underdamped Langevin
MCMC: A non-asymptotic analysis. In Conference on Learning Theory, pp. 300–323. PMLR,
2018. (pp. 2, 4, and 6.)

Sinho Chewi, Murat A Erdogdu, Mufan Li, Ruoqi Shen, and Shunshi Zhang. Analysis of Langevin
Monte Carlo from Poincare to Log-Sobolev. In Conference on Learning Theory, pp. 1–2. PMLR,
2022. (p. 23.)

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. In International Conference on Machine Learning, pp.
1096–1105. PMLR, 2018. (pp. 11 and 25.)

Arnak S Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave
densities. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3):651–
676, 2017. (p. 5.)

Christoph Dann, Mehryar Mohri, Tong Zhang, and Julian Zimmert. A provably efficient model-free
posterior sampling method for episodic reinforcement learning. Advances in Neural Information
Processing Systems, 34:12040–12051, 2021. (pp. 1, 2, 3, 4, 5, 7, 8, 9, 18, 20, and 22.)

Alain Durmus, Szymon Majewski, and Błażej Miasojedow. Analysis of Langevin Monte Carlo via
convex optimization. The Journal of Machine Learning Research, 20(1):2666–2711, 2019. (pp. 2
and 4.)

Vikranth Dwaracherla and Benjamin Van Roy. Langevin DQN. arXiv preprint arXiv:2002.07282,
2020. (pp. 2 and 3.)

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel, Ian Os-
band, Alex Graves, Volodymyr Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles
Blundell, and Shane Legg. Noisy networks for exploration. In International Conference on Learn-
ing Representations, 2018. (pp. 1, 3, 10, 11, and 25.)

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016. (p. 9.)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 1026–1034, 2015. (p. 9.)

Hao-Lun Hsu, Weixin Wang, Miroslav Pajic, and Pan Xu. Randomized exploration in cooperative
multi-agent reinforcement learning. arXiv preprint arXiv:2404.10728, 2024. (pp. 2 and 3.)

Haque Ishfaq, Qiwen Cui, Viet Nguyen, Alex Ayoub, Zhuoran Yang, Zhaoran Wang, Doina Precup,
and Lin Yang. Randomized exploration in reinforcement learning with general value function
approximation. In International Conference on Machine Learning, pp. 4607–4616. PMLR, 2021.
(pp. 1, 2, 4, and 9.)

http://dx.doi.org/10.1201/b10905

RLJ | RLC 2024

Haque Ishfaq, Qingfeng Lan, Pan Xu, A Rupam Mahmood, Doina Precup, Anima Anandkumar, and
Kamyar Azizzadenesheli. Provable and practical: Efficient exploration in reinforcement learning
via Langevin Monte Carlo. In The Twelfth International Conference on Learning Representations,
2024. (pp. 1, 2, 3, 4, 5, 6, 9, 10, 11, 24, and 25.)

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pp. 2137–2143.
PMLR, 2020. (pp. 1, 2, 6, 7, 8, and 9.)

Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich classes of RL
problems, and sample-efficient algorithms. Advances in Neural Information Processing Systems,
34:13406–13418, 2021. (p. 7.)

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. (p. 6.)

Yin Tat Lee, Ruoqi Shen, and Kevin Tian. Structured logconcave sampling with a restricted Gaussian
oracle. In Conference on Learning Theory, pp. 2993–3050. PMLR, 2021. (p. 12.)

Yingru Li, Jiawei Xu, Lei Han, and Zhi-Quan Luo. Q-star meets scalable posterior sampling:
Bridging theory and practice via hyperagent. In Forty-first International Conference on Machine
Learning, 2024. (p. 1.)

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015. (pp. 10 and 24.)

Ian Osband, Daniel Russo, and Benjamin Van Roy. (More) efficient reinforcement learning via
posterior sampling. In Advances in Neural Information Processing Systems, pp. 3003–3011, 2013.
(pp. 1 and 5.)

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped DQN. Advances in Neural Information Processing Systems, 29, 2016a. (pp. 1, 2,
10, 11, 24, and 25.)

Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized
value functions. In International Conference on Machine Learning, pp. 2377–2386. PMLR, 2016b.
(p. 1.)

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. Advances in Neural Information Processing Systems, 31, 2018. (pp. 1 and 2.)

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
In International Conference on Learning Representations, 2018. (p. 1.)

John Quan and Georg Ostrovski. DQN Zoo: Reference implementations of DQN-based agents, 2020.
URL http://github.com/deepmind/dqn_zoo. (p. 25.)

Daniel Russo. Worst-case regret bounds for exploration via randomized value functions. In Advances
in Neural Information Processing Systems, pp. 14410–14420, 2019. (pp. 1, 2, and 4.)

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015. (pp. 11 and 25.)

Malcolm Strens. A Bayesian framework for reinforcement learning. In ICML, volume 2000, pp.
943–950, 2000. (p. 1.)

http://github.com/deepmind/dqn_zoo

RLJ | RLC 2024

Adrien Ali Taiga, William Fedus, Marlos C Machado, Aaron Courville, and Marc G Bellemare. On
bonus based exploration methods in the Arcade learning environment. In International Conference
on Learning Representations, 2019. (pp. 10 and 11.)

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933. (pp. 1 and 5.)

Hado Van Hasselt. Double Q-learning. Advances in Neural Information Processing Systems, 23,
2010. (p. 11.)

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double Q-
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, 2016. (pp. 11 and 25.)

Santosh Vempala and Andre Wibisono. Rapid convergence of the unadjusted Langevin algorithm:
Isoperimetry suffices. Advances in Neural Information Processing Systems, 32, 2019. (p. 23.)

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin dynamics. In
Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 681–688.
Citeseer, 2011. (p. 5.)

Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su, Hang
Su, and Jun Zhu. Tianshou: A highly modularized deep reinforcement learning library. Journal
of Machine Learning Research, 2022. (pp. 24 and 25.)

Zhihan Xiong, Ruoqi Shen, Qiwen Cui, Maryam Fazel, and Simon Shaolei Du. Near-optimal ran-
domized exploration for tabular Markov decision processes. In Advances in Neural Information
Processing Systems, 2022. (pp. 1 and 2.)

Pan Xu, Jinghui Chen, Difan Zou, and Quanquan Gu. Global convergence of Langevin dynamics
based algorithms for nonconvex optimization. Advances in Neural Information Processing Systems,
31, 2018. (p. 5.)

Pan Xu, Hongkai Zheng, Eric V Mazumdar, Kamyar Azizzadenesheli, and Animashree Anandkumar.
Langevin Monte Carlo for contextual bandits. In International Conference on Machine Learning,
pp. 24830–24850. PMLR, 2022. (p. 2.)

Lin Yang and Mengdi Wang. Sample-optimal parametric Q-learning using linearly additive features.
In International Conference on Machine Learning, pp. 6995–7004. PMLR, 2019. (p. 8.)

Lin Yang and Mengdi Wang. Reinforcement learning in feature space: Matrix bandit, kernels, and
regret bound. In International Conference on Machine Learning, pp. 10746–10756. PMLR, 2020.
(p. 8.)

Andrea Zanette, David Brandfonbrener, Emma Brunskill, Matteo Pirotta, and Alessandro Lazaric.
Frequentist regret bounds for randomized least-squares value iteration. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 1954–1964. PMLR, 2020a. (pp. 1, 2, 4, and 9.)

Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning near op-
timal policies with low inherent Bellman error. In International Conference on Machine Learning,
pp. 10978–10989. PMLR, 2020b. (p. 9.)

Shunshi Zhang, Sinho Chewi, Mufan Li, Krishna Balasubramanian, and Murat A Erdogdu. Improved
discretization analysis for underdamped Langevin Monte Carlo. In The Thirty Sixth Annual
Conference on Learning Theory, pp. 36–71. PMLR, 2023. (pp. 5, 6, and 23.)

Tong Zhang. Feel-good Thompson sampling for contextual bandits and reinforcement learning.
SIAM Journal on Mathematics of Data Science, 4(2):834–857, 2022. (pp. 1, 2, 3, 4, and 5.)

RLJ | RLC 2024

Haoyang Zheng, Wei Deng, Christian Moya, and Guang Lin. Accelerating approximate Thompson
sampling with underdamped Langevin Monte Carlo. arXiv preprint arXiv:2401.11665, 2024. (p.
5.)

Difan Zou, Pan Xu, and Quanquan Gu. Faster convergence of stochastic gradient Langevin dynamics
for non-log-concave sampling. In Uncertainty in Artificial Intelligence, pp. 1152–1162. PMLR,
2021. (p. 5.)

RLJ | RLC 2024

A Regret Analysis

A.1 Proof of Main Results

In this section, we restate and provide the proof of our main result Theorem 4.6 and its corollary
for the linear MDP.
Theorem A.1. [Restatement of Theorem 4.6] Under Assumption 4.1, 4.2 and 4.3, if η ≤ 2/5b2,
then

E[Regret(K)] ≤ λ

η
KDC + 2K

λ
κ(b/K2) + 6H

λ
+ b

K
+

K∑
k=1

[(η

4λ
b2H(k − 1) + b

)
· δk

]
,

where the expectation incorporates the inherent randomness of the MDP environment through
samples drawn from it and the algorithm’s own stochastic elements. If we further set η = 1/4b2 and
λ =

√
Kκ(b/K2)

b2KDC
and assume λb2 ≥ 1 and without loss of generality that b ≥ 16, then the bound

becomes

E[Regret(K)] = O

(
b
√
KDCκ(b2/K)K + b2H + b

K

)
+ 1

16b2
K∑

k=1
kδk. (A.1)

Proof of Theorem 4.6. Given any policy πk and initial state xk
1 , by Lemma A.4, we can decompose

the regret:

REGk =
H∑

h=1
Eπk

[
Qk

h(xk
h, ak

h)− rh(xk
h, ak

h)− Exh+1∼Ph(·|xk
h

,ak
h

) max
a∈A

Qk
h+1(xh+1, a)

]
−
[
V k

1 (xk
1)− V ∗

1 (xk
1)
]

=:
H∑

h=1
BEh

k − FGk.

and hence we can rewrite the expected regret of episode k (scaled by λ) as

λEQk∼q′
k
REGk = λEQk∼q′

k

[H∑
h=1

BEh
k − FGk

]

= EQk∼q′
k

H∑
h=1

[
λBEh

k −
η

4

k−1∑
s=1

E[xh,ah]∼p(·|Qs,x1)[Eh(Qk; xh, ah)]2
]

+ EQk∼q′
k

[H∑
h=1

η

4

k−1∑
s=1

E[xh,ah]∼p(·|Qs,x1)[Eh(Qk; xh, ah)]2 − λFGk

]
=: F dc

k + F κ
k .

Summing over k = 1, 2, . . . , K, we obtain that

λE[Regret(K)] =
K∑

k=1
F dc

k +
K∑

k=1
F κ

k .

Using Definition 4.4, we can bound the first term by

K∑
k=1

F dc
k ≤

λ2

η
KDC (A.2)

RLJ | RLC 2024

for any η
4λ < 1. For the F κ

k term, by Assumption 4.2, Eh(Qk; xh, ah)2 ≤ b2 and |FGk| ≤ b. Therefore,∣∣∣∣∣
H∑

h=1

η

4

k−1∑
s=1

E[xh,ah]∼p(·|Qs,x1)[Eh(Qk; xh, ah)]2 − λFGk

∣∣∣∣∣ ≤ η

4 b2H(k − 1) + λb.

Then by the property of total variation distance,

F κ
k ≤ EQk∼qk

[H∑
h=1

η

4

k−1∑
s=1

E[xh,ah]∼p(·|Qs,x1)[Eh(Qk; xh, ah)]2 − λFGk

]
+
[

η

4 b2H(k − 1) + λb

]
· δk,

where δk = TV (qk, q′
k). The first term on the right handside is exactly the analog of F κ

k with the
expectation taken over the exact target distribution of our algorithm. By Theorem A.5 (which is
Theorem 1 of Dann et al. (2021)),

K∑
k=1

EQk∼qk

[H∑
h=1

η

4

k−1∑
s=1

E[xh,ah]∼p(·|Qs,x1)[Eh(Qk; xh, ah)]2 − λFGk

]
≤ 2Kκ(b/K2) + 6H + λb

K
.

Hence
K∑

k=1
F κ

k ≤ 2Kκ(b/T 2) + 6H + λb

K
+

K∑
k=1

[
η

4 b2H(k − 1) + λb

]
· δk.

Combining this inequality with (A.2), we obtain that

E[Regret(K)] ≤ 1
λ

[K∑
k=1

F dc
k +

K∑
k=1

F κ
k

]

≤ λ

η
KDC + 2K

λ
κ(b/K2) + 6H

λ
+ b

K
+

K∑
k=1

[
η

4λ
b2H(k − 1) + b

]
· δk.

If we further set η = 1/4b2 and λ =
√

Kκ(b/K2)
b2KDC

, then a direct calculation gives us

λ

η
KDC + 2K

λ
κ(b/K2) + 6H

λ
= 6b

√
KDCκ(b/K2)K + 6H

√
b2KDC

κ(b/K2)K .

Since λb2 ≥ 1, we have √
b2KDC

κ(b/K2)K ≤ b2.

And since b ≥ 16, we have
η

4λ
b2H(k − 1) + b ≤ 1

16b2(k − 1) + b ≤ 1
16b2k.

Combining these results, we obtain (4.2).

Next, we restate Corollary 4.17 and provide proof for it.
Corollary A.2. Assume Algorithm 1 is run on a d-dimensional linear MDP. If we set η = 2

5H2 and
λ =

√
Kκ(H/K2)

dH3(1+ln(2T)) , then the expected regret after K episodes is bounded as

E[Regret(K)] ≤ O(dH
3
2
√

T ln(dT)) +
K∑

k=1
αk

(H∑
h=1

δh
k

)
,

where αk = O

(√
ln(dT)

K H2k

)
and T = HK is the total number of steps.

RLJ | RLC 2024

Proof of Corollary 4.17. For linear MDPs, by proposition A.8, b = H, KDC ≤ 2dH(1 + 2 ln(KH))
and κ(H/K2) = dH ln(dHK). Therefore Rorigin defined in (4.3) becomes O(dH

3
2
√

T ln(dT)). More-
over, by a direct calculation,

αk := η

4λ
b2H(k − 1) + b = O

(√
ln(dT)

K
H2k

)
and hence Rsample defined in (4.3) becomes

K∑
k=1

αkδk ≤
K∑

k=1
αk

(H∑
h=1

δh
k

)
,

where the last inequality is due to Proposition 4.11. In conclusion,

E[Regret(K)] ≤ Rorigin + Rsample = O(dH
3
2
√

T ln(dT)) +
K∑

k=1
αk

(H∑
h=1

δh
k

)
.

With this result, we are ready to prove Theorem 4.20:
Theorem A.3 (Restatement of Theorem 4.20). Consider a linear MDP defined in Definition 4.14.
Assume that there exists κ > 0 such that for any (k, h) ∈ [K]× [H], the loss function defined in (3.1)
satisfies for some Mk,h ≥ mk,h > 0:

Mk,hI ≥ ∇2Lk
h ≥ mk,hI, Mk,h/mk,h ≤ κ.

Then we can achieve the regret bound O(dH
3
2
√

T ln(dT)) using our approximate samplers with the
cumulative sampling complexity stated below:
(1) LMC: SC = Θ̃(κ3K3H3

d ln(dT)) with step size τk,h = Θ̃(d ln(dT)
Mk,hH2k2κ);

(2) ULMC: SC = Θ̃(κ3/2K2H2√
d ln(dT)

) with step size τk,h = Θ̃(
√

d ln(dT)
Mk,hHk).

Proof of Theorem 4.20. We give the proof for ULMC. The proof for LMC is essentially the same
using Theorem B.1. Note that for linear MDP, if we let

max
h∈[H]

δh
k ≤

O(Hd ln(dT)/
√

K)
αk

= O

(
d
√

ln(dT)
Hk

)
(A.3)

at episode k, then αk

∑H
h=1 δh

k ≤ O(H2d ln(dT)/
√

K). This implies that for linear MDP,
E[Regret(K)] = O(dH

3
2
√

T ln(dT)). For ULMC, by Theorem B.2, the requirements in (A.3) can be
achieved by setting the step size τk,h = Θ̃(

√
d ln(dKH)
Mk,hHk) and after Nk,h = Θ̃(κ3/2Hk√

d ln(dKH)
) iterations.

Summing Nk,h over all k ∈ [K] and h ∈ [H], we obtain that the cumulative sample complexity is
Θ̃(κ3/2K2H2√

d ln(dKH)
).

A.2 Useful Lemmas

In this section, we give some lemmas that are useful in the proof of our main results.
Lemma A.4 (Regret Decomposition). The regret at episode k can be decomposed into two terms

REGk = Eπk,P

[
H∑

h=1
Qk

h(xk
h, ak

h))− [T ∗
h Qk

h+1](xk
h, ak

h)
]
− [V k

1 (xk
1)− V ∗

1 (xk
1)]

RLJ | RLC 2024

Proof of Lemma A.4. Recall that the Bellman optimality operator T ∗
h maps any state-action func-

tion Qk
h+1 to

[T ∗
h Qk

h+1](x, a) = rh(x, a) + Ex′∼Ph(x,a)[max
a′∈A

Qk
h+1(x′, a′)],

and hence

rh(xk
h, ak

h) = [T ∗
h Qk

h+1](xk
h, ak

h)− Exk
h+1∼Ph(xk

h
,ak

h
)[max

a∈A
Qk

h+1(xk
h+1, a)].

By definition,

V πk

1 (xk
1) = Eπk

[
H∑

h=1
rh(xk

h, ak
h)
∣∣∣∣x1 = xk

1

]
.

And then, we have

V πk

1 (xk
1) = Eπk

[
H∑

h=1
rh(xk

h, ak
h)
∣∣∣∣x1 = xk

1

]

= Eπk

[
H∑

h=1

[
[T ∗

h Qk
h+1](xk

h, ak
h)− Exk

h+1∼Ph(xk
h

,ak
h

)[max
a∈A

Qk
h+1(xk

h+1, a)]
]∣∣∣∣x1 = xk

1

]

= Eπk,P

[
H∑

h=1

[
[T ∗

h Qk
h+1](xk

h, ak
h)−max

a∈A
Qk

h+1(xk
h+1, a)

]∣∣∣∣x1 = xk
1

]

= Eπk,P

[
H∑

h=1

[
[T ∗

h Qk
h+1](xk

h, ak
h)−Qk

h+1(xk
h+1, ak

h+1)
]∣∣∣∣x1 = xk

1

]

= Eπk,P

[
H∑

h=1

[
[T ∗

h Qk
h+1](xk

h, ak
h)−Qk

h(xk
h, ak

h)
]∣∣∣∣x1 = xk

1

]
+ Eπk

[
Qk

1(xk
1 , ak

1)
]

= Eπk,P

[
H∑

h=1

[
[T ∗

h Qk
h+1](xk

h, ak
h)−Qk

h(xk
h, ak

h)
]]

+ V k
1 (xk

1).

We restate Theorem 1 of Dann et al. (2021) below.
Theorem A.5 (Theorem 1 of Dann et al. (2021)). Assume that parameter η ≤ 2

5b2 is set sufficiently
small and that Assumption 4.2 holds. Then the expected regret (with Thompson sampling excuted
exactly) after K episodes on any MDP M is bounded as

E[Regret(K)] ≤ λ

η
KDC + 2K

λ
κ(b/T 2) + 6H

λ
+ b

K
,

where the expectation is over the samples drawn from the MDP and the algorithm’s internal ran-
domness.

A.3 Analysis of Sampling Error

Recalling the procedure for obtaining the Q function at episode k: we first sample wH to obtain
Qk

H , and then for h = H − 1, . . . , 1, we sample wh conditional on Qk
h+1 to obtain Qk

h. Let’s denote
the target conditional distribution of Qk

h given Qk
h+1 as qk

h,h+1. If Thompson sampling is executed
precisely at each step, we should acquire the Q function Qk

h ∼ qh
k such that qh

k = qk
h,h+1(·|Qk

h+1) for all
h ∈ [H]. We denote the joint distribution of {qh

k}h∈[H] as qk. However, due to the high computational
complexity, we can only obtain a sequence of {Q̃k

h ∼ q̃h
k}h∈[H] that satisfies q̃h

k = q̃k
h,h+1(·|Q̃k

h+1),

RLJ | RLC 2024

where q̃k
h,h+1 is a transition kernel close to qk

h,h+1 and depends on the approximating sampler. We
denote the joint distribution of {q̃h

k}h∈[H] as q′
k. Note that given Q̃k

h+1 generated by our algorithm,
our goal is to sample from qk

h,h+1(·|Q̃k
h+1) while we can only obtain a sample close to that, denoted as

q̃h
k . Our samplers can only control the distance (error) between q̃k

h,h+1(·|Q̃k
h+1) and qk

h,h+1(·|Q̃k
h+1).

We denote their total variation distance by δh
k . However, the sampling error in Theorem 4.6 is in

terms of the distance between the joint distributions at episode k: δk = TV(qk, q′
k). Therefore,

for a concrete analysis of sampling error, it is imperative to express δk in terms of {δh
k}h∈[H]. The

expression relies on the following proposition:
Proposition A.6. Suppose that we have four random variables Xi and Yi, i = 1, 2. Denote the
conditional distribution of Yi given Xi = x by pi(·|x), i = 1, 2. Let qi be the joint distribution of
(Xi, Yi) and qX

i be the distribution of Xi, i = 1, 2. If supx TV(p1(·|x), p2(·|x)) ≤ ϵ <∞, then

TV(q1, q2) ≤ TV(qX
1 , qX

2) + ϵ.

Proof of Proposition A.6. In this proof, we abuse notation by identifying a measure with its density
for convenience. By definition of total variation distance,

2TV(q1, q2) =
∫
|p1(y|x)qX

1 (x)− p2(y|x)qX
2 (x)|dydx

≤
∫
|p1(y|x)qX

1 (x)− p2(y|x)qX
1 (x)|dydx +

∫
|p2(y|x)qX

1 (x)− p2(y|x)qX
2 (x)|dydx

≤
∫ (∫

|p1(y|x)− p2(y|x)|dy

)
qX

1 (x)dx +
∫ (∫

p2(y|x)dy

)
|qX

1 (x)− qX
2 (x)|dx

= 2
∫

TV(p1(·|x), p2(·|x))qX
1 (x)dx +

∫
|qX

1 (x)− qX
2 (x)|dx

≤ 2ϵ + 2TV(qX
1 , qX

2),

where for the last equality, we use the fact that for any fixed x, p2(y|x) is a probability density and
hence

∫
p2(y|x)dy = 1. This concludes the proof.

With this proposition in hand, we are ready to prove Proposition 4.11 which we restate here first.
Proposition A.7. Let δh

k be the sampling error (in the total variation sense) induced by our sampler
at step h episode k and δk be defined in section 3.1, h ∈ [H] and k ∈ [K]. Then δk ≤

∑H
h=1 δh

k .

Proof of Proposition 4.11. Let qh:H
k be the joint distribution of {qs

k}h≤s≤H and q̃h:H
k be the joint

distribution of {q̃s
k}h≤s≤H . Then by Proposition A.6,

δk = TV(qk, q′
k) ≤ δ1

k + TV(q2:H
k , q̃2:H

k).

Likewise, for h = 2, . . . , H − 1,

TV(qh:H
k , q̃h:H

k) ≤ δh
k + TV(qh+1:H

k , q̃h+1:H
k).

Since qH:H
k = qH

k and q̃H:H
k = q̃H

k , we have TV(qH:H
k , q̃H:H

k) = δH
k . Then we conclude the proof by

combining the above inequalities.

Now let T be the truncation map

T (x) := min{x, b}+

used in Algorithm 1. Then conditional on Q̃k
h+1, q̃h

k is now given by

q̃h
k = T#[q̃k

h,h+1(·|Q̃k
h+1)].

RLJ | RLC 2024

Since we assume that Qk
h ∈ Q for all h and k, we have that qh

k = T#[qh
k]. And therefore the

data-processing inequality gives

TV (q̃h
k , qh

k) = TV (T#[q̃k
h,h+1(·|Q̃k

h+1)], T#[qh
k]) ≤ TV (q̃k

h,h+1(·|Q̃k
h+1), qh

k),

which is exactly the sampling error in Proposition A.7. And hence the conclusion in the proposition
still holds for δk with the truncation error.

A.4 Proof of Linear MDPs

In this section, we prove some properties for linear MDPs.
Proposition A.8. In linear MDPs, the linear function class Q satisfies Assumption 4.1 and 4.2
with b = H. And the decoupling coefficient is bounded by

KDC ≤ 2dH(1 + ln(2KH)).

Proof of Proposition A.8. Note Assumption 4.1 can be verified directly by the definition of linear
MDP. This boundedness follows from the fact that rh ∈ [0, 1] for all h ∈ [H] and hence Qh(x, a) ≤
H − h + 1 ≤ H for any x, a ∈ S × A. Since Qh is arbitrary here, we have b = H. For the upper
bound of the decoupling coefficient, we refer to (Dann et al., 2021, Proposition 1).

Proposition A.9. In linear MDPs, the linear function class Q satisfies Assumption 4.3. And given
any state x ∈ S and h ∈ [H], we have the following representation of Q ∈ Q:

Qh(x, a)− [T ∗
h Qh+1](x, a) = ⟨uh, ϕ(x, a)⟩.

Proof of Proposition A.9. The linearity of the action-value functions directly follows from the Bell-
man equation:

Qh(x, a) = rh(x, a) + (PhVh+1)(x, a) = ⟨ϕ(x, a), θh⟩+
∫

S
Vh+1(x′)⟨ϕ(x, a), dµh(x′)⟩.

And likewise

[T ∗
h Qh+1](x, a) = ⟨ϕ(x, a), θh⟩+

∫
S

max
a′∈A

Qh+1(x′, a′)⟨ϕ(x, a), dµh(x′)⟩.

Then the completeness follows by defining

Qh(x, a) = ⟨ϕ(x, a), θh +
∫

S
max
a′∈A

Qh+1(x′, a′)dµh(x′)⟩.

And therefore

Qh(x, a)− [T ∗
h Qh+1](x, a) = ⟨ϕ(x, a), uh⟩,

where uh =
∫

S(Vh+1(x′)−maxa′∈A Qh+1(x′, a′))dµh(x′).

Next, we restate Lemma 4.15 and provide proof for it.
Lemma A.10. If the stage-wise priors ph

0 are chosen as N (0,
√

dHId), then κ(ϵ) = dHO(ln(dH/ϵ)).

Proof of Lemma 4.15. By our choice of ph
0 ,

ph
0 (Qh(ϵ, Qh+1)) = O(ϵd(2π

√
dH)d/2).

RLJ | RLC 2024

And hence

ln
(

1
ph

0 (Qh(ϵ, Qh+1))

)
= O(d ln(1/ϵ) + d ln(dH)) = dO(ln(dH/ϵ)).

And finally,

κ(ϵ) =
H∑

h=1
ln
(

1
ph

0 (Qh(ϵ, Qh+1))

)
= dHO(ln(dH/ϵ)).

B More Details on Approximate Samplers

In this section, we provide details of samplers with the target distribution µ ∝ e−L in Rd, where L is
twice continuously differentiable, satisfying the conditions mId ≼ ∇2L ≼ MId for some M ≥ m > 0.
We also define the condition number of µ by κ = M

m .

B.1 Langevin Monte Carlo (LMC)

The Langevin Monte Carlo (LMC) algorithm samples from a target distribution µ ∝ exp(−L), using
a discretized version of the continuous-time Langevin diffusion. Given an initial distribution p0, and
a step size τ > 0, LMC generates a Markov chain {wn}N

n=0, starting from w0 ∼ p0 where wn ∈ Rd.
At each iteration (n + 1), the chain updates its state, wn, using:

wn+1 = wn − τ∇L(wn) +
√

2τξn,

where ξn’s are samples from the d-dimensional standard Gaussian independent of wn. N is the
total number of iteration. The convergence of LMC to the target distribution is a well-known
result, holding true under specific assumptions (Chewi et al., 2022). For illustration, The following
theorem provides a concrete example with sufficient conditions for convergence, which establishes
the theoretical foundation for our analysis.
Theorem B.1 (Vempala & Wibisono (2019)). Denote the distribution of wn by pn. For any
ϵ ∈ [0, κ

√
d], if we take τ = O(ϵ2

κMd), then we obtain the guarantee TV (pN , µ) ≤ ϵ after

N = Θ̃
(

κ2d

ϵ2

)
iterations.

B.2 Underdamped LMC

The underdamped Langevin dynamics (ULD) for (wt, Pt) ∈ R2d is driven by the SDE

dwt = Ptdt,

dPt = −∇L(wt)dt + γPtdt +
√

2β−1γdBt,
(B.1)

which can be viewed as a second-order Langevin dynamics. We can use different discretization
schemes to obtain discrete-time algorithms. For ULMC using the scheme (3.3), we have the following
convergence result:
Theorem B.2 (Zhang et al. (2023)). For ULMC, assume that our target distribution satisfies that
Eµ[∥ · ∥] = m1 < +∞, ∇L(0) = 0 (without loss of generality) and L(0) − min L = Õ(d). Then if
we set τ = Θ̃(ϵm

1/2
1

Md1/2) and γ = Θ(
√

M) with a warm start, the law of the N -th iterate of ULMC pN

satisfies

TV (pN , µ) ≤ ϵ after N = Θ̃
(

κ3/2d1/2

ϵ

)
iterations.

RLJ | RLC 2024

C Experiment Details

In this section, we provide further details on our experiment and implementation.

C.1 N-Chain

We use ϕtherm(st) = (1{x ≤ st}) in {0, 1}N as input feature following Osband et al. (2016a). We
further follow the same protocol as in Ishfaq et al. (2024) for our experiments. For all the baseline
algorithms, as well as our proposed algorithms FG-LMCDQN, FG-ULMCDQN and ULMCDQN,
we parameterize the Q function using a multi-layer perceptron (MLP). We use [32, 32] sized hidden
layers in the MLP and ReLU as the activation functions. All algorithms are trained for 105 steps
where the experience replay buffer size is 104. The performance of each algorithm is measured by
the mean return of the last 10 test episodes. We use mini-batch size of 32 and set discount factor
as γdiscount = 0.99. The target network is updated every 100 steps.

For our proposed algorithms, we do a grid search for the hyper-parameters: learning rate τ , bias
factor a in the optimizers, the temperature β, the friction coefficient γ and the Feel-Good prior
weight η. We list the detailed values of all swept hyper-parameters in Table 2. Following Ishfaq
et al. (2024), for the adaptive bias term, we set α1 = 0.9, α2 = 0.99, and λ = 10−8 in (3.5).

Figure 4: N-Chain environment (Osband et al., 2016a).

Hyper-parameter Values
learning rate τ {0.01, 0.001}
bias factor a {1.0, 0.1, 0.01}
temperature β {1012, 1010, 108}
update number Jk {4}
friction coefficient γ {1, 0.1, 0.01}
feel-good prior weight η {1, 0.1, 0.01}

Table 2: The swept hyper-parameter in N -Chain experiments.

C.2 Atari

C.2.1 Experiment Setup

For our Atari experiments, our training and evaluation protocol follows that of Mnih et al. (2015);
Ishfaq et al. (2024). We implement FG-LMCDQN, FG-ULMCDQN and ULMCDQN using the
Tianshou framework (Weng et al., 2022).

To maintain a reasonable training time, for all our algorithms FG-LMCDQN, FG-ULMCDQN and
ULMCDQN, we set Jk = 1. Similar to the N-chain experiments, following Ishfaq et al. (2024), for
the adaptive bias term, we set α1 = 0.9, α2 = 0.99, and λ = 10−8 in (3.5). We list the detailed
values of all swept hyper-parameters in Table 3.

RLJ | RLC 2024

Hyper-parameter Values
learning rate τ {0.01, 0.001, 0.0001}
bias factor a {0.1, 0.01}
temperature β {1016, 1014, 1012}
update number Jk {1}
friction coefficient γ {10, 1}
feel-good prior weight η {1, 10−2, 10−3, 10−4, 10−5}

Table 3: The swept hyper-parameter in Atari games.

C.2.2 Raw Scores in Atari

In Table 4, we directly compare the performance of our proposed algorithms FG-LMCDQN, FG-
ULMCDQN and ULMCDQN with other baselines by presenting the maximal score obtained by each
algorithm in each of the 8 Atari games. The results are averaged over 5 random seeds.

Methods\Games Alien Freeway Gravitar H.E.R.O Pitfall! Q*bert Solaris Venture
Human 7128 30 3351 30826 6464 13455 12327 1188
Random 228 0 173 1027 -229 164 1263 0

IQN 1691 ± 155 34 ± 0 413 ± 31 11229 ± 1098 -5 ± 4 14324 ± 643 1082 ± 258 3 ± 3
BootstrappedDQN 1067 ± 133 29 ± 1 312 ± 50 13538 ± 696 -53 ± 19 11786 ± 1474 923 ± 383 12 ± 12

C51 1878 ± 1878 34 ± 0 254 ± 52 17500 ± 2170 -19 ± 16 13394 ± 1500 303 ± 191 31 ± 31
PrioritizedDQN 1799 ± 202 23 ± 10 149 ± 37 14462 ± 1249 -46 ± 16 9464 ± 880 1377 ± 423 23 ± 23
NoisyNetDQN 1545 ± 217 32 ± 0 124 ± 47 6003 ± 1903 -31 ± 21 11046 ± 1594 1373 ± 361 24 ± 21

AdamLMCDQN 1772 ± 188 33 ± 0 799 ± 34 11366 ± 348 -6 ± 4 14628 ± 498 938 ± 189 1326 ± 92
ULMCDQN 1999 ± 687 34 ± 0 697 ± 64 15201 ± 3141 -3 ± 2 14704 ± 794 1195 ± 390 1132 ± 195

FG-LMCDQN 2380 ± 645 23 ± 10 744 ± 73 11576 ± 202 0 ± 0 14674 ± 436 735 ± 132 1069 ± 60
FG-ULMCDQN 2030 ± 446 34 ± 0 844 ± 312 14044 ± 1220 -9 ± 9 14385 ± 579 1278 ± 851 1198 ± 198

Table 4: Experiments results on 8 Atari Games. Table 4 presents the scores in each environment
with 50M frames. For each environment, the algorithms perform 5 runs with random seeds. Then
we average the scores for each game over 5 runs as the final result with a 95% confidence interval.
We consider 6 baselines: IQN (Dabney et al., 2018), Bootstrapped DQN (Osband et al., 2016a), C51
(Bellemare et al., 2017), Prioritized DQN (Schaul et al., 2015), NoisyNet DQN (Fortunato et al.,
2018) and AdamLMCDQN (Ishfaq et al., 2024). The scores for IQN, C51 and Prioritized DQN
are taken from DQN Zoo (Quan & Ostrovski, 2020). The scores for Bootstrapped DQN, NoisyNet
DQN and AdamLMCDQN are taken from https://github.com/hmishfaq/LMC-LSVI which is the
official github repository of Ishfaq et al. (2024). We implemented our algorithms ULMCDQN, FG-
LMCDQN and FG-UMLCDQN with Tianshou framework (Weng et al., 2022) in which we also use
the double Q method (Van Hasselt et al., 2016). Our algorithms have demonstrated advantages in
Alien, Freeway, Gravitor and Pitfall compared with baselines.

https://github.com/hmishfaq/LMC-LSVI

