
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LLM2FX-TOOLS:
TOOL CALLING FOR MUSIC POST-PRODUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces LLM2Fx-Tools, a multimodal tool-calling framework
that generates executable sequences of audio effects (Fx-chain) for music post-
production. LLM2Fx-Tools uses a large language model (LLM) to understand
audio inputs, select audio effects types, determine their order, and estimate pa-
rameters, guided by chain-of-thought (CoT) planning. We also present LP-Fx, a
new instruction-following dataset with structured CoT annotations and tool calls
for audio effects modules. Experiments show that LLM2Fx-Tools can infer an Fx-
chain and its parameters from pairs of unprocessed and processed audio, enabled
by autoregressive sequence modeling, tool calling, and CoT reasoning. We further
validate the system in a style transfer setting, where audio effects information is
transferred from a reference source and applied to new content. Finally, LLM-
as-a-judge evaluation demonstrates that our approach generates appropriate CoT
reasoning and responses for music production queries. To our knowledge, this is
the first work to apply LLM-based tool calling to audio effects modules, enabling
interpretable and controllable music production where users can incorporate their
own audio plugins. 1

1 INTRODUCTION

The use of Audio effects (Fx) processing constitutes a fundamental component of modern music
post-production, where producers systematically apply sequences of effects (Fx-chain) to transform
audio signals and achieve desired sound textures (Zölzer et al., 2002; De Man & Reiss, 2013). In
most post-production workflows, the application of audio effects is guided by both technical and
creative criteria, requiring a high level of expertise from audio engineers. Estimating the appropriate
Fx-chain from unprocessed input audio (dry), processed output audio (wet), or by reverse engineer-
ing from both requires extensive domain expertise and often involves iterative manual adjustment.

To address this challenge, automatic Fx-chain estimation has emerged as a promising approach to
reduce barrier and labor-intensive aspects of music production. Previous works focus on signal
processing-based optimization (Barchiesi & Reiss, 2010; Giannoulis et al., 2013; Ma et al., 2015),
gradient-based optimization (Colonel & Reiss, 2021; Lee et al., 2024; Steinmetz et al., 2024; Koo
et al., 2025; Lee et al., 2025; Yu et al.), regression methods (Rämö & Välimäki, 2019; Sheng &
Fazekas, 2019; Mimilakis et al., 2020; Martı́nez-Ramı́rez et al., 2021; Steinmetz et al., 2022; Hayes
et al., 2025), and multitask methods (Mitcheltree & Koike; Lee et al., 2023; Take et al., 2024). While
these methods demonstrate promising performance, they face several fundamental limitations. First,
gradient-based methods require differentiable audio effects modules, limiting their applicability to
specific effects. Second, regression and signal processing-based methods operate on fixed, prede-
fined configurations and lack the ability to dynamically select effects and determine their ordering.
Furthermore, three approaches lack user-level interpretability, as they provide only Fx-chain without
human-readable descriptions or reasoning to explain why such decisions are made.

Meanwhile, recent advances in large language models (Achiam et al., 2023; Grattafiori et al., 2024;
Comanici et al., 2025) (LLMs) have introduced powerful capabilities including instruction follow-
ing (Achiam et al., 2023; Wei et al., 2022a), chain-of-thought reasoning (Wei et al., 2022b), and
tool calling (Schick et al., 2023). Chain-of-thought (CoT) enables models to decompose a com-

1Demo is available at: https://llm2fx-tool-paper.github.io/demo

1

https://llm2fx-tool-paper.github.io/demo

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: An illustration of the LLM2Fx-Tools framework. The input to LLM2Fx-Tools consists of
instruction, available tools, reference audio, and (pseudo) dry audio. The framework outputs chain
of thought, tool calling procedure, and response. The generated tool calling outputs (Fx-chain) are
then combined with tool environments (audio effects modules) to enable the transformation of new
audio in the style of the reference audio.

plex task into a series of reasoning sub-tasks, providing an interpretable view of its reasoning pro-
cess (Wei et al., 2022b). Tool calling enables LLMs to flexibly connect with external modules
(e.g., non-differentiable audio effect modules) and knowledge bases to accomplish domain specific
tasks (Schick & Schütze, 2020; Gao et al., 2023). These capabilities present new opportunities to
address the flexibility and interpretability issues in Fx-chain prediction. Prior work has explored ap-
plying LLMs to music production tasks (Moffat et al., 2022; He et al., 2025). In the context of music
post-production specifically, LLM2Fx (Doh et al., 2025) predicts audio effects parameters from nat-
ural language prompts, but it does not employ explicit tool calling or chain-of-thought reasoning
and is limited to single effects (Equalization and Reverb).

In this work, we introduce LLM2Fx-Tools, LLM-based Fx-chain estimation with Tool-calling, a
multimodal framework that addresses these limitations by enabling flexible Fx-chain prediction
through tool calling and enhancing interpretability with chain-of-thought reasoning. LLM2Fx-Tools
generates 1) chain-of-thought, 2) executable Fx-chain and 3) natural language response. Our key
contributions are:

Tool-Calling for Music Production: We develop the first structured tool-calling approach for Fx-
chain generation that enables multimodal LLMs to understand audio conditioning and generate ex-
ecutable tool calls for non-differentiable audio effects modules.

Chain-of-Thought for Fx-chain Planning: We utilize a chain-of-thought (CoT) (Wei et al., 2022b)
mechanism specifically designed for Fx-chain generation that decomposes the complex task into
interpretable sub-tasks: effect selection, order determination, and parameter estimation. This inter-
mediate reasoning bridges the gap between user inputs and target Fx-chain, improving both perfor-
mance and interpretability.

Multimodal Instruction-Following: We extend the Fx-chain estimation task from unimodal audio-
to-effects mapping to a multimodal framework incorporating natural language instructions. Users
can specify preferred effect types, musical genres, or instrument characteristics, enabling customized
Fx-chains that align with specific user requirements.

Conversational Music Production Dataset: We introduce LP-Fx, LLM-based music production
dataset for audio effects tools, containing 101K conversational examples with structured Tool Call-
ing, Chain-of-Thought, and Response. Each example comprises 1) user instructions, 2) audio ef-
fects tool calls, 3) chain-of-thought, and 4) responses. Our multi-stage data synthetic methodology

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

bridges audio signals, Fx-chain, and natural language, establishing a foundation for training multi-
modal LLMs in music production domains.

2 LLM2FX-TOOLS: FX-CHAIN GENERATION VIA TOOL CALLING

2.1 TASK DEFINITION

Our main task is to estimate the Fx-chain (C) that transforms a dry unprocessed audio (xdry) into a
reference audio signal (xref). Formally, given xdry and xref, our goal is to estimate C such that xref =
E(C, xdry), where E denotes the tool environment that applies C to xdry. For additional controllability,
we incorporate natural language instructions (xinstruction) to guide the generation process. Our goal
is to learn the inverse mapping

C = fθ(xinstruction, xdry, xref; T) (1)

where fθ represents an LLM that predicts the Fx-chain C = [(tooln, paramsn)]
N
n=1 from the refer-

ence audio xref given the available tool set T . We treat each audio effect module tool ∈ T as an
external executable tool.

As implied in Eq. (1), we consider Fx-chain estimation task where both xdry and xref are available,
which is commonly referred to as the reverse engineering (Lee et al., 2025) task. However, xdry is
not always accessible in practical scenarios, corresponding to the blind estimation (Lee et al., 2023)
task. While our primary target is the reverse engineering, we propose a robust training method to
simultaneously handle both tasks within a single model, as detailed in Section 2.3.

Our secondary task involves generating chain-of-thought (xcot) and natural language responses
(xresponse). The chain-of-thought (CoT) reasoning serves as an intermediate planning stage that de-
composes the complex Fx-chain generation into four sequential components: 1) user input analysis,
2) audio effects module selection, 3) processing order determination, and 4) parameter planning. In
our auto-regressive generation framework, the CoT functions as an in-context condition (Wei et al.,
2022b) for subsequent tool calling, bridging user queries and action plans to support more accurate
and interpretable tool execution. Following the tool calling generation, the model produces natural
language responses that provide users with a conversational interface for music production tasks.

2.2 ARCHITECTURE

Figure 2: Model Architecture

To enable LLMs to comprehend audio inputs for tool
calling, we adopt a multimodal autoregressive generation
framework (Liu et al., 2023; Gardner et al., 2023). As illus-
trated in Figure 2, since LLMs inherently lack audio pro-
cessing capabilities, we bridge this modality gap through a
pretrained audio encoder coupled with a learnable audio-
language adapter. This adapter projects audio represen-
tations into the language model’s embedding space, for-
mally defined as: eaudio = fadapter(fencoder(xaudio)), where
fencoder : Rc×t → Rl×denc processes input audio signals
xaudio (c channels, t samples) to extract l audio represen-
tations of dimension denc, and fadapter : Rl×denc → Rl×dLLM

maps these representations to the language model’s embed-
ding space of dimension dLLM. The audio embeddings eaudio
are concatenated with text token embeddings to form a uni-
fied multimodal input sequence, enabling the LLM to generate structured outputs including chain-
of-thought reasoning xcot, tool calling sequences C, and natural language responses xresponse.

Audio Encoder: We employ Fx-Encoder++ (Yeh et al., 2025), a specialized audio encoder trained
with contrastive learning to obtain representations for audio effects processing. This encoder con-
sists of a ConvNet-based feature extractor, pooling layer, and MLP projection layer. We remove
the pooling and MLP projection layers and use the patch embeddings haudio ∈ Rl×denc as audio
representations.

Adapter: Unlike previous work that uses a simple linear projection layer for cross-modal align-
ment (Liu et al., 2023; Gardner et al., 2023), we employ a transformer-based audio-language

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

adapter (Li et al., 2023) with a linear projection layer W ∈ Rdenc×dLLM and that utilizes 32 learn-
able query embeddings equery ∈ R32×dLLM . This design uses cross-attention to aggregate audio
information into learnable query tokens.

Large Language Model: We employ Qwen3-4B (Yang et al., 2025) as our foundation LLM back-
bone, which provides inherent capabilities for structured tool calling and chain-of-thought reasoning.
We fine-tune the model using Low-Rank Adaptation (LoRA) (Hu et al., 2022) with rank 128 and
alpha 256 to efficiently adapt the model to our Fx-chain estimation task.

2.3 TRAINING

We employ a unified autoregressive next-token prediction objective to train our multimodal LLM.

Cross-Entropy for Next-token Prediction: Given a training sample with user instruction xinstruction,
reference audio xref, dry audio xdry, chain-of-thought xcot, tool calling sequence C, and assistant
response xresponse, we construct the input sequence as a concatenation of a conditioning prefix and a
target sequence to be generated by the model as follows:

xinput = [xinstruction, xdry, xref,︸ ︷︷ ︸
Conditioning Prefix

xcot, C, xresponse]︸ ︷︷ ︸
Target Sequence

(2)

We train the model with the cross-entropy loss LCE, computed only over the target sequence, while
leaving prefix as a conditioning context as follows:

LCE = −
∑

t∈Ttarget

log p(xt|x<t; θ) (3)

where Ttarget represents the set of token indices of the target sequence.

Number Token Loss: For parameter estimation, we need to predict the numerical values of effect
parameters. However, a key problem with Cross Entropy is that it treats all incorrect predictions
equally, even when some numbers are closer to the correct answer than others. In response, we
adopt a regression-like Number Token Loss (NTL) that Wasserstein-1 distance between predicted
and one-hot number distributions (Zausinger et al., 2025):

LNTL-WAS =
1

N

N∑
i=1

t∑
j=s

ŷij |yi − Vj | (4)

where N is the number of samples, ŷij is the predicted probability for token j in sample i, index
s, t representing the range of number token, yi is the ground truth numerical value, and Vj is the
numerical value of token j. This loss function penalizes predictions based on how far they are from
the true numerical value, rather than treating all incorrect tokens equally. Our final loss function
combines both objectives: Ltotal = LCE + λLNTL where λ is a hyperparameter for balancing cross-
entropy and number token losses.

Multi-Stage Training: To effectively train our multimodal LLM, we adopt a multi-stage training
strategy (Liu et al., 2023) that systematically builds capabilities from basic audio-language align-
ment to complex reasoning tasks. Our training protocol comprises two distinct phases: 1) modality
alignment pre-training and 2) LLM fine-tuning while progressively incorporating task complexity.

We first pre-train the adapter module to bridge the audio modality and text modality. During the
pre-training stage, we use only audio inputs and tool calling outputs (Fx-chain) as training data,
focusing solely on learning the relationship between dry and reference audio differences and their
corresponding Fx-chain. In this stage, we freeze the LLM parameters and only update the audio-
language adapter parameters. In the fine-tuning stage, we update both the adapter and LLM through
LoRA adaptation. This stage incorporates the full complexity of our task, including not only tool
calling but also chain-of-thought reasoning and response generation.

Robust Training Techniques for Distribution Shift: As mentioned in Section 2.1, our goal is to
estimate C such that xref = E(C, xdry), assuming we have access to both xdry and xref. However,
training a model only on a dataset of paired (xdry, xref) audio samples for this reverse engineering
setup, real-world scenarios present distribution shift challenges: xdry is typically unavailable during
inference. Even when it is available, it may differ from the training dataset since recording studios
vary significantly in their equipment and environments.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To address this challenge, we employ Fx-Normalization (Martı́nez-Ramı́rez et al., 2022) and Fx-
Removal (Rice et al., 2023) techniques at both training and inference stages to align dry audio
distributions and obtain pseudo dry audio x̂dry. Furthermore, we implement dry audio masking
during training, randomly omitting dry audio inputs with probability pmasking to force the model to
rely solely on reference audio for the blind estimation setup.

3 DATASET: LP-FX

We propose a novel LLM-based data synthesis pipeline that systematically generates high-quality
conversation data for Fx-chain generation tasks, introducing a new dataset as one of the key contri-
butions of this work.

3.1 BASE DATASET AND TOOL ENVIRONMENT

The audio source of LP-Fx is MedleyDB (Bittner et al., 2014; 2016), which provides royalty-free
196 multitrack recordings. Each recording includes three different levels of audio: (i) unprocessed
raw tracks, (ii) stems, which are submixes of raw tracks with audio effects applied, and (iii) a full
mix, created by combining the processed stems into a complete mixture. We use unprocessed raw
audio as the dry audio xdry. We filter out multitracks with bleed using the metadata provided by
MedleyDB, resulting in a curated set of 2,119 raw audio files from 116 multitracks, spanning 9
genres and 80 unique instruments. We use the Pedalboard 2 audio effects library and our custom
audio effects modules as our tool environment T . We select 6 modules (compressor, distortion,
reverb, delay, limiter, and gain) from the Pedalboard library and 3 modules (three-band equalizer,
stereo widener, and panner) from our custom modules, totaling 9 modules and 26 parameters.

3.2 DATA GENERATION PROCESS

Figure 3: Data generation process for LP-Fx

As illustrated in Figure 3, our data genera-
tion process consists of three sequential stages.
In the first stage, we sample Fx-chains within
musically plausible ranges to create dry/pro-
cessed audio pairs. The second stage generates
instruction-following conversations grounded
in these Fx-chains to ensure factual accuracy.
The third stage produces chain-of-thought rea-
soning that explicitly connects user instruc-
tions to the underlying audio effects trans-
formations. Finally, we employ LLM-as-a-
judge (Chen et al., 2024; Zheng et al., 2023)
evaluation to filter the dataset for high-quality
samples. The basic framework for utilizing LLMs in our data generation process follows the formu-
lation xdata = LLM(xground,P), where xground is the grounded information (e.g., Fx-chain C) and P
is the carefully crafted prompts. We further provide details of each stage in Appendix B.

3.3 STATISTICS Table 1: Statistics of LP-Fx Dataset.

Statistics Trainset Testset

of Dialogue 99,900 900
of Tracks 2019 100
of Instruments 80 33
Avg. Instruction length 28.8 28.2
Avg. Response length 178.6 178,6
Avg. CoT length 251.9 252.7
Min/Max Tool Number 1-9 1-9

Table 1 presents the statistics of our LP-Fx
dataset. Based on the observation that task
complexity increases with the number of effects
in the chain, we create a stratified dataset with
11,100 training samples and 100 test samples
for each Fx-chain length from 1 to 9, resulting
in a total of 100,800 conversations. We ensure
no overlap between audio tracks used in train-
ing and test sets to prevent data leakage. Each
example comprises 1) user instructions, 2) unprocessed/processed audio pairs, 3) executable audio

2https://github.com/spotify/pedalboard

5

https://github.com/spotify/pedalboard

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

effects tool calls, 4) chain-of-thought reasoning, and 5) assistant responses. The dataset’s rich di-
versity in musical content makes it particularly effective for LLM fine-tuning. With 2,019 tracks
spanning 80 unique instruments across 9 genres.

4 EXPERIMENTS

4.1 REVERSE ENGINEERING

Task Definition: We evaluate our approach on reverse engineering. The task involves predicting Fx-
chains C from reference audio xref given access to the corresponding dry audio xdry. We evaluate this
task using the LP-Fx test split, which provides ground truth triplets of (xdry, xref, C) for evaluation.

Metrics: Our evaluation framework assesses model performance through four complementary per-
spectives: 1) Fx-chain Planning, 2) Perceptual Distance, 3) DSP Feature Distance, and 4) Deep
Embedding Similarity. For Fx-chain Planning, we use classification accuracy to measure whether
the model correctly predicts the presence of target audio effects modules in the ground truth Fx-
chain. We then apply Spearman rank correlation to assess how closely the predicted ordering of
modules matches the ground truth. Finally, parameter mean absolute error (MAE) is used to quan-
tify the precision of parameter prediction. For Perceptual Distance, we employ Multi-Resolution
STFT (MRS) distance (Yamamoto et al., 2020) on both left-right (L/R) and mid-side (M/S) chan-
nels for stereo-aware processing evaluation. For DSP Feature Distance, we utilize Audio Features
(AF) (Man et al., 2014; Vanka et al., 2024), including root mean square, crest factor, stereo width,
stereo imbalance, and bark spectrum. For Deep Embedding Similarity, we employ audio effects-
specific pretrained representations, including classification-based AFx-Rep (Steinmetz et al., 2024)
and contrastive learning-based Fx-Encoder (Koo et al., 2023).

Baselines: We evaluate our approach against several baselines to assess the effectiveness of our
instruction-following Fx-chain generation framework. 1) No Fx: A naive baseline that applies no
audio effects to the input audio, representing the lower bound performance where the predicted refer-
ence audio x̂ref equals the dry audio xdry. 2) Random Fx: A baseline that applies the random number
of effects with randomized ordering and parameters. 3) Regression: A regression-based approach
that directly predicts audio effects parameters from audio features without explicit tool selection or
ordering capabilities. Specifically, we first extract embeddings using the Fx-Encoder++ Yeh et al.
(2025), followed by a 2-layer MLP with ReLU activations. The regression head outputs a vector of
logits corresponding to the number of parameters in the full Fx-chain. 4) Multitask: An enhanced
regression model incorporating additional classification heads to address limitations of the pure re-
gression approach. The base architecture is identical to the regression model, but additional logits
are predicted to classify which audio effects modules are applied. 5) Gemini 2.5 Flash (Comanici
et al., 2025): A closed-source multimodal LLM with audio understanding, reasoning, and tool call-
ing capabilities. The regression and multitask baselines employ the same pretrained audio encoder
as LLM2Fx-Tools, MLP projection layers and task-specific prediction heads.

4.2 AUDIO EFFECTS STYLE TRANSFER WITH BLIND ESTIMATION

Task Definition: We evaluate our approach on the audio effects style transfer task, which simulates
real-world scenarios where users only have access to a reference audio with different content. This
task comprises two sequential stages: 1) blind estimation - inferring the underlying Fx-chain C from
a processed reference audio xref without the knowledge of its corresponding original dry recording,
and 2) style transfer - applying the estimated Fx-chain to another source audio. This evaluation
assesses the model’s ability to generalize to unseen musical content.

Evaluation Protocol: To evaluate generalization across different musical content, we employ Moi-
sesDB (Pereira et al., 2023) as the source of processed reference stems and testset of LP-Fx (Bittner
et al., 2014; 2016) as the source of clean input audio. This cross-dataset evaluation protocol en-
sures that models encounter entirely unseen musical content, providing a rigorous test of generaliza-
tion capabilities. We construct evaluation pairs by matching instrument categories between the two
datasets, resulting in an evaluation set of 100 test samples. Given that the reference and input audio
contain distinct musical content, we focus our evaluation on feature-based metrics, including DSP
feature distance and embedding similarity. We employ the same baseline methods of the reverse
engineering task as described in 4.1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Fx-chain Estimation Results. We compare with multiple baselines and analyze the con-
tribution of key components in our LLM2Fx-Tools framework: Chain-of-Thought (CoT), Number
Token Loss (NTL), and Multi-Stage Training (MST).

Fx-chain Planning Perceptual Dist. DSP Embedding Sim.(↑)

Acc.(↑) Corr.(↑) MAE(↓) L/R(↓) M/S(↓) AF(↓) AFx-Rep FxEnc

No Fx - - - 13.11 13.49 14.82 0.50 0.30
Random Fx 52% -0.01 0.39 8.07 8.90 13.70 0.41 0.34
Regression 55% -0.03 0.20 3.81 4.12 9.20 0.62 0.64
MultiTask 61% 0.00 0.23 3.17 3.39 8.39 0.63 0.66
Gemini2.5Flash 78% 0.54 0.32 3.42 4.24 14.97 0.56 0.50

LLM2Fx-Tools 80% 0.56 0.23 3.13 3.27 8.29 0.68 0.67
w/o CoT 67% 0.49 0.24 3.34 3.38 8.39 0.64 0.66
w/o NTL 73% 0.51 0.32 3.69 3.52 8.47 0.61 0.63
w/o MST 76% 0.55 0.25 3.21 3.32 8.30 0.67 0.64

4.3 NATURAL LANGUAGE GENERATION

Task Definition: Beyond the Fx-chain estimation capabilities, LLM2Fx-Tools generates chain-of-
thought reasoning and natural language responses, providing interpretability and transparency to
users through comprehensive explanations of the audio processing decisions.

Evaluation Protocol: We evaluate the natural language generation quality of our LLM2Fx-Tools
framework. Following previous works (Gardner et al., 2023; Clemens & Marasović, 2025), we
assess the natural language generation capabilities through an LLM-as-a-judge framework (Zheng
et al., 2023). Similar to Section 3.2, we use Gemini2.5-Pro model as LLMjudge. Specifically, we eval-
uate three key dimensions: 1) tool calling success, whether the model correctly executes the required
Fx-chain, 2) instruction following quality, whether the generated response adequately addresses the
user instruction, and 3) chain-of-thought quality, whether the reasoning effectively connects user
instructions to responses through coherent intermediate steps. This process can be formulated as
(sIF, sCoT) = LLMjudge(xinstruction, xresponse, xcot,Pjudge). Pjudge details provided in Appendix E.

Baselines: We compare our approach with LLMs for natural language generation: 1) Qwen2.5-
Omni 7B: (Chu et al., 2024) An open-source multimodal LLM without reasoning capabilities, 2)
Qwen 2.5 4B: (Yang et al., 2025) A compact open-source LLM without audio understanding, and
3) Gemini 2.5 Flash: (Comanici et al., 2025) A closed-source multimodal LLM with advanced
reasoning capabilities.

4.4 TRAINING / EVALUATION DETAILS

We utilize Qwen3-4B (Yang et al., 2025) as our pretrained LLM foundation, which provides instruc-
tion following, reasoning and tool calling ability. Training is performed across multi-stage training
(MST) with different learning rates and batch sizes. For Stage 1 (modality alignment pretraining),
we use a learning rate of 1e-4 with batch size of 32 and train for 100K steps. Stage 2 (LLM finetun-
ing) employs a learning rate of 5e-5 with batch size of 16 and is iterated for 400K steps.

5 RESULTS / ANALYSIS

5.1 REVERSE ENGINEERING

Comparison on Fx-chain Planning. Table 2 demonstrates that LLM2Fx-Tools achieves superior
performance across multiple evaluation dimensions. In Fx-chain Planning, our approach signifi-
cantly outperforms all baselines, achieving 80% accuracy in audio effects module classification and
0.56 Spearman correlation for ordering, compared to the MultiTask baseline with 61% accuracy and
near-zero correlation. While the regression baseline achieves slightly better parameter MAE (0.20
vs 0.23), this comes at the cost of substantially worse audio effects module selection and ordering ca-
pabilities. Interestingly, Gemini 2.5 Flash demonstrates strong Fx-chain Planning capabilities with
78% effect classification accuracy and reasonable ordering correlation (0.54). However, it exhibits
limitations in parameter estimation, achieving the highest parameter MAE (0.32).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

The performance improvements of LLM2Fx-Tools stem from two key aspects: 1) our instruction-
following capabilities leverage natural language understanding to provide additional conditioning
beyond pure audio comprehension, enabling more precise and semantically-aware audio processing
decisions; and 2) the autoregressive sequence modeling inherent in LLMs provides a fundamental
advantage for handling Fx-chain ordering compared to models that rely solely on audio features.

Does Fx-chain Planning Lead to Better Acoustic Similarity? For Perceptual Distance,
LLM2Fx-Tools achieves the best performance on both MRS distances, outperforming all baselines.
Our analysis indicates that effective Fx-chain Planning is essential not only for accurate parameter
prediction but also for achieving strong perceptual performance. Notably, while the regression base-
line achieves the lowest parameter MAE (0.20), this advantage in parameter space does not translate
into improved perceptual distance. Because the regression model lacks the ability to selectively ap-
ply audio effects modules, it must predict parameters for all predefined modules, even when they
are absent in the reference audio. This limitation leads to suboptimal perceptual and feature-level
reconstruction, underscoring the importance of Fx-chain planning for bridging parameter accuracy
and perceptual quality.

In contrast, both the MultiTask baseline and our LLM2Fx-Tools framework, which incorporate au-
dio effects module selection capabilities, demonstrate superior performance in both perceptual and
DSP distance compared to the base regression approach. Comparing MultiTask vs LLM2Fx-Tools
further demonstrates the critical importance of Fx-chain ordering: despite achieving similar DSP
distances (8.39 vs 8.29), LLM2Fx-Tools’s substantial improvement in ordering correlation (0.56 vs
0.00) leads to better perceptual reconstruction (3.13 vs 3.17 L/R MRS). This indicates that correct
effect sequencing significantly contributes to audio processing quality, as the order of effects can
dramatically alter the final audio output. For Deep Embedding Similarity, LLM2Fx-Tools achieves
the highest similarity scores (AFx-Rep: 0.68, Fx-Encoder: 0.67), demonstrating that effective Fx-
chain outputs more semantically similar to reference audio.

Ablation Studies. The lower portion of Table 2 demonstrates that our core design choices contribute
meaningfully to model performance. Chain-of-Thought (CoT) reasoning significantly aids Fx-chain
Planning capabilities, improving effect classification accuracy from 67% to 80% and enhancing
ordering correlation from 0.49 to 0.56. Number Token Loss (NTL) notably impacts parameter esti-
mation, reducing MAE from 0.32 to 0.23, while also improving overall perceptual and feature-level
metrics. MST provides improvements across all metrics, bridging the representations between the
pretrained audio encoder and LLM while leveraging the pretrained capabilities of Qwen3.

5.2 AUDIO EFFECTS STYLE TRANSFER WITH BLIND ESTIMATION

Table 3: Audio Effects Style Transfer Results.

DSP Embedding Sim.

AF(↓) AFx-Rep(↑) FxEnc(↑)

No Fx 8.69 0.24 0.43
Random Fx 15.22 0.14 0.19
Regression 7.83 0.24 0.31
MultiTask 7.62 0.29 0.46
Gemini2.5Flash 9.00 0.24 0.27
LLM2Fx-Tools 7.41 0.35 0.49

Table 3 presents the experiment results of au-
dio effects style transfer, designed to evaluate
the cross-domain generalization capabilities of
each method. We observe similar trends to
those seen in reverse engineering experiments.
The regression baseline, which applies all pre-
defined audio effects regardless of their rele-
vance, achieves suboptimal performance with
higher DSP distance (7.83) and lower embed-
ding similarity scores. The MultiTask approach
shows modest improvements with better DSP distance (7.62) and enhanced embedding similarities,
highlighting the importance of selective effect application. However, its lack of ordering capabilities
limits further performance gains.

Among LLM-based approaches, Gemini 2.5 Flash performs poorly, yielding a DSP distance of
9.00 and embedding similarities barely above the No Fx baseline, despite its large parameter count.
Our reverse engineering experiments reveal that its parameter predictions are nearly random, which
explains why it fails to generalize effectively to the style transfer task. In contrast, LLM2Fx-Tools
consistently achieves the best results, with the lowest DSP distance (7.41) and the highest embedding
similarity scores (AFx-Rep: 0.35, Fx-Encoder: 0.49) across all evaluated methods.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Natural Language Generation Results. We compare with multiple (multimodal) large lan-
guage models on tool calling (TC), instruction following (IF), and chain of thought (CoT).

Params Multimodal Reasoning TC Success IF Quality CoT Quality

Qwen 2.5Omni 7B ✓ ✗ 0.2% 2.01 N/A
Qwen 3 4B ✗ ✓ 73.7% 3.63 3.62
Gemini 2.5Flash N/A ✓ ✓ 100% 3.75 3.63
LLM2Fx-Tools 4B ✓ ✓ 99.8% 3.86 3.69

5.3 NATURAL LANGUAGE GENERATION

Table 4 evaluates natural language generation capabilities through comprehensive LLM-as-a-Judge
assessment. Qwen 2.5Omni demonstrates limited zero-shot tool calling capabilities, failing to gener-
ate correctly formatted JSON structures. In contrast, Qwen 3-4B achieves substantial tool calling
success (73.7%) despite lacking multimodal capabilities, indicating the effectiveness of text-based
reasoning for this task. LLM2Fx-Tools, built upon Qwen 3-4B with specialized multimodal training,
achieves near-perfect tool calling performance (99.8%), matching the capabilities of state-of-the-art
closed-source models such as Gemini 2.5 Flash (100.0%).

The instruction following evaluation reveals substantial quality improvements from domain-specific
training. LLM2Fx-Tools outperforms zero-shot baselines, with quality scores increasing from 3.63
to 3.86 compared to the base Qwen 3 model. This improvement demonstrates the critical im-
portance of specialized training for music production tasks, where general-purpose models lack
domain-specific knowledge about audio effects and their applications.

Additionally, CoT quality evaluation shows that LLM2Fx-Tools outperforms other LLM baselines.
This can be attributed to LLM2Fx-Tools’s training on high-quality CoT dataset specifically focused
on music production tasks. The training dataset LP-Fx leverages knowledge distillation from Gem-
ini2.5 Flash, with quality assurance provided through filtering by Gemini2.5 Pro. This multi-stage
data synthesis approach is expected to enhance the CoT capabilities of the fine-tuned model, en-
abling more coherent and domain-relevant reasoning for audio effects manipulation.

6 LIMITATION

While our framework advances interpretable and controllable Fx-chain estimation, several chal-
lenges remain. First, the predicted Fx-chain is interpretable only relative to pseudo-dry audio ob-
tained through Fx-normalization and Fx-removal preprocessing. Full interpretability would require
integrating these preprocessing steps directly into the Fx-chain representation and reasoning pro-
cess. Second, the inherent one-to-many mapping in audio effects estimation (Hayes et al., 2025)
creates ambiguity where multiple distinct Fx-chains can produce perceptually similar results, par-
ticularly in symmetric parameter spaces. Our current evaluation framework does not fully account
for this fundamental ambiguity. Third, our experimental validation focuses exclusively on single-
instrument sources, which may limit direct applicability to complex multitrack music production
scenarios. Furthermore, we have not evaluated generalization to unseen audio effects modules be-
yond our training distribution. While our tool-calling framework is designed to be extensible to new
VST plugins and audio effects modules, empirical validation of this capability remains future work.

7 CONCLUSION

We present LLM2Fx-Tools, a multimodal tool-calling framework for generating executable audio
effect chains with interpretable chain-of-thought planning. Our experimental results demonstrate
that LLM2Fx-Tools outperforms regression and multitask baselines on both reverse engineering
and audio style transfer tasks. Additional evaluations through LLM-as-a-judge confirm the natural
language generation capabilities of our approach, demonstrating strong instruction following and
chain-of-thought reasoning quality. By emitting structured tool calls over audio effect modules, our
approach enables controllable and explainable music post-production applications. This work opens
several promising directions for future research, including scaling to richer VST plugin toolboxes,
developing reinforcement learning frameworks, and conducting comprehensive perceptual evalua-
tions with expert music producers to validate real-world applicability.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Daniele Barchiesi and Joshua Reiss. Reverse engineering of a mix. Journal of the Audio Engineering
Society, 58(7/8):563–576, 2010.

Rachel M Bittner, Justin Salamon, Mike Tierney, Matthias Mauch, Chris Cannam, and Juan Pablo
Bello. MedleyDB: A multitrack dataset for annotation-intensive mir research. In The 15th Inter-
national Society for Music Information Retrieval Conference (ISMIR), volume 14, pp. 155–160,
2014.

Rachel M Bittner, Julia Wilkins, Hanna Yip, and Juan P Bello. MedleyDB 2.0: New data and a
system for sustainable data collection. ISMIR Late Breaking and Demo Papers, 36, 2016.

Dongping Chen, Ruoxi Chen, Shilin Zhang, Yaochen Wang, Yinuo Liu, Huichi Zhou, Qihui Zhang,
Yao Wan, Pan Zhou, and Lichao Sun. MLLM-as-a-judge: Assessing multimodal llm-as-a-judge
with vision-language benchmark. In Forty-first International Conference on Machine Learning,
2024.

Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng, Yuanjun Lv,
Jinzheng He, Junyang Lin, et al. Qwen2-audio technical report. arXiv preprint arXiv:2407.10759,
2024.

Michael Clemens and Ana Marasović. Mixassist: An audio-language dataset for co-creative ai
assistance in music mixing. arXiv preprint arXiv:2507.06329, 2025.

Joseph T Colonel and Joshua Reiss. Reverse engineering of a recording mix with differentiable
digital signal processing. The Journal of the Acoustical Society of America, 150(1):608–619,
2021.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Brecht De Man. Towards a better understanding of mix engineering. PhD thesis, Queen Mary
University of London, 2017.

Brecht De Man and Joshua D Reiss. A knowledge-engineered autonomous mixing system. In Audio
Engineering Society Convention 135. Audio Engineering Society, 2013.

Seungheon Doh, Junghyun Koo, Marco A Martı́nez-Ramı́rez, Wei-Hsiang Liao, Juhan Nam, and
Yuki Mitsufuji. Can large language models predict audio effects parameters from natural lan-
guage? In 2025 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics
(WASPAA), 2025.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. PAL: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Josh Gardner, Simon Durand, Daniel Stoller, and Rachel M Bittner. LLark: A multimodal
instruction-following language model for music. arXiv preprint arXiv:2310.07160, 2023.

Dimitrios Giannoulis, Michael Massberg, and Joshua D Reiss. Parameter automation in a dynamic
range compressor. Journal of the Audio Engineering Society, 61(10):716–726, 2013.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The Llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ben Hayes, Charalampos Saitis, and GyĂśrgy Fazekas. Audio synthesizer inversion in symmetric
parameter spaces with approximately equivariant flow matching. In The 26th International Society
for Music Information Retrieval Conference (ISMIR), 2025.

Qi He, Gus Xia, and Ziyu Wang. Tomi: Transforming and organizing music ideas for multi-track
compositions with full-song structure. In The 26th International Society for Music Information
Retrieval Conference (ISMIR), 2025.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. LoRA: Low-rank adaptation of large language models. International Con-
ference on Learning Representations, 2022.

Junghyun Koo, Marco A Martı́nez-Ramı́rez, Wei-Hsiang Liao, Stefan Uhlich, Kyogu Lee, and Yuki
Mitsufuji. Music mixing style transfer: A contrastive learning approach to disentangle audio
effects. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2023.

Junghyun Koo, Marco A Martinez-Ramirez, Wei-Hsiang Liao, Giorgio Fabbro, Michele Mancusi,
and Yuki Mitsufuji. Ito-master: Inference-time optimization for audio effects modeling of music
mastering processors. In The 26th International Society for Music Information Retrieval Confer-
ence (ISMIR), 2025.

Sungho Lee, Jaehyun Park, Seungryeol Paik, and Kyogu Lee. Blind estimation of audio processing
graph. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 1–5. IEEE, 2023.

Sungho Lee, Marco A Martı́nez-Ramı́rez, Wei-Hsiang Liao, Stefan Uhlich, Giorgio Fabbro, Kyogu
Lee, and Yuki Mitsufuji. Searching for music mixing graphs: A pruning approach. In Proceedings
of the International Conference on Digital Audio Effects (DAFx), 2024.

Sungho Lee, Marco A Martı́nez-Ramı́rez, Liao Wei-Hsiang, Stefan Uhlich, Giorgio Fabbro, Kyogu
Lee, and Yuki Mitsufuji. Reverse engineering of music mixing graphs with differentiable pro-
cessors and iterative pruning. AES: Journal of the Audio Engineering Society, 73(6):344–365,
2025.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36:34892–34916, 2023.

Zheng Ma, Brecht De Man, Pedro DL Pestana, Dawn AA Black, and Joshua D Reiss. Intelligent
multitrack dynamic range compression. Journal of the Audio Engineering Society, 63(6):412–
426, 2015.

BD Man, Brett Leonard, Richard King, Joshua D Reiss, et al. An analysis and evaluation of audio
features for multitrack music mixtures. In The 15th International Society for Music Information
Retrieval Conference (ISMIR), 2014.

Marco A Martı́nez-Ramı́rez, Oliver Wang, Paris Smaragdis, and Nicholas J Bryan. Differentiable
signal processing with black-box audio effects. In ICASSP 2021-2021 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021.

Marco A Martı́nez-Ramı́rez, Wei-Hsiang Liao, Giorgio Fabbro, Stefan Uhlich, Chihiro Nagashima,
and Yuki Mitsufuji. Automatic music mixing with deep learning and out-of-domain data. In The
23rd International Society for Music Information Retrieval Conference (ISMIR), 2022.

Stylianos I Mimilakis, Nicholas J Bryan, and Paris Smaragdis. One-shot parametric audio pro-
duction style transfer with application to frequency equalization. In ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 256–260.
IEEE, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Christopher Mitcheltree and Hideki Koike. White-box audio vst effect programming. NeurIPS 2020
Workshop on Machine Learning for Creativity and Design.

David Moffat, Brecht De Man, and Joshua D Reiss. Semantic music production: A meta-study.
Journal of the Audio Engineering Society, 2022.

Igor Pereira, Felipe Araújo, Filip Korzeniowski, and Richard Vogl. Moisesdb: A dataset for source
separation beyond 4-stems. arXiv preprint arXiv:2307.15913, 2023.

Pedro Duarte Leal Gomes Pestana. Automatic mixing systems using adaptive digital audio effects.
Phd thesis, Universidade Catolica Portuguesa, 2013.

Jussi Rämö and Vesa Välimäki. Neural third-octave graphic equalizer. In Proceedings of the Inter-
national Conference on Digital Audio Effects (DAFx). University of Birmingham, 2019.

Matthew Rice, Christian J Steinmetz, George Fazekas, and Joshua D Reiss. General purpose audio
effect removal. In 2023 IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA), pp. 1–5. IEEE, 2023.

Timo Schick and Hinrich Schütze. Exploiting cloze questions for few shot text classification and
natural language inference. arXiv preprint arXiv:2001.07676, 2020.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36:68539–
68551, 2023.

Di Sheng and György Fazekas. A feature learning siamese model for intelligent control of the
dynamic range compressor. In 2019 International Joint Conference on Neural Networks (IJCNN),
pp. 1–8. IEEE, 2019.

Christian J Steinmetz, Nicholas J Bryan, and Joshua D Reiss. Style transfer of audio effects with
differentiable signal processing. Journal of the Audio Engineering Society, 70(9):708–721, 2022.

Christian J Steinmetz, Shubhr Singh, Marco Comunità, Ilias Ibnyahya, Shanxin Yuan, Emmanouil
Benetos, and Joshua D Reiss. ST-ITO: Controlling audio effects for style transfer with inference-
time optimization. In The 25th International Society for Music Information Retrieval Conference
(ISMIR), 2024.

Osamu Take, Kento Watanabe, Takayuki Nakatsuka, Tian Cheng, Tomoyasu Nakano, Masataka
Goto, Shinnosuke Takamichi, and Hiroshi Saruwatari. Audio effect chain estimation and dry
signal recovery from multi-effect-processed musical signals. In Proc. Int. Conf. Digital Audio
Effects (DAFx), pp. 1–8, 2024.

Soumya Sai Vanka, Christian Steinmetz, Jean-Baptiste Rolland, Joshua Reiss, and George Fazekas.
Diff-MST: Differentiable mixing style transfer. In The 25th International Society for Music In-
formation Retrieval Conference (ISMIR), 2024.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim. Parallel WaveGAN: A fast waveform gen-
eration model based on generative adversarial networks with multi-resolution spectrogram. In
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6199–6203. IEEE, 2020.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yen-Tung Yeh, Junghyun Koo, Marco A Martı́nez-Ramı́rez, Wei-Hsiang Liao, Yi-Hsuan Yang, and
Yuki Mitsufuji. Fx-Encoder++: Extracting instrument-wise audio effects representations from
mixtures. In The 26th International Society for Music Information Retrieval Conference (ISMIR),
2025.

Chin-Yun Yu, Marco A Martı́nez-Ramı́rez, Junghyun Koo, Wei-Hsiang Liao, Yuki Mitsufuji, and
György Fazekas. Improving inference-time optimisation for vocal effects style transfer with a
gaussian prior. 2025 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics
(WASPAA).

Jonas Zausinger, Lars Pennig, Anamarija Kozina, Sean Sdahl, Julian Sikora, Adrian Dendorfer,
Timofey Kuznetsov, Mohamad Hagog, Nina Wiedemann, Kacper Chlodny, et al. Regress, don’t
guess–a regression-like loss on number tokens for language models. In International Conference
on Machine Learning, 2025.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging LLM-as-a-judge with MT-bench and
chatbot arena. Advances in neural information processing systems, 36:46595–46623, 2023.

Udo Zölzer, Xavier Amatriain, Daniel Arfib, Jordi Bonada, Giovanni De Poli, Pierre Dutilleux,
Gianpaolo Evangelista, Florian Keiler, Alex Loscos, Davide Rocchesso, et al. DAFX-Digital
audio effects. John Wiley & Sons, 2002.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DETAILED TASK DEFINITION

Borrowing notation from Rice et al. (2023), we define T as the set of effect functions supported by
the environment (E). Given a dry audio (xdry), a typical audio processing can be formulated as a
composition of functions that yields the processed audio (xwet) as follows:

xwet = gN

(
gN−1

(
· · · g2

(
g1(xdry;ϕ1

)
;ϕ2

)
· · · ;ϕN−1

)
;ϕN

)
, (5)

where gn ∈ T is the n-th effect function and ϕn denotes the parameters of gn. In this paper, we
assume gi ̸= gj for any pair of i ̸= j for simplicity. We denote the Fx-chain by C = [(gn, ϕn)]

N
n=1

= [(tooln, paramsn)]
N
n=1. Equation 5 can be reformulated in terms of E and C as xwet = E(C, xdry).

Our main task is to reverse-engineer the Fx-chain (C) applied to a reference audio signal (xref).
Specifically, given a processed reference audio signal xref, we aim to predict the sequence of audio
effects and their parameters that were used to create the processed version from an original dry
signal (xdry). Formally, we can express this relationship as xref = E(C, xdry), where the environment
(E) applies the Fx-chain (C) to the dry audio (xdry) to produce the processed reference audio (xref).
For additional controllability, we incorporate natural language instructions (xinstruction) to guide the
generation process. Our goal is to learn the inverse mapping

Ĉ = fθ

(
xinstruction, xdry, xref; T

)
, (6)

where fθ represents an LLM that aims to estimate the original Fx-chain C = [(tooln, paramsn)]
N
n=1

from the reference audio xref and xdry with an additional input xinstruction in the provided environment
T .

Our secondary task involves generating intermediate chain-of-thought (xcot) and natural language
responses (xresponse). The chain-of-thought reasoning serves as an intermediate planning stage that
decomposes the complex Fx-chain generation into four sequential components: 1) user input anal-
ysis, 2) effect selection, 3) processing order determination, and 4) parameter planning. In our au-
toregressive generation framework, the chain-of-thought functions as an in-context condition for
subsequent tool calling, bridging user queries and action plans to support more accurate and inter-
pretable tool execution. Following the tool calling generation, the model produces natural language
responses that provide users with a conversational interface for music production tasks.

B DETAILED DATASET GENERATION

We detail out each stage of the data generation pipeline for creating LP-Fx below as mentioned in
Section 3.2.

Stage 1: Dry/processed audio pairs synthesis. For synthesizing processed reference audio xref, we
apply the sampled Fx-chain C to the dry audio xdry from MedleyDB. We apply Fx-Normalization
(in the order of EQ, stereo imager, and loudness) and Fx-Removal to the dry audio samples and
create a normalized dry audio x̂dry. We randomly sample parameters within predefined min-max
ranges and quantize them to discrete steps that mirror practical knob granularity (Pestana, 2013).
We employ two sampling regimes: a coarse regime to broadly cover the operating space and a fine
regime, which reflect real world production practices (De Man, 2017) (sampling ranges are detailed
in Table 5). Consequently, we obtain (x̂dry, xref, C) triplets where each triplet contains the original
dry audio, the processed reference audio, and the corresponding Fx-chain sequence.

Stage 2: Instruction-following synthesis. We synthesize natural single-turn conversations between
users and assistants for music production scenarios using the Fx-chains generated in Stage 1. For
efficient large-scale generation, we employ a distillation LLM, Gemini-2.5-Flash-lite (Comanici
et al., 2025). In this stage, the Fx-chain sequence C = [(tooln, paramsn)] from Stage 1 is paired
with task prompts Pchat that describe realistic music production scenarios. The LLM then generates
natural language instructions xinstruction and assistant responses xresponses that preserve the underlying
Fx-chain structure while providing contextually appropriate explanations, formally expressed as
xinstruction, xresponse = LLM(xtool,Pchat).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Stage 3: Chain-of-thought generation. To bridge the gap between the Fx-chains C generated
in Stage 1 and the instruction-response pairs xinstruction, xresponse from Stage 2, we decompose the
music production task into a step-by-step manner. We construct chain-of-thought reasoning by
dividing the tool calling process into four sequential steps: 1) user input analysis, 2) tool se-
lection, 3) ordering, and 4) parameter planning. We utilize Gemini-2.5-Flash (Comanici et al.,
2025) with enhanced reasoning capabilities for this stage. This process can be formulated as
xcot = LLM(xinstruction, xresponse, C,Pcot) where Pcot represents the task prompts that guide the de-
composition of complex audio processing into interpretable reasoning steps.

Stage 4: Quality filtering. To ensure data quality and minimize hallucinations in our syn-
thetic dataset, we employ an LLM-as-a-judge evaluation framework using Gemini 2.5 Pro (Co-
manici et al., 2025). We implement a two dimensional quality assessment evaluating: 1) tool
alignment, whether generated conversations accurately align with the grounded tool informa-
tion, Fx-chain C, and 2) CoT quality, whether chain of thought reasoning effectively guides
from user queries to tool calling sequences. This process can be formulated as (stool, sCoT) =
LLMjudge(xinstruction, xresponse, xcot, C,Pjudge) where stool and sCoT are quality scores of tool align-
ment and CoT, respectively, and Pjudge is the evaluation prompts. Both stool and sCoT are evaluated
using a 4 point Likert scale (from 1=poor to 4=excellent), where samples scoring ≤ 2 are flagged
for regeneration to maintain dataset integrity. Pjudge details provided in Appendix E.

C QUALITATIVE EXAMPLES

In this section, we present a qualitative example below illustrating how LLM2Fx-Tools processes a
user query and generates an appropriate Fx-chain. The example highlights each stage of the system’s
reasoning and output: the user’s request, the model’s chain-of-thought for Fx-chain modeling and
parameter estimation, the corresponding tool calls, and the final response presented to the user.

User Query
I’m working on a track with Electronic/Fusion synthesizer sounds, and I’d like to emulate
the audio effects style of a reference audio. Could you suggest a plugin chain with a
stereo widener, distortion, and a compressor?

Chain-of-Thought
For emulating the audio effects style of a reference audio for Electronic/Fusion synthesizer sounds
using a stereo widener, distortion, and compressor:
Step 1. The identified audio effects in the chain are stereo widener, distortion, and compressor,
in that specific order.
Step 2. For stereo widener, the width parameter will be adjusted to create an expansive
and immersive stereo image, enhancing the synth’s presence.
For distortion, the drive db will be increased to introduce harmonic richness and saturation,
adding grit and character suitable for electronic fusion.
For compressor, the threshold db will be set to effectively manage the dynamic range of the synth,
the ratio will be chosen to provide controlled dynamic reduction, the attack ms will be adjusted to
either preserve or shape the initial transients, and the release ms will be set to allow the compressor
to disengage smoothly with the synth’s decay, ensuring a natural sound.

Tool Calling
“<tool call>\n{‘name’: ‘stereo widener’, ‘arguments’: {‘width’: 1.3}}\n</tool call>
<tool call>\n{‘name’: ‘distortion’, ‘arguments’: {‘drive db’: 5.0}}\n</tool call>
<tool call>\n{‘name’: ‘compressor’, ‘arguments’: {‘threshold db’: -19.0, ‘ratio’: 4.0,
‘attack ms’: 250.0, ‘release ms’: 250.0}}\n</tool call>

Response
Here is a plugin chain designed to emulate the audio effects style of your reference audio,
featuring a stereo widener, distortion, and a compressor. The stereo widener is set to
a width of 1.3 to expand the stereo image. Following this, a distortion effect with
a drive of 5.0 dB is applied to add harmonic content.
Finally, a compressor with a threshold of -19.0 dB, a ratio of 4.0, an attack of 250.0 ms,
and a release of 250.0 ms is used for dynamic control.”,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D EVALUATION METRIC

Audio Effects Module Classification Accuracy: We evaluate the model’s ability to correctly iden-
tify which audio effects module should be applied using standard classification accuracy:

Acc =
correct predictions
total predictions

. (7)

Fx-Chain Order Correlation: We assess Fx-chain ordering (order of audio effects module) capa-
bility using Spearman rank correlation ρ between predicted and ground truth orders. Missing values
are set to |fx pool|+ 1 for consistent ranking evaluation.

Audio Effects Parameter MAE: We calculate Mean Absolute Error for parameter prediction:
MAE = 1

n

∑n
i=1 |p̂i − pi|, where parameters are normalized to [0, 1] before computation. This

metric only considers correctly classified effects.

Left/Right MRS: Multi-Resolution STFT distance computed separately for stereo channels:
MRS =

∑
k(L

(k)
sc (x̂ref, xref) + L(k)

mag(x̂ref, xref)) , where k indexes different time-frequency reso-
lutions, and

L(k)
sc (x, x̂) =

∥∥∥|STFT(k)(x)| − |STFT(k)(x̂)|
∥∥∥
F∥∥∥|STFT(k)(x)|

∥∥∥
F

, (8)

L(k)
mag(x, x̂) =

1

N

∥∥∥log |STFT(k)(x)| − log |STFT(k)(x̂)|
∥∥∥
1
. (9)

Mid/Side MRS: We convert stereo audio to Mid/Side representation and compute MRS distance.
Mid-channel captures mono content (addition of left and right channels) while Side-channel captures
stereo width and spatial characteristics (subtraction of left and right channels).

DSP Feature Distance: We extract digital signal processing (DSP) based low-level descriptors,
including the root mean square and crest factor, stereo width and stereo imbalance and bark spectrum
corresponding to the dynamics, spatialization and spectral attributes respectively.

Embedding Similarity: We use pretrained audio effect encoders to extract semantic representations
and compute cosine similarity for different types of audio encoders, including CLAP, AFX-Reps,
and Fx-Enc.

E PROMPT DETAILS

We present the detailed prompts used for our dataset generation and LLM-as-a-judge evaluation.

Instruction-Following Generation Prompts: We use two main prompts for generating our dataset.
The first prompt guides the model to generate realistic user-assistant conversations with appropriate
tool calls.

You are a post-production assistant (mixing and mastering) specialized in
audio processing and VST plugin chains.

Complete the following conversation.

Output:
[

{{
"role": "user",
"content": [user_instruction]

}},
{{

"role": "assistant",
"content": [assistant_response]

}}

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

]

Tools:
{fx_chain}

Requirements:
- User requests audio effect parameters of the reference audio. {

str_user_instruction} {str_user_request_specific_fx}
- The reference audio contains {genre} {instrument} sounds.
- In the assistant message, please keep tool number {tool_numer} and the

tool order {tool_order}
- In the assistant message, briefly explain the audio effect type, order

and parameters with natural language description. Please provide
objective information, don’t use overly subjective words. Please
answer with a short and concise description.

Chain-of-Thought Generation Prompts: The second prompt specifically focuses on generating
chain-of-thought reasoning that bridges multimodal understanding with parameter prediction.

You are a post-production assistant (mixing and mastering) specialized in
audio processing and VST plugin chains.

Given a Audio Effects Chain and a previous tool-based chat conversation,
generate the next chain-of-thought plan.

Return ONLY a single valid JSON object. Do not include any text before or
after the JSON. Do not use markdown fences.

Outputs:
{{

"chain_of_thought": "<think>For [task description], Step1,.. Step2,..
</think>"

}}

Where:
- task description: The task description is the user’s request.
- chain_of_thought: A step-by-step explanation that covers:
- Step 1. From the reference audio, identify the category and order of

audio effects in the chain. Do not specify exact values.
- Step 2. Create an FX parameter prediction plan that describes the

general direction and approach for each effect’s parameters without
specifying exact values.

Constraints:
- Use the provided Audio Effects Chain for effect and parameter names;

match names exactly.
- Chain of thought reflects the assistant’s thinking process for analysis

and parameter prediction.

Audio Effects Chain:
{vst_info}

conversations:
{conversation}

LLM-as-a-Judge Prompts1: For evaluate dataset generation, we evaluate for tool alignment and
thought quality.

You are an expert evaluator for audio post-production conversations
involving VST plugin chains.

Evaluate the assistant’s response in the given conversation based on the
following criteria.

Use scores to show the quality of the response. Here is the detailed
scoring rubric for evaluating the quality of responses

from AI assistants:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Tool Alignment (Order, Direction, Parameter Accuracy):
Poor (1): Significant misalignment with tool chain order, incorrect

parameter directions, and highly inaccurate parameter values that
would produce undesirable audio results.

Fair (2): Partial alignment with tool order but contains noticeable
errors in parameter direction or accuracy.

Good (3): Strong alignment with tool order, correct parameter directions,
and accurate parameter values with only minor room for improvement.

Excellent (4): Perfect alignment with tool chain order, correct parameter
directions, and highly accurate parameter values demonstrating

expert-level understanding.

Thought Quality:
Poor (1): Illogical chain of thought lacking coherent reasoning about

audio processing decisions.
Fair (2): Basic reasoning but contains gaps in logic or limited

understanding of audio processing principles.
Good (3): Strong reasoning with clear understanding of effect

interactions and good audio processing knowledge.
Excellent (4): Expert-level reasoning with sophisticated understanding of

complex effect interactions.
{{

"tool_alignment": {{
"score": [1, 2, 3, 4],

}},
"thought_quality": {{

"score": [1, 2, 3, 4],
}},

}}

Tool calling ground truth:
{fx_chain}

Conversation to evaluate:
{conversation}

LLM-as-a-Judge Prompts2: For natual langauge generation, we evaluate for instruction following
and chain of thought quality.

You are an expert evaluator for audio post-production conversations
involving VST plugin chains.

Evaluate the assistant’s response in the given conversation based on the
following criteria.

Use scores to show the quality of the response. Here is the detailed
scoring rubric for evaluating the quality of responses

from AI assistants:
Instruction Following Quality:
Poor (1): The response does not follow the user’s instructions, ignores

key requirements, or provides irrelevant information. The answer is
not in natural language or does not address the task described in the
instruction.

Fair (2): The response partially follows the instructions, but misses
important details or only addresses some aspects of the user’s
request. The natural language answer may be incomplete or only
loosely related to the instruction.

Good (3): The response follows the instructions well, addresses most
requirements, and provides a mostly complete and relevant answer in
natural language that matches the task in the instruction, but may
lack some detail or completeness.

Excellent (4): The response fully follows the user’s instructions,
addresses all requirements in detail, and provides a clear, relevant,
and comprehensive answer in natural language that is directly

aligned with the task described in the instruction.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Chain of Thought Quality:
Poor (1): The chain of thought does not logically connect the user’s

query to the assistant’s response, lacking coherent reasoning about
audio processing decisions. The reasoning fails to demonstrate proper
task decomposition, analysis of user input, and planning for effect

chain implementation. Or the chain of thought is empty.
Fair (2): The reasoning attempts to bridge the user’s query and the

assistant’s response but contains gaps in logic or shows limited
understanding of audio processing principles. Some evidence of task
decomposition and planning to handle user input may be present but
incomplete or flawed.

Good (3): The chain of thought clearly links the user’s query to the
assistant’s response, demonstrating effective task decomposition and
planning. The reasoning provides clear evidence of user input
analysis and systematic planning to handle requirements with mostly
sound logic.

Excellent (4): The reasoning expertly bridges the user’s query and the
assistant’s response through comprehensive task decomposition and
strategic planning. The analysis demonstrates thorough task
decomposition, comprehensive planning to handle user input, and
expert-level reasoning throughout the process.

{{
"instruction_following_quality": {{

"score": [1, 2, 3, 4],
}},
"chain_of_thought_quality": {{

"score": [1, 2, 3, 4],
}},

}}

Conversation to evaluate:
{conversation}

Chain of thought:
{cot}

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F PARAMETER RANGE FOR DATASET SAMPLING

Table 5: Parameter space of the audio effects used in this study. For each parameter, we define the
range and discretized step size for both coarse and fine-grained search spaces.

Coarse Fine
Parameter Range Step Range Step

Three-band Equalizer
low gain db [-20.0, 20.0] 2 [-6.0, 6.0] 1
low cutoff freq [0.0, 400.0] 20 [60.0, 120.0] 10
low Q factor [0.0, 6.0] 0.5 [0.5, 3.0] 0.25
mid gain db [-20.0, 20.0] 2 [-6.0, 6.0] 1
mid cutoff freq [250.0, 6000.0] 250 [250.0, 1000.0] 100
mid Q factor [0.1, 6.0] 0.5 [0.5, 3.0] 0.25
high gain db [-20.0, 20.0] 2 [-6.0, 6.0] 1
high cutoff freq [4000.0, 20000.0] 1000 [4000.0, 8000.0] 500
high Q factor [0.0, 6.0] 0.5 [0.5, 3.0] 0.5

Compressor
threshold db [-40.0, -5.0] 5 [-20.0, -10.0] 1
ratio [0.0, 20.0] 1 [2.0, 8.0] 0.5
attack ms [0.0, 500.0] 5 [1.0, 30.0] 1
release ms [0.0, 1000.0] 50 [0.0, 500.0] 25

Stereo Widener
width [0.0, 1.5] 0.1 [1.1, 1.5] 0.1

Gain
gain db [-20.0, 20.0] 2 [-6.0, 6.0] 1

Panner
pan [-1.0, 1.0] 0.1 [-0.6, 0.6] 0.1

Distortion
drive db [0.0, 20.0] 2 [1.0, 5.0] 0.5

Reverb
room size [0.0, 0.9] 0.1 [0.3, 0.6] 0.05
damping [0.0, 0.9] 0.1 [0.3, 0.6] 0.05
width [0.0, 0.9] 0.1 [0.3, 0.6] 0.05
mix ratio [0.0, 1.0] 0.1 [0.1, 1.0] 0.1

Relay
delay seconds [0.0, 0.7] 0.05 [0.01, 0.2] 0.02
feedback [0.0, 0.6] 0.05 [0.01, 0.2] 0.02
mix ratio [0.0, 1.0] 0.1 [0.1, 1.0] 0.1

Limiter
threshold db [-20.0, -1.0] 1 [-5.0, -1.0] 0.1
release ms [0.0, 1000.0] 50 [0.0, 300.0] 25

20

	Introduction
	LLM2Fx-Tools: Fx-chain Generation via Tool Calling
	Task Definition
	Architecture
	Training

	Dataset: LP-Fx
	Base Dataset and Tool Environment
	Data Generation Process
	Statistics

	Experiments
	Reverse Engineering
	Audio Effects Style Transfer with Blind Estimation
	Natural Language Generation
	Training / Evaluation Details

	Results / Analysis
	Reverse Engineering
	Audio Effects Style Transfer with Blind Estimation
	Natural Language Generation

	Limitation
	Conclusion
	Detailed Task Definition
	Detailed Dataset Generation
	Qualitative Examples
	Evaluation Metric
	Prompt Details
	Parameter Range for Dataset Sampling

