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ABSTRACT

This paper introduces LLM2Fx-Tools, a multimodal tool-calling framework
that generates executable sequences of audio effects (Fx-chain) for music post-
production. LLM2Fx-Tools uses a large language model (LLM) to understand
audio inputs, select audio effects types, determine their order, and estimate pa-
rameters, guided by chain-of-thought (CoT) planning. We also present LP-Fx, a
new instruction-following dataset with structured CoT annotations and tool calls
for audio effects modules. Experiments show that LLM2Fx-Tools can infer an Fx-
chain and its parameters from pairs of unprocessed and processed audio, enabled
by autoregressive sequence modeling, tool calling, and CoT reasoning. We further
validate the system in a style transfer setting, where audio effects information is
transferred from a reference source and applied to new content. Finally, LLM-
as-a-judge evaluation demonstrates that our approach generates appropriate CoT
reasoning and responses for music production queries. To our knowledge, this is
the first work to apply LLM-based tool calling to audio effects modules, enabling
interpretable and controllable music production where users can incorporate their
own audio plugins. 1

1 INTRODUCTION

The use of Audio effects (Fx) processing constitutes a fundamental component of modern music
post-production, where producers systematically apply sequences of effects (Fx-chain) to transform
audio signals and achieve desired sound textures (Zölzer et al., 2002; De Man & Reiss, 2013). In
most post-production workflows, the application of audio effects is guided by both technical and
creative criteria, requiring a high level of expertise from audio engineers. Estimating the appropriate
Fx-chain from unprocessed input audio (dry), processed output audio (wet), or by reverse engineer-
ing from both requires extensive domain expertise and often involves iterative manual adjustment.

To address this challenge, automatic Fx-chain estimation has emerged as a promising approach to
reduce barrier and labor-intensive aspects of music production. Previous works focus on signal
processing-based optimization (Barchiesi & Reiss, 2010; Giannoulis et al., 2013; Ma et al., 2015),
gradient-based optimization (Colonel & Reiss, 2021; Lee et al., 2024; Steinmetz et al., 2024; Koo
et al., 2025; Lee et al., 2025; Yu et al.), regression methods (Rämö & Välimäki, 2019; Sheng &
Fazekas, 2019; Mimilakis et al., 2020; Martı́nez-Ramı́rez et al., 2021; Steinmetz et al., 2022; Hayes
et al., 2025), and multitask methods (Mitcheltree & Koike; Lee et al., 2023; Take et al., 2024). While
these methods demonstrate promising performance, they face several fundamental limitations. First,
gradient-based methods require differentiable audio effects modules, limiting their applicability to
specific effects. Second, regression and signal processing-based methods operate on fixed, prede-
fined configurations and lack the ability to dynamically select effects and determine their ordering.
Furthermore, three approaches lack user-level interpretability, as they provide only Fx-chain without
human-readable descriptions or reasoning to explain why such decisions are made.

Meanwhile, recent advances in large language models (Achiam et al., 2023; Grattafiori et al., 2024;
Comanici et al., 2025) (LLMs) have introduced powerful capabilities including instruction follow-
ing (Achiam et al., 2023; Wei et al., 2022a), chain-of-thought reasoning (Wei et al., 2022b), and
tool calling (Schick et al., 2023). Chain-of-thought (CoT) enables models to decompose a com-

1Demo is available at: https://llm2fx-tool-paper.github.io/demo
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Figure 1: An illustration of the LLM2Fx-Tools framework. The input to LLM2Fx-Tools consists of
instruction, available tools, reference audio, and (pseudo) dry audio. The framework outputs chain
of thought, tool calling procedure, and response. The generated tool calling outputs (Fx-chain) are
then combined with tool environments (audio effects modules) to enable the transformation of new
audio in the style of the reference audio.

plex task into a series of reasoning sub-tasks, providing an interpretable view of its reasoning pro-
cess (Wei et al., 2022b). Tool calling enables LLMs to flexibly connect with external modules
(e.g., non-differentiable audio effect modules) and knowledge bases to accomplish domain specific
tasks (Schick & Schütze, 2020; Gao et al., 2023). These capabilities present new opportunities to
address the flexibility and interpretability issues in Fx-chain prediction. Prior work has explored ap-
plying LLMs to music production tasks (Moffat et al., 2022; He et al., 2025). In the context of music
post-production specifically, LLM2Fx (Doh et al., 2025) predicts audio effects parameters from nat-
ural language prompts, but it does not employ explicit tool calling or chain-of-thought reasoning
and is limited to single effects (Equalization and Reverb).

In this work, we introduce LLM2Fx-Tools, LLM-based Fx-chain estimation with Tool-calling, a
multimodal framework that addresses these limitations by enabling flexible Fx-chain prediction
through tool calling and enhancing interpretability with chain-of-thought reasoning. LLM2Fx-Tools
generates 1) chain-of-thought, 2) executable Fx-chain and 3) natural language response. Our key
contributions are:

Tool-Calling for Music Production: We develop the first structured tool-calling approach for Fx-
chain generation that enables multimodal LLMs to understand audio conditioning and generate ex-
ecutable tool calls for non-differentiable audio effects modules.

Chain-of-Thought for Fx-chain Planning: We utilize a chain-of-thought (CoT) (Wei et al., 2022b)
mechanism specifically designed for Fx-chain generation that decomposes the complex task into
interpretable sub-tasks: effect selection, order determination, and parameter estimation. This inter-
mediate reasoning bridges the gap between user inputs and target Fx-chain, improving both perfor-
mance and interpretability.

Multimodal Instruction-Following: We extend the Fx-chain estimation task from unimodal audio-
to-effects mapping to a multimodal framework incorporating natural language instructions. Users
can specify preferred effect types, musical genres, or instrument characteristics, enabling customized
Fx-chains that align with specific user requirements.

Conversational Music Production Dataset: We introduce LP-Fx, LLM-based music production
dataset for audio effects tools, containing 101K conversational examples with structured Tool Call-
ing, Chain-of-Thought, and Response. Each example comprises 1) user instructions, 2) audio ef-
fects tool calls, 3) chain-of-thought, and 4) responses. Our multi-stage data synthetic methodology
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bridges audio signals, Fx-chain, and natural language, establishing a foundation for training multi-
modal LLMs in music production domains.

2 LLM2FX-TOOLS: FX-CHAIN GENERATION VIA TOOL CALLING

2.1 TASK DEFINITION

Our main task is to estimate the Fx-chain (C) that transforms a dry unprocessed audio (xdry) into a
reference audio signal (xref). Formally, given xdry and xref, our goal is to estimate C such that xref =
E(C, xdry), where E denotes the tool environment that applies C to xdry. For additional controllability,
we incorporate natural language instructions (xinstruction) to guide the generation process. Our goal
is to learn the inverse mapping

C = fθ(xinstruction, xdry, xref; T ) (1)

where fθ represents an LLM that predicts the Fx-chain C = [(tooln, paramsn)]
N
n=1 from the refer-

ence audio xref given the available tool set T . We treat each audio effect module tool ∈ T as an
external executable tool.

As implied in Eq. (1), we consider Fx-chain estimation task where both xdry and xref are available,
which is commonly referred to as the reverse engineering (Lee et al., 2025) task. However, xdry is
not always accessible in practical scenarios, corresponding to the blind estimation (Lee et al., 2023)
task. While our primary target is the reverse engineering, we propose a robust training method to
simultaneously handle both tasks within a single model, as detailed in Section 2.3.

Our secondary task involves generating chain-of-thought (xcot) and natural language responses
(xresponse). The chain-of-thought (CoT) reasoning serves as an intermediate planning stage that de-
composes the complex Fx-chain generation into four sequential components: 1) user input analysis,
2) audio effects module selection, 3) processing order determination, and 4) parameter planning. In
our auto-regressive generation framework, the CoT functions as an in-context condition (Wei et al.,
2022b) for subsequent tool calling, bridging user queries and action plans to support more accurate
and interpretable tool execution. Following the tool calling generation, the model produces natural
language responses that provide users with a conversational interface for music production tasks.

2.2 ARCHITECTURE

Figure 2: Model Architecture

To enable LLMs to comprehend audio inputs for tool
calling, we adopt a multimodal autoregressive generation
framework (Liu et al., 2023; Gardner et al., 2023). As illus-
trated in Figure 2, since LLMs inherently lack audio pro-
cessing capabilities, we bridge this modality gap through a
pretrained audio encoder coupled with a learnable audio-
language adapter. This adapter projects audio represen-
tations into the language model’s embedding space, for-
mally defined as: eaudio = fadapter(fencoder(xaudio)), where
fencoder : Rc×t → Rl×denc processes input audio signals
xaudio (c channels, t samples) to extract l audio represen-
tations of dimension denc, and fadapter : Rl×denc → Rl×dLLM

maps these representations to the language model’s embed-
ding space of dimension dLLM. The audio embeddings eaudio
are concatenated with text token embeddings to form a uni-
fied multimodal input sequence, enabling the LLM to generate structured outputs including chain-
of-thought reasoning xcot, tool calling sequences C, and natural language responses xresponse.

Audio Encoder: We employ Fx-Encoder++ (Yeh et al., 2025), a specialized audio encoder trained
with contrastive learning to obtain representations for audio effects processing. This encoder con-
sists of a ConvNet-based feature extractor, pooling layer, and MLP projection layer. We remove
the pooling and MLP projection layers and use the patch embeddings haudio ∈ Rl×denc as audio
representations.

Adapter: Unlike previous work that uses a simple linear projection layer for cross-modal align-
ment (Liu et al., 2023; Gardner et al., 2023), we employ a transformer-based audio-language

3
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adapter (Li et al., 2023) with a linear projection layer W ∈ Rdenc×dLLM and that utilizes 32 learn-
able query embeddings equery ∈ R32×dLLM . This design uses cross-attention to aggregate audio
information into learnable query tokens.

Large Language Model: We employ Qwen3-4B (Yang et al., 2025) as our foundation LLM back-
bone, which provides inherent capabilities for structured tool calling and chain-of-thought reasoning.
We fine-tune the model using Low-Rank Adaptation (LoRA) (Hu et al., 2022) with rank 128 and
alpha 256 to efficiently adapt the model to our Fx-chain estimation task.

2.3 TRAINING

We employ a unified autoregressive next-token prediction objective to train our multimodal LLM.

Cross-Entropy for Next-token Prediction: Given a training sample with user instruction xinstruction,
reference audio xref, dry audio xdry, chain-of-thought xcot, tool calling sequence C, and assistant
response xresponse, we construct the input sequence as a concatenation of a conditioning prefix and a
target sequence to be generated by the model as follows:

xinput = [xinstruction, xdry, xref,︸ ︷︷ ︸
Conditioning Prefix

xcot, C, xresponse]︸ ︷︷ ︸
Target Sequence

(2)

We train the model with the cross-entropy loss LCE, computed only over the target sequence, while
leaving prefix as a conditioning context as follows:

LCE = −
∑

t∈Ttarget

log p(xt|x<t; θ) (3)

where Ttarget represents the set of token indices of the target sequence.

Number Token Loss: For parameter estimation, we need to predict the numerical values of effect
parameters. However, a key problem with Cross Entropy is that it treats all incorrect predictions
equally, even when some numbers are closer to the correct answer than others. In response, we
adopt a regression-like Number Token Loss (NTL) that Wasserstein-1 distance between predicted
and one-hot number distributions (Zausinger et al., 2025):

LNTL-WAS =
1

N

N∑
i=1

t∑
j=s

ŷij |yi − Vj | (4)

where N is the number of samples, ŷij is the predicted probability for token j in sample i, index
s, t representing the range of number token, yi is the ground truth numerical value, and Vj is the
numerical value of token j. This loss function penalizes predictions based on how far they are from
the true numerical value, rather than treating all incorrect tokens equally. Our final loss function
combines both objectives: Ltotal = LCE + λLNTL where λ is a hyperparameter for balancing cross-
entropy and number token losses.

Multi-Stage Training: To effectively train our multimodal LLM, we adopt a multi-stage training
strategy (Liu et al., 2023) that systematically builds capabilities from basic audio-language align-
ment to complex reasoning tasks. Our training protocol comprises two distinct phases: 1) modality
alignment pre-training and 2) LLM fine-tuning while progressively incorporating task complexity.

We first pre-train the adapter module to bridge the audio modality and text modality. During the
pre-training stage, we use only audio inputs and tool calling outputs (Fx-chain) as training data,
focusing solely on learning the relationship between dry and reference audio differences and their
corresponding Fx-chain. In this stage, we freeze the LLM parameters and only update the audio-
language adapter parameters. In the fine-tuning stage, we update both the adapter and LLM through
LoRA adaptation. This stage incorporates the full complexity of our task, including not only tool
calling but also chain-of-thought reasoning and response generation.

Robust Training Techniques for Distribution Shift: As mentioned in Section 2.1, our goal is to
estimate C such that xref = E(C, xdry), assuming we have access to both xdry and xref. However,
training a model only on a dataset of paired (xdry, xref) audio samples for this reverse engineering
setup, real-world scenarios present distribution shift challenges: xdry is typically unavailable during
inference. Even when it is available, it may differ from the training dataset since recording studios
vary significantly in their equipment and environments.

4
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To address this challenge, we employ Fx-Normalization (Martı́nez-Ramı́rez et al., 2022) and Fx-
Removal (Rice et al., 2023) techniques at both training and inference stages to align dry audio
distributions and obtain pseudo dry audio x̂dry. Furthermore, we implement dry audio masking
during training, randomly omitting dry audio inputs with probability pmasking to force the model to
rely solely on reference audio for the blind estimation setup.

3 DATASET: LP-FX

We propose a novel LLM-based data synthesis pipeline that systematically generates high-quality
conversation data for Fx-chain generation tasks, introducing a new dataset as one of the key contri-
butions of this work.

3.1 BASE DATASET AND TOOL ENVIRONMENT

The audio source of LP-Fx is MedleyDB (Bittner et al., 2014; 2016), which provides royalty-free
196 multitrack recordings. Each recording includes three different levels of audio: (i) unprocessed
raw tracks, (ii) stems, which are submixes of raw tracks with audio effects applied, and (iii) a full
mix, created by combining the processed stems into a complete mixture. We use unprocessed raw
audio as the dry audio xdry. We filter out multitracks with bleed using the metadata provided by
MedleyDB, resulting in a curated set of 2,119 raw audio files from 116 multitracks, spanning 9
genres and 80 unique instruments. We use the Pedalboard 2 audio effects library and our custom
audio effects modules as our tool environment T . We select 6 modules (compressor, distortion,
reverb, delay, limiter, and gain) from the Pedalboard library and 3 modules (three-band equalizer,
stereo widener, and panner) from our custom modules, totaling 9 modules and 26 parameters.

3.2 DATA GENERATION PROCESS

Figure 3: Data generation process for LP-Fx

As illustrated in Figure 3, our data genera-
tion process consists of three sequential stages.
In the first stage, we sample Fx-chains within
musically plausible ranges to create dry/pro-
cessed audio pairs. The second stage generates
instruction-following conversations grounded
in these Fx-chains to ensure factual accuracy.
The third stage produces chain-of-thought rea-
soning that explicitly connects user instruc-
tions to the underlying audio effects trans-
formations. Finally, we employ LLM-as-a-
judge (Chen et al., 2024; Zheng et al., 2023)
evaluation to filter the dataset for high-quality
samples. The basic framework for utilizing LLMs in our data generation process follows the formu-
lation xdata = LLM(xground,P), where xground is the grounded information (e.g., Fx-chain C) and P
is the carefully crafted prompts. We further provide details of each stage in Appendix B.

3.3 STATISTICS Table 1: Statistics of LP-Fx Dataset.

Statistics Trainset Testset

# of Dialogue 99,900 900
# of Tracks 2019 100
# of Instruments 80 33
Avg. Instruction length 28.8 28.2
Avg. Response length 178.6 178,6
Avg. CoT length 251.9 252.7
Min/Max Tool Number 1-9 1-9

Table 1 presents the statistics of our LP-Fx
dataset. Based on the observation that task
complexity increases with the number of effects
in the chain, we create a stratified dataset with
11,100 training samples and 100 test samples
for each Fx-chain length from 1 to 9, resulting
in a total of 100,800 conversations. We ensure
no overlap between audio tracks used in train-
ing and test sets to prevent data leakage. Each
example comprises 1) user instructions, 2) unprocessed/processed audio pairs, 3) executable audio

2https://github.com/spotify/pedalboard
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effects tool calls, 4) chain-of-thought reasoning, and 5) assistant responses. The dataset’s rich di-
versity in musical content makes it particularly effective for LLM fine-tuning. With 2,019 tracks
spanning 80 unique instruments across 9 genres.

4 EXPERIMENTS

4.1 REVERSE ENGINEERING

Task Definition: We evaluate our approach on reverse engineering. The task involves predicting Fx-
chains C from reference audio xref given access to the corresponding dry audio xdry. We evaluate this
task using the LP-Fx test split, which provides ground truth triplets of (xdry, xref, C) for evaluation.

Metrics: Our evaluation framework assesses model performance through four complementary per-
spectives: 1) Fx-chain Planning, 2) Perceptual Distance, 3) DSP Feature Distance, and 4) Deep
Embedding Similarity. For Fx-chain Planning, we use classification accuracy to measure whether
the model correctly predicts the presence of target audio effects modules in the ground truth Fx-
chain. We then apply Spearman rank correlation to assess how closely the predicted ordering of
modules matches the ground truth. Finally, parameter mean absolute error (MAE) is used to quan-
tify the precision of parameter prediction. For Perceptual Distance, we employ Multi-Resolution
STFT (MRS) distance (Yamamoto et al., 2020) on both left-right (L/R) and mid-side (M/S) chan-
nels for stereo-aware processing evaluation. For DSP Feature Distance, we utilize Audio Features
(AF) (Man et al., 2014; Vanka et al., 2024), including root mean square, crest factor, stereo width,
stereo imbalance, and bark spectrum. For Deep Embedding Similarity, we employ audio effects-
specific pretrained representations, including classification-based AFx-Rep (Steinmetz et al., 2024)
and contrastive learning-based Fx-Encoder (Koo et al., 2023).

Baselines: We evaluate our approach against several baselines to assess the effectiveness of our
instruction-following Fx-chain generation framework. 1) No Fx: A naive baseline that applies no
audio effects to the input audio, representing the lower bound performance where the predicted refer-
ence audio x̂ref equals the dry audio xdry. 2) Random Fx: A baseline that applies the random number
of effects with randomized ordering and parameters. 3) Regression: A regression-based approach
that directly predicts audio effects parameters from audio features without explicit tool selection or
ordering capabilities. Specifically, we first extract embeddings using the Fx-Encoder++ Yeh et al.
(2025), followed by a 2-layer MLP with ReLU activations. The regression head outputs a vector of
logits corresponding to the number of parameters in the full Fx-chain. 4) Multitask: An enhanced
regression model incorporating additional classification heads to address limitations of the pure re-
gression approach. The base architecture is identical to the regression model, but additional logits
are predicted to classify which audio effects modules are applied. 5) Gemini 2.5 Flash (Comanici
et al., 2025): A closed-source multimodal LLM with audio understanding, reasoning, and tool call-
ing capabilities. The regression and multitask baselines employ the same pretrained audio encoder
as LLM2Fx-Tools, MLP projection layers and task-specific prediction heads.

4.2 AUDIO EFFECTS STYLE TRANSFER WITH BLIND ESTIMATION

Task Definition: We evaluate our approach on the audio effects style transfer task, which simulates
real-world scenarios where users only have access to a reference audio with different content. This
task comprises two sequential stages: 1) blind estimation - inferring the underlying Fx-chain C from
a processed reference audio xref without the knowledge of its corresponding original dry recording,
and 2) style transfer - applying the estimated Fx-chain to another source audio. This evaluation
assesses the model’s ability to generalize to unseen musical content.

Evaluation Protocol: To evaluate generalization across different musical content, we employ Moi-
sesDB (Pereira et al., 2023) as the source of processed reference stems and testset of LP-Fx (Bittner
et al., 2014; 2016) as the source of clean input audio. This cross-dataset evaluation protocol en-
sures that models encounter entirely unseen musical content, providing a rigorous test of generaliza-
tion capabilities. We construct evaluation pairs by matching instrument categories between the two
datasets, resulting in an evaluation set of 100 test samples. Given that the reference and input audio
contain distinct musical content, we focus our evaluation on feature-based metrics, including DSP
feature distance and embedding similarity. We employ the same baseline methods of the reverse
engineering task as described in 4.1.

6
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Table 2: Fx-chain Estimation Results. We compare with multiple baselines and analyze the con-
tribution of key components in our LLM2Fx-Tools framework: Chain-of-Thought (CoT), Number
Token Loss (NTL), and Multi-Stage Training (MST).

Fx-chain Planning Perceptual Dist. DSP Embedding Sim.(↑)

Acc.(↑) Corr.(↑) MAE(↓) L/R(↓) M/S(↓) AF(↓) AFx-Rep FxEnc

No Fx - - - 13.11 13.49 14.82 0.50 0.30
Random Fx 52% -0.01 0.39 8.07 8.90 13.70 0.41 0.34
Regression 55% -0.03 0.20 3.81 4.12 9.20 0.62 0.64
MultiTask 61% 0.00 0.23 3.17 3.39 8.39 0.63 0.66
Gemini2.5Flash 78% 0.54 0.32 3.42 4.24 14.97 0.56 0.50

LLM2Fx-Tools 80% 0.56 0.23 3.13 3.27 8.29 0.68 0.67
w/o CoT 67% 0.49 0.24 3.34 3.38 8.39 0.64 0.66
w/o NTL 73% 0.51 0.32 3.69 3.52 8.47 0.61 0.63
w/o MST 76% 0.55 0.25 3.21 3.32 8.30 0.67 0.64

4.3 NATURAL LANGUAGE GENERATION

Task Definition: Beyond the Fx-chain estimation capabilities, LLM2Fx-Tools generates chain-of-
thought reasoning and natural language responses, providing interpretability and transparency to
users through comprehensive explanations of the audio processing decisions.

Evaluation Protocol: We evaluate the natural language generation quality of our LLM2Fx-Tools
framework. Following previous works (Gardner et al., 2023; Clemens & Marasović, 2025), we
assess the natural language generation capabilities through an LLM-as-a-judge framework (Zheng
et al., 2023). Similar to Section 3.2, we use Gemini2.5-Pro model as LLMjudge. Specifically, we eval-
uate three key dimensions: 1) tool calling success, whether the model correctly executes the required
Fx-chain, 2) instruction following quality, whether the generated response adequately addresses the
user instruction, and 3) chain-of-thought quality, whether the reasoning effectively connects user
instructions to responses through coherent intermediate steps. This process can be formulated as
(sIF, sCoT) = LLMjudge(xinstruction, xresponse, xcot,Pjudge). Pjudge details provided in Appendix E.

Baselines: We compare our approach with LLMs for natural language generation: 1) Qwen2.5-
Omni 7B: (Chu et al., 2024) An open-source multimodal LLM without reasoning capabilities, 2)
Qwen 2.5 4B: (Yang et al., 2025) A compact open-source LLM without audio understanding, and
3) Gemini 2.5 Flash: (Comanici et al., 2025) A closed-source multimodal LLM with advanced
reasoning capabilities.

4.4 TRAINING / EVALUATION DETAILS

We utilize Qwen3-4B (Yang et al., 2025) as our pretrained LLM foundation, which provides instruc-
tion following, reasoning and tool calling ability. Training is performed across multi-stage training
(MST) with different learning rates and batch sizes. For Stage 1 (modality alignment pretraining),
we use a learning rate of 1e-4 with batch size of 32 and train for 100K steps. Stage 2 (LLM finetun-
ing) employs a learning rate of 5e-5 with batch size of 16 and is iterated for 400K steps.

5 RESULTS / ANALYSIS

5.1 REVERSE ENGINEERING

Comparison on Fx-chain Planning. Table 2 demonstrates that LLM2Fx-Tools achieves superior
performance across multiple evaluation dimensions. In Fx-chain Planning, our approach signifi-
cantly outperforms all baselines, achieving 80% accuracy in audio effects module classification and
0.56 Spearman correlation for ordering, compared to the MultiTask baseline with 61% accuracy and
near-zero correlation. While the regression baseline achieves slightly better parameter MAE (0.20
vs 0.23), this comes at the cost of substantially worse audio effects module selection and ordering ca-
pabilities. Interestingly, Gemini 2.5 Flash demonstrates strong Fx-chain Planning capabilities with
78% effect classification accuracy and reasonable ordering correlation (0.54). However, it exhibits
limitations in parameter estimation, achieving the highest parameter MAE (0.32).
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The performance improvements of LLM2Fx-Tools stem from two key aspects: 1) our instruction-
following capabilities leverage natural language understanding to provide additional conditioning
beyond pure audio comprehension, enabling more precise and semantically-aware audio processing
decisions; and 2) the autoregressive sequence modeling inherent in LLMs provides a fundamental
advantage for handling Fx-chain ordering compared to models that rely solely on audio features.

Does Fx-chain Planning Lead to Better Acoustic Similarity? For Perceptual Distance,
LLM2Fx-Tools achieves the best performance on both MRS distances, outperforming all baselines.
Our analysis indicates that effective Fx-chain Planning is essential not only for accurate parameter
prediction but also for achieving strong perceptual performance. Notably, while the regression base-
line achieves the lowest parameter MAE (0.20), this advantage in parameter space does not translate
into improved perceptual distance. Because the regression model lacks the ability to selectively ap-
ply audio effects modules, it must predict parameters for all predefined modules, even when they
are absent in the reference audio. This limitation leads to suboptimal perceptual and feature-level
reconstruction, underscoring the importance of Fx-chain planning for bridging parameter accuracy
and perceptual quality.

In contrast, both the MultiTask baseline and our LLM2Fx-Tools framework, which incorporate au-
dio effects module selection capabilities, demonstrate superior performance in both perceptual and
DSP distance compared to the base regression approach. Comparing MultiTask vs LLM2Fx-Tools
further demonstrates the critical importance of Fx-chain ordering: despite achieving similar DSP
distances (8.39 vs 8.29), LLM2Fx-Tools’s substantial improvement in ordering correlation (0.56 vs
0.00) leads to better perceptual reconstruction (3.13 vs 3.17 L/R MRS). This indicates that correct
effect sequencing significantly contributes to audio processing quality, as the order of effects can
dramatically alter the final audio output. For Deep Embedding Similarity, LLM2Fx-Tools achieves
the highest similarity scores (AFx-Rep: 0.68, Fx-Encoder: 0.67), demonstrating that effective Fx-
chain outputs more semantically similar to reference audio.

Ablation Studies. The lower portion of Table 2 demonstrates that our core design choices contribute
meaningfully to model performance. Chain-of-Thought (CoT) reasoning significantly aids Fx-chain
Planning capabilities, improving effect classification accuracy from 67% to 80% and enhancing
ordering correlation from 0.49 to 0.56. Number Token Loss (NTL) notably impacts parameter esti-
mation, reducing MAE from 0.32 to 0.23, while also improving overall perceptual and feature-level
metrics. MST provides improvements across all metrics, bridging the representations between the
pretrained audio encoder and LLM while leveraging the pretrained capabilities of Qwen3.

5.2 AUDIO EFFECTS STYLE TRANSFER WITH BLIND ESTIMATION

Table 3: Audio Effects Style Transfer Results.

DSP Embedding Sim.

AF(↓) AFx-Rep(↑) FxEnc(↑)

No Fx 8.69 0.24 0.43
Random Fx 15.22 0.14 0.19
Regression 7.83 0.24 0.31
MultiTask 7.62 0.29 0.46
Gemini2.5Flash 9.00 0.24 0.27
LLM2Fx-Tools 7.41 0.35 0.49

Table 3 presents the experiment results of au-
dio effects style transfer, designed to evaluate
the cross-domain generalization capabilities of
each method. We observe similar trends to
those seen in reverse engineering experiments.
The regression baseline, which applies all pre-
defined audio effects regardless of their rele-
vance, achieves suboptimal performance with
higher DSP distance (7.83) and lower embed-
ding similarity scores. The MultiTask approach
shows modest improvements with better DSP distance (7.62) and enhanced embedding similarities,
highlighting the importance of selective effect application. However, its lack of ordering capabilities
limits further performance gains.

Among LLM-based approaches, Gemini 2.5 Flash performs poorly, yielding a DSP distance of
9.00 and embedding similarities barely above the No Fx baseline, despite its large parameter count.
Our reverse engineering experiments reveal that its parameter predictions are nearly random, which
explains why it fails to generalize effectively to the style transfer task. In contrast, LLM2Fx-Tools
consistently achieves the best results, with the lowest DSP distance (7.41) and the highest embedding
similarity scores (AFx-Rep: 0.35, Fx-Encoder: 0.49) across all evaluated methods.
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Table 4: Natural Language Generation Results. We compare with multiple (multimodal) large lan-
guage models on tool calling (TC), instruction following (IF), and chain of thought (CoT).

Params Multimodal Reasoning TC Success IF Quality CoT Quality

Qwen 2.5Omni 7B ✓ ✗ 0.2% 2.01 N/A
Qwen 3 4B ✗ ✓ 73.7% 3.63 3.62
Gemini 2.5Flash N/A ✓ ✓ 100% 3.75 3.63
LLM2Fx-Tools 4B ✓ ✓ 99.8% 3.86 3.69

5.3 NATURAL LANGUAGE GENERATION

Table 4 evaluates natural language generation capabilities through comprehensive LLM-as-a-Judge
assessment. Qwen 2.5Omni demonstrates limited zero-shot tool calling capabilities, failing to gener-
ate correctly formatted JSON structures. In contrast, Qwen 3-4B achieves substantial tool calling
success (73.7%) despite lacking multimodal capabilities, indicating the effectiveness of text-based
reasoning for this task. LLM2Fx-Tools, built upon Qwen 3-4B with specialized multimodal training,
achieves near-perfect tool calling performance (99.8%), matching the capabilities of state-of-the-art
closed-source models such as Gemini 2.5 Flash (100.0%).

The instruction following evaluation reveals substantial quality improvements from domain-specific
training. LLM2Fx-Tools outperforms zero-shot baselines, with quality scores increasing from 3.63
to 3.86 compared to the base Qwen 3 model. This improvement demonstrates the critical im-
portance of specialized training for music production tasks, where general-purpose models lack
domain-specific knowledge about audio effects and their applications.

Additionally, CoT quality evaluation shows that LLM2Fx-Tools outperforms other LLM baselines.
This can be attributed to LLM2Fx-Tools’s training on high-quality CoT dataset specifically focused
on music production tasks. The training dataset LP-Fx leverages knowledge distillation from Gem-
ini2.5 Flash, with quality assurance provided through filtering by Gemini2.5 Pro. This multi-stage
data synthesis approach is expected to enhance the CoT capabilities of the fine-tuned model, en-
abling more coherent and domain-relevant reasoning for audio effects manipulation.

6 LIMITATION

While our framework advances interpretable and controllable Fx-chain estimation, several chal-
lenges remain. First, the predicted Fx-chain is interpretable only relative to pseudo-dry audio ob-
tained through Fx-normalization and Fx-removal preprocessing. Full interpretability would require
integrating these preprocessing steps directly into the Fx-chain representation and reasoning pro-
cess. Second, the inherent one-to-many mapping in audio effects estimation (Hayes et al., 2025)
creates ambiguity where multiple distinct Fx-chains can produce perceptually similar results, par-
ticularly in symmetric parameter spaces. Our current evaluation framework does not fully account
for this fundamental ambiguity. Third, our experimental validation focuses exclusively on single-
instrument sources, which may limit direct applicability to complex multitrack music production
scenarios. Furthermore, we have not evaluated generalization to unseen audio effects modules be-
yond our training distribution. While our tool-calling framework is designed to be extensible to new
VST plugins and audio effects modules, empirical validation of this capability remains future work.

7 CONCLUSION

We present LLM2Fx-Tools, a multimodal tool-calling framework for generating executable audio
effect chains with interpretable chain-of-thought planning. Our experimental results demonstrate
that LLM2Fx-Tools outperforms regression and multitask baselines on both reverse engineering
and audio style transfer tasks. Additional evaluations through LLM-as-a-judge confirm the natural
language generation capabilities of our approach, demonstrating strong instruction following and
chain-of-thought reasoning quality. By emitting structured tool calls over audio effect modules, our
approach enables controllable and explainable music post-production applications. This work opens
several promising directions for future research, including scaling to richer VST plugin toolboxes,
developing reinforcement learning frameworks, and conducting comprehensive perceptual evalua-
tions with expert music producers to validate real-world applicability.
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A DETAILED TASK DEFINITION

Borrowing notation from Rice et al. (2023), we define T as the set of effect functions supported by
the environment (E). Given a dry audio (xdry), a typical audio processing can be formulated as a
composition of functions that yields the processed audio (xwet) as follows:

xwet = gN

(
gN−1

(
· · · g2

(
g1(xdry;ϕ1

)
;ϕ2

)
· · · ;ϕN−1

)
;ϕN

)
, (5)

where gn ∈ T is the n-th effect function and ϕn denotes the parameters of gn. In this paper, we
assume gi ̸= gj for any pair of i ̸= j for simplicity. We denote the Fx-chain by C = [(gn, ϕn)]

N
n=1

= [(tooln, paramsn)]
N
n=1. Equation 5 can be reformulated in terms of E and C as xwet = E(C, xdry).

Our main task is to reverse-engineer the Fx-chain (C) applied to a reference audio signal (xref).
Specifically, given a processed reference audio signal xref, we aim to predict the sequence of audio
effects and their parameters that were used to create the processed version from an original dry
signal (xdry). Formally, we can express this relationship as xref = E(C, xdry), where the environment
(E) applies the Fx-chain (C) to the dry audio (xdry) to produce the processed reference audio (xref).
For additional controllability, we incorporate natural language instructions (xinstruction) to guide the
generation process. Our goal is to learn the inverse mapping

Ĉ = fθ

(
xinstruction, xdry, xref; T

)
, (6)

where fθ represents an LLM that aims to estimate the original Fx-chain C = [(tooln, paramsn)]
N
n=1

from the reference audio xref and xdry with an additional input xinstruction in the provided environment
T .

Our secondary task involves generating intermediate chain-of-thought (xcot) and natural language
responses (xresponse). The chain-of-thought reasoning serves as an intermediate planning stage that
decomposes the complex Fx-chain generation into four sequential components: 1) user input anal-
ysis, 2) effect selection, 3) processing order determination, and 4) parameter planning. In our au-
toregressive generation framework, the chain-of-thought functions as an in-context condition for
subsequent tool calling, bridging user queries and action plans to support more accurate and inter-
pretable tool execution. Following the tool calling generation, the model produces natural language
responses that provide users with a conversational interface for music production tasks.

B DETAILED DATASET GENERATION

We detail out each stage of the data generation pipeline for creating LP-Fx below as mentioned in
Section 3.2.

Stage 1: Dry/processed audio pairs synthesis. For synthesizing processed reference audio xref, we
apply the sampled Fx-chain C to the dry audio xdry from MedleyDB. We apply Fx-Normalization
(in the order of EQ, stereo imager, and loudness) and Fx-Removal to the dry audio samples and
create a normalized dry audio x̂dry. We randomly sample parameters within predefined min-max
ranges and quantize them to discrete steps that mirror practical knob granularity (Pestana, 2013).
We employ two sampling regimes: a coarse regime to broadly cover the operating space and a fine
regime, which reflect real world production practices (De Man, 2017) (sampling ranges are detailed
in Table 5). Consequently, we obtain (x̂dry, xref, C) triplets where each triplet contains the original
dry audio, the processed reference audio, and the corresponding Fx-chain sequence.

Stage 2: Instruction-following synthesis. We synthesize natural single-turn conversations between
users and assistants for music production scenarios using the Fx-chains generated in Stage 1. For
efficient large-scale generation, we employ a distillation LLM, Gemini-2.5-Flash-lite (Comanici
et al., 2025). In this stage, the Fx-chain sequence C = [(tooln, paramsn)] from Stage 1 is paired
with task prompts Pchat that describe realistic music production scenarios. The LLM then generates
natural language instructions xinstruction and assistant responses xresponses that preserve the underlying
Fx-chain structure while providing contextually appropriate explanations, formally expressed as
xinstruction, xresponse = LLM(xtool,Pchat).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Stage 3: Chain-of-thought generation. To bridge the gap between the Fx-chains C generated
in Stage 1 and the instruction-response pairs xinstruction, xresponse from Stage 2, we decompose the
music production task into a step-by-step manner. We construct chain-of-thought reasoning by
dividing the tool calling process into four sequential steps: 1) user input analysis, 2) tool se-
lection, 3) ordering, and 4) parameter planning. We utilize Gemini-2.5-Flash (Comanici et al.,
2025) with enhanced reasoning capabilities for this stage. This process can be formulated as
xcot = LLM(xinstruction, xresponse, C,Pcot) where Pcot represents the task prompts that guide the de-
composition of complex audio processing into interpretable reasoning steps.

Stage 4: Quality filtering. To ensure data quality and minimize hallucinations in our syn-
thetic dataset, we employ an LLM-as-a-judge evaluation framework using Gemini 2.5 Pro (Co-
manici et al., 2025). We implement a two dimensional quality assessment evaluating: 1) tool
alignment, whether generated conversations accurately align with the grounded tool informa-
tion, Fx-chain C, and 2) CoT quality, whether chain of thought reasoning effectively guides
from user queries to tool calling sequences. This process can be formulated as (stool, sCoT) =
LLMjudge(xinstruction, xresponse, xcot, C,Pjudge) where stool and sCoT are quality scores of tool align-
ment and CoT, respectively, and Pjudge is the evaluation prompts. Both stool and sCoT are evaluated
using a 4 point Likert scale (from 1=poor to 4=excellent), where samples scoring ≤ 2 are flagged
for regeneration to maintain dataset integrity. Pjudge details provided in Appendix E.

C QUALITATIVE EXAMPLES

In this section, we present a qualitative example below illustrating how LLM2Fx-Tools processes a
user query and generates an appropriate Fx-chain. The example highlights each stage of the system’s
reasoning and output: the user’s request, the model’s chain-of-thought for Fx-chain modeling and
parameter estimation, the corresponding tool calls, and the final response presented to the user.

User Query
I’m working on a track with Electronic/Fusion synthesizer sounds, and I’d like to emulate
the audio effects style of a reference audio. Could you suggest a plugin chain with a
stereo widener, distortion, and a compressor?

Chain-of-Thought
For emulating the audio effects style of a reference audio for Electronic/Fusion synthesizer sounds
using a stereo widener, distortion, and compressor:
Step 1. The identified audio effects in the chain are stereo widener, distortion, and compressor,
in that specific order.
Step 2. For stereo widener, the width parameter will be adjusted to create an expansive
and immersive stereo image, enhancing the synth’s presence.
For distortion, the drive db will be increased to introduce harmonic richness and saturation,
adding grit and character suitable for electronic fusion.
For compressor, the threshold db will be set to effectively manage the dynamic range of the synth,
the ratio will be chosen to provide controlled dynamic reduction, the attack ms will be adjusted to
either preserve or shape the initial transients, and the release ms will be set to allow the compressor
to disengage smoothly with the synth’s decay, ensuring a natural sound.

Tool Calling
“<tool call>\n{‘name’: ‘stereo widener’, ‘arguments’: {‘width’: 1.3}}\n</tool call>
<tool call>\n{‘name’: ‘distortion’, ‘arguments’: {‘drive db’: 5.0}}\n</tool call>
<tool call>\n{‘name’: ‘compressor’, ‘arguments’: {‘threshold db’: -19.0, ‘ratio’: 4.0,
‘attack ms’: 250.0, ‘release ms’: 250.0}}\n</tool call>

Response
Here is a plugin chain designed to emulate the audio effects style of your reference audio,
featuring a stereo widener, distortion, and a compressor. The stereo widener is set to
a width of 1.3 to expand the stereo image. Following this, a distortion effect with
a drive of 5.0 dB is applied to add harmonic content.
Finally, a compressor with a threshold of -19.0 dB, a ratio of 4.0, an attack of 250.0 ms,
and a release of 250.0 ms is used for dynamic control.”,
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D EVALUATION METRIC

Audio Effects Module Classification Accuracy: We evaluate the model’s ability to correctly iden-
tify which audio effects module should be applied using standard classification accuracy:

Acc =
correct predictions
total predictions

. (7)

Fx-Chain Order Correlation: We assess Fx-chain ordering (order of audio effects module) capa-
bility using Spearman rank correlation ρ between predicted and ground truth orders. Missing values
are set to |fx pool|+ 1 for consistent ranking evaluation.

Audio Effects Parameter MAE: We calculate Mean Absolute Error for parameter prediction:
MAE = 1

n

∑n
i=1 |p̂i − pi|, where parameters are normalized to [0, 1] before computation. This

metric only considers correctly classified effects.

Left/Right MRS: Multi-Resolution STFT distance computed separately for stereo channels:
MRS =

∑
k(L

(k)
sc (x̂ref, xref) + L(k)

mag(x̂ref, xref)) , where k indexes different time-frequency reso-
lutions, and

L(k)
sc (x, x̂) =

∥∥∥|STFT(k)(x)| − |STFT(k)(x̂)|
∥∥∥
F∥∥∥|STFT(k)(x)|

∥∥∥
F

, (8)

L(k)
mag(x, x̂) =

1

N

∥∥∥log |STFT(k)(x)| − log |STFT(k)(x̂)|
∥∥∥
1
. (9)

Mid/Side MRS: We convert stereo audio to Mid/Side representation and compute MRS distance.
Mid-channel captures mono content (addition of left and right channels) while Side-channel captures
stereo width and spatial characteristics (subtraction of left and right channels).

DSP Feature Distance: We extract digital signal processing (DSP) based low-level descriptors,
including the root mean square and crest factor, stereo width and stereo imbalance and bark spectrum
corresponding to the dynamics, spatialization and spectral attributes respectively.

Embedding Similarity: We use pretrained audio effect encoders to extract semantic representations
and compute cosine similarity for different types of audio encoders, including CLAP, AFX-Reps,
and Fx-Enc.

E PROMPT DETAILS

We present the detailed prompts used for our dataset generation and LLM-as-a-judge evaluation.

Instruction-Following Generation Prompts: We use two main prompts for generating our dataset.
The first prompt guides the model to generate realistic user-assistant conversations with appropriate
tool calls.

You are a post-production assistant (mixing and mastering) specialized in
audio processing and VST plugin chains.

Complete the following conversation.

Output:
[

{{
"role": "user",
"content": [user_instruction]

}},
{{

"role": "assistant",
"content": [assistant_response]

}}
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]

Tools:
{fx_chain}

Requirements:
- User requests audio effect parameters of the reference audio. {

str_user_instruction} {str_user_request_specific_fx}
- The reference audio contains {genre} {instrument} sounds.
- In the assistant message, please keep tool number {tool_numer} and the

tool order {tool_order}
- In the assistant message, briefly explain the audio effect type, order

and parameters with natural language description. Please provide
objective information, don’t use overly subjective words. Please
answer with a short and concise description.

Chain-of-Thought Generation Prompts: The second prompt specifically focuses on generating
chain-of-thought reasoning that bridges multimodal understanding with parameter prediction.

You are a post-production assistant (mixing and mastering) specialized in
audio processing and VST plugin chains.

Given a Audio Effects Chain and a previous tool-based chat conversation,
generate the next chain-of-thought plan.

Return ONLY a single valid JSON object. Do not include any text before or
after the JSON. Do not use markdown fences.

Outputs:
{{

"chain_of_thought": "<think>For [task description], Step1,.. Step2,..
</think>"

}}

Where:
- task description: The task description is the user’s request.
- chain_of_thought: A step-by-step explanation that covers:
- Step 1. From the reference audio, identify the category and order of

audio effects in the chain. Do not specify exact values.
- Step 2. Create an FX parameter prediction plan that describes the

general direction and approach for each effect’s parameters without
specifying exact values.

Constraints:
- Use the provided Audio Effects Chain for effect and parameter names;

match names exactly.
- Chain of thought reflects the assistant’s thinking process for analysis

and parameter prediction.

Audio Effects Chain:
{vst_info}

conversations:
{conversation}

LLM-as-a-Judge Prompts1: For evaluate dataset generation, we evaluate for tool alignment and
thought quality.

You are an expert evaluator for audio post-production conversations
involving VST plugin chains.

Evaluate the assistant’s response in the given conversation based on the
following criteria.

Use scores to show the quality of the response. Here is the detailed
scoring rubric for evaluating the quality of responses

from AI assistants:
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# Tool Alignment (Order, Direction, Parameter Accuracy):
Poor (1): Significant misalignment with tool chain order, incorrect

parameter directions, and highly inaccurate parameter values that
would produce undesirable audio results.

Fair (2): Partial alignment with tool order but contains noticeable
errors in parameter direction or accuracy.

Good (3): Strong alignment with tool order, correct parameter directions,
and accurate parameter values with only minor room for improvement.

Excellent (4): Perfect alignment with tool chain order, correct parameter
directions, and highly accurate parameter values demonstrating

expert-level understanding.

# Thought Quality:
Poor (1): Illogical chain of thought lacking coherent reasoning about

audio processing decisions.
Fair (2): Basic reasoning but contains gaps in logic or limited

understanding of audio processing principles.
Good (3): Strong reasoning with clear understanding of effect

interactions and good audio processing knowledge.
Excellent (4): Expert-level reasoning with sophisticated understanding of

complex effect interactions.
{{

"tool_alignment": {{
"score": [1, 2, 3, 4],

}},
"thought_quality": {{

"score": [1, 2, 3, 4],
}},

}}

Tool calling ground truth:
{fx_chain}

Conversation to evaluate:
{conversation}

LLM-as-a-Judge Prompts2: For natual langauge generation, we evaluate for instruction following
and chain of thought quality.

You are an expert evaluator for audio post-production conversations
involving VST plugin chains.

Evaluate the assistant’s response in the given conversation based on the
following criteria.

Use scores to show the quality of the response. Here is the detailed
scoring rubric for evaluating the quality of responses

from AI assistants:
# Instruction Following Quality:
Poor (1): The response does not follow the user’s instructions, ignores

key requirements, or provides irrelevant information. The answer is
not in natural language or does not address the task described in the
instruction.

Fair (2): The response partially follows the instructions, but misses
important details or only addresses some aspects of the user’s
request. The natural language answer may be incomplete or only
loosely related to the instruction.

Good (3): The response follows the instructions well, addresses most
requirements, and provides a mostly complete and relevant answer in
natural language that matches the task in the instruction, but may
lack some detail or completeness.

Excellent (4): The response fully follows the user’s instructions,
addresses all requirements in detail, and provides a clear, relevant,
and comprehensive answer in natural language that is directly

aligned with the task described in the instruction.
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# Chain of Thought Quality:
Poor (1): The chain of thought does not logically connect the user’s

query to the assistant’s response, lacking coherent reasoning about
audio processing decisions. The reasoning fails to demonstrate proper
task decomposition, analysis of user input, and planning for effect

chain implementation. Or the chain of thought is empty.
Fair (2): The reasoning attempts to bridge the user’s query and the

assistant’s response but contains gaps in logic or shows limited
understanding of audio processing principles. Some evidence of task
decomposition and planning to handle user input may be present but
incomplete or flawed.

Good (3): The chain of thought clearly links the user’s query to the
assistant’s response, demonstrating effective task decomposition and
planning. The reasoning provides clear evidence of user input
analysis and systematic planning to handle requirements with mostly
sound logic.

Excellent (4): The reasoning expertly bridges the user’s query and the
assistant’s response through comprehensive task decomposition and
strategic planning. The analysis demonstrates thorough task
decomposition, comprehensive planning to handle user input, and
expert-level reasoning throughout the process.

{{
"instruction_following_quality": {{

"score": [1, 2, 3, 4],
}},
"chain_of_thought_quality": {{

"score": [1, 2, 3, 4],
}},

}}

Conversation to evaluate:
{conversation}

Chain of thought:
{cot}
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F PARAMETER RANGE FOR DATASET SAMPLING

Table 5: Parameter space of the audio effects used in this study. For each parameter, we define the
range and discretized step size for both coarse and fine-grained search spaces.

Coarse Fine
Parameter Range Step Range Step

Three-band Equalizer
low gain db [-20.0, 20.0] 2 [-6.0, 6.0] 1
low cutoff freq [0.0, 400.0] 20 [60.0, 120.0] 10
low Q factor [0.0, 6.0] 0.5 [0.5, 3.0] 0.25
mid gain db [-20.0, 20.0] 2 [-6.0, 6.0] 1
mid cutoff freq [250.0, 6000.0] 250 [250.0, 1000.0] 100
mid Q factor [0.1, 6.0] 0.5 [0.5, 3.0] 0.25
high gain db [-20.0, 20.0] 2 [-6.0, 6.0] 1
high cutoff freq [4000.0, 20000.0] 1000 [4000.0, 8000.0] 500
high Q factor [0.0, 6.0] 0.5 [0.5, 3.0] 0.5

Compressor
threshold db [-40.0, -5.0] 5 [-20.0, -10.0] 1
ratio [0.0, 20.0] 1 [2.0, 8.0] 0.5
attack ms [0.0, 500.0] 5 [1.0, 30.0] 1
release ms [0.0, 1000.0] 50 [0.0, 500.0] 25

Stereo Widener
width [0.0, 1.5] 0.1 [1.1, 1.5] 0.1

Gain
gain db [-20.0, 20.0] 2 [-6.0, 6.0] 1

Panner
pan [-1.0, 1.0] 0.1 [-0.6, 0.6] 0.1

Distortion
drive db [0.0, 20.0] 2 [1.0, 5.0] 0.5

Reverb
room size [0.0, 0.9] 0.1 [0.3, 0.6] 0.05
damping [0.0, 0.9] 0.1 [0.3, 0.6] 0.05
width [0.0, 0.9] 0.1 [0.3, 0.6] 0.05
mix ratio [0.0, 1.0] 0.1 [0.1, 1.0] 0.1

Relay
delay seconds [0.0, 0.7] 0.05 [0.01, 0.2] 0.02
feedback [0.0, 0.6] 0.05 [0.01, 0.2] 0.02
mix ratio [0.0, 1.0] 0.1 [0.1, 1.0] 0.1

Limiter
threshold db [-20.0, -1.0] 1 [-5.0, -1.0] 0.1
release ms [0.0, 1000.0] 50 [0.0, 300.0] 25
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