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ABSTRACT

Continual learning (CL) is an emerging research area aiming to emulate human
learning throughout a lifetime. Most existing CL approaches primarily focus on
mitigating catastrophic forgetting, a phenomenon where performance on old tasks
declines while learning new ones. However, human learning involves not only re-
taining knowledge but also quickly recognizing the current environment, recalling
related knowledge, and refining it for improved performance. In this work, we
introduce a new problem setting, Adaptive CL, which captures these aspects in
an online, possibly recurring task environment without explicit task boundaries
or identities. We propose the LEARN algorithm to efficiently explore, recall,
and refine knowledge in such environments. We provide theoretical guarantees
from two perspectives: online prediction with tight regret bounds and asymptotic
consistency of knowledge. Additionally, we present a scalable implementation
that requires only first-order gradients for training deep learning models. Our
experiments demonstrate that the LEARN algorithm is highly effective in explor-
ing, recalling, and refining knowledge in adaptive CL environments, resulting in
superior performance compared to competing methods.

1 INTRODUCTION

Inspired by the process of human lifelong learning, continuous learning (CL), also known as lifelong
learning, aims to develop models that can sequentially learn tasks, simultaneously preserving and
consolidating existing knowledge. The primary focus of CL approaches is on preventing catastrophic
forgetting [Parisi et al., 2019, Van de Ven and Tolias, 2019], a phenomenon where the performance of
previously learned tasks declines as new tasks are learned [McCloskey and Cohen, 1989]. Traditional
CL literature [Kirkpatrick et al., 2017, Shin et al., 2017, Rebuffi et al., 2017, Lopez-Paz and Ranzato,
2017, Mallya and Lazebnik, 2018] mainly addresses a sequence of tasks with known task identities.
In recent years, however, the focus has shifted towards more challenging scenarios in CL research,
with growing interest in one scenario called task-free CL [Aljundi et al., 2019a, Lee et al., 2020,
Jin et al., 2021, Pham et al., 2021, Ye and Bors, 2022a], where task identities and boundaries are
unknown during training. In these instances, it becomes crucial for the learner to comprehend the
current environment and incorporate new information without catastrophic forgetting, a challenging
problem due to the lack of task identity.

Numerous approaches have been developed in CL to mitigate forgetting during the learning of new
tasks. However, the situation involving potentially recurring tasks remains largely unexplored. This
scenario presents additional challenges in both learning and employing, necessitating rapid task
identification and recall of pertinent information to further enhance performance. This is a critical
aspect of human lifelong learning. As humans encounter changing environments, they can swiftly
recollect associated memories and adapt their learning when tasks switch, gradually building a
knowledge base to improve their effectiveness and proficiency in recurring tasks. We believe such a
learning process involves three key components: quick recognition of new environments, recall
of related knowledge, and refinement of existing knowledge. Consequently, this highlights the
need to explore the broader scope of CL problems beyond addressing catastrophic forgetting by
incorporating all three above human-inspired capabilities.

In this paper, we introduce Adaptive CL, a new problem formulation designed to capture the
multidimensional nature of human learning. This framework involves learning from dynamic online
environments with possibly recurring tasks, while task boundaries and identities remain unknown.
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Figure 1: An illustration of our proposed, provably guaranteed LEARN algorithm with a fast
learner, multiple slow learners, and a router keeping a mixing weight. After receiving the label,
1) Exploration: fast learner rapidly adapts to current data with a constant learning rate, while 2)
Refinement: slow learners are refined with a learning rate proportional to the corresponding mixing
weight. 3) Recall: The router mixes (recalls) mixing weight with slow model usage, then updates by
performance. The recall step enables a rapid increase in the mixing weight of the best model.

To address the Adaptive CL problem, we will develop a novel approach that automatically unifies
the above three decisions with provable performance guarantees. We propose LEARN (Lifelong
Exploration, recAll, and Refinement of kNowledge), depicted in Figure 1, which adaptively integrates
a fast learner with multiple slow learners through a router that keeps a mixing weight. The primary
goal is to activate the relevant slow learner for improved performance on seen tasks, and to utilize the
fast learner for identifying and quickly learning new tasks. During training, 1) Exploration: the fast
learner greedily adapts to new data without memory, enhancing rapid learning of potential unseen
tasks. 2) Refinement: slow learners are adaptively updated with learning rates proportional to mixing
weight. 3) Recall: the mixing weight is first mixed with a slow weight, which records the usage of
slow learners The recall process ensures the smallest value is above a certain value, making it faster
to be pulled up to 1 if the corresponding slow learner behaves the best.

Furthermore, we establish a theoretical foundation for Adaptive CL to understand the learning limit
from two perspectives: performance-level regret bound that ensures near-optimal decision-making,
and knowledge-level consistency to the ground truth in hindsight. We provide theoretical guarantees
that our developed approach is both effective in prediction and interpretable in knowledge acquisition
in Adaptive CL. For application in large-scale models such as deep neural networks, we introduce
a Gaussian mixture model (GMM) approximation of the proposed LEARN, which requires only
first-order gradients for training deep learning models. This approximation enables efficient training
while preserving the efficiency and interpretability of our approach for real-world applications.
Our extensive experimental evaluation illustrates the success of the LEARN algorithm in several
benchmark data cases.

1.1 MAIN CONTRIBUTIONS

•We propose Adaptive Continual Learning (Adaptive CL), a new framework inspired by human
learning characteristics: rapid task recognition, efficient recall of related knowledge, and continuous
refinement of knowledge. The framework aims to leverage the potential recurrence of tasks, e.g.,
math and history learning repeatedly throughout human life. The framework can be reduced to the
conventional CL setup when there is no recurrence.

• To our best knowledge, we are the first to propose an algorithm, called LEARN, to take advantage
of the potentially recurring nature of tasks, converting this challenge into an opportunity to improve
performance over time. We establish a foundational theory regarding its performance in online
prediction and interoperability in knowledge accumulation. In particular, we do not need to know the
number of tasks, the recurrence patterns, or task identities when operating the LEARN algorithm.
LEARN adaptively exploits recurrence whenever applicable to accelerate learning as time goes on.
We also provide a scalable implementation of LEARN to facilitate its usage in deep learning.

• Through extensive experimental studies, we show the promising performance of the proposed
LEARN algorithm. Our method notably improves accuracy over the online Finetune approach and
closely aligns with the Oracle baseline that requires task identities. For instance, in CIFAR100, our
method increases accuracy from 20.50% to 43.26%, approaching the Oracle baseline of 45.50%.
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Similar observations are made in other benchmark datasets, including CIFAR10, Mini-ImageNet, and
Tiny-ImageNet. Furthermore, our method significantly outperforms the state-of-the-art online CL
methods in the Adaptive CL context. For example, in CIFAR100, we improve from 30.47%, the best
performance offered by existing methods, to 43.26%, which is a relative increase of 42%. Ablation
studies show that removing any algorithmic component would negatively affect performance.
1.2 RELATED WORK

Continual learning Continual Learning (CL) targets learning in dynamic environments with re-
stricted historical data access. Many existing works have achieved significant success in preventing
catastrophic forgetting, namely preserving performance on old tasks while learning new tasks. Exist-
ing CL approaches can primarily be divided into three categories: regularization, replay, and dynamic
architecture. Regularization-based methods [Kirkpatrick et al., 2017, Zenke et al., 2017, Lee et al.,
2017, Li and Hoiem, 2017] minimize forgetting by imposing constraints on critical parameters from
previous tasks. Replay approaches generate pseudo-samples [Shin et al., 2017] or store actual sam-
ples [Rebuffi et al., 2017, Rolnick et al., 2019] of prior tasks to implicitly protect essential parameters.
Stored data can constrain optimization, preventing gradient updates in crucial directions [Lopez-Paz
and Ranzato, 2017, Chaudhry et al., 2018a, Guo et al., 2020]. Finally, dynamic architecture methods
either train separate masks of a dense neural network [Mallya and Lazebnik, 2018, Mallya et al.,
2018, Serra et al., 2018] or maintain dynamic model structures [Rusu et al., 2016, Aljundi et al.,
2017]. Experimental results demonstrate the superior performance of these methods in efficiently
retaining knowledge and preventing catastrophic forgetting when training in a changing environment.
Many recent works have theoretically investigated the cause of forgetting, specifically the impact of
factors such as task similarity and ordering on generalization performance [Asanuma et al., 2021,
Lin et al., 2023]. Additionally, the semi-supervised and unsupervised CL settings have also been
studied [Yu et al., 2022, Achille et al., 2018].
Task-free continual learning Task-free CL presents a more complex scenario than traditional CL, as
it aims to address unknown task boundaries and identities during training. In this setting, learners must
retain knowledge to prevent catastrophic forgetting and quickly recognize the current task. Existing
works have proposed replay-based and dynamic architecture methods. Replay-based methods [Jin
et al., 2021, Aljundi et al., 2019b,c] maintain a small buffer of previous data and replay a small batch
every step. The dynamic architecture approach expands the number of models by detecting a new
task using the Dirichlet process [Lee et al., 2020] or discrepancy distances [Ye and Bors, 2022a,b].

In this paper, our objective is to improve the CL framework by integrating training and testing
stages to better emulate realistic human learning scenarios. The learner must not only adapt to the
changing environment, but also efficiently exploit knowledge by recalling and consolidating relevant
information. This dual objective is analogous to the need for both exploration and exploitation in
reinforcement learning [Kaelbling et al., 1996].

2 PROBLEM FORMULATION

Many recent works [Aljundi et al., 2019a, Lee et al., 2020, Jin et al., 2021, Ghunaim et al., 2023]
have extended traditional Continual Learning (CL) to the task-free CL setting, where task boundaries
and identities are unknown during training. However, these approaches are often evaluated without
accounting for the potential task recurrence. Incorporating the possibility of recurring tasks in both
the training and testing stages presents a more realistic but challenging framework. In this context,
when the current task is recognized as having occurred previously, it is imperative to deploy and
refine the related knowledge.

To better emulate human cognition, we introduce a novel problem setting, Adaptive CL, characterized
by an online, recurring task environment without explicit task boundaries or identities. This setting
presents challenges in rapidly recognizing, adapting, and refining knowledge in response to changes
in task distribution. These abilities are essential for improved performance and realistic CL, closely
resembling human learning capabilities.

We assume a sequential data stream (xt, yt) ∈ X × Y for time t = 1, . . . , T . The learner is asked
to predict the label yt with input xt based on historical data, {xi, yi}t−1

i=1 . In Adaptive CL, (xt, yt)
independently follows the unknown distribution Dt, where the sequence of distributions D1, . . . ,DT

consists of mT distinct types of distributions and has kT − 1 change points, namely

kT ≜ 1 +

T−1∑
t=1

1(Dt+1 ̸= Dt) < T, mT ≜ Card({Dt}Tt=1) < kT ,
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where Card(·) denotes the set cardinality. For simplicity, we omit the subscript T in mT and kT , and
assume that the m modes, namely distinct distributions, are {D̃j}mj=1. The Adaptive CL objective is
twofold: 1) to achieve a small cumulative loss by enabling the learner to swiftly adapt to previously
learned tasks, and 2) to allow the learned knowledge to converge to the underlying ground truth. To
better quantify these objectives, we propose two key questions:

Question 2.1 (Regret Bound). Given a model classM ≜ {M( · ; θ) : X 7→ Y, θ ∈ Θ}, what is the
optimal upper bound for the cumulative expected regret with respect to the best competitors from
hindsight? The cumulative expected regret for a randomized algorithm A is defined as

E [RegretT ] ≜
T∑

t=1

E
[
lAt
]
−

T∑
t=1

min
θ∈Θ

E [lt(θ)] ,

where lt(θ) ≜ L (M(xt; θ), yt) for a given loss function L, and lAt ≜ Eθ∼πt(A)[lt(θ)] with πt(A), a
distribution over Θ produced by algorithm A.

A small regret bound in Question 2.1 implicitly guarantees the swift adaptation to previously learned
tasks, which is essential for performance improvement. Otherwise, the learner will learn from scratch
for every recurring task, which is suboptimal.

Question 2.2 (Knowledge Convergence). Will knowledge converge to the ground truth?

One critical aspect of human learning underexplored in the CL literature, to the best of our knowledge,
is how the learner could swiftly adapt to previously learned tasks. This aspect is implicitly guaranteed
by the regret bound formulated in Question 2.1. In addition, the understanding of knowledge
refinement has been limited in the literature. Our work, through Question 2.2, aims to contribute to a
deeper understanding of knowledge convergence and its role in Adaptive CL.

3 PROPOSED ADAPTIVE CL SOLUTION: LEARN ALGORITHM

In this section, we develop LEARN (Lifelong Exploration, recAll, and Refinement of kNowledge), a
novel algorithm designed to address the challenges of adaptive CL through exploration, knowledge
recall, and refinement. This approach facilitates swift adaptation and ongoing consolidation of
knowledge. The intuition and detailed explanation of LEARN can be found in Section 3.1, while
theoretical guarantees demonstrating its effectiveness are provided in Section 3.2. In Section 3.3, we
discuss the scalable implementation of LEARN, highlighting its applicability in deep learning.

3.1 ALGORITHM DESCRIPTION

The LEARN algorithm, as shown in Algorithm 1, consists of two main components: fast and slow
learners. Fast learner absorbs new data in the adaptive CL environment through exploration, using
tempered Bayesian updates [Erven et al., 2011, Kirkpatrick et al., 1983, Friel and Pettitt, 2008]. The
slow learner consolidates previously learned information, laying the foundation for swift recognition
and adaptation to recurring tasks for later knowledge recall. LEARN operates in three steps: 1)
exploration, 2) recall, and 3) refinement. During exploration, the algorithm processes new data with
the fast learner. In the recall stage, the fast learner recalls stored knowledge by mixing with the slow
learner, facilitating rapid adaptation to previously learned tasks. Finally, in the refinement stage,
the information from the fast learner is integrated into the slow learner using a mixing process to
enhance the quality of the stored information. As illustrated in Figure 2, when the task switches to a
previously learned task, a direct update without recall attempts to increase a small mass around the
optimal parameter. However, once mixed with the slow density, that is, recall, the mass around the
optimal parameter increases, resulting in faster recognition of the learned task.

When receiving the input xt at time t, the agent randomly samples θ̂t from the fast learner ft−1 and
provides prediction ŷt = M(xt, θ̂t). Upon receiving the true label yt, the fast learner is updated in the
exploration stage, Line 5, using the tempered Bayesian update with temperature η. The introduction
of the temperature parameter η is designed to moderate the impact of varying loss scales, especially
since our approach does not rely on a probabilistic setting or the use of negative log-likelihood loss.

When learning from stationary data, this update leads the fast learner to converge exponentially fast to
the point mass on the minimizer. However, it is an undesirable feature in non-stationary environments
due to the long time required to increase the exponentially small probability on the new minimizer.
To address this, in the recall stage, the fast learner recalls the slow learner gt−1 with a recall ratio
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Figure 2: Comparison between fast density updates without and with memory during transition from
Task 1 to Task 2. A memoryless direct (Bayesian) update begins with minimal mass around optimal
parameter of Task 2, while fast density after recall starts the update with a larger mass.

αt ∈ [0, 1] (Line 6). This mixing step enables the agent to quickly adapt to previously learned tasks,
as the mass of gt−1 near the corresponding minimizer is relatively large. In the refinement stage (Line
7), the slow learner gt−1 is consolidated with the fast learner f̃t using a learning rate γt ∈ [0, 1].

Algorithm 1 LEARN: Lifelong Exploration, recAll, and Refinement of kNowledge
Input Model class {M(·; θ) : θ ∈ Θ}, mixing {αt ∈ [0, 1]}Tt=1, forgetting {γt ∈ [0, 1]}Tt=1,

temperature η > 0 .
1: Initialization: f0(θ) = g0(θ) = 1/Vol(Θ).
2: for t = 1→ T do
3: Receive xt, randomly sample θ̂t from density ft−1, and predict ŷt = M(xt; θ̂t).
4: Receive yt and the corresponding loss lt(θ) ≜ L(M(xt; θ), yt).
5: Exploration: f̃t(θ)← ft−1(θ) exp{−ηlt(θ)}, and normalize f̃t.
6: Recall: ft(θ)← (1− αt)f̃t(θ) + αtgt−1(θ).

7: Refinement: gt(θ)← (1− γt)gt−1(θ) + γtf̃t(θ).

The exploration, recall, and refinement stages of LEARN collectively promote rapid adaptation
and improved performance in previously learned tasks. To further elucidate the adaptability and
knowledge convergence, we will delve into its theoretical underpinnings in subsequent analysis.

3.2 THEORETICAL ANALYSIS AND INSIGHTS INTO THE ADAPTIVENESS

In our theoretical analysis, we first tackle Question 2.1 by providing a regret upper bound for
Algorithm 1 in Proposition 3.1. The technical details are included in the Appendix.
Proposition 3.1. Assume set Θ ⊆ Rd is compact with supθ∈Θ ∥θ∥2 ≤ D, and |lt(θ) − lt(θ

′)| ≤
Zt∥θ − θ′∥2 for all θ, θ′ ∈ Θ, with E[Z2

t ] ≤ v2 . Then there exists ηopt > 0, stated in the Appendix,
such that Algorithm 1 with αt = k/T and γt = 1/t yields an expected cumulative regret

E [RegretT ] ≤Dv

√
2T

(
md log

DvT

2
+ 2k log

T

k
+ k logmk +md

)
+ 1

=O
(
Dv
√
T
√
md log{DvT}+ k log{mT}

)
.

(1)

Leveraging adaptation to reduce dimensionality costs. In the upper bound, we observe two distinct
sources of loss. Excluding the shared Dv

√
T , the first term,

√
md log{DvT}, is dimension-related

and signifies the cost of learning a new distribution, occurring m times. This dimension-related aspect
is particularly crucial in deep learning, where large dimensions are commonplace. The fact that it is
not related to k indirectly demonstrates the rapid adaptation and knowledge refinement capabilities of
LEARN. The second term,

√
k logmT , is dimension-free and encapsulates the information needed

to identify task boundaries and the cost associated with retaining the current distribution. This
component has also been recognized and explored in the expert learning literature [Koolen et al.,
2012, Robinson and Herbster, 2021].

Next, we turn our attention to the knowledge refinement, specifically the convergence addressed in
Question 2.2, by presenting Proposition 3.2. This crucial result demonstrates that the knowledge in

5



Under review as a conference paper at ICLR 2024

Figure 3: Comparison of fast and slow learners: A fast learner quickly excels in unseen tasks
post-exploration, outperforming slow learners. However, for seen tasks, one relevant slow learner,
integrating past data, surpasses fast learner even after exploration.

Algorithm 1 indeed attains the desired convergence properties. We denote the frequency of mode D̃j

as freqT,j ≜
∑T

t=1 1(Dt = D̃j)/T for any n ∈ N.

Proposition 3.2 (Convergence). Under the assumptions in Proposition 3.1. Suppose {E[lt]}Tt=1 is
uniformly strict, namely for any ε > 0, there exists δ > 0 such that,

min
1≤t≤T

inf
θ:d(θ,Ct)≥ε

{E[lt(θ)]−min
θ′

E[lt(θ′)]} ≥ δ,

where the set of minimizers Ct ≜ argminθ∈Θ E[lt(θ)]. If k = o(T/ log T ), then there exists ηopt,T
such that Algorithm 1 with αt = k/T and γt = 1/t has the following properties:

1. For any ε > 0, limT→∞ E
∫
θ∈Θ:d(θ,∪tCt)≥ε

gT (θ) = 0.

2. If further assume for limT→∞ freqT,j = qj and the minimizer {Bj}mj=1 are disjoint. Then

lim
ε→0

lim
T→∞

E
∫
θ∈Θ:d(θ,Bj)≤ε

gT (θ) = qj ,

where Bj ≜ argminθ∈Θ E(x,y)∼D̃j
[L(M(x; θ), y)].

From black-box to knowledge building. The convergence result presented in Proposition 3.2
provides a mathematical insight into knowledge building, unlike many existing black-box heuristic
CL approaches. Our analysis illuminates the core mechanisms that underpin the adaptive capabilities
of the LEARN algorithm, fostering a comprehensive understanding of its inner workings.

In summary, Propositions 3.1 and 3.2 address Questions 2.1 and 2.2, respectively. LEARN effectively
adapts to previously learned tasks and refines its knowledge base, exhibiting key aspects of human
learning and making it suitable for various real-world applications. However, Algorithm 1 may not
be scalable for large-scale deep learning tasks due to its requirement for density integration. To tackle
this, the following subsection introduces an approximation of LEARN that employs an efficient
approximation method, enhancing its scalability and compatibility with deep learning applications,
and thereby extending its applicability.

3.3 SCALABLE IMPLEMENTATION

In the previous subsection, we introduced LEARN in Algorithm 1 and provided theoretical guarantees.
However, this approach, which requires density over a high dimensional space, faces scalability
challenges in large-scale deep learning tasks. To address this issue, we present Scalable LEARN in
Algorithm 2, an efficient approximation using Gaussian Mixture Models (GMMs). While Variational
Inference (VI) [Jordan et al., 1999] is a popular technique for approximating target distributions in
deep learning literature, it is not well-suited for our problem setting due to the recursive form in
Algorithm 1. GMM, on the other hand, offers a more straightforward and effective solution while
preserving the core properties and adaptability of the LEARN algorithm.

Intuitively, the slow density is a mixture of components, with each component concentrating around
the optimal parameter of a previously seen task. Consequently, we approximate densities in Algorithm
1 using a Gaussian Mixture Model (GMM):
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f̃t(θ) ≈ wt,0N (θt, σ
2Id) +

m̂t∑
i=1

wt,iN (βt,i, σ
2Id),

gt(θ) ≈ rt,0N (θt, σ
2Id) +

m̂t∑
i=1

rt,iN (βt,i, σ
2Id),

where θt represents the fast learner, and βt,i for each i ∈ [m̂t] corresponds to the slow learners. By
substituting this approximation into the Algorithm 1 and applying Taylor’s expansion, the original
density updates are transformed into first-order parameter updates in Algorithm 2. The detailed
technical derivation is included in Appendix B.2.

At time t + 1, fast and slow learners hold 1 and m̂t models, respectively. The target prediction is
computed as the adaptively weighted average of the predictions from these m̂t + 1 models, with the
combining weights wt updated according to Line 6 of Algorithm 2. The fast learner, updating only
on the most recent data, operates without memory retention. Following this, the models in the slow
learner are updated with a learning rate adaptive to the combining weights. As illustrated in Figure 3,
when introduced to a new task, the fast learner quickly adapts and outperforms models in the slow
learner. However, when dealing with previously encountered tasks, the affiliated model in the slow
learner surpasses the memoryless fast learner. Such different behaviors toward seen and unseen tasks
enable task identification through updates in Line 6. The patience tracks the high value of the fast
learner combining weight since a model was last added to the slow learner. If patience crosses a set
threshold, indicating a new task, a snapshot of the fast learner is directly added to the slow learner.

Algorithm 2 Scalable LEARN
Input Model class {M(·; θ) : θ ∈ Θ} , mixing {αt}Tt=1, temperature η > 0, variance σ2,

patience Q > 0 .
Output Fast learner θT , slow learners βT,i for i ∈ [m̂T ]

1: Initialization: fast learner θ0 ∼ Unif(Θ), predictive weight w0,0 = 1, cache weight r0,0 = 1,
slow learner G0 = ∅, patience q0 = 0.

2: for t = 1→ T do
3: Receive xt and predict ŷt = wt−1,0M(xt; θt−1) +

∑m̂t−1

i=1 wt−1,iM(xt;βt−1,i).
4: Receive yt and corresponding loss lt(θ).
5: Exploration of fast learner: θt ← θt−1 − ησ2∇lt(θt−1).

6: Knowledge recall for adaptation: (i ∈ [m̂t−1], βt−1,0 ≜ θt−1)
wt,i ← {(1− α)wt−1,i + αrt−1,i} exp{−ηlt(βt−1,i)},

7: Refinement of knowledge: for i ∈ [m̂t−1]

rt,i ← rt−1,i −
1

t
(rt−1,i − wt,i), βt,i ← βt−1,i − ησ2 wt,i

trt,i
∇lt(βt−1,i).

8: Update patience: qt ← qt−1 +max{0, wt,0 − 1 + α}
9: if patience qt > Q then

10: Consolidate knowledge with cache, and initialize cache:
Gt ← Gt−1 ∪ {(rt,0, θt)}. qt = rt,0 = 0

4 EXPERIMENTAL EVALUATION

4.1 ADAPTIVE CL DATASTREAM

We conduct extensive experiments to evaluate the performance, the ability to adapt to learned tasks,
and the knowledge quality. Recall that an Adaptive CL scenario consists of a data stream from an
online, non-stationary environment with potentially recurring tasks and unknown task boundaries or
identities. To emphasize the challenge of the problem, we create multiple tasks with distinct original
labels, which are then re-labeled within the same label region–otherwise, the task boundaries and
identity could be inferred directly from the labels. In the following experiments, each data point is
presented only once with batch size 5.

Datasets. CIFAR10 [Krizhevsky et al., 2009] consists of color images in 10 classes, with 6000
images per class. We create 5 tasks from CIFAR10 by splitting the dataset into 5 subsets according
to labels (0/1, 2/3, . . . , 8/9). Each task is randomly split into 40 segments with 50 batches per
segment. By shuffling and combining all 200 segments, we obtain the Adaptive CIFAR10 scenario.

7



Under review as a conference paper at ICLR 2024

2000 4000 6000 8000 10000
Time

20

40

60

80

Ac
cu

ra
cy

 (%
)

CIFAR10
Oracle
Finetune
ER
ExpVAE
AGEM
OnlineEWC
MIR
GDumb
LEARN (ours)

2000 4000 6000 8000 10000
Time

0

10

20

30

40

Ac
cu

ra
cy

 (%
)

CIFAR100

2000 4000 6000 8000 10000
Time

0

10

20

30

40

Ac
cu

ra
cy

 (%
)

Mini-ImageNet

0 5000 10000 15000
Time

0

10

20

30

Ac
cu

ra
cy

 (%
)

Tiny-ImageNet

Figure 4: The running average accuracy of all compared methods on the three Adaptive scenarios
from 10 runs. The dashed line indicates non-Adaptive CL methods with task identity information.

Table 2: Comparison of Average Accuracy (%) (mean ± se) from 10 runs. * represents non-task-free
baselines.

Method CIFAR10 CIFAR100 Mini-ImageNet Tiny-ImageNet

Oracle* 77.38± 0.08 45.50± 0.13 41.68± 0.10 36.37± 0.07
ExpVAE* 16.73± 0.03 3.45± 0.02 3.80± 0.02 2.82± 0.02

Finetune 56.12± 0.09 20.50± 0.12 27.93± 0.18 26.80± 0.12
ER 68.19± 0.22 30.47± 0.14 37.13± 0.15 32.12± 0.10

A-GEM 64.16± 0.11 22.40± 0.07 29.81± 0.14 28.40± 0.35
Online EWC 56.36± 0.10 20.58± 0.03 27.86± 0.14 26.88± 0.15

MIR 59.22± 0.40 19.39± 0.18 29.41± 0.22 28.28± 0.12
GDumb 36.69± 0.24 8.74± 0.06 11.50± 0.03 5.22± 0.07

LEARN 72.70± 0.07 43.26± 0.25 39.54± 0.19 34.57± 0.12

CIFAR100 [Krizhevsky et al., 2009] consists of color images in 100 classes, each with 600 images.
Like before, we create 10 tasks from CIFAR100 by splitting it according to labels, so there are 10
classes per task. We then obtain the Adaptive CIFAR100 scenario with 20 segments per task, in a
way similar to CIFAR10. Mini-ImageNet and Tiny-ImageNet [Le and Yang, 2015] contains 100 and
200 classes respectively, and we obtain the Adaptive Mini-ImageNet and Adaptive Tiny-ImageNet
scenarios similar to the Adaptive CIFAR100 with 10 tasks and 20 segments per task.

Table 1: Number of trainable parameters
(in million) for 4 datasets. * represents
non-task-free baselines.

Method CIFAR10 CIFAR100 Mini. Tiny.

Oracle* 11.19 11.68 12.73 13.24
ExpVAE* 12.33 12.81 20.06 20.58
LEARN 11.22 12.19 13.24 14.27
Others 11.17 11.22 12.27 12.32

Compared methods. Except for our method, LEARN,
we further evaluate the following methods, where * in-
dicates unrealistic baselines: 1) Finetune with a neural
network naively trained on the new data. 2) Oracle* as
the upper performance limit consisting of multiple mod-
els, where one corresponds to one task, with known task
identities during training and testing. 3) ExpVAE* (Ex-
pansion+VAE) consisting of (classifier, generator) tuples,
which is a popular structure in dynamic expansion with
mixture models in Task-free CL [Lee et al., 2020, Ye and
Bors, 2022a,b]. We assume that the task identity is known
during training. However, during the prediction stage, the task identity must be inferred by the
generators, Variational Autoencoder (VAE) [Kingma and Welling, 2013]. 4) ER (Experience Re-
play) [Chaudhry et al., 2019] 5) A-GEM (Averaged Gradient Episodic Memory) [Chaudhry et al.,
2018a] 6) Online EWC [Chaudhry et al., 2018b] 7) MIR [Aljundi et al., 2019d] 8) GDumb [Prabhu
et al., 2020]. The details of methods 4)-8) are included in Appendix D.1.

Architecture. We employ ResNet18 [He et al., 2016] as the backbone for all methods. Methods like
Oracle and LEARN, which utilize multiple models, share this same backbone but feature multiple
output layers, each consisting of two fully connected linear layers. As indicated in Table 1, the
total parameter count is comparable across all methods, except ExpVAE. This method incorporates
multiple VAEs, utilizing two convolutional layers in both the encoder and decoder. The learning rate
is set to 0.001 with the SGD optimizer.

Metrics. We consider three metrics: 1) Average Accuracy: the cumulative accuracy divided by the
total time:

∑T
t=1 Acct/T , where Acct is the accuracy at time t. 2) Knowledge Accuracy: the mean

of test accuracy over all tasks:
∑m

i=1 TestAcci/m, where TestAcci is the test accuracy of i-th task
giving task identity. 3) Adaptiveness: the weighted average of accuracy, where the weights decay
geometrically with factor γ ∈ [0, 1] and reinitialize whenever the task changes, detailed in Appendix
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Table 3: Comparisons of Knowledge Accuracy
(%) (mean ± se) from 10 runs. * represents non-
task-free baselines.

Method CIFAR10 CIFAR100 Mini-ImageNet Tiny-ImageNet

Oracle* 81.91± 2.64 51.92± 1.14 50.85± 1.43 43.08± 1.11
ExpVAE* 85.17± 3.00 47.74± 1.27 42.35± 1.54 33.27± 1.09

Finetune 18.25± 8.75 8.91± 4.04 5.72± 2.12 4.48± 4.07
ER 43.48± 6.71 18.64± 3.90 18.67± 3.47 8.01± 3.15

A-GEM 25.45± 8.11 10.83± 4.55 6.90± 2.43 4.71± 3.96
Online EWC 18.25± 8.75 9.39± 2.21 5.59± 2.15 4.31± 3.93

MIR 18.49± 8.84 10.39± 3.85 7.80± 2.38 5.36± 3.92
GDumb 37.71± 4.15 9.66± 1.01 12.66± 0.98 5.42± 0.53

LEARN 75.04± 5.10 41.22± 2.02 36.08± 4.98 36.98± 1.97

Table 4: Comparison of Adaptiveness (mean±se)
with γ = 0.99 from 10 runs in 10−2 scale. *
represents non-task-free baselines.

Method CIFAR10 CIFAR100 Mini-ImageNet Tiny-ImageNet

Oracle* 77.31± 0.09 45.37± 0.12 41.54± 0.11 35.65± 0.07
ExpVAE* 16.67± 0.02 3.37± 0.02 3.92± 0.02 2.92± 0.03

Finetune 53.32± 0.09 18.37± 0.10 25.74± 0.17 21.36± 0.10
ER 67.00± 0.23 28.55± 0.13 35.96± 0.14 28.66± 0.10

A-GEM 61.94± 0.12 20.18± 0.07 27.68± 0.12 22.95± 0.31
Online EWC 53.57± 0.10 18.42± 0.03 25.70± 0.13 21.40± 0.14

MIR 56.79± 0.43 17.78± 0.18 27.45± 0.21 23.27± 0.08
GDumb 36.75± 0.24 8.81± 0.07 11.44± 0.03 5.19± 0.06

LEARN 71.85± 0.08 42.23± 0.27 38.68± 0.18 32.82± 0.15

Avg. Adapt. Know.
0.0
0.2
0.4
0.6

Va
lu

e
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Figure 5: Ablation study of the impact removing any key component of LEARN on CIFAR10,
CIFAR100, Mini-ImageNet, and Tiny-ImageNet over 5 runs in terms of Average Accuracy (Avg.),
Adaptiveness (Adapt.) and Knowledge Accuracy (Know.).

D.4:
∑k

i=1

∑ni+1−ni
τ=1 γτ−1accni+τ∑k

i=1

∑ni+1−ni
τ=1 γτ−1

, where n0 < . . . < nk are segment boundaries. Larger adaptiveness

means a faster speed of recall of related information.

Results. As illustrated in Figure 4 and Table 2, the average accuracy of LEARN markedly surpasses
that of competing methods across all scenarios. Among the methods, ER is a simple but strong
comparator. Although ExpVAE utilizes the information of task identities in training, the dependency
on VAE to recognize current task in the test stage significantly harms the performance due to the
complexity of training VAE.

Table 3 measures the mean test accuracy in all tasks, representing the quality of knowledge refinement.
The refined knowledge in LEARN, namely a mixture of models, is significantly better than competing
methods. Table 4 measures the Adaptiveness, defined in Metrics,

As shown in the table, LEARN has the largest adaptiveness, showing the ability to adapt to learned
tasks more efficiently. It is worth noting that the competing CL approaches in the literature were not
designed and optimized for the Adaptive CL scenario, leading to less satisfactory performance. More
discussions of the experimental results are included in the Appendix.

4.2 ABLATION STUDIES

Impact of key stages in LEARN We ablate the three core stages of LEARN, Algorithm 2, namely,
exploration, recall and refinement of knowledge on 4 datasets, presented in Figure 5. Removing any
component of LEARN adversely affects performance. In particular, the absence of exploration leads
to a significant performance drop. This is because, without exploration, the algorithm is unable to
detect new tasks by comparing knowledge to the fast learner.
Impact of hyperparameters We evaluate a variety of patience thresholds Q from 1 to 20, and
mixing parameters α from 0.1 to 0.5. The details are included in the Appendix. The choice of
patience threshold and mixing parameter exhibit minimal influence on the average accuracy and
adaptiveness. of knowledge.

5 CONCLUSION

In this work, we proposed a realistic and challenging problem, Adaptive CL, and two key character-
istics: performance and knowledge quality. To address the problem, we propose a unified LEARN
algorithm that simultaneously recognizes the current task, recalls related information, and refines
knowledge. Theoretical analysis of LEARN guarantees near-optimal performance and asymptotically
consistent knowledge. To be efficient in deep learning, we propose a scalable implementation. The
experimental results show that LEARN significantly surpasses the baseline methods in multiple
aspects. The Appendix contains additional details on implementation details, more ablation studies,
and technical proofs. We do not envision any negative social impact of this work.
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A THEORETICAL ANALYSIS

A.1 PROOF OF PROPOSITION 3.1

Proof. We first show useful lemmas as follows. Lemma A.2 upper bounds the regret by the potential
in the form − log{E[exp{−η · regret}]}/η. Lemma A.3 captures the local continuity utilizing the
Lipchitz-like condition |lt(θ)− lt(θ

′)| ≤ Zt∥θ − θ′∥2.

Lemma A.1 (Hoeffding’s lemma). Let X be a bounded random variable with X ∈ [a, b]. Then for
any λ ∈ R,

E[exp{λ(X − E[X])}] ≤ exp{λ
2(b− a)2

8
}

Lemma A.2. If random variable h(θ) satisfies |h(θ)− h(θ′)| ≤ Z∥θ − θ′∥2 for all θ, θ′ ∈ Θ with
supθ∈Θ ∥θ∥ ≤ D, then for θ∗ ∈ Θ, any density f(θ) over Θ and η > 0,∫

Θ

f(θ){h(θ)− h(θ∗)}dθ ≤ −1

η
log

∫
Θ

f(θ) exp(−η{h(θ)− h(θ∗)}+ ηD2Z2

2

Proof. For any θ ∈ Θ, by Hoeffding’s lemma on h(θ̃) − h(θ∗) where θ̃ ∼ f with λ = −η, since
∥h(θ̃)− h(θ∗)∥ ≤ Z∥θ − θ∗∥ ≤ 2ZD, we have

E
[
exp

{
−η
(
h(θ̃)− h(θ∗)− E

[
h(θ̃)− h(θ∗

])}]
≤ exp{η

2D2Z2

2
}.

Therefore,

E
[
exp

{
−η
(
h(θ̃)− h(θ∗)

)}]
exp

{
ηE
[
h(θ̃)− h(θ∗

]}
≤ exp{η

2D2Z2

2
}.

Taking log on both sides, we have∫
Θ

f(θ){h(θ)− h(θ∗)}dθ ≤ −1

η
log

∫
Θ

f(θ) exp{−η{h(θ)− h(θ∗)}}dθ + ηD2Z2

2
.

Lemma A.3. Under the assumptions of Lemma A.2,

−1

η
log

∫
Br

f(θ) exp{−η{h(θ)− h(θ∗)}}dθ∫
Br

f(θ)dθ
≤ rZ,

where Br ≜ {θ ∈ Θ : ∥θ∥ ≤ r}.

Proof. Note exp{−ηh(θ)} ≥ exp{−ηZ∥θ∥} ≥ exp{−ηrZ} if θ ∈ Br. Thus,

−1

η
log

∫
Br

f(θ) exp{−ηh(θ)}dθ∫
Br

f(θ)dθ
≤ −1

η
log

∫
Br

f(θ) exp{−ηrZ}dθ∫
Br

f(θ)dθ
= rZ.

Back to the proof of Proposition 3.1. Suppose θ̃∗j is any minimizer of j-th mode expected loss
E(x,y)∼D̃j

[L(M(x; θ), y)]. Let θ∗t =
∑m

j=1 θ̃
∗
j1(Dt = D̃j), thus we have

∑T−1
t=1 1(θ∗t+1 ̸= θ∗t ) =

kT and Card({θ∗t }Tt=1) = m. By Lemma A.2 with h(θ) = lt(θ) and taking expectation, for excess
loss et(θ) ≜ lt(θ)− lt(θ

∗
t ) we have,

E
[∫

Θ

ft−1(θ)et(θ)dθ

]
≤− 1

η
E
[
log

∫
Θ

ft−1(θ) exp(−ηet(θ))
]
+

ηD2v2

2
. (2)

Similarly by Lemma A.3, for any r > 0

−1

η
E

[
log

∫
Br(θ∗

t )
ft−1(θ) exp{−ηet(θ)}dθ∫
Br(θ∗

t )
ft−1(θ)dθ

]
≤ rE[Zt] ≤ r

√
E[Z2

t ] ≤ rv., (3)
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where Br(θ
∗
t ) ≜ {θ ∈ Θ : ∥θ − θ∗t ∥2 ≤ r}. Taking summation of inequalities equation 2 and

equation 3, we have

E [RegretT ] =E

[
T∑

t=1

∫
Θ

ft−1lt(θ)− lt(θ
∗
t )

]

=E

[
T∑

t=1

∫
Θ

ft−1et(θ)

]

(Inequality equation 2) ≤− 1

η
E

[
T∑

t=1

log

∫
Θ

ft−1(θ) exp(−ηet(θ))

]
+

ηD2v2T

2

(Inequality equation 3) ≤1

η
E

[
T∑

t=1

log

∫
Br(θ∗

t )
ft−1(θ) exp{−ηet(θ)}dθ/

∫
Br(θ∗

t )
ft−1(θ)dθ∫

Θ
ft−1(θ) exp(−ηet(θ))

]

+
ηD2v2T

2
+ rvT.

(4)

Since f̃t(θ) = ft−1(θ) exp{−ηlt(θ)}/
∫
Θ
ft−1(θ

′) exp{−ηlt(θ′)}dθ′, we simplify the log term in
the RHS as

log

∫
Br(θ∗

t )
ft−1(θ) exp{−ηet(θ)}dθ/

∫
Br(θ∗

t )
ft−1(θ)dθ∫

Θ
ft−1(θ) exp(−ηet(θ))

=

∫
Br(θ∗

t )
f̃t(θ)dθ∫

Br(θ∗
t )
ft−1(θ)dθ

.

Thus, inequality equation 4 is simplified as

E [RegretT ] ≤
1

η
E

[
T∑

t=1

log

∫
Br(θ∗

t )

f̃t(θ)dθ − log

∫
Br(θ∗

t )

ft−1(θ)dθ

]
+

ηD2v2T

2
+ rvT. (5)

It remains to connect f̃ and f . Note ft−1 = (1− αt−1)f̃t−1 + αt−1gt−2, we have

− log

∫
Br(θ∗

t )

ft−1(θ)dθ ≤

(
− log

∫
Br(θ∗

t−1)

f̃t−1(θ)dθ + log
1

1− αt−1

)
1(θ∗t = θ∗t−1)

+

(
− log

∫
Br(θ∗

t )

gt−2(θ)dθ + log
1

αt−1

)
1(θ∗t ̸= θ∗t−1),

(6)

Suppose θ∗ni+1 = · · · = θ∗ni+1
for i = 0, . . . , k − 1, where change points 0 = n0 < n1 < · · · <

nk = T . Assume gt−2 =
∑t−2

j=0 ct−2,j f̃j . For a segment θ∗ni+1, . . . , θ
∗
ni+1

, by the connection of f̃
and f in inequality equation 6, we have

ni+1∑
t=ni+1

{
log

∫
Br(θ∗

t )

f̃t(θ)dθ − log

∫
Br(θ∗

t )

ft−1(θ)dθ

}

≤ log

∫
Br(θ∗

ni+1
)

f̃ni+1(θ)dθ − log

∫
Br(θ∗

ni+1
)

gni
(θ)dθ + log

1

αni

+

ni+1∑
t=ni+2

log

∫
Br(θ∗

t )

f̃t(θ)dθ − log

∫
Br(θ∗

t )

f̃t−1(θ)dθ︸ ︷︷ ︸
telescope

+ log
1

1− αt−1


= log

∫
Br(θ∗

ni+1
)

f̃ni+1(θ)dθ − log

∫
Br(θ∗

ni+1
)

gni(θ)dθ + log
1

αni

+

ni+1−1∑
t=ni+1

log
1

1− αt

≤ log

∫
Br(θ∗

ni+1
)

f̃ni+1
(θ)dθ − log

∫
Br(θ∗

ni+1
)

f̃nϕ(i)
(θ)dθ + log

1

cni,ϕ(i)αni

+

ni+1−1∑
t=ni+1

log
1

1− αt
,

(7)
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where ϕ(i) ≜ max{j < i : θ∗nj+1
= θ∗ni+1

or j = 0} is the index of the endpoint of last segment
with the same distribution. Combining inequality equation 5 and equation 7, we have

E [RegretT ] ≤
1

η

m∑
j=1

∑
i:Dni+1=D̃j

ni+1∑
t=ni+1

{
log

∫
Br(θ̃∗

j )

f̃t(θ)dθ − log

∫
Br(θ̃∗

j )

ft−1(θ)dθ

}

+
ηD2v2T

2
+ rvT

≤1

η

m∑
j=1

∑
i:Dni+1=D̃j

{
log

∫
Br(θ̃∗

j )

f̃ni+1(θ)dθ − log

∫
Br(θ̃∗

j )

f̃nϕ(i)
(θ)dθ − log cni,ϕ(i)

}

+
ηD2v2T

2
+ rvT +

1

η
CDetect

≤1

η

m∑
j=1

{
log

∫
Br(θ̃∗

j )

f̃nlast,j (θ)dθ − log

∫
Br(θ̃∗

j )

f̃n0
(θ)dθ

}

+
ηD2v2T

2
+ rvT +

CDetect + CRemember

η

≤m

η
log

Vol(Θ)

Vol(Br(0))
+

ηD2v2T

2
+ rvT +

CDetect + CRemember

η

≤md

η
log

D

2r
+

ηD2v2T

2
+ rvT +

CDetect + CRemember

η

where nlast,j ≜ max{i : θ∗ni
= θ̃∗j }, CDetect ≜ −

∑T−1
t=1 log α̃t, α̃t ≜ αt1(st+1 = st) + (1 −

αt)1(st+1 ̸= st), Vol(A) is the volume for any set A ⊂ Rd, and CRemember ≜ −
∑k

i=1 log cni,ϕ(i).
Thus, by setting r = md/(ηvT ), ηopt = Dv

√
T/{2md log (eDvT/2) + 2CRemember + 2CDetect}

and note log x/x ≤ 1 for any x > 0,

E [RegretT ] ≤
md

ηopt
log

ηoptDvT

2md
+

ηoptD
2v2T

2
+

md

ηopt
+

CDetect + CRemember

ηopt

≤md

ηopt
log

DvT

2
+

ηoptD
2v2T

2
+

md

ηopt
+

CDetect + CRemember

ηopt
+ 1

=Dv

√
2T

(
md log

DvT

2
+ CDetect + CRemember +md

)
+ 1.

In terms of cost functions,

CDetect = TH( k
T
) ≤ k log

T

k
+ k if αt ≡

k

T
,

and

CRemember ≤
{
mTH( k

mT ) ≤ k log mT
k + k if γt ≡ mT−k

mT

k log T if γt = 1
t ,

where binary entropyH(p) ≜ −p log p− (1− p) log (1− p).
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A.2 PROOF OF PROPOSITION 3.2

Proof. By Proposition 3.1,

T∑
t=1

E
[∫

Θ

ft−1lt(θ)dθ − lt(θ
∗
t )

]
=E [RegretT ]

≤Dv

√
2T

(
md log

eDvT

2
+ 2k log

T

k
+ k log k +md

)
+ 1

=O(
√
Tk log T ) = o(T ).

(8)
Since E[lt(θ)], t ∈ [T ], are uniformly strict, then for any ε > 0, there exists δ > 0, such that

inf
θ:d(θi,Ct)≥ε

E [lt(θ)]−min
θ′
E [lt(θ′)] ≥ δ,

where Ct ≜ argminθ∈Θ E[lt(θ)] for all t ∈ [T ]. By taking conditional expectations on history data
on LHS,

T∑
t=1

E
[∫

Θ

ft−1lt(θ)dθ − lt(θ
∗
t )

]
=

1

T

T∑
t=1

E
[
Et−1

[∫
Θ

ft−1{lt(θ)− lt(θ
∗
t )}dθ

]]

=
1

T

T∑
t=1

E
[∫

Θ

ft−1{E[lt(θ)]− E[lt(θ∗t )]}dθ
]

≥ δ

T

T∑
t=1

E

[∫
θ∈Θ:d(θ,∪tCt)≥ε

ft−1(θ)dθ

]
,

(9)

where Et−1[·] denotes the conditional expectation over the σ-algebra generated by {(xτ , yτ )}t−1
τ=1.

Combining inequality equation 8 and equation 9, we have

1

T

T∑
t=1

E

[∫
θ∈Θ:d(θ,∪tCt)≥ε

ft−1(θ)dθ

]
= o(1). (10)

We connect f with f̃ to get the convergence of knowledge gt as follows. Note ft = (1 − αt)f̃t +
αt−1gt−1, then by equality equation 10 we have

E

[∫
θ∈Θ:d(θ,∪tCt)≥ε

1

T

T∑
t=1

f̃t(θ)dθ

]
≤E

[∫
θ∈Θ:d(θ,∪tCt)≥ε

1

T

T∑
t=1

ft(θ)dθ

]

+ E

[∫
θ∈Θ:d(θ,∪tCt)≥ε

1

T

T∑
t=1

|ft(θ)− f̃t(θ)|dθ

]

≤o(1) + 1

T

∫
Θ

T∑
t=1

αt

∫
Θ

|gt−1 + f̃t|dθ

≤o(1) + 2
1

T

T∑
t=1

αt = o(1).

(11)
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The above result completes the first claim. For the second claim,

E

 1

T

∑
t:Dt=D̃j

∫
θ:d(θ,Bj)≤ε

ft−1(θ)dθ


=freqj,T − E

 1

T

∑
t:Dt=D̃j

∫
θ:d(θ,Bj)>ε

ft−1(θ)dθ


≥freqj,T − E

 1

δT

∑
t:Dt=D̃j

∫
θ:d(θ,Bj)>ε

ft−1(θ)

{
E[lt(θ)]−min

θ′
E[lt(θ′)]

}
dθ


≥freqj,T −

1

δ
E [RegretT ] ,

where Bj ≜ argminθ∈Θ E(x,y)∼D̃j
[L(M(x; θ), y)]. Taking lim infT→∞ on both sides, we have

lim inf
T→∞

E

 1

T

∑
t:Dt=D̃j

∫
θ:d(θ,Bj)≤ε

ft−1(θ)dθ

 ≥ lim
T→∞

freqj,T − lim
T→∞

1

δ
E [RegretT ] = qt.

Since
∑m

j=1 qj = 1, for ε > 0 that is small enough such that {θ : d(θ,Bj) ≤ ε}, j ∈ [m], are
disjoint, we have

1 ≥ lim inf
T→∞

E

 1

T

m∑
j=1

∑
t:Dt=D̃j

∫
θ:d(θ,Bj)≤ε

ft−1(θ)dθ

 ≥ m∑
j=1

qj = 1

Combining these two inequalities, we have

lim
T→∞

E

[
1

T

T∑
t=1

∫
θ:d(θ,Bj)≤ε

ft−1(θ)dθ

]
= qj .
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B SCALABLE APPROXIMATION

B.1 INTUITION

In Algorithm 1, we focus on two densities: the fast learner f̃t and the slow learner gt. Assume there
are mt Gaussian models,N (βt,i, σ

2Id), constituting our knowledge base, and an additional Gaussian
model, N (θt, σ

2Id), for exploration. We approximate the fast and slow learner as the weighted
averages of these mt + 1 Gaussian models: (βt,0 ≜ θt)

f̃t(θ) ≈
mt∑
i=0

wt,iN (βt,i, σ
2Id), gt(θ) ≈

mt∑
i=0

rt,iN (βt,i, σ
2Id),

where {wt,i}mt
i=1 denote predictive mixing weights, {rt,i}mt

i=1 represent slow weights, and wt,0 and
rt,0 denote the cache weights to be consolidated. For simplicity, we only consider the first-order
Taylor expansion of loss lt, implying that the variance σ2 remains unchanged. By substituting the
approximation into the update rules in Algorithm 1, we obtain the weights update stated in Algorithm
2, and updates for θt and βt,i as:

θt+1 ← θt − ησ2∇lt+1(θt), βt+1,i ← βt,i − ησ2 wt+1,i∑t+1
τ=1 wτ,i

∇lt+1(βt,i).

In Algorithm 2, the fast learner is first updated using gradient descent (Line 5). After this update,
predictive weights facilitate swift adaptation to prior tasks by recalling knowledge and exploring; this
is achieved by mixing with slow weights and multiplying by their corresponding performances in
Line 6. This process ensures that the agent remains responsive to new information.

In the context of knowledge consolidation, slow weights are first updated in Line 7. New information
is selectively consolidated into the knowledge by applying gradient descent with varying step sizes
(Line 7). These step sizes are determined by the relevance to the current data, namely the ratio of the
predictive weight to the sum of historical predictive weights. This method enables the knowledge to
refine by absorbing different amounts of current data while preventing forgetting.

In order to detect new modes, we monitor the patience, which is the sum of cache predictive weights
max{wt,0 − τ, 0} (Lines 8 to 10). When the patience surpasses a predetermined threshold Q, the
current cache weight and fast learner are consolidated into the slow learner as a new component. This
step ensures that the algorithm effectively responds to any new modes.
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B.2 DERIVATION

In this section, we will derive details of the scalable LEARN algorithm requiring only first-order
derivatives. Let

f̃t(θ) ≈ wt,0N (θt, σ
2Id) +

mt∑
i=1

wt,iN (βt,i, σ
2Id),

gt(θ) ≈ rt,0N (θt, σ
2Id) +

mt∑
i=1

rt,iN (βt,i, σ
2Id).

(12)

Then the update rules in Line 5 and 6 of Algorithm 1 become:

f̃t+1(θ) ∝ft(θ) exp{−ηlt+1(θ)}
∝{(1− α)wt,0 + αrt,0} exp{−ηlt+1(θ)}N (θt, σ

2Id)

+

mt∑
i=1

{(1− α)wt,i + αrt,i} exp{−ηlt+1(θ)}N (βt,i, σ
2Id)

∝wt+1,0ht(θt) exp{−ηgt+1(θt)
T (θ − θt)} exp{−

1

2σ2
∥θ − θt∥22}

+

mt∑
i=1

wt+1,iht(βt,i) exp{−ηgt+1(βt,i)
T (θ − βt,i)} exp{−

1

2σ2
∥θ − βt,i∥22}

∝wt+1,0ht(θt) exp

{
− 1

2σ2
∥θ − (θt − ησ2gt+1(θt))∥22

}
+

mt∑
i=1

wt+1,iht(βt,i) exp

{
− 1

2σ2
∥θ − (βt,i − ησ2gt+1(βt,i))∥22

}

≈wt+1,0N (θt+1, σ
2Id) +

mt∑
i=1

wt+1,iN (βt,i − ησ2gt+1(βt,i), σ
2Id), (Omit O(η2))

(13)
where performance ht(θ) ≜ exp{−ηlt+1(θ)}, gradient gt+1(θ) ≜ ∇lt+1(θ), fast learner update

θt+1 = θt − ησ2gt+1(θt),

predictive mixing weights

wt+1,i = ct+1 {(1− α)wt,i + αrt,i}ht(βt,i), (14)

for 0 ≤ i ≤ mt−1 with βt−1,0 ≜ θt−1, and normalizer ct+1 ensures
∑mt

i=1 wt+1,i = 1. The update
of knowledge in Line 7 of Algorithm 1 is

gt+1(θ) =

{
trt,0
t+ 1

N (θt, σ
2Id) +

wt+1,0

t+ 1
N (θt − ηgt+1(θt), σ

2Id)

}
+

mt∑
i=1

{
trt,i
t+ 1

N (βt,i, σ
2Id) +

wt+1,i

t+ 1
N (βt,i − ηgt+1(βt,i), σ

2Id)

}

≈rt+1,0N (θt+1, σ
2Id) +

mt∑
i=1

rt+1,iN (βt+1,i, σ
2Id),

(15)

where

rt+1,i ≜ rt,i −
rt,i − wt,i

t

βt+1,i ≜ βt,i − ησ2 wt+1,i

(t+ 1)rt+1,i
gt+1(βt,i),

(16)

for i ∈ [mt].

Remark B.1. rt,i =
∑t

τ=1 wτ,i/t.
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C IMPLEMENTATION OF LEARN

In traditional machine learning models, hyperparameters are typically tuned through a validation
procedure. However, this is not possible for online data streams due to their continuous nature.
To address this issue, in this section, we propose several practical strategies aimed at minimizing
the number of hyperparameters that need tuning. These strategies will enhance the efficacy of our
proposed algorithm in deep learning.

Temperature and loss function Both the selection of temperature η and loss function significantly
impact the time required to learn a new pattern, as well as the model’s robustness to noise. Higher
temperature or an increased scale of loss function contributes to rapid convergence; however, it
also harms the robustness against noise. To achieve scale-invariance, ensuring that scaling the loss
function does not affect performance, we propose a solution: ηt ≜ η̃/lt(θt−1) for a given fixed η̃.
This way, the performance of LEARN remains consistent despite changes in the scale of the loss
function.

Refinement of knowledge In the refinement of the knowledge stage, each model in our knowledge
set undergoes a gradient descent update with a learning rate proportional to wt,i/

∑
τ≤t wτ,i. In

an effort to decrease computational load without sacrificing performance, we introduce an efficient
strategy: only those models in the knowledge set with wt,i > α are updated. We employ a truncated
learning rate defined as

βt,i ← βt−1,i − ησ2 max

{
wt,i

trt,i
, umin

}
∇lt(βt−1,i),

where umin ∈ (0, 1) is a pre-specified value. We found that this approach reduces computation time
and retains model performance effectively. However, it is important to note that alternative learning
rate schedules could also be effective, and further exploration in this aspect is recommended.

Choice of patience In our algorithm, we introduce a heuristic concept referred to as “patience”.
This heuristic is employed to monitor the predictive weight wt,0 of the fast learner and manage its
integration into our knowledge base. Specifically, once the patience level exceeds a predetermined
threshold, we consider the fast learner ready for consolidation into the knowledge base. Practi-
cally speaking, this means a new model is created within the knowledge base when the sum of
max{0, wt,0 − τ}, calculated from the last consolidation to the current step, surpasses a pre-set
threshold, Q.

Aiming to reduce the number of hyperparameters needing tuning and accounting for potential
stochastic variations in wt,0, we propose a simple yet robust update rule for patience:

qt ← qt−1 +max{−0.5α,wt,0 + 2α− 1}.
This rule and the associated choices of hyperparameters are guided by the heuristic that, upon
encountering a new data pattern, we expect the predictive weight wt,0 to be approximately 1− α.

Pruning In practice, the knowledge base could contain redundant models. For example, it is
possible for certain data distribution to occur only once but still be incorporated into the knowledge
base, or for two models within the knowledge set to target the same data distribution. To mitigate
such issues, we propose a straightforward pruning strategy for the knowledge base. This is made
possible by leveraging additional information about the quality of each model, obtained through the
knowledge weight rt,i. A smaller knowledge weight indicates the limited usefulness of a model.
Therefore, we opt to prune the model if its corresponding knowledge weight, rt,i, falls below a certain
threshold.

Further improvement The scalable LEARN algorithm can be further improved by incorporating
sophisticated strategies such as adaptive hyperparameters, guided by change-point detection tech-
niques, and similarity measures. Change-point detection allows us to identify significant shifts in
data sequences, informing the adjustment of the mixing parameter, αt, based on the belief of the
occurrence of a change-point. Additionally, similarity measures between the fast learner and models
in the knowledge set can guide the mixing ratio of a model in knowledge. The higher similarity
suggests a higher mixing ratio, thereby enhancing efficiency.
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D EXPERIMENTAL DETAILS

In this section, we detail the comparative methods and hyperparameters employed in our experiments.
We also perform an ablation study, focusing on the selection of hyperparameters and the impact of the
three core stages of our LEARN algorithm: exploration, recall, and refinement. Moreover, we expand
the original Adaptive CL scenario via data augmentation, leading to a longer data stream, called
Augmented Adaptive CL. Through two distinct sets of experiments conducted at different learning
rates, our LEARN algorithm consistently outperforms in terms of average accuracy, knowledge
accuracy, and adaptiveness.

D.1 BASELINES

Finetune The Finetune method operates by continuously updating a model using gradient descent
on the current batch. This provides a naive baseline in Adaptive CL.

Oracle The Oracle strategy maintains a set of distinct models, one for each task. During both
training and inference, the task identity is given, and the corresponding model is employed for label
prediction and current batch updates. This unrealistic approach serves as an upper bound for average
accuracy, knowledge accuracy, and adaptiveness.

ExpVAE ExpVAE keeps a set of tuples consisting of a classifier and generator, namely VAE, one
tuple per task. During training, the task identity is known and the corresponding tuple is updated
based on the current batch. In the inference phase, generators guide the selection of the classifier.
The classifier with the minimum generator loss on the inputs is chosen. This approach is an upper
bound of VAE-based inference methods.

ER Experience Replay (ER)Chaudhry et al. [2019] presents a simple yet strong baseline in CL,
without the need for known task identities. Utilizing Reservoir Sampling Vitter [1985], ER maintains
a buffer where each data point is uniformly stored. During training, the model is updated on the
integration of the current data batch and a batch sampled from this buffer.

A-GEM Averaged Gradient Episodic Memory (A-GEM) Chaudhry et al. [2018a] is another method
based on replay. Unlike ER, which integrates replayed data with current data, A-GEM calculates two
separate gradients for the current and replayed data. By projecting the gradient over current data onto
that of the replayed data, catastrophic forgetting can be effectively mitigated.

Online EWC Online EWC [Chaudhry et al., 2018b] penalizes important parameters, where impor-
tance is the geometrically weighted average of the Fisher matrix.

MIR MIR [Aljundi et al., 2019d] is a replay-based method that samples data in the buffer with the
maximum scores.

GDumb GDumb [Prabhu et al., 2020] propose a greedy sampler that greedily stores new samples
so that classes are balanced. The model is only trained on memory, namely, batches sampled from
the sampler.

We opt for ResNet18 He et al. [2016] with 64 initial filters for single-model approaches, namely
Finetune, ER, A-GEM, Online EWC, MIR and GDumb. For mixture-model approaches, namely
Oracle, ExpVAE, and LEARN, we use a reduced version of ResNet18 with 20 initial filters. We adopt
a CNN-based VAE with two 3× 3 convolutions in the encoders, the same as Lee et al. [2020].

In CL, comparing expansion-based and non-expansion methods directly may not lead to fair eval-
uations due to their inherent methodological differences. Expansion-based methods are typically
more suited to handling dissimilar tasks or scenarios where negative transfer, a well-known issue in
transfer learning Wang et al. [2019], is a concern. Non-expansion methods, on the other hand, may
be advantageous for similar or related tasks. Despite these distinctions, merging elements from both
methodologies could potentially enhance performance. For example, the knowledge base of LEARN
can share certain architecture. Nevertheless, finding the optimal balance between these strategies is
task-dependent and remains an open question.
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Table 5: CIFAR10: comparison of different patience threshold Q and mixing α from 3 runs. The
selected hyperparameters in our experiment are denoted with a † with results from 10 runs.

(Q,α) Average Accuracy Knowledge Accuracy Adaptiveness

(10, 0.2)† 72.70± 0.07 75.04± 5.10 71.85± 0.08

(10, 0.1) 73.76± 1.03 78.38± 4.34 72.73± 0.44
(10, 0.3) 71.34± 0.18 72.98± 2.76 70.18± 0.24
(10, 0.4) 70.83± 1.03 71.32± 2.44 72.51± 1.04

(1, 0.2) 73.35± 1.00 75.65± 2.93 72.13± 0.41
(5, 0.2) 73.00± 0.13 77.73± 2.18 72.02± 0.08
(20, 0.2) 71.85± 0.26 72.48± 3.22 70.15± 0.28

Table 6: CIFAR100: comparison of different patience threshold Q and mixing α from 3 runs. The
selected hyperparameters in our experiment are denoted with a † with results from 10 runs.

(Q,α) Average Accuracy Knowledge Accuracy Adaptiveness

(10, 0.2)† 43.26± 0.25 41.22± 2.02 42.23± 0.27

(10, 0.1) 41.23± 0.34 39.03± 4.03 40.20± 0.45
(10, 0.3) 44.34± 0.23 42.59± 2.36 44.13± 0.20
(10, 0.4) 40.83± 0.40 40.19± 2.34 39.41± 0.34

(1, 0.2) 40.33± 0.36 40.58± 2.83 40.56± 0.32
(5, 0.2) 44.02± 0.43 42.33± 2.34 43.30± 0.33
(20, 0.2) 43.25± 0.30 41.44± 2.09 42.16± 0.26

D.2 HYPERPARAMETERS

For the four Adaptive scenarios, we opt the same normalization with mean 0.5 and standard deviation
0.25. All methods employ the same learning rate of 0.001. For LEARN, the patience threshold is set
at 10. In the pruning of knowledge, any model with a knowledge weight below 0.05 is discarded.
As a result, the maximum number of models in the knowledge base is limited 20. For replay-based
methods, namely ER and A-GEM, the maximum memory size is set to 1000. ER utilizes a replay
batch size of 5, consistent with the current batch size, while A-GEM operates with a larger replay
batch size of 64.

D.3 COMPUTATIONAL RESOURCES

All experiments conducted in this paper were carried out on a computational cluster equipped with
16 CPUs and powered by a Nvidia A100 GPU, having a total memory capacity of 50GB.

D.4 REMARK ON ADAPTIVENESS

While the average accuracy implicitly indicates the ability to recall related knowledge encountering a
new task, it is also affected by the ability to learn the current data pattern. Therefore, we propose a new
adaptiveness metric, a segment-wise geometrically decaying weighted average of accuracy as follows:
suppose the accuracy at time t is acct, and change points of tasks are 0 = n0 < n1, · · · < nk = T ,

Adaptivenessγ

(
{acct}Tt=1

)
≜

∑k
i=1

∑ni+1−ni

τ=1 γτ−1accni+τ∑k
i=1

∑ni+1−ni

τ=1 γτ−1
∈ [0, 1].

Intuitively, a high value of Adaptiveness indicates a faster speed to recall related knowledge.

D.5 ABLATION STUDY TABLES

We evaluate LEARN with different hyperparameters and conduct the ablation study over the three
stages of LEARN, namely exploration, recall, and refinement.
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Table 7: Mini-ImageNet: comparison of different patience threshold Q and mixing α from 3 runs.
The selected hyperparameters in our experiment are denoted with a † with results from 10 runs.

(Q,α) Average Accuracy Knowledge Accuracy Adaptiveness

(10, 0.2)† 39.54± 0.19 36.08± 4.98 38.68± 0.18

(10, 0.1) 40.00± 0.19 34.39± 4.76 38.97± 0.18
(10, 0.3) 42.00± 0.38 38.01± 5.43 38.44± 0.22
(10, 0.4) 37.36± 0.28 34.05± 4.73 36.63± 0.23

(1, 0.2) 36.94± 0.18 33.64± 4.92 36.00± 0.17
(5, 0.2) 39.77± 0.19 36.12± 5.20 38.69± 0.34
(20, 0.2) 38.78± 0.25 35.52± 4.91 37.73± 0.33

Table 8: Tiny-ImageNet: comparison of different patience threshold Q and mixing α from 3 runs.
The selected hyperparameters in our experiment are denoted with a † with results from 10 runs.

(Q,α) Average Accuracy Knowledge Accuracy Adaptiveness

(10, 0.2)† 34.57± 0.12 36.98± 1.97 32.82± 0.15

(10, 0.1) 35.48± 0.13 37.91± 2.79 33.74± 0.40
(10, 0.3) 34.21± 0.34 36.51± 2.09 32.49± 0.27
(10, 0.4) 32.28± 0.14 34.83± 2.00 30.81± 0.28

(1, 0.2) 36.12± 0.21 38.79± 2.06 34.43± 0.18
(5, 0.2) 33.00± 0.12 34.97± 1.90 31.16± 0.83
(20, 0.2) 35.61± 0.12 38.15± 2.50 33.71± 0.17
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