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Abstract—This paper investigates the representation of pe-
riodic Sobolev and Besov norms in terms of wavelet coeffi-
cients. Function spaces of mixed smoothness, fundamental in
functional analysis and approximation theory, are traditionally
defined through weak derivatives, integrability conditions, and
smoothness parameters. By studying wavelet bases, we derive
equivalent norms for these spaces expressed as weighted sums
of wavelet coefficients, including explicit constants. This reveals
the interplay between the function spaces and wavelet properties
such as smoothness, vanishing moments, and scaling. These
characterizations provide computational advantages and offer a
unified perspective on Sobolev and Besov spaces, emphasizing
their hierarchical structure and scale-dependent behavior.

Index Terms—Wavelet characterizations, Sobolev spaces, Besov
spaces

I. INTRODUCTION

Let f ∈ L2(Td) be a periodic function. We denote the
complex scalar product in the space L2(Td) by ⟨f, g⟩ :=∫
Td f(x)g(x)dx. In this paper, we state a result about the

connection between the wavelet coefficients and the Fourier
decomposition of a periodic function, which we prove purely
by Fourier analysis and determine the constants explicitly.

II. THE CHUI-WANG WAVELETS

For m ∈ N, we define the cardinal B-spline Bm : R → R
of order m recursively by

B1(x) =

{
1 if − 1

2
≤ x ≤ 1

2
,

0 otherwise,
Bm(x) =

∫ x+
1
2

x− 1
2

Bm−1(y) dy,

which is a piecewise polynomial function. Using the cardinal
B-spline Bm(x) as scaling function for a wavelet system, one
can construct the compactly supported Chui-Wang wavelets
of order m, introduced in [1], which are given by

ψ(x) =
∑
n∈Z

qnBm(2x− n− m
2 ),

where

qn =
(−1)n

2m−1

m∑
k=0

(
m

k

)
B2m(n+ 1− k −m).

This wavelet is compactly supported, i.e. suppψ = [0, 2m−1].
Additionally, the wavelet has vanishing moments of order m,
i.e. ∫ ∞

−∞
ψ(x)xβ dx = 0, β = 0, . . . ,m− 1.

We use the notation

ψj,k(x) = 2j/2ψ(2jx− k), j ∈ N0, k ∈ Z,

and its periodization

ψper
j,k (x) =

{∑
ℓ∈Z ψj,k(x+ ℓ) if j ≥ 0,

1 if j = −1.

The multidimensional wavelets are then tensorized by

ψper
j,k(x) =

d∏
i=1

ψper
ji,ki

(xi),

where −1 ≤ j ∈ Zd is the dilatation and k ∈ Ij is the
translation with

Ij :=
d×
i=1

{
{0, 1, . . . , 2ji − 1} if ji ≥ 0,

{0} if ji = −1.

The periodized wavelets ψper
j,k as well as their duals ψ∗,per

j,k
form a Riesz basis, i.e., in every level j,

γm

2j−1∑
k=0

|dj,k|2 ≤

∥∥∥∥∥∥
2j−1∑
k=0

dj,kψ
per
j,k

∥∥∥∥∥∥
2

L2(T)

≤ δm

2j−1∑
k=0

|dj,k|2. (1)

The Riesz constants γm, δm for the Chui-Wang wavelets are
calculated in [6]. The following lemma states a useful property
of the Fourier transform of the Chui-Wang wavelets.

Lemma II.1. The term p(t) := |ψ̂(2πt)|2(2πt)2m is bounded
by

pmax := max
t∈R

p(t) = 24m.

Proof. For the Fourier transform ψ̂(ω) =
∫
R ψ(x)e

−ixω dx of
the wavelet function, we calculate

ψ̂(ω) =
∑
r∈Z

qr

(
Bm(2x− r − m

2
)
)
(̂ω)

=
∑
r∈Z

qr
1

2
e−iω2 (r+m

2 )B̂m

(ω
2

)
=

1

2

∑
r∈Z

qre
−iω2 (r+m

2 ) sin
m(ω4 )

(ω4 )
m

= 22m−1ω−me−iωm
4

∑
r∈Z

qre
−iωr

2 sinm
(ω
4

)
.



Inserting this into the term p(t) gives

p(t) = 24m−2

∣∣∣∣∣∑
r∈Z

qre
−iπtr sinm

(
πt

2

)∣∣∣∣∣
2

,

= 24m−2 sin2m

(
πt

2

) ∣∣∣∣∣∑
r∈Z

qre
−iπtr

∣∣∣∣∣
2

.

The cardinal B-splines Bm are nonnegative. Since the coeffi-
cients qr have alternating sign, the maximum pmax is attained
at all odd integers t, such that

p(t) =

{
0 for even t ∈ Z,
pmax for odd t ∈ Z.

The term pmax is calculated by

pmax = 24m−2

(∑
r∈Z

|qr|

)2

= 22m

(∑
r∈Z

m∑
k=0

(
m

k

)
B2m(r + 1− k −m)

)2

= 22m

(
m∑
k=0

(
m

k

))2

= 24m.

Especially, the following relation will be useful later on,∣∣∣ψ̂(2πt)∣∣∣ = √
p(t)

(2πt)m
≤ 2m−1

(πt)m

∣∣∣∣sinm(πt2
)∣∣∣∣ . (2)

III. FUNCTION SPACES

Define the Fourier coefficients by

cn(f) =

∫
Td

f(x) e−2πi⟨n,x⟩ dx,

such that
f(x) =

∑
n∈Zd

cn(f) e
2πi⟨n,x⟩.

We introduce the dyadic blocks

Qq :=
d×
i=1

{
{n ∈ Z | 2qi−1 ≤ |n| < 2qi} if qi ≥ 1.

{0} if qi = 0.
(3)

Using these dyadic blocks, we decompose the Fourier series
of the function f ∈ L2(Td) into

f =
∑
q∈Nd

0

Φq(f), Φq(f)(x) :=
∑
k∈Qq

ck(f)e
2πi⟨k,x⟩. (4)

Then, we define the periodic Sobolev norm of dominating
mixed smoothness by

∥f∥2Hs
mix(Td) :=

∑
q∈Nd

0

22∥q∥1s∥Φq(f)∥2L2(Td) (5)

≍
∑
k∈Zd

|ck|2
d∏
i=1

(
1 + |ki|2

)s
.

For s > 1
2 , we define the periodic Besov-Nikolskij norm of

mixed smoothness by

∥f∥Bs
2,∞(Td) := sup

q∈Nd
0

2∥q∥1s∥Φq(f)∥L2(Td), (6)

using the decomposition (4) of f . In the one-dimensional case
these spaces are denoted in the usual way as Bs2,∞(T).

IV. DECAY OF WAVELET COEFFICIENTS

In the following theorem, we show a characterization of
functions in Hs

mix(Td) for Chui-Wang wavelets in terms of
the decay of the wavelet coefficients. The proof is purely
in the Fourier domain. Therefore, we denote the wavelet
decomposition f(x) =

∑
j∈Zd fj(x) with

fj(x) :=


∑

k∈Ij

⟨f, ψper,∗
j,k ⟩ψper

j,k(x) if j ≥ −1,

0 otherwise.
(7)

Theorem IV.1. Let f ∈ Hs
mix(Td), 0 < s < m − 1

2 and ψper
j,k

be the Chui-Wang wavelets of order m. Then,

c ∥f∥Hs
mix(T

d) ≤

∣∣∣∣∣∣
∑

j≥−1

22|j|1s
∑
k∈Ij

|⟨f, ψper,∗
j,k ⟩|2

∣∣∣∣∣∣
1/2

≤ C ∥f∥Hs
mix(T

d) ,

where |j|1 =
∑
i,ji≥0 ji and

c =

(
24m

(1− 2−2s)(1− 2−2m)π2m
+

22m−1

π2m

1

1− 22s+1−m

)−d/2

,

C =

(
1

γ
1/2
m

2s

2s − 1
+

(2m− 1)
1/2

2(m−s) − 1

)d
.

The right inequality holds even for all s < m.

Proof. We start with the one-dimensional case and the left
inequality. We use the norm given in (5) and the wavelet
decomposition in (7),

∥f∥2Hs(T) =

∞∑
q=0

22qs ∥Φq(f)∥2L2(T)

= |c0(f)|2 +
∞∑
q=1

22qs
∑
n∈Qq

∣∣∣∣∣∣
∞∑

ℓ=−1+q

cn(fq+ℓ)

∣∣∣∣∣∣
2

(8)

= |c0(f)|2 +
∞∑
q=1

22qs
∑
n∈Qq

∣∣∣∣∣∣
∞∑

ℓ=−1+q

∑
k∈Ij

⟨f, ψper
j,k ⟩cn(ψ

per
j,k )

∣∣∣∣∣∣
2

.

For the Fourier coefficients of ψper
j,k , we calculate for j ̸= −1

cn(ψ
per
j,k ) =

∫
T
ψper
j,k (x) e

−2πinx dx

= 2−
j
2

∫
R
ψ(x) e−2πin(x+k)2−j

dx

= 2−
j
2 e−2πink

2j ψ̂

(
2πn

2j

)
.

Denote the vector aj =
(
⟨f, ψper,∗

j,k ⟩
)
k∈Ij

and the matrix

(M q,j)n,k = 2−
j/2e−2πink

2j ψ̂
(
2πn
2j

)
. Then, the vector contain-

ing the Fourier coefficients of fj is

(cn(fj))n∈Qq
= M q,jaj ,



Inserting this into (8) yields

∥f∥2Hs(T) − |c0(f)|2 =

∞∑
q=1

22qs

∥∥∥∥∥∥
∞∑

ℓ=−1−q

Mq,q+ℓaq+ℓ

∥∥∥∥∥∥
2

2

≤ 2

∞∑
q=1

22qs


∥∥∥∥∥

∞∑
ℓ=0

Mq,q+ℓaq+ℓ

∥∥∥∥∥
2

2︸ ︷︷ ︸
Tq

+

∥∥∥∥∥∥
−1∑

ℓ=−q

Mq,q+ℓaq+ℓ

∥∥∥∥∥∥
2

2︸ ︷︷ ︸
T̃q

 ,

where ∥·∥ of a vector is the Euclidean norm. We investigate
the two different terms. We start with ℓ ≥ 0,

Tq ≤
∞∑
ℓ=0

∥∥∥2ℓsMq,q+ℓaℓ+q

∥∥∥2

2

1

1− 2−2s
(9)

≤ 1

1− 2−2s

∞∑
ℓ=0

22ℓs ∥Mq,q+ℓ∥22 ∥aq+ℓ∥22 ,

where ∥·∥2 for a matrix is the spectral norm. For the matrices
M q,j , which are products of a diagonal matrix and a part of
a Fourier matrix, we have with j = ℓ+ q,

∥M q,j∥22 ≤ max
n∈Qq

∣∣∣∣ψ̂(2πn

2j

)∣∣∣∣2 ≤ pmax

(2π2ℓ−1)2m
,

such that
∞∑
q=0

22qs Tq ≤
pmax

(1− 2−2s)π2m

∞∑
q=0

22qs
∞∑
ℓ=0

2−2mℓ22ℓs ∥aℓ+q∥22

=
24m

(1− 2−2s)(1− 2−2m)π2m

∞∑
j=0

22js ∥aj∥22 .

For the remaining case where ℓ < 0, we denote by Fj =

2−
j/2
(
e−2πin

′k
2j

)
n′,k∈Ij

the Fourier matrix and âj = Fjaj .
Then,

M q,jaj = diag

(
ψ̂

(
2πn

2j

))
(12−ℓ−1 ⊗ I2q+ℓ) âj ,

where 1 is the vector of ones and I is the identity matrix. We
rearrange all terms to one linear system of equations, where
the matrices M q,j are connected horizontally and the vectors
âj are connected vertically by

T̃q =

∥∥∥∥∥Λq

(
2ℓ(m− 1

2 )âq+ℓ

)
ℓ=−q,...,−1

∥∥∥∥∥
2

2

.

To show the structure of the matrix Λq , we give
an example for q = 3 and m = 2. For shortened
notation, we use [x] := ψ̂(2π x) here, such that Λ3 =

24.5[ 41 ] 23[ 42 ] 23[ 42 ] 21.5[ 44 ] 23[ 42 ]

24.5[ 51 ] 23[ 52 ] 21.5[ 54 ]

24.5[ 61 ] 23[ 62 ] 21.5[ 64 ]

24.5[ 71 ] 23[ 72 ] 21.5[ 74 ]





ℓ = −3 ℓ = −2 ℓ = −1

Every entry of the matrix Λq is either 0 or 2−ℓ(m− 1
2 )ψ̂(

2πn

2j
).

The spectral norm of this matrix is bounded by Gerschgorins
circle theorem for the matrix ΛqΛ

∗
q by

∥Λq∥22 ≤ max
n∈Qq

∑
n′∈Qq

n′=2jt+n

−2∑
ℓ=−q

2−2ℓm+ℓ

∣∣∣∣ψ̂(
2πn

2j

)∣∣∣∣ ∣∣∣∣ψ̂(
2πn′

2j

)∣∣∣∣
(2)
≤ 22m−2

π2m
max
n∈Qq

22qm

nm

∑
n′∈Qq

n′=2jt+n

−2∑
ℓ=−q

2ℓ
1

(n′)m

∣∣∣sin2m
( πn

2j+1

)∣∣∣
=

22m−2

π2m
max
n∈Qq

22qm

nm

−2∑
ℓ=−q

2ℓ
2−ℓ−1∑
t=0

1

(n+ 2q+ℓt)m

∣∣∣sin2m
( πn

2j+ℓ

)∣∣∣
and because of the periodicity of the sin function,

=
22m−2

π2m
max
n∈Qq

n=2k p

22qm

nm

−2∑
ℓ=−q+k

2ℓ
∣∣∣∣sin2m

(
π2kp

2j+ℓ

)∣∣∣∣ 2
−ℓ−1∑
t=0

1

(n+ 2q+ℓt)m
,

the last sum is bounded by the number of summands and the
maximum,

≤ 22m−2

π2m
max
n∈Qq

n=2k p

22qm

nm

−2∑
ℓ=−q+k

2ℓ
∣∣∣∣sin2m

(
π2kp

2j+ℓ

)∣∣∣∣ 2−ℓ−1 1

nm
,

≤ 22m−2

π2m
max
n∈Qq

n=2k p

22qm

n2m

q∑
ℓ=0

∣∣∣sin2m
( π
2ℓ

)∣∣∣ ≤ 22m−1

π2m
.

We conclude the case ℓ < 0 with
∞∑
q=0

22qs T̃q ≤
∞∑
q=0

22qs ∥Λq∥22

∥∥∥∥∥
(
2ℓ(m− 1

2
)âq+ℓ

)
ℓ=−q,...,−1

∥∥∥∥∥
2

2

≤
∞∑
q=0

22qs ∥Λq∥22
−1∑

ℓ=−q

2ℓ(2m−1) ∥âq+ℓ∥22

≤ 22m−1

π2m

∞∑
j=0

22js ∥âj∥22
−1∑

ℓ=−∞

2ℓ(2m−2s−1)

≤ 22m−1

π2m

1

1− 22s+1−2m

∞∑
j=0

22js ∥aj∥22 if s < m− 1
2
.

For the multivariate result, we have to sum over all vectors
ℓ ∈ Zd. We distinguish for every ℓi, i ∈ [d] separately, if it
is positive or negative. Then, we apply the one-dimensional
inequalities in every direction separately, which leads to the
exponent d in the constants.

The right inequality follows from [4, Thm. 3.9].

With the same argumentation and replacing the sum over
j by a supremum, the following result for the Besov spaces
holds true.

Theorem IV.2. Let f ∈ Bs
2,∞(Td), 0 < s < m− 1

2 and ψper
j,k

be the Chui-Wang wavelets of order m. Then,

c ∥f∥Bs
2,∞(Td) ≤ sup

j≥−1
2|j|1s

∣∣∣∣∣∣
∑
k∈Ij

|⟨f, ψper,∗
j,k ⟩|2

∣∣∣∣∣∣
1/2

≤ C ∥f∥Bs
2,∞(Td) ,

with the constants from Theorem IV.1. The right inequality
holds even for all s < m.



V. COUNTEREXAMPLES FOR m− 1
2 ≤ s ≤ m

The left inequalities in Theorems IV.1 and IV.2 are shown
only for s < m− 1

2 . Indeed, for bigger smoothness parameter
m − 1

2 < s ≤ m, one wavelet function f = ψper
j,k has a

finite wavelet decomposition, but is neither in Hs(T) nor
in Bs2,∞(T). For the special case s = m − 1

2 , the wavelet
functions f = ψper

j,k are not in Hs(T), but in Bs2,∞(T). In [3,
Thm. 1.10], a counterexample for the Haar wavelets m = 1
was given. However, there is also a counterexample for higher
orders m, such that the left inequality in Theorem IV.2 does
not hold, as the following calculation shows.

To define the function f , we choose the wavelet coefficients

aj :=
(
⟨f, ψper,∗

j,k ⟩
)
k∈Ij

= 2−j(s+
1/2) 12j ,

such that

sup
j≥−1

22|j|1s
∑
k∈Ij

|⟨f, ψper,∗
j,k ⟩|2 = 1.

Then, by using the substitution j = q + ℓ,

(M q,jaj)n =

{
2−jsψ̂ (2πt) if n = 2jt, t ∈ N, t odd,
0 otherwise

where in every row of the matrix Λq is only one non-zero
entry, such that∥∥∥∥∥∥

−1∑
ℓ=−q

Mq,jaj

∥∥∥∥∥∥
2

2

=

2q−1∑
n=2q−1

∣∣∣∣∣∣∣
−1∑

ℓ=−q

n=2ℓ+qt

2−js 1

(2πt)m
(−1)

t−1
2

√
pmax

∣∣∣∣∣∣∣
2

=

2q−1∑
n=2q−1

n=2k t

2−2ks pmax

(2πt)2m
.

Taking then the supremum over the index q yields,

∥f∥Bs
2,∞(T) ≥ sup

q≥0
22qs

∥∥∥∥∥∥
−1∑
ℓ=−q

M q,jaj

∥∥∥∥∥∥
2

2

= sup
q≥0

22qs
2q−1∑

n=2q−1

n=2k t

2−2ks pmax

(2πt)2m

=
22m

π2m
sup
q≥0

22qs
q−1∑
k=0

2−2ks
2q−k−1∑

t=1
t odd

1

(2πt)2m

=
22m

π2m
sup
q≥0

22qs
q−1∑
k=0

2−2ks
2q−k−1∑

t=1
t odd

1

t2m

by estimating the sum from above by the minimal summand
and the number of summands,

≥ 22m

π2m
sup
q≥0

22qs
q−1∑
k=0

2−2ks2−2m(q−k)2q−k−1

=
22m−1

π2m
sup
q≥0

q−1∑
k=0

2(q−k)(−2m+2s+1).

−0.5 0 0.5

−1

0

−0.5 0 0.5

−0.5

0

0.5

Fig. 1: Counterexample functions for m = 2 (left) and m = 3
(right), which are not in Bs2,∞(T), but the weighted sum of
the wavelet coefficients is finite.

This term is infinite in the case where s = m − 1
2 , such that

f /∈ B
m−1/2
2,∞ (T).

The counterexample shows that in the boundary case s =

m − 1
2 for f ∈ B

m−1/2
2,∞ (T) the Besov norm and the wavelet

norm are not equivalent. It is still an open problem if for
f ∈ Hm−1/2(T) the Sobolev and the wavelet norm are equiv-
alent, since the wavelet functions ψper

j,k are not included in this
space.

VI. CONCLUSION

Theorems IV.1 and IV.2 offer significant insights into the
characterization of functions in mixed Sobolev spaces and
Besov spaces respectively, using Chui-Wang wavelets. These
results establish rigorous equivalences between the norms of
these function spaces and their representations in terms of
wavelet coefficients for m− 1

2 < s < m. The decomposition
of f into wavelet coefficients inherently captures both the
smoothness of the function (via the scaling factor 22|j|1s) and
its hierarchical structure across different scales. This makes
wavelets particularly suited for adaptive methods and sparse
approximations.

Here, we presented sharp characterizations for Chui-Wang
wavelets, especially for estimating the sum of the wavelet
coefficients from below by a Sobolev or Besov norm. For
related inequalities with more complicated assumptions to the
wavelets and the parameters, see [7] for higher order spline
wavelets, [2] for Faber splines, [9] for orthonormal spline
wavelet systems and [8] for anisotropic hyperbolic Besov and
Triebel-Lizorkin spaces. Here, we even give the constants
explicitly. The special case m = 1 for the Chui-Wang wavelets
is the Haar basis, for which characterizations are for example
studied in [5], [10].

We want to point out that we found a counterexample, that
the left inequality in Theorem IV.2 does not hold in the case
s = m− 1/2, such that we end up with sharp inequalities for
the parameter s. For this boundary case and the Haar wavelets
in [10], results are given only for the spaces Bs

p,q with q <∞.
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