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Figure 1: Diffuse specular separation of measured spectral BRDFs. (a) reference image of cc nothern aurora material. (b) the
diffuse component of (a). The specular components separated by using (c) the previous method [26] and (d) our method. Our
method can represent the color-changing effects, while the previous method fails to represent goniochromatic effects. The inset
images show the mean absolute errors (MAPEs) and peak signal-to-noise ratio (PSNR). (e) reference image of iris flake paint2
material. (f) the diffuse component of (e). (g) and (h) are the specular components of (e), and (g) shows the Fresnel effect that
depends only on the difference angle θd between the incident direction and the half vector. In contrast, (h) shows the diffraction
effect that depends on the difference angle θd and the half angle θh between the half vector and the normal. As shown in these
images, our method can separate three reflection components with different properties.

ABSTRACT

Measured BRDFs, which are acquired by measuring the reflectance
of real-world materials, can reproduce the material appearance faith-
fully. The measured reflectance is a mixture of reflection components
with different properties, such as diffuse reflections and specular
reflections. However, recent applications, including light-probe ren-
dering and denoising often require the separated representation of
BRDFs to apply each component to different pipelines for efficient
rendering. This paper proposes a separation method of isotropic
measured spectral BRDFs to handle goniochromatic effects based
on the spectral microfacet BRDF and diffraction microfacet BRDF
models. Experimental results show that our method can increase the
PSNR to about 30 dB compared with the previous method.

Index Terms: Computing methodologies—Computer graphics—
Rendering—Reflectance Modeling;

1 INTRODUCTION

Bidirectional Reflectance Distribution Functions (BRDFs) are a
basis for modeling the reflectance of object surfaces and can be
categorized into analytic and data-driven models. Analytic model
approximates BRDFs with a parametric model with few parameters.
A data-driven model (also known as measured BRDF) uses the ac-
quired reflectance data of real-world materials to represent BRDFs.
Several measured BRDF datasets such as MERL BRDF [20] and
UTIA BRDF [9], have been used pervasively. In recent years, Dupuy
and Jakob proposed an efficient acquisition method of spectral re-
flectances of real-world materials, EPFL BRDF [8]. Using the mea-
sured spectral BRDFs makes it possible to achieve accurate color
reproduction, such as iridescence and fluorescent colors, which was
difficult with conventional RGB BRDFs.

Rendering applications such as precomputed radiance trans-
fer [29], light probe rendering [11], and denoising [2] often require
separating the reflectance into diffuse and specular reflections to
apply each component to different rendering pipelines for efficiency.
For analytic BRDF models, the diffuse and the specular components
are separated from the beginning. Measured BRDFs, on the other
hand, consist of a mixture of different reflection components, and
the diffuse-specular separation of measured BRDFs is more involved
than analytic models.

To address this problem, Sun et al. proposed a diffuse-specular
separation method for MERL BRDFs [26]. This method separates
each measured BRDF into diffuse and specular components, each

represented by the product of a single RGB color component and
the directional component. Therefore, this method fails to represent
materials exhibiting iridescent and diffraction effects that can change
colors depending on the incident/outgoing directions.

This paper proposes a method that can separate isotropic mea-
sured spectral BRDFs into reflection components with different
properties. Our method first separates each measured BRDF into the
diffuse and the specular components. To handle materials exhibiting
goniochromatic effects, our method represents the specular compo-
nent with the product of a direction-dependent term and a term that
depends on direction and wavelength. By assuming the diffraction
model proposed by Holzschuch and Pacanowski [12], our method
further separates the specular component into the Fresnel and diffrac-
tion effects. Compared with the previous separation method [26], the
proposed method can improve PSNR (Peak Signal-to-Noise Ratio)
by up to 30 dB.

The contributions of our method can be summarized as follows:

• we propose a diffuse-specular separation method capable of
reproducing the goniochromatic effects.

• we further separate the specular component into the Fresnel
and diffraction effects.

• we will publicize the source code and the separated data to
ensure reproducibility.

2 RELATED WORK

Data-driven BRDF models. Matusik et al. measured the reflectances
of 100 real-world isotropic materials [20]. Filip and Vavra measured
anisotropic reflectances such as fabrics and leather [9]. Dupuy
and Jakob proposed an efficient acquisition method for isotropic
and anisotropic materials [8]. By measuring a full spectrum of
real-world materials, the EPFL BRDF dataset includes a rich set
of materials exhibiting iridescent effects. While using measured
BRDFs can enhance realism, raw measured BRDFs that mix
different reflection components (e.g., diffuse and specular) prevent
us from using several rendering applications [2, 11] requiring
separated reflection components.

Analytical BRDF fitting. Since the storage of measured
BRDFs is relatively large, attempts to fit with analytic BRDF
models have been made to MERL BRDF dataset. Ngan et al. fitted
several analytic BRDF models (e.g., Cook-Torrance BRDF) to
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the MERL BRDF dataset [22]. Several BRDF models, such as
ABC models [19], Shifted Gamma microfacet distribution [1],
student’s t-distribution [24], and two-scale microfacet reflectance
model [12], use MERL BRDF dataset as the benchmark to
demonstrate the expressiveness of each BRDF model. Bieron and
Peers proposed a two-stage image-based fitting for Cook-Torrance
and GGX microfacet BRDF models [4]. These methods require
costly non-linear optimizations for fitting, and obtaining optimized
parameter values without getting local minima is difficult. Dupuy et
al. proposed a technique to extract microfacet BRDF parameters
from MERL BRDFs without solving costly and unstable non-linear
optimizations [7]. While this method is stable and robust, the
extracted parameters are sometimes suboptimal.

BRDF factorization. Factoring 4D BRDFs into lower dimensional
factors has been proposed for interactive rendering [14, 16, 21],
importance sampling [18], editing spatially-varying BRDFs [17],
and compact representation using Tensor decomposition [5]. Nielsen
et al. decomposed MERL BRDFs into five principal components,
which are interpreted as specular peak, diffuse, specular shape, and
Fresnel effects [23]. Bagher et al. proposed a non-parametric factor
representation for isotropic RGB BRDFs [1]. The most relevant
work to our method is the diffuse-specular separation method
proposed by Sun et al. [26]. The separation model represents
the diffuse and the specular components with the product of a
single color term and a direction-dependent term. Therefore, this
separation model cannot handle goniochromatic effects where the
color changes with respect to the incident/outgoing directions.

The computer vision community extensively researched image-
based methods for separating diffuse and specular components
(e.g., [10]). These methods focus on decomposing an input image
into several components, while our approach aims to decompose
measured BRDF.

Neural BRDF representation. In recent years, measured BRDFs
can be represented compactly using neural network [13, 27, 30] and
Gaussian Process [25]. These methods represent isotropic RGB
BRDFs with low-dimensional latent vectors. While these methods
can represent measured BRDFs very compactly, the aims of these
methods differ from ours (i.e., separate reflection components from
measured BRDFs), and these methods are orthogonal to ours (the
separated components are represented with neural-network for
compact representation).

3 BACKGROUND

3.1 Microfacet BRDF Model
Microfacet BRDF model ρM [3,6,28] is represented by the following
equation:

ρM(ωi,ωo,λ ) =
F(θd ,λ )D(θh)G(θi)G(θo)

4cosθi cosθo
, (1)

where ωi and ωo are incident/outgoing directions, λ is the wave-
length, F is the Fresnel term, D is the normal distribution function,
G is the geometric attenuation term (shadowing/masking), θi and
θo are the angles between ωi(ωo) and the surface normal n. θh
is the angle between the half vector h = ωi+ωo

∥ωi+ωo∥ and the surface
normal n, θd is the angle between h and ωi. The normal distribution
function D and the geometry term G depend only on the microfacet
geometries, not on the wavelength. On the other hand, the Fresnel
term F depends on the difference angle θd and the wavelength λ ,
and controlls the color of the reflected radiance.

3.2 Diffraction Microfacet BRDF Model
Holzschuch and Pacanowski extended the microfacet model to repre-
sent the diffraction of light due to the nano-scale geometries whose

sizes are comparable to the wavelength [12]. We refer to this model
as the diffraction microfacet model. This model ρD is represented
by the weighted sum of the conventional microfacet model ρM (in
Eq. (1)) and the diffraction microfacet model as:

ρD = A(θd ,λ )ρM +(1−A(θd ,λ ))Q(ωi,ωo,λ )S(θh,θd ,λ ), (2)

where the relative importance A(θd ,λ ) is calculated by:

A(θd ,λ ) = e−(2π
σrel

λ
(2cosθd))

2
, (3)

σrel is a roughness parameter. Q is the color term for diffraction,
S is calculated by convolving the scattering function SHS based on
Harvey-Shack theory [15], and the normal distribution function D.
Holzschuch and Pacanowski derived the diffraction microfaet model
by assuming that the scattering function SHS and the normal distri-
bution function D are dominant, and Q varies smoothly. Similar to
this derivation, our method considers that the diffraction microfacet
model ρD largely hinges on θd , θh, and λ .

3.3 Previous Diffuse-Specular Separation Model
The previous method proposed by Sun et al. [26] separated MERL
BRDF ρ(ωi,ωo,λ ) into the diffuse component ρd and the specular
component ρs as:

ρ(ωi,ωo,λ )≈ ρd(ωi,ωo)cd(λ )+ρs(ωi,ωo)cs(λ ), (4)

where cd and cs are the colors of the diffuse and the specular com-
ponents. As shown in Eq. (4), since the BRDF is decomposed
into the direction-dependent terms ρd and ρs, and the wavelength-
dependent terms cd and cs, materials with goniochromatic effects
that change colors with different incident/outgoing directions (e.g.,
color-changing-paint1 in MERL datasets) cannot be separated well.

4 PROPOSED METHOD

4.1 Separation model
To support measured BRDFs with goniochromatic effects, we pro-
pose two separation models for the specular component, while our
method assumes that the diffuse component can be decomposed into
the product of the direction-dependent term ρd and the wavelength-
dependent term cd(λ ) in the same way as the previous method [26].

Since the Fresnel term F in Eq. (1) depends on both the angle θd
and the wavelength λ , the specular component of measured spectral
BRDF can be represented by the product of direction-dependent
term ρs(ωi,ωo) and the component ss(θd ,λ ) that depends on both
θd and λ as:

ρ
F
s (ωi,ωo,λ ) = ρs(ωi,ωo)ss(θd ,λ ). (5)

Since the diffraction microfacet BRDF model largely depends on
θh, θd , and λ , our method separates the specular component as the
following equation:

ρ
D
s (ωi,ωo,λ ) = ρs(ωi,ωo)ss(θh,θd ,λ ). (6)

We refer to ρF
s and ρD

s as the Fresnel and diffraction models,
respectively. In each model, the spectral-dependent components
ss(θd ,λ ) and ss(θh,θd ,λ ) are referred to as spectral distribution.

The proposed method separates isotropic spectral BRDFs in
EPFL datasets into diffuse and specular components. Isotropic mea-
sured BRDFs are represented by the Rusinkiewicz coordinate sys-
tem (θh,θd ,φd) and sampled in p(= 90×90×180) directions and
l(= 195) wavelengths. Each isotropic material in the EPFL BRDF
dataset is represented by a matrix X ∈ Rp×l where j-th row corre-
sponds to the BRDF values of l wavelengths for j-th pair of direc-
tions ω

j
i ,ω

j
o corresponding to j-th tuple of angles (θh, j,θd, j,φd, j),

and k-th column corresponds to the BRDF values of k-th wavelength
for p different directions.
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Figure 2: The previous diffuse-specular separation model (left) and
our Fresnel model (right). To handle the goniochromatic effects, our
method represents the color component with the direction-wavelength
dependent component, while the previous method represents the
color component independent of the direction component.

4.2 Analytic BRDF fitting
In the first step, the achromatic BRDF ρ̄ ∈ Rp is calculated by aver-
aging the measured spectral BRDF X ∈ Rp×l across l wavelengths.
Then, the achromatic BRDF ρ̄ is approximated by the analytic
BRDF model ρ(α) ∈Rp (α is a parameter set of the analytic BRDF
model). The parameter set α is calculated by solving the following
optimization problem:

min
αd ,αs

d1(ρ̄,ρd(αd)+ρs(αs)), (7)

d1(ρ1,ρ2) = ∥g(ρ1)−g(ρ2)∥2, (8)

where g : Rp → Rp is a log mapping of j-th component x j of the
argument x ∈ Rp as:

g(x j) = log(x jw j + ε), (9)

w j = max{(n ·ω j
i )(n ·ω j

o),ε} (10)

where w j is the weight of the product of cosine terms, and ε is a
small constant to avoid singularity (ε = 10−3 is used in our results).
ρd(αd) ∈ Rp is Lambertian BRDF expressed as:

ρd(αd) =
αd

π
·1, (11)

where αd is the albedo, 1 ∈ Rp is a p-dimensional vector whose
element is 1. ρs(αs) ∈ Rp represents the GGX microfacet BRDF
where the j-th component ρs, j(αs) corresponds to Eq (1) as:

ρs, j(αs) = ρ0
F(θd, j)D(θh, j)G(θi, j)G(θo, j)

4cosθi, j cosθo, j
, (12)

F(θ) = F0 +(1−F0)(1− cosθ)5, (13)

D(θ) =
a2

π((a2 −1)cos2 θ +1)2 , (14)

G(θ) =
2

1+
√

1+a2 tan2 θ
, (15)

where the parameter set αs consists of the intensity ρ0, the reflection
coefficient at θd = 0 F0, and the roughness parameter a. θi, j,θo, j

are the angles between ω
j

i ,ω
j

o and the surface normal n.

4.3 Diffuse-specular separation
In the second step, the achromatic BRDF ρ̄ is decomposed into the
diffuse component ρd ∈ Rp and specular components ρs ∈ Rp by
using the analytic BRDF parameters αd and αs. Under the condition
that the sum of diffuse and specular components is equal to the
achromatic BRDF (ρ̄ = ρd +ρs), our method calculates the diffuse

component ρd that minimizes the weighted sum of the differences
between each component and the analytic BRDF model:

min
ρd

η
d ·d2(ρd ,ρd(αd))+η

s ·d2(ρ̄ −ρd ,ρs(αs)), (16)

d2(ρ1,ρ2) = ∥(ρ1 −ρ2)⊙w∥1, (17)

where w ∈ Rp consists of the cosine-weight w j in Eq. (10), ⊙ rep-
resents the Hadamard product, ηd and ηs are weights for each
component (ηd = 0.9,ηs = 0.8 are used in our results).

4.4 Restore spectral distributions
Our method restores the spectral distribution s from the spectral
measured BRDF X, the diffuse component ρd , and the specular com-
ponent ρs. Our method first restores the diffuse spectral distribution
sd ∈R1×l and the specular spectral distribution ss ∈R1×l by solving
the following optimization problem per wavelength.

min
sd,k ,ss,k

d1(ρk,sd,kρd + ss,kρs), (18)

where ρk is the k-th column vector of the measured spectral BRDF
X, sd,k and ss,k are the k-th component of the diffuse spectral dis-
tribution sd and the specular spectral distribution ss, respectively.
Once the diffuse spectral distribution sd is calculated, the spectral
distribution sF ∈ R90×l corresponding to the spectral distribution
of Fresnel model ss(θd ,λ ) in Eq. (5) is calculated by solving the
following equation:

min
sF

k

d1(ρk − sd,kρd ,sF
k ⊙ρs), (19)

where sF
k is a p-dimensional vector consists of k-th column of sF

vertically arranged, as shown in Fig. 2.
Similarly, the spectral distribution sD ∈ R902×l corresponding

to the spectral distribution ss(θd ,θd ,λ ) of the diffraction model is
calculated by:

min
sD

k

d1(ρk − sd,kρd ,sD
k ⊙ρs), (20)

where sD
k ∈ Rp is a p-dimensional vector consisting of k-th column

of sD vertically arranged.

4.5 Separation of specular component into Fresnel and
diffraction effects

As shown in Eq. (2), the diffraction microfacet BRDF model ρD is
the sum of the microfacet BRDF model ρM whose color is controlled
by the Fresnel term F , and the diffraction lobe in which the scattering
function S(θh,θd ,λ ) is the dominant factor [12]. To separate the
specular component into the Fresnel effect and the diffraction effect,
our method subtracts the Fresnel model ρF

s from the diffraction
model ρD

s , and the diffraction effect of the specular component is
calculated as:

ρs(ωi,ωo)(ss(θd ,θh,λ )− ss(θd ,λ )). (21)

5 RESULTS

We evaluated our two separation models using 51 isotropic spectral
BRDFs in the EPFL BRDF dataset. The separation process was
performed on a PC with AMD Ryzen Threadripper 3990X CPU.
To solve the optimization problem in the first step (Sec. 4.2) and
the third step (Sec. 4.4), our method uses the fmincon function in
MATLAB, and that in the second step (Sec 4.3) was solved by using
the CVXOPT package in Python. The computational time of the
diffuse-specular separation is 8.0 min for each material, and that of
each step is 2 sec, 3.5 min, and 4.4 min, respectively.
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5.1 Diffuse-specular separation

We compare our method with the previous diffuse-specular separa-
tion method proposed by Sun et al. [26]. Since the ground truth of
each reflection component is unknown for measured BRDFs, we
qualitatively evaluate each rendering result and quantitatively eval-
uate the difference between the sum of two components and the
original measured BRDF using relative mean square error (relMSE),
mean absolute percentage error (MAPE), peak signal-to-noise ratio
(PSNR), and structural similarity index measurement (SSIM).

Table 1 shows the average PSNR, SSIM, MAPE, and relMSE of
all isotropic spectral BRDFs in the EPFL BRDF dataset. As shown
in Table 1, our Fresnel model improves the average PSNR about 2.1
dB compared to the previous method [26]. Our diffraction model
improves that by about 9.5 dB significantly reducing relMSE.

Fig. 3 shows the comparisons of rendered images using (a) the
original BRDF, (b) the previous diffuse-specular separation model
in Eq. (4), (c) our Fresnel model in Eq. (5), (d) our diffraction
model in Eq. (6). As shown in cc iris purple gem (fourth-row)
and vch golden yellow (eighth-row) materials, our Fresnel model
(the third column (c)) can capture the change of colors in high-
lights, while the previous model fails to capture such effects since
the specular color of the previous model is independent of direc-
tions. Our diffraction model can represent complex light effects
such as cc blue agat, irid flake paint1, and irid flake paint2 materi-
als, where the previous model and our Fresnel model are difficult to
reproduce.

Figs. 3(e)(f)(g)(h) show separated each component. As shown
in aurora white, cg sunflower, and vch golden yellow, diffusive
base colors and highlights are reasonably separated into diffuse and
specular components.

Fig. 4 shows the PSNR of the previous method [26], our Fresnel
model, and our diffraction model. Our Fresnel model outperforms
the previous model 35 materials out of 51 isotropic BRDFs, and our
diffraction model outperforms 49 out of 51 in terms of PSNR. As
shown in the graph, compared to Fresnel and previous models, the
diffraction model improves PSNR especially for cc materials and
vch materials that exhibit color-changing effects.

Fig. 5 shows the rendering results of cc amber citrine material
where the diffraction model achieves the maximum improvement
of PSNR compared to the previous model. As shown in Fig. 5,
cc amber cirtine material exhibits complex specular reflections
whose color changes from cyan (left), orange, to yellow (right).
As shown in Fig. 5(b), the previous model cannot reproduce the
color-changing effects. The Fresnel model (Fig. 5(c)(g)) can re-
produce the cyan specular reflection but fails to reproduce yellow
specular reflections. The diffraction model can reproduce such color-
changing effects and the reddish circular reflections, as shown in
Fig. 5 (d)(h).

Fig. 6 shows the rendering results of laika ceiling paint 18 gray
material where the diffraction model is inferior to the previous model.
It is conceivable that this waterborne paint material can violate our
underlying assumption that the BRDF is modeled by the microfacet
theory. In addition, since this material is matte and the diffuse
component of our two models is the same as that of the previous
model, the benefits of our method are negligible. While our two
separation models are inferior to the previous model in this material,
the visual difference between them is subtle, as shown in Fig. 6.

5.2 Specular component separation

Our method further decomposes the specular component into the
Fresnel effect that depends on the difference angle θd and the diffrac-
tion effect depending on the half angle θh and θd . Fig. 7 shows the
separation of the specular component. Our method can extract char-
acteristic circular reflections for irid materials (top three rows) as
shown in Fig. 7 (d).

Table 1: Average PSNR, SSIM, MAPE, and relMSE of each separation
method.

method PSNR↑ SSIM↑ MAPE↓ relMSE↓
Previous metod [26] 43.60 0.9887 7.36% 0.0218

Ours (Fresnel model) 45.72 0.9898 6.52% 0.0141

Ours (diffraction model) 52.11 0.9945 3.29% 0.0034

Table 2: Average PSNR, SSIM, MAPE, and relMSE of analytic model
and our diffraction model in Fig. 8.

method PSNR↑ SSIM↑ MAPE↓ relMSE↓
analytic model 31.72 0.9570 12.84% 0.0326

Ours (diffraction model) 37.56 0.9643 4.73% 0.0054

For matte materials such as paper yellow (fourth row) in Fig. 7,
diffraction effects whose colors differ from the yellow color of the
diffuse component can be seen. These effects can be seen in the
underlying diffraction microfacet BRDF and materials such as light-
red-paint, white-marble, and yellow-phenolic materials in the MERL
BRDF dataset (please see the supplemental material [12]). For specu-
lar materials such as satin blue material (fifth row), additional glossy
reflections can be seen in Fig. 7(d), which also can be seen in the
underlying diffraction microfacet BRDF (e.g., gold metallic paint2
material in the supplemental material [12]). Organic materials such
as leaf mape material (sixth row in Fig 7) exhibit subtle diffrac-
tion effects, which can be seen in fruitwood-241 material of the
supplemental material [12].

5.3 Comparison with analytic model fitting

We compare our diffraction model with analytic BRDF model in
Fig. 8. Our method fits the EPFL BRDF dataset with microfacet
BRDF (GGX normal distribution function). Our method calculates
the parameters αd and αs in Sec. 4.2 for each wavelength using the
non-linear optimization library Ceres solver.

As shown in Fig. 8, our diffaction model can produce
goniochromatic effects for cc amber citrine (second row) and
cc iris purple gem (third row). In addition, characteristic circu-
lar reflections in irid flake paint2 (fourth row) can be reproduced by
using our model, while GGX microfacet BRDF fails to reproduce
such complex reflections. While separating diffuse and specular
components for analytic models are trivial, fitting measured BRDFs
with analytic models requires costly non-linear optimization, and
the rendering results of our separation model are superior to those of
GGX microfacet model as shown in Fig. 8. Table. 2 shows statistics
on errors of analytic model and our diffraction model in Fig. 8. As
shown in Table. 2, our diffraction model increases the PSNR by
about 6 dB on average, and our model achieves better PSNR for 47
materials out of 51 materials.

6 DISCUSSION AND LIMITATION

While our separation models can reproduce color-changing effecs,
our method has several limitations. Since our two separation models
base microfacet BRDFs, materials that do not meet the underlying
model (e.g., layered materials) cannot be well represented. Fig. 9
shows the failure case of our method for cc green marachite material
that exhibits circular reddish highlights. In Fig. 9 (b), the previous
method cannot represent the yellowish specular reflection. The
Fresnel model can reproduce such specular reflection, as shown in
Fig. 9(c), but it lacks the circular reddish reflections in the reference
image. The diffraction model struggles to represent the circular
reflections but fails, as shown in Fig. 9 (c).
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Figure 3: Comparison between the previous method [26] and our two separation models. From left to right, (a) reference image rendered with the
original BRDF, (b) rendered with the previous method [26], (c) our Fresnel model, (d) our diffraction model, (e) the diffuse component, (f) the
specular component of the previous method [26], (g) the specular component of our Fresnel model, (h) the specular component of our diffraction
model. The inset images visualize the mean absolute percentage error (MAPE). As shown in these images and the PSNR values, our method can
improve the accuracy of the separation models.
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Figure 4: PSNR of 51 EPFL BRDFs. The Fresnel model achieves better PSNR for 35 materials, and the diffraction model improves PSNR for 49
materials out of 51 materials.

(a) reference (b) previous method (c) Ours (Fresnel) (d) Ours (diffraction)

(e) diffuse component (f) previous method (g) Fresnel effect (h) diffraction effect

specular component

PSNR

30.15 30.16 59.47

Figure 5: Rendering results of cc amber citrine material where our
diffraction model improves PSNR up to 29.32 dB compared to the
previous method [26]. Our diffraction model can represent complex
reflections.

(a) reference (b) previous method (c) Ours (Fresnel) (d) Ours (diffraction)

(e) diffuse component (f) previous method (g) Ours (Fresnel) (h) Ours (diffraction)

PSNR
54.53 54.33 47.57

specular component

Figure 6: Rendering results of laika ceiling paint 18 gray material
where the previous method [26] outperforms our diffraction model.
While our method is inferior in this case, the visual difference is subtle.

Since the spectral distribution of our Fresnel model ss(θd ,λ ) is
two-dimensional and that of our diffraction model ss(θh,θd ,λ ) is
three-dimensional, the data size of each material of our separation
model is larger than that of the previous method [26]. The data size
cs for spectral measured BRDF is 2 KB (double precision), while that
for ss(θd ,λ ) and ss(θh,θd ,λ ) are 140 KB and 12.6 MB, respectively.
The total data size, including the directional components ρd(ωi,ωo)
and ρs(ωi,ωo) for the previous method, our Fresnel model, and our
diffraction model per material is about 23.4 MB, 23.6 MB, and 36
MB, respectively. One possible solution to compact representation
is to encode each component with a neural network such as Neural
BRDF [27].

7 CONCLUSIONS

We have presented a diffuse-specular separation method for mea-
sured spectral BRDFs. In contrast to the previous separation model
that represents the specular component with a single, direction-
independent color term, our method can represent color-changing
effects based on the Fresnel term in the microfacet BRDF model.
We also presented the diffraction model that is based on the diffrac-
tion microfacet BRDF model. Our diffraction model can capture
complex lighting effects and improves PSNR by about 10 dB on av-
erage and up to 30 dB in the EPFL BRDF dataset compared with the
previous separation model. Our diffraction model improves PSNR
by about 6 dB on average compared with microfacet BRDF model.

Currently, the directional components and the diffraction model
require several megabytes per material, which would be problematic
for some rendering applications. We would like to compress our
separation model using neural network in future work. In addition,
we would like to edit each reflection component to enhance the
practicality of measured BRDFs.
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