
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ECOACT : ECONOMIC AGENT DETERMINES WHEN TO
REGISTER WHAT ACTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements have enabled Large Language Models (LLMs) to function
as agents that can perform actions1 using external tools. This requires register-
ing, i.e. integrating tool information into the LLM context prior to taking ac-
tions. Current methods indiscriminately incorporate all candidate tools into the
agent’s context and retain them across multiple reasoning steps. This process re-
mains opaque to LLM agents and is not integrated into their reasoning procedures,
leading to inefficiencies due to increased context length from irrelevant tools. To
address this, we introduce EcoAct, a tool-using algorithm that allows LLMs to
selectively register tools as needed, optimizing context use. By integrating the tool
registration process into the reasoning procedure, EcoAct reduces computational
costs by over 50% in multi-step reasoning tasks while maintaining performance,
as demonstrated through extensive experiments. Moreover, it can be plugged into
any reasoning pipeline with only minor modifications to the prompt, making it
universally applicable to LLM agents now and in the future.

1 INTRODUCTION

Large language models (LLMs) have been conceptualized as agents and have demonstrated their
capability to perform a broad range of complex tasks. When augmented with external tools (Yuan
et al., 2023; Qu et al., 2024; Zhang et al.), LLM agents can extend their functionality beyond con-
ventional natural language processing (Qin et al., 2023). For example, LLM agents equipped with
scientific tools can conduct scientific research (Bran et al., 2023; Ghafarollahi & Buehler, 2024),
while those integrated with physical robotic systems are capable of performing robotic manipula-
tions (Ahn et al., 2022; Huang et al., 2023). External tools essentially expand the action space of
LLM agents, enabling them to leverage existing functionalities to accomplish a variety of complex
tasks (Xi et al., 2023; Wu et al., 2023a; Peng et al., 2023; Wu et al., 2023b; Shridhar et al., 2020).

To equip LLM agents with external tools, they must undergo a tool registration procedure. Specifi-
cally, information about the candidate tools needs to be added to the context of the LLMs that support
the agents. This information represents essential details for tool usage, including tool names, de-
scriptions in natural language, and instructions for input parameters. The current practice in tool
registration indiscriminately incorporates all candidate tools into the agent’s context, where these
candidate tools are preemptively selected by users or retrieved automatically through external algo-
rithms (Ocker et al., 2024; Qin et al., 2023; Gao et al., 2023). LLM-based agents will then process
contextual information from all registered tools and select the appropriate tool for each reasoning
step. However, this paradigm, which involves preparing all tools in advance and keeping the full
information of the registered tools within the LLM’s operational context, introduces one key issue:
the tool registration process is opaque to the agents and not fully integrated into their autonomous
reasoning pipelines. Each time the LLM is invoked, information from all passively registered tools
is processed, even though not all tools are necessary and only one single tool can be utilized in
each step, which drives inefficiencies in both cost and inference time (see Figure 1a). The problem
becomes more pronounced as the number of pre-registered tools grows, imposing an even greater
burden on the agent’s decision-making process. The agent possesses the capacity to reason to act
with their intrinsic reasoning mechanism but lacks the ability to reason to register.

1Unless otherwise stated, the term ’action’ is defined as using a specific tool across the paper.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Query

I'm a screenwriter looking for inspiration for my next project. Can you help me find a list of critically acclaimed movies available on streaming platforms in the US? Also, provide me
with the streaming sources for the movie 'Citizen Kane'.

(a) ReAct (b) EcoAct[ReAct]

Thought (LLM calling): I will first
use google to search critically
acclaimed movies available on
streaming platforms.

Action (LLM calling):
search_for_google_search_v2(query =
"critically acclaimed movies
streaming platforms US"})

Observation: **Vulture**: [The 30
Best Movies to Watch on Every
Streaming
Service](https://www.vulture.com/ar
ticle/best-movies-on-streaming-
services.html)

Thought (LLM calling):Then I will
use google to get streaming sources
for Citizen Kane

Action (LLM calling):
search_for_google_search_v2(query =
"Citizen Kane streaming sources"})

Observation:
https://www.justwatch.com/us/movie/
citizen-kane

Thought (LLM calling):I think I got
the final answer. The final answer
is ...

Instruction (LLM calling): We also
provide some tools that you could use,
please use tool_register tool to
register the tool that could help to
solve the problem according to
provided tool names ... 1.
search_for_google_search_v2 ...

Thought (LLM calling): According to
the provided tools names, I think I
need to register google search at
first.

Action (LLM calling):
tool_register(tool_name =
“search_for_google_search_v2”)

Observation: tool registration
successfully!

Thought (LLM calling): I will then
use registered google search tool to
search critically acclaimed movies on
streaming platforms.

Action (LLM calling):
search_for_google_search_v2(query =
"critically acclaimed movies
streaming platforms US"})
a
Observation: **Vulture**: [The 30
Best Movies to Watch...

Thought (LLM calling):I think I got
the final answer. ...

registered_tools for LLM calling:
(1) tool_register

(2) Search_for_google_sesarch_v2

registered_tools for LLM calling:
(1) search_for_google_search_v2,

(2) search_api_for_serpapi
(3) google_serp_for_live_serpapi

...

registered_tools for LLM calling:
(1) search_for_google_search_v2,

(2) search_api_for_serpapi
(3) google_serp_for_live_serpapi

...

registered_tools for LLM calling:
(1) search_for_google_search_v2,

(2) search_api_for_serpapi
(3) google_serp_for_live_serpapi

...

registered_tools for LLM calling:
(1) search_for_google_search_v2,

(2) search_api_for_serpapi
(3) google_serp_for_live_serpapi

...

registered_tools for LLM calling:
(1) search_for_google_search_v2,

(2) search_api_for_serpapi
(3) google_serp_for_live_serpapi

...

registered_tools for LLM calling:
(1) tool_register

(2) Search_for_google_sesarch_v2

registered_tools for LLM calling:
(1) tool_register

(2) Search_for_google_sesarch_v2

registered_tools for LLM calling:
(1) tool_register

(2) Search_for_google_sesarch_v2

registered_tools for LLM calling:
(1) tool_register

registered_tools for LLM calling:
(1) tool_register

Figure 1: Overview of EcoAct, illustrating its effects after being integrated into the single-trace
reasoning algorithm ReAct, which can serve as a fundamental component of complex reasoning
methods. (a) In ReAct, all tools are registered in advance, retaining full information of these tools
within the LLM’s operational context at each reasoning step. This leads to unnecessarily long con-
texts, as tools irrelevant to the current problem remain included. (b) In contrast, EcoAct leverages
ReAct’s intrinsic reasoning capabilities to register only the tools deemed necessary, based on their
concise and distinct identifiers - tool names, thus addressing the mentioned efficiency issues.

In this work, we present EcoAct, a general tool-using paradigm that integrates the tool registration
procedure into the LLM agents’ reasoning procedure, granting them discretionary authority, which
is the freedom to register any tools they wish to use at any time through their intrinsic reasoning
mechanisms (see Figure 1b). For any potentially useful tool, EcoAct prompts the agent to reason
about registering the function before utilizing it, rather than passively accepting pre-prepared tools
at each reasoning step. EcoAct gives agents the flexibility to register tools according to actual
needs, thereby retaining only the necessary tools in the context and reducing costs. While the ef-
fectiveness of this tool registration process can be further enhanced through other agent reasoning
methods (Yao et al., 2022; 2024; Qin et al., 2023; Wei et al., 2022), ensuring that tools are registered
appropriately is essential for maximizing the agent’s task-solving capabilities. Specifically, before
the agent begins taking actions to solve the user’s query using its intrinsic reasoning algorithms, we
only provide the agent with one single meta-tool named tool register, which enables the agent to
register any tools deemed useful based on lightweight but easily-identifiable contextual information
- tool names at any time step. The agent here will rely on this meta-tool to extend its skill library
and solve the problem with its own self-registered tools. Additionally, the agent’s intrinsic reasoning
algorithms are seamlessly integrated into EcoAct. This integration enables the agent to employ its
own reasoning logic to determine when and which actions to register.

We conduct extensive experiments on the ToolBench benchmark (Qin et al., 2023), which involves a
diverse array of large-scale tools. We utilize EcoAct to enhance both the classic single-trace reason-
ing method ReAct (Yao et al., 2022) and the complex tree-structured reasoning method DFSDT (Qin
et al., 2023), applying it across multiple models, The results show that the enhanced reasoning al-
gorithms even can achieve monetary cost savings of over 50% on queries involving large tools
from ToolBench, without compromising performance. Additionally, we conduct further analysis to
demonstrate the effectiveness of key design choices in the proposed algorithm, regarding aspects
such as the granularity of tool registration and the concise context used during tool registration.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Our contributions are summarized below: (1) We highlight a key limitation in the current tool-
utilization paradigm of LLM agent systems: tool registration is essentially opaque to the LLM
agents. Indiscriminately maintaining information about all registered tools within the LLM’s op-
erational context imposes a significant burden on the agent’s decision-making process. (2) We in-
troduce EcoAct, a plug-and-play algorithm that could seamlessly integrate tool registration into
the agent’s intrinsic reasoning procedures. The agent could reason to determine when to register
what tools based on its needs, thereby mitigating the burden of processing all accessible tools in
the backed LLM calling by only maintaining necessary tools. (3) We conduct comprehensive ex-
periments using the ToolBench benchmark, which encompasses a wide range of large-scale tools.
Our results demonstrate that the enhancement of EcoAct enables significant cost savings through
various reasoning methods. Notably, for queries involving large tools from ToolBench, we observe
cost reductions exceeding 50% across multiple models.

2 METHOD

In this section, we present EcoAct, a general tool-using algorithm designed to mitigate efficiency
issues in agent tool-using scenarios. We begin by formulating the research problem and then provide
the details of each component designed in EcoAct.

2.1 PROBLEM SETUP

We start by defining the relevant notations and outlining the research problem. Consider a language
agent and a set of tools Z = {zi}Ii=i that the agent could access. The agent’s objective is to address
user queries according to a specific policy π. At any given decision time step t, the agent receives
two types of information: (1) the historical context ct which includes all previous action-observation
pairs, and (2) a set of accessible tools Z that can be used in this time step. The agent then must
determine the next action to take. Formally, this decision process can be expressed as:

π(ct, Z̃) → at, s.t. at ∈ A, (1)

where at denotes the action that been taken at time step t. It represents one specific tool-calling from
accessible tool set Z̃ . A denotes the action space of this language agent. Consequently, the size of
the tool space is equivalent to the size of the action space, i.e., |A| = |Z|.
In evaluating a specific agent algorithm, the total token consumption required to complete user
queries, which encompass both input and output tokens—serves as a general metric for assessing
the algorithm’s cost (Chen et al., 2023; Wang et al., 2023; Hidvégi et al., 2024; Cheng et al., 2023).
This is because token consumption is positively correlated with budget expenditure and latency,
particularly in the context of large language models as a service (Gan et al., 2023; Sun et al., 2022).
At time step t, we use the cost function j(ct, Z̃, at) to represent the cost associated with making a
decision at that step t. The one-step cost is given by:

j(ct, Z̃, at) = α · (l(ct) + l(Z̃)) + β · at, (2)

where l measures the token length. α and β denote the cost per input token and output token,
respectively, which are determined by the LLMs inference service provider. Under this formulation,
the total cost J for completing users query with n reasoning steps is:

J total =

n∑
t=1

j(ct, Z̃, at), where at = π(ct, Z̃). (3)

The focus of our research is to minimize the total cost J total while maintaining a good performance
in response to user queries.

2.2 ECOACT

Motivation. According to Equation 3, the polynomial J total depends on Z̃ , ct, and at. We primarily
examines the token consumption associated with the input tool set Z̃ at each time step, considering
ct and at as less controllable factors in practice. Most approaches for identifying Z̃ at each time step

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

rely on a retrieval-based methods. A subset of tools is retrieved for each query and registered with
the agent, which then makes sequential decisions until the problem is resolved Qin et al. (2023);
Patil et al. (2023). However, a key limitation of this once-for-all paradigam is that each decision
step processes contextual information from all retrieved tools, despite only one tool being utilized
per step, which drives cost and latency. In Figure 2a, we present the ratio of tokens consumed by
the necessary tools used at each decision step compared to the total number of tokens from all input
tools, using the candidate tools retrieved by state-of-the-art tool using method AnyTool (Du et al.,
2024) in ToolBench (Qin et al., 2023). It is observed that most portion of tokens is allocated to
redundant tools rather than those that are actually executed. Except for cost issues, choosing from a
large set of tools with extensive contextual information poses a challenge for large language models,
as it results in a needle-in-a-haystack problem (Li et al., 2024). 2.

G1_I G1_C G1_T G2_I G2_C G3_I0

500

1000

1500

2000

To
ke

n
Nu

m
be

r

Necessary Cost
Actual Cost

(a) Token cost: necessary vs. actual for tool-using

Name Description Parameters
0

10

20

30

40

50

60

Co
st

 R
at

io
 (%

)

6.6%

33.1%

60.3%

(b) Token cost ratios of different elements in tools

Figure 2: (a) Average token costs required for tools at each decision step, compared with the actual
token costs incurred by tools using the React Algorithm (Yao et al., 2022), across six subsets of
ToolBench (Qin et al., 2023). (b) Average token consumption percentages for each component of
the tools in ToolBench (Qin et al., 2023).

Overview. The core concept behind EcoAct is to empower agents to autonomously register tools
they find useful, rather than passively relying on pre-assigned tools. Two key questions arise in the
design of this algorithm: (1) Is there a short yet distinct context that can assist agents in filtering and
selecting the necessary tools from the available options without adding extra computational cost?
(2) Given the answer to the first question, how can tool registration be seamlessly integrated into the
agent’s intrinsic reasoning process, enabling agents to determine, at each reasoning step, which tool
to register and when, based on this distinctive information?

To address the first question, we propose utilizing tool names as easily recognizable tags to assist
agents in determining which tools should be registered. To operationalize this, we introduce a meta-
tool, tool register, and define an action enabling agents to register any tools they consider relevant
based on these tool names. The workflow is as follows: (1) Initialization: Prior to task execution,
agents are equipped solely with the tool register meta-tool. Simultaneously, users provide queries
that include all available tool names along with instructions on how to use the tool register. Once
the agent registers a tool by name using tool register, detailed information about the registered tool
becomes available. (2) Reasoning: At each reasoning step, the agent can either register a new tool
or invoke a previously registered one, depending on the task requirements. We then detail the design
of this process and the intuition behind each step.

Tool name as informer. The initial phase of EcoAct involves identifying a concise yet distinct
context from the candidate tools, allowing agents to determine which tools are essential and which
are not, utilizing their intrinsic reasoning capabilities without increasing computational load. As
illustrated in Figure 2b, we present the average token consumption associated with each component
of an external tool. We could observe that the majority of token consumption is attributable to tool
descriptions and input parameter instructions, whereas tool names account for only 6.6% of the total
token usage. Inspired by the efficiency of human tool using, wherein the utility of a tool can often
be inferred from its name without recalling every specific detail, we propose leveraging tool names
as the most easily identifiable markers to identify which tools require in-depth learning and which
can be bypassed. Since tool names are often highly recognizable, this approach intuitively imposes
minimal burden on the language model’s context processing.

2 https://github.com/gkamradt/LLMTest_NeedleInAHaystack

4

https://github.com/gkamradt/LLMTest_NeedleInAHaystack

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

tool register as meta-tool. To achieve the objective of retaining only the necessary tools based on
their names, we propose enabling agents to actively register tools using their intrinsic reasoning ca-
pabilities. Specifically, before the agent engages in a task, we (1) provide it with a list of tool names,
which incurs minimal token usage, and (2) introduce a single tool, tool register, which facilitates
an action allowing the agent to register tools deemed useful based on their names at each time step.
When the agent invokes tool register with a selected tool name, it receives the complete information
about the tool and adds it to its skill library. Essentially, we initialize the action space A with a
single ”meta-action,” i.e., At=0 = ã. Here, ã represents the action of using tool register to register
one tool, thereby expanding the action space over time. This strategy prevents the indiscriminate
incorporation of all candidate tools into the context, fostering more efficient tool utilization.

Since tool registration has been integrated as a specialized action within the agent’s action space,
our algorithm offers several distinct advantages: (1) Orthogonal to Agent Reasoning Algorithms:
Our method essentially forges a meta-tool capable of registering any tool deemed useful across
various agent reasoning algorithms. As demonstrated in Section 3.3.1, it is agnostic to the specific
reasoning algorithms employed and performs effectively with diverse reasoning techniques. (2)
Efficiency with Large-Scale Toolsets: When dealing with queries with a vast number of tools,
our method significantly reduces operational costs, achieving notable cost savings as detailed in
Section 3.2. This efficiency arises because directly integrating a large number of tools into the agent
is more costly. EcoAct minimizes the number of tools registered. Thus, our method is particularly
beneficial in scenarios involving extensive toolsets, as it ensures that only the essential tools are
being utilized. (3) Simplicity and Intuitiveness: Our method mirrors human problem-solving
strategies involving multiple tools: it first filters tools based on simple identifiers (tool names) and
then examines the details of the selected tools before use. This approach not only simplifies the
process but also provides a general framework that could inspire the design of other agent algorithms.

3 EXPERIMENTS

We conduct experiments to prove the superiority of the proposed method. We begin by providing
the experimental settings in Section 3.1. We then evaluate the EcoAct on ToolBench benchmark
to verify its effectiveness in Section 3.2. Finally, we perform in-depth investigations in the last two
sections to provide a better understanding of EcoAct.

3.1 EXPERIMENTAL SETUP

Data preparation. We mainly conduct experiments on the ToolBench (Qin et al., 2023), which
is large-scale dataset for tool use. It involves 16,464 tools in total which has been widely used as
the benchmark to make evaluations of tool use algorithm (Du et al., 2024; Ye et al.). ToolBench
comprises six subsets G1-Instruction (G1-I), G1-Tool (G1-T), G1-Category (G1-C), G2-Instruction
(G2-I), G2-Category (G2-C), and G3-Instruction (G3-I). These subsets are classified according to
varying levels of complexity in tool use, with differences in ’Instruction’, ’Category’, and ’Tool’
reflecting the relationships between tool categories in these test subsets and those in the training
sets. Following the same setting with AnyTool (Du et al., 2024), we adopted the filtered benchmark
which excludes all non-solvable queries in ToolBench. The remaining queries in these six subsets
are 115, 132, 142, 107, 98, and 38, respectively. Unless specified otherwise, for each query, we
use the state-of-the-art method AnyTool (Du et al., 2024) to retrieve tools for each query in all
experiments across the paper. More details of this benchmark could be found in Appendix B.

Evaluation metrics. We primarily use two metrics to make evaluations: the pass rate and the cost,
with the latter measured in monetary terms. Pass rate essentially measures LLM’s ability to success-
fully execute an instruction within limited budgets. We utilize the evaluation script from (Du et al.,
2024) to get the pass rate results in all experiments of our paper, which addresses issues related to
artificially inflated pass rates (Du et al., 2024). We utilize GPT-4-turbo to make the pass rate evalua-
tions, applying the same prompts as those used in ToolBench. Unless specified otherwise, we report
the cost in US cents. More details about the evaluation prototype can be found in Appendix B.2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Comparison of the basic agent reasoning algorithm ReAct with its variant augmented with
EcoAct. We show the pass rate performance and cost per query in US cents (¢) with different
models in ToolBench (Qin et al., 2023) benchmark. We could observe that EcoAct significantly
reduces costs associated with ReAct while maintaining comparable performance.

Model Method
G1 G2 G3 Average

PR (%) Cost (¢) PR (%) Cost (¢) PR (%) Cost (¢) PR (%) Cost (¢)

GPT-4-turbo ReaAct 16.2 6.3 18.5 8.1 13.2 11.5 16.0 8.6
GPT-4-turbo ReaAct w/ EcoAct 16.7 5.9 (↓ 6.4%) 18.0 6.1 (↓ 24.7%) 13.2 7.7 (↓ 33.1%) 16.0 6.6
GPT-4o ReaAct 19.8 4.9 20.5 6.7 18.4 10.7 19.6 7.4
GPT-4o ReaAct w/ EcoAct 20.1 3.7 (↓ 24.5%) 20.8 4.8 (↓ 28.4%) 21.1 5.8 (↓ 45.8%) 20.7 4.8

Level 1 Level 2 Level 3
0

5000

10000

15000

20000

25000

30000

To
ke

ns
 N

um
be

r

24.67%

30.97% 54.35%

ReAct
ReAct w/ EcoAct

(a) GPT-4-turbo: cost

Level 1 Level 2 Level 3
0

5000

10000

15000

20000

25000

To
ke

ns
 N

um
be

r

4.78%

39.97%
53.82%

ReAct
ReAct w/ EcoAct

(b) GPT-4o: cost

Level 1 Level 2 Level 3
0

5

10

15

20

25

30

35

40

Pa
ss

 R
at

e
(%

)

21.14% 20.47%

11.94%

20.86% 22.33%

11.94%

ReAct
ReAct w/ EcoAct

(c) GPT-4-turbo: pass rate

Level 1 Level 2 Level 3
0

5

10

15

20

25

30

35

40

Pa
ss

 R
at

e
(%

)

17.14%
19.07%

7.46%

19.68%
16.28%

8.96%

ReAct
ReAct w/ EcoAct

(d) GPT-4o: pass rate

Figure 3: The average token cost and pass rate performance across queries with different numbers
of tools in various models. For analysis, queries are categorized into three tool scale levels: Level 1,
Level 2, and Level 3, corresponding to tool counts of 0-10, 10-20, and more than 20, respectively.
It is observed that EcoAct benefits significantly from using a large number of tools, achieving
token savings of 54.35% and 53.82% in two models respectively, with large-scale tools (Level 3).
Additionally, EcoAct also surpasses the baseline on queries with large-scale tools in pass rate.

3.2 MAIN RESULTS

EcoAct essentially serves as a plug-and-play component for different agent reasoning algorithms.
Here, we mainly evaluate the impact of EcoAct on the classical reasoning method ReAct (Yao
et al., 2022). Our aim is to assess both its effect on the overall performance and its influence on
the token cost associated with solving user queries. We mainly investigate our algorithm on ReAct
because ReAct as the classic single trace agent reasoning algorithm could be regarded as the basic
component of different agent reasoning algorithms (Yao et al., 2024; Qin et al., 2023) with multiple
reasoning traces. We expect the conclusions drawn from ReAct experiments could potentially be
generalized to more complex algorithms in the future.

Overall results. In this study, we compare ReAct with its variant augmented with EcoAct and
present the aggregated results of different subsets in G1, G2, and G3 from ToolBench benchmark
in Table 1, focusing on both performance and monetary costs, with different models. Our findings
indicate that EcoAct significantly reduces the costs associated with ReAct while maintaining, and
in some cases exceeding, its performance. This suggests that EcoAct serves as a ”free lunch” com-
ponent, enhancing ReAct without diminishing its reasoning capabilities. Given that ReAct functions
as a foundational component for more complex reasoning algorithms, the experimental results high-
light the potential for applying this cost-saving advantage to more sophisticated algorithms built
upon ReAct. Interestingly, we observe minor performance improvements in some subsets, such as
G1 on the GPT-4-turbo model and G3 on the GPT-4o model. These improvements may stem from
our method’s ability to address the ”needle-in-a-haystack” problem (Li et al., 2024). By progres-
sively expanding its tool library, the agent reduces the difficulty of selecting the most appropriate
tool from a large set, thereby enhancing overall performance.

Performance on multiple tool scales. To better show the advantages of EcoAct, we also present
the performance metrics and cost-saving percentages across various tool scales as assessed in the
benchmark in Figure 3. We want to investigate the effect of our method for the queries with different
tool scales. We could observe that EcoAct provides greater cost savings for queries involving
large-scale tools, achieving token savings of 54.35% and 53.82%, respectively, with large-scale

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

tools (Level 3). This is due to the fact that traditional tools encounter higher costs when processing
large-scale inputs, as they require the entire set of tools to be fed into the language model, resulting
in increased expenses. In contrast, EcoAct addresses this issue by inputting only the complete
information for registered tools, thereby avoiding redundant costs and optimizing overall efficiency.
Additionally, we note a slight cost increase in Level 1 in some cases. This occurs because EcoAct
introduces an additional LLM calling procedure for tool registration step. When the number of tools
for specific queries is small, the cost of incorporating all tool information may be less than the cost
of this extra LLM call, causing the advantages of our method to diminish.

3.3 MORE ANALYSIS

3.3.1 EXTENSION TO COMPLEX REASONING STRATEGY

Table 2: Comparison of multiple-traces reasoning strategy DFSDT (Qin et al., 2023) with its variant
augmented with EcoAct. We could observe that EcoAct still could significantly reduces costs
associated with DFSDT while maintaining comparable performance.

Method G2-instruction G3-instruction
PR (%) Cost (¢) PR (%) Cost (¢)

DFSDT 31.8 30.8 28.9 44.3
DFSDT w/ EcoAct 31.8 22.9 (↓ 25.7%) 26.3 21.8 (↓ 49.2%)

In this section, we examine the impact of EcoAct on the performance of the multiple-traces rea-
soning strategy DFSDT (Qin et al., 2023; Du et al., 2024). DFSDT allows agents to assess multiple
reasoning paths and make informed decisions about whether to retract steps or continue along a
promising path. The results, as shown in Table 2, indicate that integrating EcoAct with DFSDT
results in notable cost savings while maintaining comparable performance on the most advanced
model GPT-4o. Additionally, we observe that the cost per query in DFSDT is considerably higher
than in the single-trace reasoning algorithm ReAct, for both our method and the baseline. This is
due to the increased token usage and reasoning steps required by the multiple-traces approach. Con-
sequently, the absolute cost savings achieved through our method are even more pronounced. These
findings suggest that EcoAct is both versatile and beneficial across different reasoning methods.
Whether applied to the single-trace reasoning of ReAct or the more complex DFSDT approach,
EcoAct consistently enhances performance, affirming its effectiveness as a plug-and-play solution.

3.3.2 SKILL-LIBRARY EVOLUTION

(a) G1-instruction (b) G2-instruction (c) G3-instruction

Figure 4: Evolution of the ratio of registered tools to total available tools across reasoning steps
for different models, highlighting the largest percentage tool reductions for two models within each
subset. Notably, the final registered tools comprise approximately 30% of the total available tools
across all subsets, indicating that EcoAct effectively mitigates excessive tool registrations.

We then investigate how the number of registered tools evolves over time in the ReAct method when
enhanced with EcoAct. Our primary objective is to investigate whether, in scenarios where a large
number of tools are available for users’ queries, EcoAct could cause ReAct to register an excessive
number of tools greedily. Such behavior could lead the algorithm to revert to its original state by
registering all available tools at the begining time, thereby undermining the benefits of EcoAct.
To answer this question, we selected queries where the number of tools exceeded 20 from each
group one of G1-I, G2-I, G3-I and conducted experiments to track the ratio of registered tools to the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

total number of available tools over time. We also compared this ratio across different models. The
results, averaged within each subset of data, are displayed in Figure 4.

From the results we could observe that (1) EcoAct is flexible. Tool registrations occur throughout
the entire problem-solving process, suggesting that the agent is capable of registering any tool it
deems useful at any point. Moreover, EcoAct may encompass a self-correction mechanism —if
the agent realizes that a registered tool is unsuitable after obtaining more detailed information, it
can leverage its intrinsic reasoning ability to register a more appropriate one in any time step. (2)
We also could observe that the ultimately registered tools constitute only a small fraction of the
total available tools, approximately 30% in all three subsets with all LLM models. The resukts
demonstrates that, in cases where a large number of tools are available, most of them are redundant
(about 70%), and EcoAct could effectively prevents the registration of these redundant tools.

3.4 ABLATIONS

3.4.1 SINGLE-TOOL VS. MULTIPLE-TOOL REGISTRATION

Table 3: We compared two tool registration mechanisms in EcoAct: (1) single-tool registration per
step, and (2) multiple-tool registration per step. Experiments on G2/G3-I. subsets from ToolBench
benchmark, using EcoAct to augment the ReAct algorithm on the GPT-4o model, revealed that
multiple-tool registration led to a significant performance decline, even worse than standard ReAct.

Method G2-instruction G3-instruction Average
PR (%) Cost (¢) PR (%) Cost (¢) PR (%) Cost (¢)

ReAct 20.5 6.7 18.4 10.7 19.5 8.7
ReAct w/ EcoAct (Single Tool Reg.) 20.8 4.8 21.1 5.8 21.0 5.3
ReAct w/ EcoAct (Multiple Tools Reg.) 14.9 (↓ 5.9%) 4.5 13.2 (↓ 7.9%) 5.4 14.1 5.0

In our approach, the proposed meta-tool tool register is designed to register only one tool per tool
registration action in each time step. This naturally raises one critical question: could registering
multiple tools simultaneously reduce costs while maintaining comparable performance? The intu-
ition behind this is that each tool registration essentially require one LLM calling, which incurs token
costs. If the agent could leverage its internal reasoning mechanisms to register several potentially
useful tools in one interaction, it might lead to cost savings due to the decrease of LLM call number.
To explore this hypothesis, we modified tool register to allow for the registration of multiple tools
at once, allowing agents to select as many tools as deemed necessary based on their reasoning. We
conducted experiments using the G2-I and G3-I datasets in state-of-the-art GPT-4o model according
to Table 1, where we use Ecoct to augment ReAct and present the results in Table 3.

From the results, we could observe that enabling tool register to handle multiple tool registrations
per action results in minor cost savings. However, the performance of EcoAct decreases signifi-
cantly, with a 5.9% and 7.9% drop in the G2-instruction and G3-instruction tasks, respectively. The
cost savings arise from reducing repeated LLM calls, which otherwise require inputting the entire
conversation history each time. However, the performance drop may be attributed to the agent’s ten-
dency to greedily register multiple tools at once, which introduces complexity for each action taking.
This increased complexity makes it easier for the agent to incorrectly select a tool from the larger
pool, compared to having only a single registered tool, potentially leading to error propagation.

3.4.2 TOOL NAMES VS. DESCRIPTIONS INFORMATION IN TOOL REGISTRATION

We then investigate the feasibility of incorporating both tool names and descriptions in the tool reg-
istration process. We aim to address the following questions: Is the tool name sufficient for accurate
tool registration? Does the inclusion of tool descriptions enhance registration performance? We
also examine whether this modification affects the associated costs. To evaluate these questions, we
conduct experiments using the G2-instruction and G3-instruction subsets, incorporating all avail-
able tool descriptions for registration within the ReAct framework, leveraging the arguments from
EcoAct in the GPT-4o model. The results of our experiments are presented in Table 4.

From the results, we could observe that the including tool descriptions for tool registration does
not necessarily lead to a noticeable improvement in performance. However, this approach incurs a

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: We compared two variants of EcoAct for tool registration: (1) using tool names only, and
(2) using both names and descriptions. Experiments on G2/G3-I subsets from ToolBench bench-
mark, using EcoAct to augment the ReAct algorithm on the GPT-4o model, showed that adding
tool descriptions did not significantly improve performance but increased costs.

Method G2-instruction G3-instruction Average
PR (%) Cost (¢) PR (%) Cost (¢) PR (%)Cost (¢)

ReAct 20.5 6.7 18.4 10.7 19.5 8.7
ReAct w/ EcoAct (Tool reg. by tool names) 20.8 4.8 21.1 5.8 21.0 5.3
ReAct w/ EcoAct (Tool reg. by tool names and des.) 21.4 6.3 (↑ 31.3%) 18.4 9.6 (↑ 65.5%) 19.9 8.0

significant increase in cost, comparable to that of standard ReAct. Specifically, the cost increases
31.3% and 65.5% in G2-instruction and G3-instruction respectively. This finding suggests that tool
names alone provide sufficient information for the agent to perform correct tool registration. This
is because the context of tool descriptions is obviously larger than tool names. Consequently, the
inclusion of tool descriptions may be unnecessary and could result in substantial cost increases.

4 RELATED WORKS

Large language models (LLMs) represent a major breakthrough in artificial intelligence, prompting
an increasing body of research dedicated to employing LLMs in the construction of autonomous
agents capable of performing complex tasks (Xi et al., 2023; Wu et al., 2023b; Peng et al., 2023;
Shridhar et al., 2020; Song et al., 2024; Wu et al., 2024; Zhang et al., 2023; Ma et al., 2024). In
these LLM-based agents, the ability to leverage external functions, tools, or actions to interact with
the environment or solve sub-tasks is crucial. These external tools empower agents to go beyond
natural language processing. For instance, LLM agents equipped with scientific tools can conduct
scientific research (Bran et al., 2023; Ghafarollahi & Buehler, 2024), while those integrated with
robotic systems can perform robotic manipulation tasks (Ahn et al., 2022; Huang et al., 2023).

To enable agents to use external tools, they must undergo a process called tool registration, where
relevant tool information is integrated into the LLM’s context prior to the agent taking action. This
process becomes challenging when the number of available tools exceeds the context limits. One
approach to mitigate this limitation is through retrieval-augmented generation (RAG) (Lewis et al.,
2020; Gao et al., 2023). For example, Patil et al. (2023); Li et al. (2023) use a pre-trained text
embedding model to retrieve relevant tools from a large tool pool. Similarly, Qin et al. (2023)
trained an additional API retriever to identify essential tools using curated tool retrieval data.

To handle user queries with registered tools, various reasoning algorithms for LLM agents have
been explored recently (Yao et al., 2022; Qin et al., 2023). Specifically, Yao et al. (2022) propose an
approach that interleaves the generation of reasoning traces with tool-using actions, leading to more
reliable and factual responses. Qin et al. (2023) introduce DFSDT, a decision tree-based method that
expands the search space, increasing the likelihood of identifying a valid tool-using path. However,
these reasoning algorithms do not integrate with the tool registration process, which can result in
unnecessary costs due to the registration of irrelevant tools. In contrast, our approach seamlessly in-
corporates tool registration into these reasoning algorithms, allowing agents to autonomously reason
about and register only the necessary tools, thereby avoiding such inefficiencies.

5 CONCLUSION

In this work, we propose EcoAct, a simple yet effective approach that seamlessly integrates tool
registration into the intrinsic reasoning processes of LLM agents. The core concept involves initial-
izing the agent with a meta-tool named tool register, which enables the agent to selectively register
tools deemed useful based on their names at each time step. This action allows the agent to avoid
indiscriminately incorporating all candidate tools into its context, instead retaining only relevant in-
formation across reasoning steps, thereby achieving significant cost savings. We evaluate EcoAct
on the ToolBench dataset, augmenting various reasoning methods, and demonstrate that EcoAct
significantly reduces computational costs while maintaining comparable performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
Schwaller. Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint
arXiv:2304.05376, 2023.

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

Zhoujun Cheng, Jungo Kasai, and Tao Yu. Batch prompting: Efficient inference with large language
model apis. arXiv preprint arXiv:2301.08721, 2023.

Yu Du, Fangyun Wei, and Hongyang Zhang. Anytool: Self-reflective, hierarchical agents for large-
scale api calls. arXiv preprint arXiv:2402.04253, 2024.

Wensheng Gan, Shicheng Wan, and S Yu Philip. Model-as-a-service (maas): A survey. In 2023
IEEE International Conference on Big Data (BigData), pp. 4636–4645. IEEE, 2023.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

Alireza Ghafarollahi and Markus J Buehler. Sciagents: Automating scientific discovery through
multi-agent intelligent graph reasoning. arXiv preprint arXiv:2409.05556, 2024.

Dávid Hidvégi, Khashayar Etemadi, Sofia Bobadilla, and Martin Monperrus. Cigar: Cost-efficient
program repair with llms. arXiv preprint arXiv:2402.06598, 2024.

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
Composable 3d value maps for robotic manipulation with language models. arXiv preprint
arXiv:2307.05973, 2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
Huang, and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms. arXiv
preprint arXiv:2304.08244, 2023.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context llms struggle with
long in-context learning. arXiv preprint arXiv:2404.02060, 2024.

Zixian Ma, Weikai Huang, Jieyu Zhang, Tanmay Gupta, and Ranjay Krishna. m&m’s: A benchmark
to evaluate tool-use for multi-step multi-modal tasks. In Synthetic Data for Computer Vision
Workshop@ CVPR 2024, 2024.

Felix Ocker, Daniel Tanneberg, Julian Eggert, and Michael Gienger. Tulip agent–enabling llm-based
agents to solve tasks using large tool libraries. arXiv preprint arXiv:2407.21778, 2024.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng, Yujia Xie, Yu Hu, Qiuyuan Huang, Lars
Liden, Zhou Yu, Weizhu Chen, et al. Check your facts and try again: Improving large language
models with external knowledge and automated feedback. arXiv preprint arXiv:2302.12813,
2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu,
and Ji-Rong Wen. Tool learning with large language models: A survey. arXiv preprint
arXiv:2405.17935, 2024.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020.

Linxin Song, Jiale Liu, Jieyu Zhang, Shaokun Zhang, Ao Luo, Shijian Wang, Qingyun Wu, and
Chi Wang. Adaptive in-conversation team building for language model agents. arXiv preprint
arXiv:2405.19425, 2024.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning
for language-model-as-a-service. In International Conference on Machine Learning, pp. 20841–
20855. PMLR, 2022.

Chi Wang, Xueqing Liu, and Ahmed Hassan Awadallah. Cost-effective hyperparameter optimiza-
tion for large language model generation inference. In International Conference on Automated
Machine Learning, pp. 21–1. PMLR, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint arXiv:2308.08155, 2023a.

Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard
Peng, Qingyun Wu, and Chi Wang. An empirical study on challenging math problem solving
with gpt-4. arXiv preprint arXiv:2306.01337, 2023b.

Yiran Wu, Tianwei Yue, Shaokun Zhang, Chi Wang, and Qingyun Wu. Stateflow: Enhancing llm
task-solving through state-driven workflows. arXiv preprint arXiv:2403.11322, 2024.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. arXiv preprint arXiv:2309.07864, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Yining Ye, Xin Cong, Shizuo Tian, Yujia Qin, Chong Liu, Yankai Lin, Zhiyuan Liu, and Maosong
Sun. Rational decision-making agent with internalized utility judgment.

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R Fung, Hao Peng, and Heng Ji. Craft: Customizing
llms by creating and retrieving from specialized toolsets. arXiv preprint arXiv:2309.17428, 2023.

Jieyu Zhang, Ranjay Krishna, Ahmed H Awadallah, and Chi Wang. Ecoassistant: Using llm assistant
more affordably and accurately. arXiv preprint arXiv:2310.03046, 2023.

Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song, Chi Wang, Ranjay Krishna, and Qingyun
Wu. Offline training of language model agents with functions as learnable weights. In Forty-first
International Conference on Machine Learning.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A REPRODUCIBILITY

In order to facilitate the peer review of the ICLR 2025 submission of our paper, we provide an
anonymized link to our source code on: https://shorturl.at/qqy21.

B MORE DETAILS ABOUT TOOLBENCH

ToolBench is a large-scale tool-usage dataset comprising 16,464 real-world RESTful APIs across
49 categories from the RapidAPI Hub. All queries in this benchmark were generated by prompting
ChatGPT to create diverse tasks involving these APIs, covering both single-tool and multi-tool usage
scenarios. Through careful human evaluation, the authors determined that the generated instructions
exhibit high diversity, reflecting a wide range of practical applications. This benchmark has been
widely adopted as a standard evaluation tool in several studies (Du et al., 2024; Ye et al.).

B.1 SUBSETS INFORMATION

The dataset is categorized into three levels: G1, G2, and G3, which correspond to single-tool instruc-
tions, intra-category multi-tool instructions, and intra-collection multi-tool instructions, respectively.
Each level is further subdivided into three subcategories:

• Instruction: unseen instructions using the same set of tools as in the training data.

• Tool: unseen tools from previously encountered category as those in the training data.

• Category: unseen tools from an entirely different, previously unobserved category

However, since our EcoAct algorithm does not rely on training data, the distinctions between these
three subsets are minimal.

B.2 EVALUATION PROTOCOL

We adopt the same pass rate evaluation protocol as outlined in AnyTool (Du et al., 2024). In the
original ToolBench benchmark, the authors employ a two-stage evaluation process. In the first
stage, ToolBench uses an LLM (GPT-4 in our paper) to assess whether the selected API candidates
can address the query, classifying them as either ’solvable’ or ’non-solvable’. For queries deemed
’solvable’, the LLM then evaluates the effectiveness of the solution, labeling it as either ’solved’ or
’unsolved’. The pass rate is calculated using the following equation:

Pass Rate =
Non-solvable + Solved

Non-solvable + Solved + Unsolved
(4)

A key issue with this evaluation protocol arises when there is a large number of ’non-solvable’
queries identified by GPT-4. This can result in an artificially high pass rate, despite many queries
remaining unsolved. To mitigate this, Du et al. (2024) conducted a manual review of all queries, re-
taining only those that can be resolved. Consequently, the pass rate is calculated using the following
equation:

Pass Rate =
Solved

Solved + Unsolved
(5)

More information of this evaluation protocol could be found in the original paper (Du et al., 2024).
In terms of cost calculation, the monetary cost is computed based on the corresponding pricing from
Microsoft Azure.

C MORE IMPLEMENTATION DETAILS

When using AnyTool to retrieve tools for each query, we set the maximum size of the API-Candidate
Pool to 64, drawing on the findings of the AnyTool paper, which suggest that a pool size of 64 nearly

12

https://shorturl.at/qqy21

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

saturates performance. Additionally, we increased the maximum reasoning steps to 24, up from the
default of 12, to explore the behavior of EcoAct under conditions without budget constraints.

D PROMPTS

D.1 PROMPT DESIGN FOR ECOACT

Table 5: Prompt for EcoAct.

You are AutoGPT, you can use many tools (functions) to do the
following task. First I will give you the task description,
and your task start.
At each step, you need to give your thought to analyze the
status now and what to do next, with a function call to
actually excute your step.
After the call, you will get the call result, and you are now
in a new state. Then you will analyze your status now, then
decide what to do next.. After many (Thought-call) pairs,
you finally perform the task, then you can give your finial
answer.
Remember: 1.the state change is irreversible, you can’t go
back to one of the former state, if you want to restart the
task, say "I give up and restart". 2.All the thought is
short, at most in 5 sentence. 3.You can do more then one
trys, so if your plan is to continusly try some conditions,
you can do one of the conditions per try.
Let’s Begin!
Task description: You should use functions to help handle
the real time user querys. But every function needs to be
selected using "function selection" function before use it.
Remember: 1.ALWAYS call F̈inishf̈unction at the end of the
task. And the final answer should contain enough information
to show to the user,If you can’t handle the task, or you find
that function calls always fail(the function is not valid
now), use function Finish->give up and restart. 2. do not
call the function you have not successfully selected.

D.2 TOOL REGISTER

{
"name": "function_register",
"description": "I have given you a list of functions (names),

please call this function to choose one of them that may
be useful. The function you choose should be the one that
you think is most useful in the current state. After you
make function selection using this function, I will give
you the detailed information of your selected function.
You can then call the function you selected with
appropriate inputs if you think the function is useful.",

"parameters": {
"type": "object",
"properties": {

"function_name": {
"type": "string",
"description": "the name of the function you want

to call",
}

}

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

},
"required": ["function_name"],

}

D.3 PROMPT FOR REACT/DSFDT

Table 6: Prompt for Creating ReAct/DSFDT.

You are AutoGPT, you can use many tools (functions) to do the
following task. First I will give you the task description,
and your task start.
At each step, you need to give your thought to analyze the
status now and what to do next, with a function call to
actually excute your step.
After the call, you will get the call result, and you are now
in a new state. Then you will analyze your status now, then
decide what to do next.. After many (Thought-call) pairs,
you finally perform the task, then you can give your finial
answer.
Remember: 1.the state change is irreversible, you can’t go
back to one of the former state, if you want to restart the
task, say "I give up and restart". 2.All the thought is
short, at most in 5 sentence. 3.You can do more then one
trys, so if your plan is to continusly try some conditions,
you can do one of the conditions per try.
Let’s Begin!
Task description: You should use functions to help handle
the real time user querys. Remember: 1.ALWAYS call
F̈inishf̈unction at the end of the task. And the final answer
should contain enough information to show to the user,If
you can’t handle the task, or you find that function calls
always fail(the function is not valid now), use function
Finish->give up and restart. 2.Do not use origin tool names,
use only subfunctions’ names. You have access of the
following tools:

D.4 PROMPT FOR PASS RATE EVALUATIONS

D.4.1 PROMPT TEMPLATE FOR VERIFYING WHETHER THE QUERY HAS BEEN RESOLVED

--
<function>
<name>check_answer_status</name>
<description>
Giving the query and answer, you need give ‘answer_status‘ of the

answer by following rules:
1. If the answer is a sorry message or not a positive/straight

response for the given query, return "Unsolved".
2. If the answer is a positive/straight response for the given

query, you have to further check.
2.1 If the answer is not sufficient to determine whether the solve

the query or not, return "Unsure".
2.2 If you are confident that the answer is sufficient to

determine whether the solve the query or not, return "Solved"
or "Unsolved".

Query:
{query}

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Answer:
{answer}

Now give your reason in "content" and ‘answer_status‘ of JSON to ‘
check_answer_status‘.

</description>
</function>
--
<function>
<name>parse_answer_status</name>
<description>
Giving the query and the correspond execution detail of an answer,

you need give ‘answer_status‘ of the answer by following
rules:

1. If all ’tool’ nodes’ message indicate that there are errors
happened, return "Unsolved"

2. If you find the information in the "final_answer" is not true/
valid according to the messages in ’tool’ nodes, return "
Unsolved"

3. If you are unable to verify the authenticity and validity of
the information, return "Unsure"

4. If there are ’tool’ node in the chain contains successful func
calling and those calling indeed solve the query, return "
Solved"

Query:
{query}
Answer:
{answer}

Now you are requested to give reason in "content" and ‘
answer_status‘ of JSON to ‘parse_answer_status‘.

</description>
</function>
--

D.4.2 PROMPT TEMPLATE FOR VERIFYING WHETHER THE QUERY IS SOLVABLE

--
<function>
<name>check_task_solvable</name>
<description>
Please check whether the given task solvable with following rules:
1. If the ‘query‘ provide invalid information (e.g. invalid email

address or phone number), return "Unsolvable"
2. If the ‘query‘ needs more information to solve (e.g. the target

restaurant name in a navigation task), return "Unsolvable"
3. If you are unable to draw a conclusion, return "Unsure"
4. If the currently ‘available_tools‘ are enough to solve the

query, return "Solvable"

Task:
{task}

Now give your reason in "content" and ‘task_status‘ of JSON to ‘
check_task_solvable‘.

</description>
</function>
--

15

	Introduction
	method
	problem setup
	EcoAct

	experiments
	experimental setup
	main results
	more analysis
	extension to complex reasoning strategy
	skill-library evolution

	Ablations
	Single-Tool vs. Multiple-Tool Registration
	Tool Names vs. Descriptions information in Tool Registration

	Related Works
	Conclusion
	Reproducibility
	More details about ToolBench
	Subsets information
	Evaluation Protocol

	More Implementation Details
	Prompts
	Prompt Design for EcoAct
	tool_register
	Prompt for ReAct/DSFDT
	Prompt for Pass Rate Evaluations
	Prompt template for verifying whether the query has been resolved
	Prompt template for verifying whether the query is solvable

