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Abstract

LiDAR-based world models offer more structured and geometry-aware representa-
tions than their image-based counterparts. However, existing LiDAR world models
are narrowly trained; each model excels only in the domain for which it was built.
This raises a critical question: can we develop LiDAR world models that exhibit
strong transferability across multiple domains? To answer this, we conduct the first
systematic domain transfer study across three demanding scenarios: (i) outdoor to
indoor generalization, (ii) sparse- to dense-beam adaptation, and (iii) non-semantic
to semantic transfer. Given different amounts of fine-tuning data, our experiments
show that a single pretrained model can achieve up to 11% absolute improvement
(83% relative) over training from scratch and outperforms training from scratch in
30/36 of our comparisons. This transferability significantly reduces the reliance
on manually annotated data for semantic occupancy forecasting: our method ex-
ceeds previous baselines with only 5% of the labeled training data of prior work.
We also observed inefficiencies of current generative-model-based LiDAR world
models, mainly through their under-compression of LiDAR data and inefficient
training objectives. To address these issues, we propose a latent conditional flow
matching (CFM)-based framework that achieves state-of-the-art reconstruction
accuracy using only half the training data and a compression ratio 6 times higher
than that of prior methods. Our model also achieves SOTA performance on seman-
tic occupancy forecasting while being 1.98x-23x more computationally efficient
(a 1.1x-3.9x FPS speedup) than previous methods. Our project page contains
additional visualizations and released code.

1 Introduction

World models enable agents to implicitly learn the dynamics of the environment by predicting future
sensory observations, typically through generative models operating in a latent space [40, 33]. Starting
from classic motion prediction tasks like optical flow [29, 31], recent advances have extended motion
prediction to RGB-video-based forecasting, i.e., RGB world models, which have demonstrated
impressive performance in applications such as autonomous driving [41, 16, 47], robotic navigation
[4], and other embodied tasks [7, 54, 28, 55, 21, 1, 3]. These models can generate video sequences
conditioned on historical frames and sometimes natural language input. While an image-based world
model may suffice for repetitive tasks (e.g., learning robotic arm movements), its utility is limited in
complex scenarios that demand geometrically structured information, such as autonomous driving.
In these scenarios, the lack of explicit semantic and geometric representations restricts practical
application, as it necessitates additional steps to extract spatial information.

In contrast to RGB images, LiDAR provides rich geometric structure and implicitly offers a sparse
representation for semantic cues about the environment. Unlike dense, pixel-based observations, a
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Figure 1: Left: The overall pipeline of our method: we used the most readily publicly available
LiDAR dataset from autonomous driving scenarios to train the proposed LiDAR world model. This
well-trained world model is able to generalize well on the listed downstream tasks after fine-tuning,
although scene and signal properties are quite different. Right: Comparison of our proposed world
model with previous methods on nuScenes 4D semantic occupancy forecasting metrics of mIoU,
IoU, and inference efficiency. Our approach achieves the best results in terms of both efficiency and
performance.

3D object in a LiDAR point cloud is represented as a cluster of 3D points, encoding essential spatial
and semantic information in a compact form. Despite these advantages, foundational world models
of LiDAR data remain relatively underexplored: prior LiDAR world models were built for specific
domains [56, 20, 57]. In comparison, recent advances in “foundation” models, e.g. pretraining with
RGB image forecasting [3] and trajectory forecasting [60] have demonstrated the effectiveness of
pretraining in improving performance on downstream tasks. This motivates our central question:
Can we develop a foundational LiDAR world model for ground vehicles that yields downstream
performance gains on diverse forecasting tasks, particularly those suffering from data limitations,
after fine-tuning? This goal is partly motivated by the fact that many of the causal factors that govern
the motion of objects are shared across different domains and environments—many aspects of the
dynamics of the world should, in principle, be transferable and can be observed in unlabeled LiDAR.

We investigate pretraining and fine-tuning a LiDAR world model across three diverse transfer
tasks (Fig 1): varying-beam occupancy forecasting, indoor occupancy forecasting, and semantic
occupancy forecasting. First, LiDAR hardware varies in beam count and scan patterns, often
degrading model generalization [56, 39]. We consider this cross-sensor setting to assess robustness to
hardware variations. Second, robots equipped with LiDAR sensors often operate in vastly different
environments [50, 59, 15], from outdoor to indoor settings. While cross-domain adaptation has
been extensively studied in perception tasks [24, 34, 30], it remains underexplored in the context of
dynamic learning. Given that LiDAR data can be scarce in certain environments (e.g., indoor), it is
promising to investigate whether dynamic knowledge learned in data-rich, long-range domains can
be transferred to those with limited data and different operational ranges. Lastly, tasks like semantic
occupancy forecasting [6, 14, 23, 58]) rely heavily on costly semantic labels [46, 44]. Our goal is
to leverage large-scale unlabeled data to learn a universal 3D dynamics prior for ground vehicles,
enabling strong semantic forecasting via fine-tuning on minimal labeled data.

Extensive experiments demonstrate that our LiDAR world model significantly improves the conver-
gence speed of downstream tasks. For all mentioned tasks, we observed relative performance gains
with varying amounts of fine-tuning data. In particular, for semantic occupancy forecasting, this
scheme of learning dynamics prior to semantics patterns allows us to achieve superior performance
to OccWorld [58] with only 5% of its required labeled data. Furthermore, our results highlight the
importance of representation alignment during fine-tuning. Although the data compression struc-
ture we propose later is data-efficient, we found that either using the pretrained data compressor
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directly or retraining the VAE from scratch with the fine-tuning data leads to suboptimal perfor-
mance. This phenomenon is attributable to a feature space mismatch: in both scenarios, the encoder
learns a feature space mapping that diverges from the pretrained one, which in turn degrades the
performance of the flow model pretrained on the original feature space. We identify two superior
strategies: fine-tuning the VAE, and for tasks where the VAE cannot be fine-tuned directly, applying
a cosine-similarity-based alignment loss.

We also find that the current architectural paradigms used in LiDAR world models [38, 12] suffer from
2 issues: redundant model parameters and excessive training time. Regarding the former, the latent
representation tends to retain a large number of channels, which significantly increases the parameter
count of the dynamics model. Regarding the latter, state-of-the-art models often require thousands
of epochs to converge. This inefficiency stems not only from the model scale but also from the
inherently slow and compute-intensive nature of denoising diffusion paradigms—particularly those
combining DDPM-based training with DDIM-style sampling. These challenges have significantly
hindered our exploration of LiDAR world model transferability.

To address these issues, we first propose a Swin Transformer-based VAE architecture for LiDAR
data compression. This architecture achieves a compression ratio of 192x—over 6x higher than
previous state-of-the-art methods—while matching or exceeding their reconstruction quality. We also
propose an efficient flow-matching-based generative model. Compared to previous latent diffusion-
based or transformer-based deterministic schemes, our approach requires only 4.38% and 28.91% of
the FLOPs that they require, respectively. This efficiency significantly accelerates our analysis of
transferability in downstream tasks. In summary, our contributions are:

• The first study on building transferable LiDAR world models: world models of LiDAR videos that
exhibit substantial transferability to downstream forecasting tasks. We show the efficacy of LiDAR
world models to 3 diverse fine-tuning tasks: semantic occupancy forecasting, indoor occupancy
forecasting, and high-beams occupancy forecasting, and confirm that it outperforms the baseline
of training from scratch on the fine-tuning data, and that the relative performance gain is more
pronounced with less fine-tuning data.

• An approach to substantially reduce reliance on human labels for semantic occupancy forecasting:
our method exceeds the performance of previous methods with only 5% of the human labels.

• Efficient VAE-baesd architectures for data compression and voxel-based LiDAR world modeling.
The former achieves the SOTA reconstruction accuracy at a 6x improvement in compression rate
over prior work. Using these encodings, our world model achieves SOTA performance with only
4.47% to 50.23% of the FLOPs and 1.1 to 3.9 times higher FPS.

2 Related Work

We categorize previous work by LiDAR-based world modeling for geometric future prediction,
semantic 4D occupancy forecasting for semantic-aware scene understanding, and foundational world
models (FWMs) that aim to generalize dynamic knowledge across domains and tasks.

LiDAR-based World Models. Distinct from general LiDAR generation tasks, LiDAR-based world
modeling (also known as LiDAR/Occupancy Forecasting) aims to forecast future sensor observations
based on past observation. Occ4D [20] and Occ4cast [27] propose forecasting future LiDAR points
or occupancy grids via a differentiable occupancy-to-points module, yet without explicitly modeling
latent transition dynamics. UNO [2] further introduces occupancy fields within a NeRF-like [35]
framework to enhance forecast fidelity. S2Net [49] adopts a pyramid-LSTM architecture to predict
future latents extracted by a variational RNN, while PCPNet [32] leverages range-view semantic
maps and a transformer backbone to improve real-time inference performance. Although numerous
works [37, 39, 51, 36, 19] have introduced increasingly powerful diffusion-based models, for general
data generation, progress in LiDAR forecasting remains comparatively limited compare to the RGB-
base ones: Copilot4D [56] achieved state-of-the-art performance in LiDAR forecasting by adopting
a MaskGiT-based latent diffusion model with a carefully-designed temporal modeling objective.
BEVWorld [57] extended this approach by incorporating multi-modal sensor inputs, enabling future
LiDAR prediction even in the absence of current LiDAR frames. However, few works have addressed
the transferability of dynamics learning across domains—an appealing path to enhance the widespread
deployment of world models in real-world autonomous systems.
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Semantic 4D Occupancy Forecasting: The RGB video-based world models tried to forecast
physical consistent video from RGB input. However, these representations lack of geometric and
explicit semantic annotation, the usage of the generated forecasts observations in control task still
need extra component to recover depth and predict semantics. Semantic 4D occupancy forecasting
aims to address this gap by predicting future semantic (LiDAR) occupancy maps based on past
observations—either ground-truth annotations or model-generated results. OccWorld [58] employed
an auto-regressive transformer to jointly forecast future latent states and corresponding axis offsets.
OccSora [45] further advanced the field by being the first to generate 25 seconds semantic videos
conditioned on 512x compressed inputs. Later, DynamicCity [6] improved upon this by decomposing
the 3D representation into a more compact HexPlane[9] structure, enabling faster inference. Building
upon future trajectories/bev layout and extended datasets, DOME [14] and uniScenes [23] continue
to push the forecasting accuracy to new state-of-the-art levels. Importantly, these methods rely
on labeled semantic ground-truth data for training, making them dependent on expensive human
annotations and thus challenging to scale.

Foundational world model (FWM). We call a world model “foundational” if it leads to performance
gains over learning from scratch on multiple downstream forecasting tasks. In autonomous driving,
GAIA-1 [16] and GAIA-2 [41] introduced image-based FWMs that can generate controllable driving
scenarios. In the field of indoor robotics, like navigation, NWM [4] proposed an RGB image-based
navigation method with a conditional DiT structure. Cosmos [1] takes this ambition further, aiming
to generalize across both indoor and outdoor environments. However, due to limitations in the RGB
modality, existing FWMs do not provide explicit depth information, which makes it harder to define
prediction and planning modules to utilize their output.

3 Efficient latent conditional flow matching

In this section, we first introduce our novel point cloud data compressor in Sec.3.1, which achieves
state-of-the-art performance under high compression ratio. Based on the compact representation from
it, Sec.3.2 presents the flow matching-based generative forecasting model that serves as the testbed
for all subsequent fine-tuning approaches. In Sec.3.3, we introduce the VAE fine-tuning for better
representation alignment, which will benefit the final forecast performance.

3.1 Data compression

Figure 2: Architecture of our VAE for LiDAR compression. The model enables high compression
ratios—exceeding those of previous methods—alongside high-fidelity reconstructions. Here we use
Ov to represent the raw voxelized LiDAR points (Occupancy) and Od, Os stand for densified or
semantic labeled occupancy respectively.
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While SD3 [12] provides a strong baseline for compressing image-based RGB signals, LiDAR-
specific data compression remains underexplored. Existing LiDAR world models typically adopt
the SD3 encoder-decoder architecture with minimal modifications, retraining it directly on LiDAR
BEV representations. As an alternative, we propose a Swin Transformer-based architecture and
demonstrate that it achieves state-of-the-art performance across all forms of LiDAR compression, as
detailed in Table 2. As noted in previous works [23], discrete coding-based compression is not only
prone to problems such as codebook collapse but is also generally inefficient in compression. Here
we have also used continuous coding to achieve a higher compression ratio as shown in Figure 2.

Data processing and encoding: In this work, bold notation indicates a multidimensional array (e.g.,
a vector or a matrix). Given a raw LiDAR sensor scan ol ∈ RL×3, the voxelized map ov, dense
occupancy map od, and semantic occupancy map os can be generated through successive steps of
voxelization, densification (i.e., accumulating points from the entire sequence into each frame), and
semantic annotation. Our structure is capable of processing any of these representations derived
from the raw LiDAR input. Depending on the final reconstruction requirements, voxelization can
be either a learning-based approach or a direct binarization process. Taking the compression of
od ∈ RH×W×D×C (a H,W,D 3D grid with C-dim features at each voxel) as an example, a Gaussian
encoding distribution q(zd|od)=N (zd;µq,σq) is constructed from three main stages: embedding,
feature learning and downsampling, and channel reduction. Specifically, after applying height and
class embeddings, a 2D BEV feature map is obtained, which is subsequently processed by a standard
2D Swin Transformer encoder. Unlike the original Swin Transformer design, which utilizes patch
merging for downsampling, we replace this operation with conventional convolutional layers—a
modification we empirically find to outperform the original approach. Channel reduction is performed
by a lightweight network neck, compressing the feature representation into a 16-dimensional latent
space. Samples are drawn using the reparameterization trick z=µq + σq ⊙ ϵ, ϵ ∼ N (0, I), and ⊙
denotes the Hadamard product.

Decoding and ol representation recovery. The decoder q(ôd | zd) is designed to mirror the encoder
by starting with the same symmetric 2D block structure. Different from previous methods that used
3D blocks in the decoder to increase temporal feature consistency, we found doing so to have a
negative effect in our structure, for both reconstruction and final forecasting result, as shown in the
ablation study. Depending on the source representation, the reconstructed ôd can be used to render
the points with a differentiable ray rendering module or get the occupancy map by calculating a
similarity score with the class embedding.

3.2 Forecasting with Conditional flow matching

With the proposed VAE, we are able to mitigate the parameter redundancy: most of the parameters
of the existing methods come from the high dimensionality of the latents. To further make model
training more efficient, we present a new structure based on flow matching [26], which we show
leads to SOTA performance in both forecasting accuracy and computational efficiency, as shown in
Table 1. For a semantic occupancy forecast task, given ot0:t2

s , our VAE encodes continuous frames to
zt0:t2
s ∈ R(t2−t0)×H×W×16. As t1 is the middle index of these frames, our objective is to obtain the

future latent zt1:t2
s from the historical latent zt0:t1

s using a flow-matching model Gθ.

As illustrated in Figure 3, the training objective is to regress a velocity field uθ
t . This regression is

conditioned on several inputs: a time step t ∈ [0, 1] representing the progress along a probability path
from an initial distribution (standard Gaussian) to the target distribution; the interpolated future latent
state xt; the historical trajectory J t0:t1 ∈ R(t1−t0)×3; and historical observations ot0:t1

s .

Specifically, the noising added follows a linear interpolation method as shown in equation 1, where
σ used to balance the scale of noise and latents and ϵ ∼ N (0, 1). The zt0:t1

s will be used as a part
of condition in training: we concatenate the historical latents and noised future latents along time
dimension to get the input of Gθ, denoted by zjoint ∈ R(t2−t0)×H×W×32.

xt = (1− t)ϵ+ tσzt1:t2
s (1)

Based on the spatial-temporal DiT structure proposed in previous methods [33, 23, 14], we observe
that the convergence speed remains suboptimal. Specifically, given zjoint, the initial 3D convolutional
layer increases the channel dimension to C ′, resulting in z′joint ∈ R(t2−t0)×H×W×C′

. The width and
height dimensions are then flattened before being fed into the spatial DiT, where multi-head attention
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Figure 3: Architecture at the training stage of our proposed conditional velocity field predictor for
time t. Historical frame latents are extracted via a frame-wise VAE encoder, and noised future (target)
latents are formed by injecting noise at timestep t. Latents are concatenated along the time dimension
and passed through DiT blocks.

(MHA) is applied and normalized using AdaLN. However, applying the same strategy in the temporal
DiT would only fuse pixels along the temporal axis, limiting the temporal receptive field to just
a single latent pixel(in a block). To compensate, we observed that most of the previous methods
like uniScenes [23] and DOME [14] use 14-18 stacked blocks to ensure the temporal consistency,
which is also one of the reasons of redundant parameters. While this design remains feasible in
Latte [33], which operates on 3D video patches, our per-frame latent representation, making the
learning of temporal dependencies more challenging. We found that this issue can be effectively
mitigated by simply inserting a 3D convolutional layer with a larger receptive field after the spatial
DiT. Furthermore, organizing the network in a UNet-style architecture, as opposed to a single-stride
DiT backbone, is shown through later experiments to further enhance the forecast performance and
reduce computational load. The training objective was designed following the Rectified Flow [26]:

L(θ) = Et,x0,zs,J

∥∥µθ
t (z)− (zs − x0)

∥∥2 , t ∼ sigmoid(N (0, 1)), x0 ∼ N (0, I), zs ∼ qzs .

3.3 Improved fine-tuning with representation alignment

The pretrain of world model can now be start with framework proposed in 3.2 & 3.1 and large
amounts of unlabeled data od in a self-supervised way to learn the unified prior knowledge for
environment dynamics. For non-semantic to semantic transfer specifically, we now already have
encoder/decoder pair denoted by qd(zd|od) / qd(ôd|zd) and forecasting model Gd

θ . Although we
can train the other data compressor qs(zs|os) / qs(ôs|zs) and use the corresponding latent zs to
fine-tuning pretrained Gd

θ , we have discovered that the latent spaces of zs and zd are not aligned,
which is affects the performance of fine-tuning.

For subtask 1 and 2 in Fig 1, this suboptimality can be tackled by fine-tuning the data compressor
first, while in case of subtask 3 (semantic occupancy forecasting), due to the difference in network
embedding layer dimensions, it is non-trivial to fine-tune the semantic data based on a VAE pretrained
on non-semantic data. Instead, we use the latents of the corresponding dense occupancy od to guide
the formulation of the subspace of the semantic VAE.

Specifically, we add a cosine similarity term in the loss when fine-tuning the VAE, as shown in the
last term of Equation 2. zs and ds stand for the latent from a pair os and od via training from scratch
and pretrained VAE, respectively. Llovasz [5] is another reconstruction term used to optimize IoU.

LSem-VAE = LCE(ôs,os) + βDKL (qϕ(zs | os) ∥ p(zs)) + λLlovasz(ôs,os) + κLcos(zs,ds) (2)
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Therefore, our full pipeline is 3-fold: we first train the data compressor and flow matching model
via the easily accessible unlabeled data. Then we use the pretrained data compressor to guide the
structure of latent space for subtask’s data. Finally, with the aligned representation, we fine-turn the
pretrained weights to obtain the final results.

4 Experiments

We designed our experiments to investigate several questions: Q1: Can we improve compression
and performance over existing designs? Q2: Can we develop a LiDAR world model that exhibits
substantial superiority to models trained from scratch on three downstream forecasting tasks (high
beam occupancy forecasting, indoor occupancy forecasting, and semantic occupancy forecasting)?
Q3: How well does each fine-tuning variant perform and why?

4.1 Experimental design

We use nuScenes[8] (2Hz) as the pretraining data for the flow matching model. We trained 2 different
types of foundational models on it, one was trained based on the original LiDAR sweep (ov), totaling
27,000 frames, denoted by Gv

θ . The other type of model was trained using densified LiDAR frames
od), totaling 19,000 frames, denoted by Gd

θ . The latter training set is a subset of the former part and
the number of od equal to os.

For the beam adaptation subtask, we down-sampled 11 sequences from the KITTI360 raw dataset [25]
from 10Hz to 2Hz to match the foundational model setting. Also, we collected an indoor navigation
dataset using a Clearpath Jackal equipped with an OSO-128 LiDAR sensor (training set with 23,504
frames and validation set with 9,720 frames). Finally, for the semantic occupancy forecasting, we
present twofold experiments: in section 4.2, we follow the official splitting [44] and train the model
from scratch. Then in Section 4.3 and Appendix H.1, we only use first half of the training data to
pretrain the Gd

θ as the foundation model, which then fine-tuning on the other half os (os and od are
1v1 correspondence) to avoid the dynamic knowledge of fine-tuning data to be already seen during
pretraining stage. From the next section, we use o′

s and o′
d to denote the partial training data. For

more details on the model setup, please refer to our appendix.

4.2 Encoder structure exploration and semantic occupancy forecasting evaluation

For model evaluation, Table 2 compare reconstruction results of our Swin-Transformer VAE with
previous methods compress data from 8× to 512×. At 32×, we achieve 99.2% mIoU and 97.9%
IoU—far above UniScenes’s 92.1%/87.0% at the same rate. Even at 192×, we maintain 93.9%/85.8%,
surpassing OccWorld and DOME by over 11% mIoU, and at an extreme 768× our model still delivers
a 9.7% relative gain despite 1.5× higher compression.

Table 1: Comparison of future occupancy forecasting performance on full nuS. validation set. †:
Methods use future trajectory information. ⋆: DynamicCity generates 16 frames jointly with 1000
steps DDPM-style sampling, we report 50 steps DDIM FPS for faster eval but still keep the original
accurancy. All FPS tested based on 1x RTX4090 without kernel fusion or other CUDA acceleration
methods. −: Unreported or unable to be computed due to code unavailability.

Method mIoU↑ IoU↑ Mean NLL
(bits/dim)↓ Params↓ GFLOPs

per Frame↓ FPS↑
1s 2s 3s Avg 1s 2s 3s Avg

OccWorld [58] 25.75 15.14 10.51 17.13 34.63 25.07 20.19 26.63 – 72.39 1347.09 16.97
RenderWorld [52] 28.69 18.89 14.83 20.80 37.74 28.41 24.08 30.08 – 416 – –
OccLLama [48] 25.05 19.49 15.26 19.93 34.56 25.83 24.41 29.17 – – – –
DynamicCity⋆ [6] 26.18 16.94 – – 34.12 25.82 – – – 45.43 774.44 19.30
Ours 33.17 21.09 15.64 23.33 40.53 30.37 24.44 31.78 6.29 30.37 389.46 22.22

DOME† [14] 29.39 20.98 16.17 22.18 38.84 31.25 26.30 32.13 6.04 444.07 8891.98 5.48
Ours† 36.42 27.39 21.66 28.49 43.68 36.89 31.98 37.52 4.55 30.37 389.46 21.43

Based on the strong VAE performance, our forecasting model advances the state-of-
the-art of semantic occupancy forecasting while maintaining real-time throughput. As
shown in Table 1, our model achieves a one-second mIoU of 33.17%, surpassing
the previous SOTA model’s 28.69% and OccLLama’s 25.05% by 4.48% and 8.12%
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respectively and maintaining 21.09% and 15.64% for two and three second predic-
tion which outpaces prior works by at least 2.5% relative performance improvement.

Table 2: Occupancy reconstruction perfor-
mance at various compression ratios.

Method Cont.? Comp. Ratio↑ mIoU↑ IoU↑
OccLlama [48] ✗ 8 75.2 63.8
OccWorld [58] ✗ 16 65.7 62.2
OccSora [45] ✗ 512 27.4 37.0
DOME [14] ✓ 64 83.1 77.3
UniScenes [23] ✓ 32 92.1 87.0
UniScenes [23] ✓ 512 72.9 64.1

Ours ✓ 32 99.2 97.9
Ours ✓ 192 92.8 85.8
Ours ✓ 384 88.3 76.9
Ours ✓ 768 80.0 69.3

For future-trajectory-conditioned forecasting, our
mIoU surpasses DOME by more than 5.5% across all
frames. Our semantic occupancy forecasting model
runs at 22.22 FPS, requiring only 389.46 GFlops per
frame and 30.37 million parameters. Compared to
DynamicCity which generates 16 frames altogether,
our model uses half of GFlops per frame, 66% of
parameters, and 1.1 times higher FPS. In the future-
trajectory-conditioned regime, our model sustains
21.4 FPS without increasing in computational cost
and parameter count, whereas DOME utilizes 23
times more flops per frame (our model is 4.38%
of this amount), 15 times more parameters, 4 times
slower FPS, and at least 5.5% less absolute performance. Due to the stochastic nature of our proposed
CFM model and the limitation of mIoU and IoU in evaluating model’s ability to generate diverse but
plausible future predictions, we also report the negative log likelihood (NLL) in bits-per-dimension.
Our model also present better performance compare with previous SOTA stochastic models.

In order to further measure sample quality, we computed the 3D Fréchet Inception Distance (FID)
and Kernel Inception Distance (KID) in Table 4. Our model establishes a new state of the art on both
FID and KID. On average, for our model without future trajectories, it reduces FID to just 28.3 %
/ 48.5 % and KID to 22.7 % / 44.4 % of the scores reported by the deterministic (OccWorld) and
stochastic (DOME) models, respectively. See Appendix A.2.2 for more details of these metrics.

Then, benefiting from the low information loss of the data compressor we proposed, it is in fact
highly suitable to be used as feature extractor for 4D inception-based metrics (temporal consistency
measurement). After we revise the structure with more temporal (4D) module, we retrain the
proposed data compressor to eval the FVD score of generated results. In Table 3, to give context for
temporal consistency, we include an approach that randomly shuffles the ground truth future ordering
and compare the FVD with the correctly ordered GT. This tells us the FVD when the predictions
are individually correct but temporally inconsistent. Our model scores of 7.68 and 7.80 are also
significantly lower than previous methods.

Table 3: FVD Score Comparison,
3s (6 frames) videos used as input

Method FVD ↓ (×10−3)
OceWorld 18.68
DOME 9.79
Ours (hist. traj.) 7.80
Ours (fut. traj.) 7.68
Reorder GT 12.07

Table 4: FID and KID(×10−2) comparison for our method and
other generative-based and deterministic-based models.

Method 1s 2s 3s AVG
FID KID FID KID FID KID FID KID

OccWorld 9.54 11.7 8.56 10.46 7.78 9.80 8.62 10.60
DOME 4.37 4.39 5.09 5.44 5.63 6.53 5.03 5.42
Ours (Hist. traj) 1.67 1.49 2.81 2.85 4.02 4.74 2.83 3.02
Ours (Fut. traj) 1.61 1.47 2.90 3.05 3.91 4.55 2.80 3.02

4.3 LiDAR world model transferability

First, In Table 5, we compare the pretrained model with previous 4D forecasting (occupancy fore-
casting) methods [53, 20]. Ours exhibits better performance in non-semantic occupancy forecasting,
particularly at the 3-second horizon. Then, using the architecture in Section 4.2, we evaluate the
performance gains from fine-tuning our world model with varying strategies and data scales across
individual tasks and present the results in Figure 4.

For the high-beam LiDAR adaptation task, all configurations based on the pretrained world model
outperform from-scratch VAE and CFM training (blue line) across all frames and data fractions.
Pretraining CFM alone yields 17.11% and 6.68% gains for 1s and 3s predictions at 10% data. With
both components pretrained and fine-tuned, the gains increase to 14.48% and 26%, respectively.
This demonstrates that our Swin Transformer-based VAE effectively captures transferable geometric
priors for downstream tasks with varying LiDAR characteristics and the effectiveness of the feature
alignment. For the indoor LiDAR adaptation task, all pretrained model variants outperform from-
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Figure 4: IoU/mIoU comparison across 3s forecasting horizon of the presence of different fraction of
fine-tuning data used from total data available between the various training procedures. In row order,
each row refers to the results of (i) different beam adaptation (ii) outdoor-indoor adaptation, and (iii)
semantic occupancy forecasting, respectively.

scratch training when fine-tuning data is limited (less than 25%), with full-parameter tuning of both
VAE and CFM achieving the best results. At 10% data usage, full fine-tuning yields at least a 4.47%
gain across all prediction horizons.

Table 5: Pretraining performance on dif-
ferent LiDAR representations, without
future trajectory. *: ViDAR only re-
leased weights trained on 1

8 dataset.

Methods IoU↑
1s 2s 3s Avg

ViDAR (I2L)* 13.11 12.48 11.78 12.46
Occ4D (L2L) 26.96 19.51 16.81 21.09
Ours-ov 26.98 21.56 18.26 22.27
Ours-od 39.64 29.35 23.73 30.91

However, as data availability increases (e.g., beyond 25%
for 1s prediction), training from scratch eventually sur-
passes all fine-tuning methods. This is likely because the
indoor dataset represents a task sufficiently distinct from
our pre-training domain, making it easier to learn from
scratch without the influence of pre-trained priors. We
hypothesize that this result would no longer hold if sub-
stantial indoor data were included in the pre-training set.
Similar results are also observed in the semantic occu-
pancy forecasting task, where all VAE/CFM combinations
based on the pre-trained model outperform training from
scratch in mIoU. Notably, with just 10% of the seman-
tic fine-tuning data—which is only 5% of the total data
used in prior methods—full-parameter fine-tuning yields
an 82.6%/80.72%/69.70% relative mIoU gain for 1s/2s/3s prediction, surpassing OccWorld’s per-
formance [58]. After 50% data usage, the performance of from-scratch training exceeds that of the
CFM-only and LoRA CFM fine-tuning methods. Nevertheless, full-parameter VAE+CFM fine-tuning
consistently achieves the best performance across all data fractions and prediction horizons.

These results confirm that foundational models can capture transferable, LiDAR-based dynamic
priors from unlabeled data to support downstream tasks requiring semantic interpretation. The
improvements are especially notable in low-data regimes, demonstrating a reduced dependence on
human-labeled samples. Overall, across all tasks, our pre-trained model achieves up to an 11.17%
absolute performance gain and outperforms training from scratch in 30 out of 36 comparison points.
See the Appendix for detailed numerical values corresponding to Figure 4.

9



However, a key question remains: why do models that fine-tune both the VAE and CFM modules
consistently outperform other settings? In other words, how does fine-tuning the VAE impact the
CFM’s forecasting accuracy?

To further analyze, in Table 6, we compute the similarity of latent spaces under different data
scales using CKA [22] and CKNNA [18]. The similarities are measured between pairwise samples
w/w.o semantic information, i.e., o′

d with o′
s obtained from fine-tuned VAE or VAE trained only

on fine-tuning data. We observe that the effectiveness of VAE fine-tuning is primarily attributed to
aligning the latent space of the new domain with that of the original domain, rather than improving
reconstruction accuracy. For example, when using 100% of the fine-tuning data o′

s, the non-pretrained
VAE achieves even higher mIoU/IoU than the pretrained one, yet the final performance shows a clear
gap—suggesting that preserving latent structure plays a more crucial role. Although paired data is
not available for the first two adaptation scenarios, estimating latent similarity in other domains could
further support our hypothesis, details are shown in Appendix.

4.4 Ablation study

Table 6: VAE fine-tuning evaluation in non-
semantic to semantic adaptation.

Pretrain Fine-tuning mIoU IoU CKA CKNNA Cosine
o′
d 10% o′

s 87.97 75.22 0.739 0.278 0.907
∅ 10% o′

s 75.81 72.27 0.653 0.221 0.183

o′
d 25% o′

s 88.91 76.92 0.721 0.273 0.900
∅ 25% o′

s 83.09 75.92 0.619 0.205 0.226

o′
d 50% o′

s 89.72 80.09 0.744 0.275 0.901
∅ 50% o′

s 90.26 82.03 0.600 0.194 0.237

o′
d 100% o′

s 92.10 82.56 0.750 0.275 0.910
∅ 100% o′

s 92.14 83.41 0.628 0.199 0.219

Table 7: Ablation study of different designs in
dynamic learning. We use 3s Mean mIoU here,
all experiments trained for 100 epochs.

Method U-Net CFM 3D Conv
after Temporal DiT CFG Scale mIoU

+ Baseline ✗ ✗ ✗ ✗ 1.0 17.42
+ UNet ✓ ✗ ✗ ✗ 1.0 17.77
+ CFM ✓ ✓ ✗ ✗ 1.0 20.14
+ 3D Conv ✓ ✓ ✓ ✗ 1.0 20.67
+ CFG ✓ ✓ ✓ ✓ 1.0 21.05
+ Rescale ✓ ✓ ✓ ✓ 10 23.33

As mentioned in Section 3.2, we now present a breakdown of the performance im-
provements contributed by each individual module. As shown in Table 7, we ob-
serve consistent gains from CFM, 3D convolution, and CFG components, while us-
ing classifier-free guidance gives us the most significant improvement in both IoU
and mIoU. We also examine the impact of NFE on FLOPS, FPS, and accuracy.

Figure 5: The performance
and efficiency of proposed
VAE + CFM architecture un-
der different NFE value dur-
ing the sampling process. We
observe that NFE=10 corre-
sponds to the best model per-
formance, with reasonable ef-
ficiency in terms of FPS and
Gflops per frame.

As shown in Figure 5, taking NFE=10, we get the best forecasting
accuracy while maintaining a considerable level of efficiency in
terms of run time and GFlops for the semantic occupancy forecasting
task. For the experiment of VAE data-efficient and other details,
please see the Appendix.

5 Conclusion
In this work, by designing a model that can be efficiently pretrained
on large-scale outdoor LiDAR data, we show it can be effectively
fine-tuned on diverse downstream tasks. Our approach consistently
outperforms training from scratch, especially in low-data regimes.
To address inefficiencies in existing models, we introduce a new
VAE structure for high-ratio LiDAR compression and a conditional
flow matching approach for forecasting. These components enable
strong reconstruction performance and improve training and infer-
ence efficiency without sacrificing forecasting accuracy. In addition,
our VAE fine-tuning strategies further boost performance. While
results are encouraging, future work is needed to extend general-
ization to additional environments, incorporate multi-modal inputs,
and integrate with planning and control systems. Overall, our find-
ings suggest that scalable and transferable LiDAR world models are
feasible and can significantly reduce reliance on annotated data in
practical applications.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our core innovation: the idea of a “more efficient and portable world model”
has been corroborated by subsequent experiments.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We address our model’s limitation when we discuss that sometimes when the
amount of fine-tuning data is close to that of the pretraining data, from-scratch training could
actually yield slightly better performance then fine-tuning model. We discuss the model’s
computational effiency of the model when performing Gflops, parameters, and FPS analysis
for semantic occupancy forecasting model.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our model is designed based on proved theoretical concepts (i.e. conditional
flow matching) and applying them into designing foundational model architecture.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the paper, we discuss our experiment and model setup including some
important selection of hyperparameters and model dimensions. Also, we will release our
code and pretrained weights to the foundational model for reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Yes, we will organize our repo and share the code, data, and weights for
the model to be tested and verified. We won’t release code during submission time for
anonymity.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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A Model Setup and Further Evaluation

A.1 Training Setup

For all flow matching based generative (foundational) model training, different from previous methods
[14, 23] that used several thousand training epochs, we used 4x RTX 4090 to train models for 200
epochs with a batch size of 8. We trained the VAE part for 100 epochs with a batch size of 16 if not
otherwise specified.

Following prior work[56], we also adopt the AdamW as the optimizer with β1 and β2 set to 0.9
and 0.99 for flow matching training, 0.99 and 0.999 for VAE training. We set the weight decay of
all normalization layers to 0 and all of the other layers’ to 0.001. The learning rate schedule has
a linear warmup followed by cosine decay (with the minimum of the cosine decay set to be 20%
of the peak learning rate). We also use EMA with a 0.9999 decay rate to ensure the updates of
parameters are stable. During the training, we found that the classifier free guidance is also important
in a flow-matching based framework. We randomly set 25% of historical latents in a batch to 0 during
training to let the model learn to generate future latents without any conditions. In the sampling
phase, we use a typical fuse method as shown in Eq. 3 to get the final output when it’s the t-th step,
where s is set to 2.

µ̂θ(zt, t, c; s) = (1 + s)µθ(zt, t, c) − sµθ(zt, t,∅) (3)

Finally, we also noticed that the matching of noise scale and latent scale is important. Different
from SD3’s VAE, the value of latent obtained from our VAE is actually smaller, with a standard
deviation of about 0.02, which makes it easy to drown the signal in noise if we use standard Gaussian
noise in the training phase. Therefore, we scaled the compressed latent up by a factor of 10 in the
implementation.

A.2 Evaluation metrics

In this section, we will provide the details of all metrics used to further evaluate the performance of
our proposed pipeline. All results will be presented in the last part of this section.

A.2.1 Latent space similarity metrics

Given od ∈ RH×W×D×C and its compressed latent z ∈ Rh×w×c, the compression ratio γ can be
calculated as in Eq. 4.

γ =
h× w × c

H ×W ×D × C
(4)

In Section 4.3, we introduce CKA (Centered Kernel Alignment) [22] and CKNNA(Centered Kernel
Nearest-Neighbor Alignment )[18] to evaluate the similarity of latent spaces as both metrics are
insensitive to linear transformations. Specifically, we treat each latent pixel (location) as an individual
sample (i.e., every sample in CKA/CKNNA evaluation can be represented as zi ∈ R1×c). For the
non-semantic to semantic adaptation subtask, given k samples from e latent, the representation
metrics from od and os can be denoted by X ∈ Ru×c and Y ∈ Ru×c respectively. We first construct
the kernel matrix:

Kij = exp

(
−∥Xi −Xj∥2

2σ2

)
, Lij = exp

(
−∥Yi − Yj∥2

2σ2

)
(5)

Then the CKA can be calculated as:

CKARBF(X,Y ) =
tr(KcLc)√

tr(KcKc) · tr(LcLc)
(6)

where Kc and Lc are centered K and L, using Kc = HKH , H = In − 1
n1n1

T
n . 1n is an all-ones

column vector. CKNNA is a revised version of CKA that focuses on the local manifold similarity.
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For every sample i in Kc and Lc, we use cosine similarity to find out the nearest k neighbor in
original samples, let knnKc and knnLc be the indices of its k nearest neighbors, respectively. Then
we can define a mutual-KNN mask α(i, j) by:

αij =

{
1, j ∈ knnKc(i) ∧ j ∈ knnLc(i),

0, otherwise,
i ̸= j. (7)

Local alignment is AlignKNN (Kc,Lc) =
∑u

i=1

∑u
j=1 α(i, j)Kc(i, j)Lc(i, j). CKNNA is:

CKNNA(K,L) =
Alignknn

(
Kc,Lc

)√
Alignknn

(
Kc,Kc

)
Alignknn

(
Lc,Lc

) (8)

Use k to represent the number of neighbors we selected, when k→u, αij = 1 for all off-diagonal
pairs and CKNNA reduces to the standard CKA.

A.2.2 Inception-based metrics

Fidelity measurement Following [6], we report both the 3-D Fréchet Inception Distance (FID)
and the Kernel Inception Distance (KID, i.e., the squared Maximum Mean Discrepancy in feature
space). Unlike FID—which assumes the Inception features form a single multivariate Gaussian and
thus compares only the first two moments—KID employs a characteristic RBF kernel and provides
an unbiased estimate that is sensitive to discrepancies in all higher-order statistics.

To obtain latent features from generated and ground-truth samples under comparable conditions,
we retrain an autoencoder on os. The autoencoder is based on the MinkowskiUNet32 architecture
(sparse)[11], but we adapt it to our 200 × 200 × 16 occupancy inputs by reducing the feature channels
from {64, 128, 256, 512} with four down-sampling stages to {32, 64, 128} with three down-sampling
stages. The training objective is to recover the compressed latent as much as possible under a
cross-entropy loss.

For the output of 6 frames of future semantic occupancy, we evaluated frame-wise FID and KID.
Specifically, we first extracted all non-empty voxels from the down-sampled semantic occupancy
(size 25, 25, 2) and took the average, rather than performing global pooling as in previous work,
to avoid the influence of empty voxels on the metrics. Given the flattened feature zg

i and ze
j from

individual samples, we use µg , µe and Σg , Σe to represent the mean and channel covariance matrix
over M ground truth samples and N estimated samples. Then we calculate FID with the following
equations.

FID = ∥µe − µg∥22 + Tr
(
Σe +Σg − 2

(
ΣeΣg

)1/2)
(9)

For KID, we use a RBF-kernel-based unbiased-statistic estimation version as shown in equation 10.

KID(P,Q) = MMD2
kσ
(P,Q)

=
1

N(N − 1)

∑
i̸=i′

kσ(z
g
i , z

g
i′) +

1

M(M − 1)

∑
j ̸=j′

kσ(z
e
j , z

e
j′)−

2

NM

N∑
i=1

M∑
j=1

kσ(z
g
i , z

e
j ),

where kσ(x,y) = exp
(
−∥x− y∥2/(2σ2)

)
.

(10)

Temporal Consistency Assessment FID and KID provide assessments of single-frame fidelity,
whilst for multi-frame continuity we adhere to previous methodology by employing FVD for eval-
uation. Given that no existing RGB video encoder can capture this 4D temporal information, we
modified the proposed VAE to enable it to measure the continuity of 4D occupancy. Within the
encoder and decoder shown in Figure 2, we respectively incorporated 3D attention/conv layers to
capture temporal information.

A.2.3 Negative log likelihood evaluation

Computation of exact log probability density Due to the stochastic nature of our proposed
conditional flow matching model, pairwise-sample-comparison metrics such as IoU and mIoU
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provide a limited measure of model quality, since these "deterministic" metrics penalize models for
generating diverse but plausible predictions of the future that are substantially different from the
recorded future. In other words, the model’s ability to capture the uncertainty in future prediction is
not measured well by the IoU and mIoU metrics. Therefore, we also evaluate the exact log probability
of our CFM model that doesn’t penalize it substantially for assigning probability density to other
modes.

With our CFM model, Gθ, we can compute the log probability of any generated future prediction or
future ground-truth samples with the following methods. First, as described by previous works [10],
the generative process of a continuous normalizing flow works as described below: starting from a
sample from a base distribution z0 ∈ pz0(z0) and a parametrized ODE Gθ = G(z(t), t; θ) which is
the flow function, we can obtain z(t1) from the target distribution by solving for the initial value
problem z(t0) = z0, ∂z(t)

∂t = G. In this process, the rate of change of log-probability density follows
the instantaneous change of variables formula [10]:

∂ log p(zt)

∂t
= −Tr(

∂G

∂z(t)
) (11)

With this equation, the total change in log probability density from t0 to t1 is calculated by integrating
with respect to time:

log p(z(t1)) = log p(z(t0))−
∫ t1

t0

Tr(
∂G

∂z(t)
) dt (12)

Given any sample x in the target distribution, we can compute z0 that generates x and the log
likelihood of x by solving for the following IVP [10]:{

z0 =
∫ t0
t1

G(z(t), t; θ) dt

log p(x)− log pz0(z0) =
∫ t0
t1

−Tr( ∂G
∂z(t) ) dt

(13)

with z(t1) = x and log p(x)− log p(t1) = 0.

After obtaining the change in log probability density, we can add this change to the log probability of
the prior distribution to determine the exact log likelihood of x.

Practically, as what is done for FFJORD [13], the trace of the Jacobian of the flow function can be
approximated with the Hutchinson’s trace estimator which takes o(n). Moreover, we use a standard
Gaussian as the base distribution which gives:

log pz0(z0) = −1

2

(
∥z0∥2 +D log(2π)

)
(14)

where D is the number of scalar dimensions of the sample. This enables us to determine the exact log
likelihood of any generated sample or sample from the future occupancy latent space (any sample
from the future occupancy distribution) numerically.

Details on NLL evaluation For all log likelihood values computed, we use an Euler ODE solver
with a step size of 0.02, relative and absolute tolerance of 1 × 10−5. The trace of the Jacobian is
obtained by utilizing Hutchinson’s trace estimator with the probe vector sampled from a Rademacher
distribution.

After obtaining the exact log probability, we evaluate the negative log likelihood in the form of
bits-per-dimension (BPD) which is obtained by:

BPD(x) = − log p(x)

D ln 2
(15)

where D is the number of scalar dimensions of the latent sample x and the division by ln 2 converts
the unit to bits.

DDPM log likelihood computation For discrete DDPM-based model, we need to construct and
solve the IVP introduced previously with a mathematically equivalent representation for the flow
function G.
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For a model (i.e. DOME [14] which is constructed based on a 1000-step DDPM) whose noise
variances {βk}N−1

k=0 are linearly spaced, to reuse the same parameters for likelihood evaluation, we
can embed this chain in the piece-wise–constant variance–preserving SDE

dxt = −1

2
β(t)xt dt+

√
β(t) dwt, β(t) = βk for t ∈

[
k

N−1 ,
k+1
N−1

)
. (16)

We can write its deterministic form [43]

ẋt = G(xt, t; θ) = −1

2
β(t)xt −

1

2
β(t) sθ(xt, t). (17)

with score sθ(xt, t) = −ε̂θ(xt, t)
/
σ(t). With this approximation of the flow function, the IVP can

be constructed and solved following the same procedure as the CFM model.

A.3 More results on semantic occupancy forecasting task

The NLL values in terms of BPD and the corresponding standard deviation (across the entire validation
set; we use ground-truth samples not the generated predictions) obtained from the semantic occupancy
forecasting task are shown in table 8. Our semantic occupancy forecasting model conditioned on
historical/past trajectory achieves comparable NLL values with DOME [14]: only 0.25% absolute
difference (4.1% relative) while DOME utilizes future trajectory in the condition. For our model
conditioned on future trajectory, the NLL value is lower than that of DOME by 25% relative difference
(1.49% absolute). This shows that our CFM model better fits the true future-occupancy distribution
than the previous (stochastic) SOTA model.

In terms of standard deviation in NLL, for our models (conditioned on either history or future
trajectory), the standard deviation is at least 86% (relative) less than that of DOME. This statistical
metric further supports the conclusion drawn above by demonstrating the high consistency of our
model’s performance in terms of assigning high probability to correct futures.

Table 8: Mean negative log-likelihood for different semantic occupancy forecasting models.
Model Mean NLL (bits/dim) Std. NLL
Ours (Hist. traj.) 6.29 0.04
DOME (Fut. traj.) 6.04 0.28
Ours (Fut. traj.) 4.55 0.02

Different from image, LiDAR occupancy from a BEV perspective has a clear depth correspondence
between grid cells and environments. However, the global pooling operation will take the average of
features in all grid cells, agnostic to geometric location. Here, inspired by [39], we also measured the
FID and MMD of features from different depth bins. Specifically, in the obtained ze

i ∈ R25×25×2,
every cell stands for 3.2m× 3.2m area in the environments. Based on the distance from the center
point, we divide the area into three zones: within ±8 m, ±8 to ±24 m, and ±24 to ±40 m. We then
take the average of the non-empty voxels in each zone and concatenate them to get the final feature
for evaluation, denoted as FIDr and KIDr in Table 9.

Table 9: FIDr and KIDr(×10−2) comparison for our method and other generative-based and
deterministic-based models.

Method 1s 2s 3s AVG
FIDr KIDr FIDr KIDr FIDr KIDr FIDr KIDr

OccWorld 46.20 6.98 44.91 6.51 44.00 6.23 45.03 6.57
DOME 18.09 2.28 21.56 2.87 25.03 3.46 21.56 2.87
Ours (Hist. traj) 7.20 0.78 12.39 1.47 17.80 2.49 12.46 1.58
Ours (Fut. traj) 6.71 0.74 12.29 1.54 16.82 2.32 11.94 1.53

Our model establishes a new state of the art on both FID and KID. On average, for our model
without future trajectories, it reduces FID to just 28.3%/48.5% and KID to 22.7%/44.4% of the
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scores reported by the deterministic (OccWorld) and stochastic (DOME) models, respectively. The
advantage remains under the stricter metrics FIDr and KIDr: our method attains only 23.36%/48.79%
(FIDr) and 19.30%/44.25% (KIDr) of the corresponding values.

Interestingly, we observed that the FIDr/KIDr of OccWorld decreases slightly (around 2%)
when we forecast longer-term future results. We attribute this to the auto-regressive displacement
forecasting design in OccWorld, which preserves more diversity at longer horizon, although the
overall performance is lower. Specifically, we calculated the category variance at different time
horizons (all numbers follow in ×10−3): for the ground truth, the variance fluctuated between 3.055
and 3.021, while in Occworld, it rose from 2.865 at t=0.5 seconds to 3.038, and our model fell from
3.086 to 2.821.

B Dataset introduction

As mentioned earlier, we used nuScenes Semantic Occupancy (os), KITTI360 raw sweeps[25], and
our own collection of indoor LiDAR data to test the three subtasks. In the semantic occupancy
forecasting task, we further divide nuScenes semantic occupancy data into pretrain set (o′

s) and
fine-tuning set. For pretraining, we use voxelized LiDAR sweeps in the nuScenes dataset. In Table
10, we list the specific number of frames of all these datasets after down-sampling to 2Hz.

Table 10: Training-validation set splitting for each dataset
Dataset training set validation set

os 19728 4219
o′
s 11208 4219

KITTI-360 12093 4912
Indoor LiDAR Dataset 23504 9720

nuScenes LiDAR sweep 22632 4368

Specifically, for the indoor LiDAR dataset, it consists of 25 sequences that we collected in 2 different
scenarios, using an OSO-128 LiDAR sensor with a 90-degrees vertical field of view. A robot, modeled
with unicycle kinematics, was manually driven through a university building over the course of five
days. An expert human operator controlled the robot, skillfully avoiding pedestrians while navigating
toward designated goals. As shown in Figure 6, compared to the data in the autonomous driving
scenario, where the vast majority of vehicles move parallel to ego vehicles, the data we collected
includes more complex trajectories with more objects (people).

As we mentioned in the main text, the amount of data after downsampling is still large considering
that we only collected this data in 2 scenes. This makes it easier for the model to learn domain-specific
knowledge and explains why the performance of our pretrained model drops after using more than
50% of the data.

C Detailed pretraining and fine-tuning results

In this section, we explain more details about the results from our experiments on how different
pretrained/from-scratch VAE and CFM combinations perform on each of the three subtasks, which,
again, are high-beam LiDAR adaptation, indoor occupancy forecasting, and semantic occupancy
forecasting. For LoRA[17], across all our downstream tasks, we choose a rank of 128 and α of 128.
Please check section E for details on this selection. All models present in this section are trained for
40 epochs.

C.1 High-beam adaptation and indoor occupancy forecasting

In Table 11 and Table 12, we organize the performance of each of the pretrain/from-scratch combi-
nations (VAE pretrained and CFM pretrained and fine-tuned with LoRA[17], both pretrained and
full-parameter fine-tuned, only CFM pretrained, and both from-scratch) for high-beam adaptation and
indoor occupancy forecasting in terms of IoU. IoU is computed through inferring the trained CFM
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(a) An enclosed indoor corridor with pedestrians walking parallel to the robot’s direction of motion.

(b) An indoor intersection with complex pedestrian trajectories.
Figure 6: Indoor dataset: We collected over 200K raw point cloud frames (was down-sampled to
around 23000 frames in training) at two indoor locations, incorporating complex movements of the
crowd and changes in the indoor scenery.

model with NFE=10. For the high-beam adaptation task, the pretrained CFM model is trained on
original LiDAR sweeps, denoted by Gv

θ . From the result, it is evident that full-parameter pretrained
(both or only-CFM, with or without LoRA) yields exceeding performance over from-scratch trainings.
Specifically, at 10% of fine-tuning data usage, our pretrained model with full parameter fine-tuning
achieves more than 14.48% relative performance improvement (more than 1.5% absolute performance
improvement) across the three-second forecasting horizon and even at 100% data usage, our model
still offers an absolute performance growth of about 1%. This demonstrates the effectiveness of our
pretrained foundational models in transferring geometric knowledge learned from 32 beam LiDAR
data to tasks that demand different geometric properties (64 beams in this case) at different availability
of fine-tuning data.

For the indoor occupancy forecasting task, we use the same pretrained CFM model as the high-beam
adaptation task. From the result, it is shown that at low data availability for fine-tuning (10% and
25%), our pretrained models achieve exceeding performance over the from-scratch training. But
when the amount of fine-tuning data increases to more than 50%, the from-scratch training obtains
comparable or even better performance. Again, we explain this performance threshold to be resulting
from the fine-tuning data amount which overrides the pretraining data and the lack of variance in the
geometry of the indoor occupancy dataset collected.

C.2 Semantic Occupancy Forecasting

For semantic occupancy forecasting task, the pretrained CFM model is trained on densified Li-
DAR frames, denoted by Gd

θ . The results with numerical value of mIoU and IoU for different
pretrained/from-scratch VAE and CFM combinations (NFE=10) at different fine-tuning data fractions
are presented in Table 13. It is shown that at 10% of fine-tuning data utilization, our pretrained
VAE and CFM with full-parameter fine-tuning provides a 11.17% absolute forecasting performance
improvement in mIoU. In general, even the performance gain decays as the amount of fine-tuning
data usage increases (which makes sense as it is getting closer and closer to the amount of pretraining
data), the effectiveness of our foundational model prevails across all fine-tuning data fractions (at
100%, we still have about 1% performance improvement over the from-scratch model). One key
thing to note is that we only fine-tune/train-from-scratch our semantic occupancy forecasting model
with half of the available semantic labels for nuScenes (50% of the data used for the same task for
other baseline models). This additional splitting of the training set is to prevent the overlap between
pretrain and fine-tuning data in terms of geometric structure, as both densified occupancy forecasting
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Table 11: High-beam adaptation fine-tuning results.
Data Fraction Horizon LoRA Full-parameter Only CFM-pretrained Train from scratch

10% 1s 18.57 20.69 19.23 16.42
2s 14.03 15.11 14.09 12.27
3s 11.77 12.33 11.49 10.77

25% 1s 22.70 21.74 20.45 18.53
2s 16.68 16.23 14.97 13.92
3s 13.77 13.03 12.00 11.69

50% 1s 23.70 22.78 21.95 21.43
2s 17.70 17.17 16.21 15.84
3s 14.60 14.02 13.17 13.01

100% 1s 24.16 24.50 24.00 23.40
2s 18.50 18.28 17.66 17.32
3s 15.39 14.93 14.16 14.08

Table 12: Indoor occupancy forecasting fine-tuning results.
Data Fraction Horizon LoRA Full-parameter Only CFM-pretrained Train from scratch

10% 1s 29.40 30.40 29.73 27.28
2s 26.60 26.45 25.82 24.96
3s 25.41 24.99 24.23 23.92

25% 1s 33.06 33.38 32.90 32.34
2s 28.70 29.36 28.70 29.10
3s 26.93 27.55 26.70 27.44

50% 1s 33.58 34.27 34.08 35.13
2s 28.97 30.19 29.73 31.24
3s 27.11 28.21 27.71 29.17

100% 1s 34.49 35.64 35.32 36.52
2s 30.11 31.71 31.07 32.50
3s 28.18 29.60 28.98 30.48

and semantic occupancy forecasting models share the same set of scenes and the difference is that
semantic occupancy forecasting data is labeled by category. This means that at 10% of fine-tuning
data usage, having both VAE and CFM full-parameter fine-tuned based on our foundational model is
able to achieve comparable performance with training-from-scratch and OccWorld (<±1.5% absolute
performance difference in both IoU and mIoU across the three-second forecasting horizon) with only
5% of the data it consumes. Please refer to section H for visualizations of the forecasting results.

Table 13: Breakdown of fine-tuning results on the semantic occupancy task.

Data Fraction Forecasting Horizon LoRA Full-parameter Only CFM Pretrain From Scratch
IoU mIoU IoU mIoU IoU mIoU IoU mIoU

10%
1s 35.92 23.29 36.24 25.95 36.05 24.09 27.00 13.52
2s 26.01 14.19 26.17 14.91 25.61 14.63 19.41 8.25
3s 20.60 9.80 20.87 11.09 20.24 10.21 15.81 6.14

25%
1s 37.21 27.42 37.85 28.88 36.64 27.80 33.84 22.73
2s 27.46 17.23 27.09 17.58 26.95 17.03 24.62 13.65
3s 22.04 12.31 21.36 12.30 21.61 11.84 19.29 9.38

50%
1s 37.17 28.47 38.40 30.84 37.09 28.23 37.02 28.10
2s 27.59 17.48 27.81 19.00 27.53 17.64 27.30 17.50
3s 22.31 12.44 22.14 13.62 22.29 12.58 21.80 12.34

100%
1s 37.13 28.83 38.91 31.64 36.59 28.39 38.21 30.54
2s 27.80 17.56 28.58 19.59 27.46 18.01 28.22 19.06
3s 22.65 12.52 23.13 14.22 22.50 13.02 22.31 13.45

29



D More details on representation alignment

As we mentioned before, during the pretraining phase, we found that it is more appropriate to use
new data in fine-tuning the original VAE as opposed to training a VAE from scratch, even though
the performance of our vae trained from scratch was excellent. We attribute this to the fact that the
pretrained generative model is in fact more adapted to the data distribution of the original latent,
whereas the subspace structure of a latent learned from scratch with fine-tuned data would in fact be
very different.

Specifically, for sub-task 3 (nonsemantic-to-semantic transfer), we cannot directly fine-tune the VAE
considering the inconsistent size of the embedding layers. Instead, we use the approach in Fig. 7:
considering that os and od match one-to-one, and the original VAE is fine-tuned on od, we can
directly constrain the direct outputs of the encoder: mu and sigma. Previous work has tried to use
bidirectional KL or EMD distance as a loss, but this does not work in our case: the data for the two
modalities are already very close, differing only by semantic information.

Table 14: Comparison of feature alignment metrics before and after alignment.

Dual KL EMD CKA CKNNA CosSim

Dense-Sem feature 0.004 0.008 0.739 0.278 0.183
Dense-Sem (Aligned) feature 0.002 0.004 0.944 0.410 0.907

Therefore we compared the latent from pair-wise od and os in line 1 of Table 14. We can see that
both Dual-KL and EMD are very close, only cosine similarity is very different, which actually show
us that the most significant difference in the latent learned from these two VAEs is in fact the direction
of the high-dimensional tensors. Then after using cosine similarity to constrain the os VAE learning,
the result is shown in line 2. With the tensor orientation restriction, we can successfully align the
latent of the two VAEs, and the subsequent generative model training demonstrates that our alignment
scheme can further improve the results.

Figure 7: Use pretrained VAE for od to implicitly
guide the structure of os latent space

Figure 8: The comparison of latent space struc-
ture for non-paired data (in subtask 1 and 2)

For different beam LiDAR adaptation and outdoor-indoor generalization, while we can directly fine-
tune the VAE, we cannot directly compare the similarity of the subspaces (CKA[22] and CKNNA[18]
require the same or pair-wise samples as inputs to different networks). Our solution is shown in Figure
8. First, we use the original pretrained VAE, denoted by q(zd|od) to get the latent of fine-tuning data
without any training (adaptation), denoted by zold. Then we use the fine-tuned and training from
scratch VAE to obtain the zb and za. If our hypothesis is correct, the distance between (za, zold)
should be smaller than (zb, zold).

As data shown in Table 15 and 16, we listed the (za, zold) and (zb, zold) in every 2 continuous lines
for different fractions of fine-tuning data. We observe that with the increase of the data amount used
to fine-tuning the VAE, we can have better results in terms of IoU, even better (when using 100%
high beam KITTI data) or very close to the pretrained one. However, what really determines the
forecast performance is actually the similarity between the latent space after fine-tuning the VAE
and the latent space after only pretraining. Compared to training from scratch, the latent space after
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fine-tuning the VAE is more similar to the latent produced by using pretrained weight directly, which
allows for better use of the knowledge from the foundational model. In other words, fine-tuning the
VAE is in fact about leaving the original latent space as unaltered as possible while allowing the
weights of the original VAE to be adapted (and accurately compressed) to the new sample.

Table 15: VAE fine-tuning evaluation in differ-
ent beam adaptation

Pretrain Fine-tuning IoU CKA CKNNA
ov 10% KITTI 97.97 0.661 0.231
∅ 10% KITTI 85.08 0.477 0.171

ov 25% KITTI 98.16 0.625 0.214
∅ 25% KITTI 88.66 0.489 0.188

ov 50% KITTI 98.31 0.610 0.211
∅ 50% KITTI 90.79 0.495 0.188

ov 100% KITTI 98.40 0.611 0.208
∅ 100% KITTI 98.46 0.494 0.189

Table 16: VAE fine-tuning evaluation in out-
door to indoor adaptation.

Pretrain Fine-tuning IoU CKA CKNNA
od 10% Indoor 95.82 0.739 0.245
∅ 10% Indoor 88.77 0.592 0.186

od 25% Indoor 96.65 0.720 0.233
∅ 25% Indoor 92.14 0.606 0.199

od 50% Indoor 97.15 0.691 0.221
∅ 50% Indoor 94.09 0.611 0.203

od 100% Indoor 98.18 0.688 0.220
∅ 100% Indoor 95.97 0.609 0.200

E Analysis on LoRA fine-tuning with different ranks

To determine the optimal LoRA[17] configuration for our downstream tasks, we tested the following
ranks: 32, 64, and 128 with α = rank and a dropout rate of 0.05 on the semantic occupancy
forecasting subtask with 10% of fine-tuning data and both VAE and CFM components pretrained as
explained earlier. We apply LoRA only to the linear layers, embedding layers, 2D and 3D convolution
layers in the CFM architecture. The training is done for 40 epochs for LoRA and full-parameter
fine-tuning baseline. The goal of this mini-scale experiment is to find the balance between model
performance and parameter efficiency. The result is shown in table 17. First, after sampling the
CFM, the model yields suboptimal performance under the rank of 32 and 64, with 3.51% and 2.48%
absolute performance gaps with the full-parameter fine-tuning in terms of mean mIoU across three-
second forecasting horizon, respectively. This indicates that the model does not acquire a satisfactory
level of semantic information from fine-tuning data within the 40 epochs training process which
might be caused by lack of depth in the LoRA layers. On the other hand, rank of 128 demonstrates
performance that is closest to the full-parameter fine-tuning: 0.25% less in mean IoU and 0.91% less
in mean mIoU. This shows that a rank of 128 offers enough depth for information to be extracted
from the semantic occupancy data and demonstrates comparable performance against the baseline.
This rank and α combination is what we presented earlier for all downstream tasks under the "LoRA"
fine-tuning category.

We did not test any higher or lower rank because: since both ranks of 32 and 64 have a considerable
performance gap compared to the full-parameter fine-tuning, lower rank means even less parameters
(depth) for LoRA layers which makes the model less likely to learn useful information from the fine-
tuning data and consequently, is unlikely to achieve comparable performance with the full-parameter
method; on the other hand, a rank of 128 already has 10.21 million trainable parameters in total where
our CFM model alone only has 11.51 million parameters. This means that under such rank, we are
fine-tuning about the same number of parameters as the full-parameter fine-tuning approach.

Table 17: Comparison of different LoRA configurations (rank and α values) and full parameter
fine-tuning for semantic occupancy forecasting task. We report the method type, number of trainable
parameters, mean IoU, and mean mIoU. Note that our full-parameter CFM models only have 11.51
M parameters, excluding VAE which has 18.86 M parameters.

Method Rank α Parameters (M) mean IoU ↑ mean mIoU ↑

Full-parameter - - 11.51 27.76 16.67
LoRA 32 32 2.55 26.27 13.16
LoRA 64 64 5.10 27.14 14.19
LoRA 128 128 10.21 27.51 15.76
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F Additional ablation studies

F.1 The data efficiency of proposed VAE structure

Follow the official split of train/validation set in nuScenes, we test the proposed VAE performance
under different fractions of training data. As shown in Table 18, our method only needs half of the
training data to exceed all of the previous data compressors, as we mentioned in the abstract.

Table 18: Performance of proposed VAE under different training data fraction, under 192x compres-
sion rate, 100 epochs training

Data fraction IoU mIoU

100% 85.8 93.8
50% 83.4 92.1
25% 82.0 90.2
10% 78.9 85.8

F.2 VAE and forecasting result break down

Table 19: Per-class IoU and overall metrics across different semantic occupancy compression models.
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OccWorld[58] 16 65.7 62.2 45.0 72.2 69.6 68.2 69.4 44.4 70.7 74.8 67.6 56.1 65.4 82.7 78.4 69.7 66.4 52.8 43.7
OccSora[45] 512 27.4 37.0 11.7 22.6 0.0 34.6 29.0 16.6 8.7 11.5 3.5 20.1 29.0 61.3 38.7 36.5 31.1 12.0 18.4
OccLLAMA[48] 16 75.2 63.8 65.0 87.4 93.5 77.3 75.1 60.8 90.7 88.6 91.6 67.3 73.3 81.1 88.9 74.7 71.9 48.8 42.4
DOME[14] 64 83.1 77.3 36.6 90.9 95.9 85.8 92.0 69.1 95.3 96.8 92.5 77.5 85.6 93.6 94.2 89.0 85.5 72.2 58.7

Ours 192 92.8 85.8 88.5 97.8 97.5 93.7 96.0 86.2 98.4 97.6 97.6 92.1 94.7 97.2 98.5 95.8 94.8 83.6 68.3

In Table 19, we present the compression performance of the proposed VAE across different semantic
categories. With a 3× compression ratio, our method consistently outperforms prior approaches in
all categories. Notably, for rare classes such as Construction Vehicle, Trailer, and Vegetation, our
model achieves improvements of 22.2%, 18.8%, and 25.4% over DOME’s VAE, respectively. These
results indicate that our VAE effectively mitigates the impact of data imbalance across categories in
the compression process.

Table 20: 3 seconds average per-class IoU for semantic occupancy forecasting
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OccWorld[58] 17.13 26.63 12.23 20.77 8.27 20.50 19.86 12.58 7.89 8.95 8.45 13.04 17.73 35.09 23.65 23.97 20.66 17.01 20.17
Ours (Hist. Traj.) 23.33 31.78 21.41 23.70 15.33 26.00 23.05 27.44 13.19 10.29 13.10 21.89 24.85 40.68 30.99 29.29 26.64 21.52 26.57

DOME[14] 22.18 32.13 19.84 25.66 15.36 21.03 21.98 23.96 11.36 7.99 14.79 18.02 21.58 39.84 30.46 28.74 25.35 23.01 27.22
Ours (Fut. Traj.) 28.49 37.52 28.38 33.77 19.99 29.81 28.17 32.46 18.76 12.08 20.78 25.59 30.85 43.27 34.01 32.65 29.34 30.10 34.26

Now, we present a per-category performance analysis. In Table 20, we compare the average IoU for
3s under each category. Compared to OccWorld[58] , our improvement in forecasting performance
for medium-sized objects is particularly significant: we improve the forecasts of bicycle, Const. Veh.
and Motorcycle by 85.36%, 118.12% and 67.17%, respectively. A broad performance gain is also
observed when including future trajectory as a condition, the top 2 improvement categories are also
small objects, relatively 65.18% and 51.2% for Motorcycle and Pedestrian respectively.

F.3 Forecasting performance as a function of the VAE’s compression ratio

We present the reconstruction rates of the VAE architecture at various compression ratios in Table 2.
Then a further question arises: which category of information is more susceptible to loss? In Table
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21, we show the performance drop for 4 listed reconstruction rates. Interestingly, we notice that the

Table 21: Proposed VAE per category reconstruction rate break down for different compression ratio
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x32 98.56 99.38 98.61 99.54 99.68 97.69 99.59 99.46 99.07 98.84 99.21 99.71 99.59 99.21 98.83 97.87 93.66
x192 88.51 97.80 97.45 93.63 96.00 84.19 98.42 97.65 97.68 89.12 92.71 97.27 98.56 94.40 93.86 83.66 68.27
x384 79.56 95.14 96.03 87.75 88.94 75.26 96.34 95.28 95.33 81.89 85.67 93.01 96.61 86.94 86.61 72.52 58.32
x768 66.14 88.74 90.77 79.57 78.89 62.37 90.49 88.07 87.73 69.97 76.63 87.55 90.74 77.29 76.03 62.53 50.56

Drop (x32->x192) 10.05 1.58 1.16 5.91 3.68 13.50 1.17 1.81 1.39 9.72 6.50 2.44 1.03 4.81 4.97 14.21 25.39
Drop (x32->x384) 19.00 4.24 2.58 11.79 10.74 22.43 3.25 4.18 3.74 16.95 13.54 6.70 2.98 12.27 12.22 25.35 35.34
Drop (x32->x768) 32.42 10.64 7.84 19.97 20.79 35.32 9.10 11.39 11.34 28.87 22.58 12.16 8.85 21.92 22.80 35.34 43.10

voxel missing in the small and rare foreground objects is much less severe than in the background
(vegetation, manmade) and large objects (construction vehicle) during compression ratio increase,
while these small targets are more important for safe driving.

Next we show the forecast performance as a function of VAE for different compression rates. First,
the results of CFM based on latent with different compression ratios are shown below. For time
considerations, all CFMs here are trained for 200 epochs. At the highest reconstruction rate of x32,

Table 22: Forecasting result with different compression ratio VAE
Compression 1 s IoU 1 s mIoU 2 s IoU 2 s mIoU 3 s IoU 3 s mIoU Avg IoU Avg mIoU
x32 38.40 28.96 28.54 18.52 23.14 13.48 30.02 20.31
x192 40.53 33.17 30.37 21.09 24.44 15.64 31.78 23.33
x384 39.68 32.96 29.95 20.91 24.25 14.98 31.29 22.95
x768 34.66 27.10 24.51 17.30 22.61 12.95 27.26 19.11

we find that the network is not fully fitted at 200 epochs, and a longer training time may allow the
network to fit better. However, since this is clearly contrary to the ‘sample/training efficiency’ of this
paper, we keep the training time the same for fair evaluation. For latents with higher compression
multiples, the forecast performance continues to degrade. We believe that this is not only due to the
fact that it retains less information on large objects, but also because at larger compression multiples,
latents become very sensitive to noise, i.e., the latent space loses smoothness. We find that at multiples
of x384 and x768, noise of the order of 1e-4 can crash the network (the magnitude of the latent
quantity is approximately between 1e-2 and 1e-3).

F.4 Model performance with different fractions of pretraining data

In the previous section, we showed that based on the foundational model, the performance boost
when we increase the fine-tuning data amount and also the result w/w.o the foundational model.
But another question is whether the performance of the model improves with the inclusion of more
pretraining data? We designed a simple experiment to answer this question.

Figure 9: Performance improvement from different ratios of pretraining data

We choose 25% of fine-tuning data for 3 different subtasks to simplify the fine-tuning. In Fig. 9,
100% data on the x-axis represents the full pretraining data Ov. We observe a clear performance
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improvement (relative improvements of 21.9% , 22.2%, and 12.9% for indoor occupancy forecasting,
semantic occupancy prediction, and high-beam adaptation tasks) as the amount of pretraining data
varies from 50% of Ov to 100%.

F.5 CFM performance sensitivity analysis with sampling randomization

The inference process of flow matching is essentially solving the Probability Flow ODE (PF-ODE)
as mentioned by previous works[42], which is actually deterministic given the sampled Gaussian
noise is fixed. Here we designed an experiment which explores the performance change when using
different i.i.d. Gaussian noise as input. Specifically, using the Euler solver, we evaluated the semantic
occupancy forecasting model with 5 random seeds and recorded the average and standard deviation
for IoU and mIoU across the three-second forecasting horizon (on the validation data).

We present the results in Table 23, and note that the standard deviation of the performance metrics
for all three models is less than 1% of the mean across the entire forecasting horizon. Therefore, we
conclude that our CFM model has low performance sensitivity to randomization in the sampling
process and the uncertainty around the performance metrics evaluated is minimal.

Table 23: Different CFM models and their average IoU/mIoU (±std) over a three-second horizon,
tested with 5 different random seeds.

Model trained on IoU↑ mIoU↑
1s 2s 3s Avg 1s 2s 3s Avg

Ov 26.67±0.02 21.56±0.01 18.26±0.02 22.26±0.02 – – – –
od 39.82±0.13 29.34±0.04 23.73±0.07 30.93±0.01 – – – –
Os 40.64±0.10 30.31±0.06 24.21±0.17 31.72±0.04 33.57±0.28 21.15±0.05 14.99±0.46 23.25±0.06

G Limitation and future work

Physical consistency. Although our method achieves state-of-the-art performance across different
time horizons, the issue of continuous consistency in generated videos remains unresolved. For
foreground objects, our current solution only achieves smooth output by performing timing processing
within the network structure, but in the generated scenes, foreground objects are still prone to
discontinuities. As shown in Table 20, although our work has greatly improved the accuracy of the
forecasted foreground objects, there is still no theoretical or design guarantee that the foreground
object will be continuous in the output (i.e., it will not suddenly appear or disappear in a few frames).

Multi-modality forecasting. For a safe end-to-end autonomous driving system, it is still very difficult
for the current occupancy world model to not only decode the occupancy map after obtaining the
future representation, but also forecast the future multi-modal trajectories of surrounding agents. As
we shown in Table 23, the randomness in flow matching or diffusion (originates from Gaussian noise),
under a given condition, the future forecast outputs are in fact quite fixed. This may be solved via
more detailed control for foreground and background generation. We hope that this work will provide
an efficient implementation framework for solving this issue in the future and accelerate the progress
of subsequent work.

H Visualization

H.1 Samples from the pretrained model

Here we visualize the forecasting results for two of the foundational models that are pretrained.
Specifically, visualization for sparse occupancy forecasting is shown in figure 10 and visualization for
dense occupancy forecasting is shown in figure 11. Please check more visualizations on our project
page.
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Figure 10: Visualization for the sparse occupancy(Ov) forecasting over the three-second forecasting
horizon.

Figure 11: Visualization for the dense occupancy(od) forecasting over the three-second forecasting
horizon.
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H.2 Samples from the semantic occupancy forecasting model

Figure 12: Visualization for the semantic occupancy(Os) forecasting over the three-second forecasting
horizon. Compared to the previous method, our method retains more details in this example (as
shown in the red circle)

Figure 13: Visualization for the semantic occupancy(Os) forecasting over the three-second forecasting
horizon for an intersection. Compared to the previous method, as shown by the yellow circle, our
methods better forecasts foreground (close-ranged) objects such as cars and barriers.
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