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ABSTRACT

For tabular datasets, the change in the relationship between the label and covariates
(Y |X-shifts) is common due to missing variables. Since it is impossible to general-
ize to a completely new and unknown domain, we study models that are easy to
adapt to the target domain even with few labeled examples. We focus on building
more informative representations of tabular data that can mitigate Y |X-shifts, and
propose to leverage the prior world knowledge in LLMs by serializing the tabular
data to encode it. We find LLM embeddings alone provide inconsistent improve-
ments in robustness, but models trained on them can be well adapted to the target
domain even using 32 labeled observations. Our finding is based on a systematic
study consisting of 7650 source-target pairs and benchmark against 261,000 model
configurations trained by 20 algorithms. Our observation holds when ablating the
size of accessible target data and different adaptation strategies.

1 INTRODUCTION

Predictive performance degrades when the distribution of target domain shifts from that of source
(training) (Bandi et al., 2018; Wong et al., 2021; Hand, 2006; Ding et al., 2021a; Amorim et al., 2018).
Distribution shifts can be categorized into shifts in the marginal distribution of covariates (X-shifts)
or changes in the relationship between the label and covariates (Y |X-shifts). In computer vision,
X-shifts are prevalent since high-quality human labels are consistent across different images (Recht
et al., 2019; Miller et al., 2021; Shankar et al., 2019); in contrast, Y |X-shifts are prevalent in tabular
data due to missing variables and hidden confounders. There is a large body of work addressing
X-shifts due to its dominance in vision and language (Li et al., 2017; Zhuang et al., 2020; Zhou et al.,
2022), yet the work on Y |X-shifts remain relatively limited (Liu et al., 2023).

The main challenge with addressing Y |X-shifts in tabular tasks is that the source data may provide
little insight on the target distribution. Since it is impossible to generalize to a completely new and
unknown domain (Arjovsky et al., 2019; Rosenfeld et al., 2021), we focus on leveraging few labeled
target examples (on the order of 10 to 100) to address small Y |X-shifts that negatively impact model
performance. Our goal is to build a feature representation ϕ(X) such that the difference between
Esource[Y |ϕ(X)] and Etarget[Y |ϕ(X)] are learnable even based on a few target data.

Using the wealth of world knowledge learned during pre-training, LLMs have the potential to build
representations that mitigate the impact of confounders whose distribution changes across source and
target. Specifically, we use a LLM encoder (e5-Mistral-7B-Instruct) to featurize tabular
data—which we referred to as LLM embeddings—and fit a shallow neural network (NN) on these
embeddings for tabular prediction (Figure 1). In contrast to classical numerical encoding of tabular
data, our approach automatically incorporates the semantics of each covariate using off-the-shelf
LLMs, and can include additional contextual domain-level information that can help account for
missing variables whose distribution shifts from source to target.

In this work, we restrict attention to lightweight probing approaches instead of expensive end-to-end
updates (Hegselmann et al., 2023; Yang et al., 2024) that require full weight access and weight
updates to the LLM (we find this infeasible across the thousands of source-target pairs we consider).
Throughout our investigation, we use the same LLM encoder to extract the LLM embeddings, and
we only “finetune” the shallow NNs we use as the main prediction model across target domains.
Investigating how different LLM encoders affect tabular Y |X shifts is left as a future work.
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Figure 1: Overview of methods incorporating LLM embeddings.

For rigorous empirical evaluation, we consider 7,650 natural spatial shifts (source→target) based on
three real-world tabular datasets (ACS Income, Mobility, Pub.Cov (Ding et al., 2021a)).
Our testbed serves as a large-scale benchmark for Y |X-shifts on tabular data, offering a standardized
protocol for training, validation, testing, and finetuning, as well as a consistent hyperparameter
selection process. Compared to previous benchmarks on tabular distribution shifts (Liu et al., 2023),
this paper not only explores a significantly greater variety of shift settings but also introduces a series
of novel approaches to incorporate LLM embeddings as features. Such a comprehensive evaluation
ensures the robustness and adaptability of our findings across diverse scenarios, setting a new standard
for future work in this domain. We compare our proposed approach with typical methods on Tabular
features, including basic models (LR, SVM, NN), gradient-boosting trees (GBDT; XGB, LGBM,
GBM), and distributionally robust methods (DRO; KL-DRO, χ2-DRO, Wasserstein DRO, CVaR-
DRO, and Unified-DRO). In total, we consider 20 algorithms and 261,000 model configurations.

Since it is unrealistic to expect any single method to uniformly dominate over large number of
source→target settings, we complement traditional average-case metrics using the fraction of times
each method performs best. For each method M,

FractionBest(M; ∆) :=
|S(∆) ∩ SM|

|S(∆)| , (1)

where S(∆) contains all source→target settings where the performance between the best and second
best model is larger than ∆ (we set ∆ = 1% in this paper), and SM contains all source→target
settings where model M performs the best. FractionBest calculates the proportion of source→target
settings where (i) M outperforms all other methods and (ii) the improvement over the second-best
model is meaningful (and significant).

First, we consider LLM embeddings without any adaptation to labeled target data1. Shallow networks
based on LLM embeddings (LLM|NN) outperform all other methods on tabular features in 85%
settings in the ACS Income dataset, and in 78% in the ACS Mobility dataset. However, for the
ACS Pub.Cov dataset, the FractionBest drops to 44%, which indicates that LLM embeddings do
not always offer a perfect solution (see Figure 2 (a)-(c)). We conclude LLM embeddings sometimes
improve robustness, but do not consistently surpass state-of-the-art tree-ensemble methods.

However, we find that finetuning the prediction model (shallow NN) with few target samples can
make a big difference even when using identical LLM embeddings. When finetuning with just 32
target samples, the FractionBest ratio (Equation (1)) remains at 85% on ACS Income, improves
from 78% to 86% on ACS Mobility, and from 44% to 56% on ACS Pub.Cov (see Figure 2
(d)-(f)). We find this improvement surprising: although the shallow NN has numerous parameters,

1We do not conduct any target adaptation; however, we use 32 labeled target samples for validation (selection
of hyperparameters, etc.).
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Figure 2: The FractionBest Ratio in Equation (1) (with ∆ = 1%). We compare our proposed
methods—(a)-(c): LLM|NN and (d)-(f): LLM|NN (finetuning)—with methods on Tabular features.

finetuning with only 32 target samples surprisingly improve target performance by a relatively large
margin. More importantly, such improvement is observed under Y |X shifts and holds across a wide
range of distributional shift settings. This implies the potential of our novel and lightweight approach,
and opens up the door for further investigation of using LLM embeddings in tabular classification
tasks. Theoretical insights are discussed in Section 4.

Our method also implies multiple additional benefits (See Section 3.2). With the same amount of target
samples, the finetuned NNs significantly outperform in-context learning with GPT4-mini, the SOTA
decoder model (see Figure 2 (d)-(f)). Moreover, the performance gain brought by target samples is
larger under stronger Y |X-shifts, where the level of Y |X-shifts is measured by DISDE (Cai et al.,
2023). Finetuning with 32 target samples yields an average performance gain of 5.4 percentage points
across the worst 500 settings on ACS Pub.Cov, compared to no finetuning. This is notably higher
than the 1.2% average gain observed across all 2550 settings (4.5 times).

Beyond our primary findings, we also conduct ablation studies to better understand our approach in
Section 3.3. Given the large number of model parameters and limited labeled target samples, one
might expect parameter-efficient methods like Low-Rank Adaptation (LoRA) (Hu et al.) and Prefix
Tuning (Li & Liang, 2021) to offer a clear advantage for target adaptation. However, we find the
specific finetuning approach has small impact on target adaptability under tabular Y |X-shifts. In Fig-
ure 7, all target adaptation methods significantly outperform the non-finetuned version when using
LLM embeddings. On the other hand, incorporating the “right” domain information has an outsize
impact on adaptability to Y |X-shifts. For ACS Pub.Cov, adding additional domain information
from Wikipedia shows minimal improvement alone, but significantly enhances performance under
target adaptation.

Another practical question is how to allocate a fixed number of labeled target samples between target
adaptation and validation (selection of finetuning method, hyperparameters, etc). In Figure 8 to
come, we compare two allocation schemes of 64 labeled target samples: (i) using all 64 samples for
validation (solid bar), and (ii) dividing the samples into 32 for validation and 32 for finetuning (shaded
bar). For ACS Mobility and ACS Pub.Cov, target adaptation provides significant gains over
the validation-only approach, highlighting the need for further investigation into sample allocation.

Related work Tabular data is a common modality in electronic health records, finance, and social
and natural sciences. Unlike other modalities like images and text, gradient-boosted trees (GBDT;
GBM (Friedman, 2001; 2002), XGBoost (Chen & Guestrin, 2016), LGBM (Ke et al., 2017)) remain
the state-of-the-art (Gorishniy et al., 2021; Shwartz-Ziv & Armon, 2022; Gardner et al., 2022) even
when compared to neural networks specifically designed for tabular data (Arik & Pfister, 2021;
Huang et al., 2020; Kadra et al., 2021; Katzir et al., 2020). GBDTs have recently been observed
to provide strong performance under distribution shifts, which forms the basis of its use as a main
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baseline (Gardner et al., 2022; Liu et al., 2023). In addition, some recent works employ in-context
learning to address the few-shot classification problem (Hegselmann et al., 2023; Yang et al., 2024).
However, they are significantly more resource-intensive to finetune the LLM itself. Given the huge
number of settings, we only compare with GPT4-mini for this line of research in this work. Besides,
while we use standard LLMs to generate embeddings, LLMs specialized for tabular data (Yan et al.)
can also be used as embedding extractors.

A wide range of methods have been proposed to address distribution shifts, notably robust learning
methods, balancing methods, and invariant learning methods. Distributionally robust optimization
(DRO) construct an uncertainty set around the training distribution and optimizing for the worst-case
distribution within this set, thereby mitigating the impact of potential distribution shifts. Variants of
DRO methods have been developed using different distance metrics, such as χ2-divergence (Duchi
& Namkoong, 2021; Duchi et al., 2021), KL-divergence (Hu & Hong, 2013), and Wasserstein
distance (Blanchet et al., 2017; 2018; 2019a; 2023a). However, these approaches have recently been
observed to be ineffective in addressing real-world tabular distribution shifts Liu et al. (2023). On
the other hand, invariant learning (Peters et al., 2016; Arjovsky et al., 2019; Koyama & Yamaguchi,
2020) seeks to learn causally invariant relationships across multiple pre-defined environments. In
this work, we include 5 typical DRO methods but do not consider invariant learning methods as
they require multiple training environments, which is not the focus of this work. Some statistical
works (Li et al., 2022; Tian & Feng, 2023) provide theoretical guarantees for simple linear models
in transfer learning, but these guarantees often do not extend to more complex models like decision
trees or neural networks used in real-world applications. This version improves clarity and flow while
retaining the original meaning.Additionally, many studies have explored domain adaptation (Iwasawa
& Matsuo, 2021; Liang et al., 2023; Chen et al., 2023). However, most of these focus on X-shifts in
image data, whereas our work addresses Y |X-shifts in tabular data.

2 METHODS

In this section, we introduce a series of methods utilizing LLM embeddings for tabular prediction, as
well as different choices to incorporate additional domain information, different model architectures,
and target adaptation techniques using a small amount of labeled target samples. To the best of our
knowledge, this work is the first to comprehensively explore the impact of LLM embeddings on
tabular Y |X-shifts.

2.1 LLM EMBEDDINGS FOR TABULAR PREDICTION

We first introduce how we transform tabular data into LLM embeddings, where the key idea is to
serialize each sample into a natural language format that the LLM can process. There is a substantial
body of research on serialization, including using another LLM to rewrite tabular data into natural
language (Hegselmann et al., 2023), adding descriptions of the classification task, training and test
examples (Hegselmann et al., 2023; Slack & Singh, 2023), etc. Among these methods, Hegselmann
et al. (2023) demonstrate that using a straightforward text template with a task description consistently
achieves the best empirical performance.

Using an income prediction problem to illustrate, consider a simple task description
such as “Classify whether US working adults’ yearly income is above
$50000 in 2018.” along with a simple serialization template that enumerates all features
in the format “The [feature name] is [value]”. Adopting this serialization approach,
we employ the encoder model e5-Mistral-7B-Instruct to generate the LLM embedding.
Formally, the encoder takes the serialization Serialize(X) of sample X as input and outputs its
corresponding embedding Φ(X) as

X
serialization−−−−−−→ Serialize(X)

e5-Mistral-7B-Instruct−−−−−−−−−−−−−−−−→ Φ(X).

Since e5-mistral-7b-instruct requires input data to be formatted in the following template:

Instruct: description of the classification task \n
Query: description of the data,

we provide task description in the “Instruct” part, and use the serilization template to format the
tabular data in the “Query” part. An illustrative example is provided in Part A-D of Figure 1, with
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additional details available in Appendix A.1. Analyzing the impact of different LLM encoders, task
descriptions, and serialization methods is left for future work.

2.2 ADDITIONAL DOMAIN INFORMATION

Another advantage of using LLM embeddings is their ability to incorporate additional domain
information or prior knowledge, denoted by C. As demonstrated in Section 1, incorporating domain-
specific information can help address Y |X-shifts and improve generalization performance in the
target domain.

In this work, we propose a simple yet effective approach for integrating domain knowledge into
tabular predictions. Rather than combining the domain information with serialized tabular data
and generating a single LLM embedding, we generate separate LLM embeddings for the domain
knowledge and the serialized tabular data, and then concatenate them together. The benefits of this
approach are twofold: (a) although the domain information may contain significantly more words than
the serialized tabular features, our concatenation method ensures a balanced 1:1 ratio between the
two, preventing a single embedding that disproportionately focuses on the longer domain information;
(b) by separating the tabular features from the domain information, we can efficiently update the
domain information without having to regenerate all the embeddings for the entire dataset.

We explore three sources of domain information: Wikipedia, GPT-4, and labeled target samples.
Given that our experiments (see Table 1 and Section 3) focus primarily on socioeconomic factors,
we collected “Economy” data for each U.S. state from Wikipedia as C. For GPT-4, we prompt it
to provide background knowledge relevant to each prediction task in each state as C. For labeled
target samples, we serialize 32 labeled samples from the concerned domain as the prior knowledge
C. Further details can be found at Appendix A.2. After obtaining domain information C, we use
e5-mistral-7b-instruct to generate an LLM embedding for C. As illustrated in Parts E.2
and F.1 of Figure 1, this embedding is then concatenated with the LLM embeddings of the tabular data,
which serve as input to the backend neural network models (NN). This approach allows us to generate
the LLM embedding for the dataset just once, and subsequently concatenate it with embeddings
from different prompts as needed. In Section 3, we study whether and how this additional domain
information can enhance generalization under Y |X-shifts.

In addition, recent works on prompt engineering have focused on incorporating additional domain
information to enhance prediction tasks, often through detailed instructions (Schick & Schütze,
2020; Shin et al., 2020). Our proposed framework introduces a novel approach to leveraging such
information and remains fully compatible with these existing methods.

2.3 MODEL TRAINING AND TARGET ADAPTATION

Model architecture For the backend model, we use a vanilla neural network (NN) classifier on both
tabular features and LLM embeddings for tabular data classification. The NN is a simple feedforward
neural network with several hidden layers, dropout layer, and ReLU activation functions.

When adding additional domain information via an embedding layer, the same embedding is applied
to all samples from the same domain. Since the output of e5-mistral-7b-instruct is a
4096-dimensional vector, we simply concatenate the LLM embeddings with the embeddings of the
domain information. This concatenated vector is then passed through the hidden layers, dropout
layer, and ReLU activation functions. For all NNs, the final linear layer an output dimension of
2, followed by a softmax layer for binary classification. During training, we use cross-entropy as
the loss function, batch size as 128, and use the Adam optimizer. Detailed model architecture and
hyper-parameters are provided in the Appendix A.3 and A.4, with a discussion on hyperparameter
selection provided in Section 3.1.

Target Adaptation Even with the incorporation of LLM embeddings and domain information, our
model may still experience Y |X-shifts. In practice, it is common to have a small set of samples from
the target domain, which can be leveraged to better adapt the model to the target domain.

For each (source domain, target domain) pair, we begin by selecting the best training hyperparameter
based on a validation criterion, which will be discussed in the Section 3.1. Using this model trained
on the source domain, we explore four primary methods for target adaptation: in-context domain info,
full-parameter fine-tuning, low-rank adaptation (LoRA), and prefix tuning for domain information.
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Table 1: Details of datasets used in this work. “# Source→Target Pair” denotes the number of
distribution shift pair for each dataset, and we consider the natural spatial shift between US states.

#ID Dataset #Samples #Features Outcome #Source Domains #Target Domains #Source→Target Pair

1 ACS Income 1.60M 9 Income≥50k 51 (US States) 50 (US States) 2550
2 ACS Mobility 621K 21 Residential Address 51 (US States) 50 (US States) 2550
3 ACS Pub.Cov 1.12M 18 Public Ins. Coverage 51 (US States) 50 (US States) 2550
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Figure 3: Shift pattern analysis. For the 2550 source→target distribution shift pairs in ACS Income
dataset, we attribute the performance drop for each source→target pair into Y |X-shifts (red curve)
and X-shifts (blue curve), and sort all pairs according to the drop introduced by Y |X-shifts. We
draw the worst-500 settings in each dataset, and the decomposition method used here is DISDE (Cai
et al., 2023) with XGBoost as the reference model. Results on other datasets are in Figure 9.

For in-context domain info (F.1 of Figure 1), we keep the trained model frozen and only update the
domain information, switching it from natural language description of labeled sample from the source
domain during training to that of target domain during inference phase. For the other three methods,
we conduct further training of the model. In full-parameter fine-tuning (F.2 of Figure 1), the entire
neural network is fine-tuned using the target samples. For LoRA, we introduce a low-rank adaptation
layer to each linear layer by incorporating two smaller matrices, A and B, both with a rank of 16.
Specifically, matrix A has dimensions corresponding to the input size and the rank, while matrix B
has dimensions corresponding to the rank and the output size. Matrix A is initialized with a mean
of 0 and a standard deviation of 0.02, whereas matrix B is initialized with zeros. These matrices
are then multiplied together and added to the original weight matrix. We then fine-tune only these
LoRA parameters, while keeping the rest of the model unchanged. In prefix tuning (F.3 of Figure 1),
the initial domain information embedding serves as a starting point for further refinement. During
training, both the the NN and the domain information embedding of the source domain are trained.
For target adaptation, we switch the domain information embedding from the source to the target
domain. The NN is kept frozen, and only the domain information embedding of the target domain is
updated using these samples from the target domain. We refer to this process as prefix tuning.

As shown in Table 1, we use different hyperparameters for target adaptation. Detailed hyperparameters
are provided in Appendix A.4, and the hyperparameter selection process is discussed in Section 3.1.

3 NUMERICAL EXPERIMENTS

In this section, we conduct a thorough investigation of 7650 natural shift settings (source → target
domain) in 3 tabular datasets over 261,000 model configurations and summarize the observations.
Our findings highlight the potential of incorporating LLM embeddings to enhance the generalization
ability in tabular data prediction tasks.

3.1 TESTBED SETUP

Dataset In this work, we use the ACS dataset (Ding et al., 2021b) derived from the US-wide ACS
PUMS data, where the goal is to predict various socioeconomic factors for individuals.

• ACS Income: The goal is to predict whether an individual’s income is above $50K based
on individual features. We filter the dataset to only include individuals above 16 years old
with usual working hours of at least 1 hour per week in the past year, and an income of at
least $100.

• ACS Mobility: The goal is to predict whether an individual has the same residential
address as one year ago. We filter the dataset to only include individuals between the ages
of 18 and 35, which increases the difficulty of the prediction task.
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• ACS Public Coverage (abbr. as ACS Pub.Cov): The goal is to predict whether an
individual has public health insurance. We focus on low-income individuals who are not
eligible for medicare by filtering the dataset to only include individuals under the age of 65
and with an income of less than $30,000.

The details of datasets are summarized in Table 1.

Shift Pattern Analysis Before benchmarking, we first analyze the shift patterns among the 2550
source→target pairs in each dataset. Specifically, we utilize DISDE (Cai et al., 2023) (reference
model as XGBoost) to decompose the performance degradation from the source domain to the target
into two parts: (a) Y |X (concept)-shifts and (b) X (covariate)-shifts. By utilizing tailored shift
patterns, we can conduct an in-depth analysis of where the strength of LLM embeddings lies. As
shown in Figure 3, we sort all pairs according to the strength of Y |X-shifts, where we find that the
natural spatial shifts are mainly comprised of Y |X-shifts. These findings broaden the scope of the
analysis in WhyShift (Liu et al., 2023) by examining 7,650 shift pairs, a significant increase from
the 169 pairs studied in the original work.

Algorithms As introduced in Section 2, we compare various methods that incorporate LLM
embeddings into tabular data prediction, including different finetuning methods (no finetuning,
finetuing on full parameters, and low rank adaptation (LoRA)) and different embeddings (w/ or w/o
extra information). Besides, in order to fully compare the performances, we also include a wide
range of learning strategies that perform on Tabular features, including basic models (LR, SVM,
NN), tree ensembles (XGB, LGBM, GBM), robust methods (KL-DRO, χ2-DRO, Wasserstein DRO,
CVaR-DRO, and Unified-DRO). All methods are summarized in Table 2.

Experiment Setup We conduct experiments with more than 261,000 model configurations on
2550 source→target shift pairs in ACS Income, ACS Mobility, and ACS Pub.Cov datasets
respectively (7650 settings in total). For each source→target shift pairs, we randomly sample 20, 000
labeled data from the source and target domain respectively, as the training and test dataset. We
evaluate the model trained on the source domain, with or without target adaptation, and report the
Macro F1 score on the testing dataset.

Given the numerous training hyperparameters—learning rate, number of training epochs, hidden
layer dimension, dropout ratio—we use a validation set of 32 randomly sampled labeled target
domain samples to choose the optimal training hyperparameters, based on the highest F1 score in
the validation dataset. Since our metric is Macro F1 score, the validation set is set as balanced
between positive and negative classes. Note that the hyperparameter selection is near-oracle, as it
leverages target samples, albeit in a limited quantity. When doing finetuning, we sample another
32 labeled target samples to finetune the model. And we use the same 32-sample validation dataset
(for training hyperparameter selection) to select the target adaptation hyperparameters that yield
the best Macro F1 score. Note that our testbed allows flexible sample sizes for training, validation,
testing, and finetuning. Additionally, we perform an ablation study on different allocations of the
overall target samples in validation and finetuning (see Figure 8). See details on hyperparameters in
the Appendix A.4.

3.2 PRIMARY FINDINGS

We begin by presenting the key observations from our results. In addition to the metric equation 1
introduced in Section 1, we report performance metrics averaged over the source-target pairs.

LLM embeddings improve performance, but when applied alone do not consistently outperform
tree-ensembles. To better assess the generalization ability when incorporating LLM embeddings,
we select the worst 500 settings (out of 2,550 total settings per dataset) based on the severity of
Y |X-shifts and report the average Macro F1 Score in Figure 4. Each bar represents the average
result across these worst 500 settings, characterized by the most severe Y |X-shifts. Thus, even a 1pp
improvement is significant, as it implies consistent gains of about 1pp across each of the worst 500
settings.

Comparing “NN on LLM embeddings” to “NN on tabular features” (with the backbone model fixed as
NN), we observe LLM embeddings significantly enhance generalization under distribution shifts on
the ACS Income and ACS Mobility datasets, with average improvements of 2.4pp and 9.9pp.
Notably, “NN on LLM embeddings” even outperforms XGBoost under strong distribution shifts on
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Figure 4: Average Macro F1 Score over the worst-500 settings. For each dataset, we sort the 2550
settings according to the magnitude of Y |X-shifts and select the worst-500 settings. We calculate
the average Macro F1 Score for each method. For all methods, we select the best hyper-parameters
of the basic model according to 32 samples from the target domain. We use CVaR-DRO based on
NN here to represent DRO methods. For finetuning methods, we use 32 target samples.
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Figure 5: Average Macro F1 Score over Worst-500 settings with different #target samples. Dotted
lines represent methods that do not require finetuning, while solid lines show the performance of
finetuning methods relative to the number of target samples. Three figures share the same legend.
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Figure 6: Average performance over the worst-K pairs. For each dataset, we sort the
2550 pairs according to the magnitude of Y |X-shifts and select the worst-K settings (K ∈
{100, 500, 1000, 1500, 2000, 2550}). For methods requiring finetuning, we use 32 target samples
here. “LLM& Target Samples” represents the in-context domain info in F.1 of Figure 1, where we
embed 32 target samples as domain information. Three figures share the same legend.

these datasets. This demonstrates the potential of LLM embeddings in tabular data prediction, where
they can contribute to more generalizable models.

A different trend is observed on the ACS Pub.Cov dataset, where the inclusion of LLM embeddings
results in a performance drop for NN models. This suggests that simply incorporating LLM embed-
dings does not always resolve distribution shift issues; their effectiveness may vary across datasets,
particularly depending on whether the LLM embeddings provide additional relevant information for
the specific prediction task.

A small number of target samples can make a big difference. While incorporating LLM embed-
dings doesn’t always yield improvements, we find that even a small number of target samples can
have a significant impact. As shown in 4, finetuning the “NN on LLM embeddings” model with just
32 target samples significantly improves the average performance across the worst 500 settings for
both the ACS Mobility and ACS Pub.Cov datasets. Notably, for the ACS Pub.Cov dataset,
where LLM embeddings alone provided no improvement, finetuning with only 32 target samples
leads to a 5.4pp gain, even surpassing XGBoost by 2.2pp. This highlights the adaptability of LLM
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Figure 7: Comparison between full-parameter finetuning, LoRA, and prefix tuning. We show the
average Macro F1 Score over the worst-500 settings.
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Figure 8: Comparison between different allocation of target samples into validation and finetuning.
We report the average Macro F1 Score over the worst-500 settings.

embeddings, making them a promising tool for harnessing their power across various downstream
real-world tasks.

Furthermore, in Figure 5, we illustrate how the performance of finetuning methods varies with
different numbers of target samples. As shown, our conclusions remain consistent regardless of the
number of target samples.

The performance gain brought by target samples is larger under stronger Y |X-shifts. As
shown in Figure 6 (LLM | NN v.s. LLM | NN (finetuning)), for NN using LLM embeddings,
finetuning with 32 target samples yields an average performance gain of 5.8pp across the worst-100
settings on ACS Pub.Cov, compared to no finetuning. This is notably higher than the 1.2pp average
gain observed across all 2550 settings (4.8 times). Similarly, for ACS Income, it is about 9 times.

3.3 AUXILIARY FINDINGS

In addition to the primary findings, we have several other noteworthy observations.

“Right” domain information matters. From Figure 6, we observe that additional domain infor-
mation from either Wikipedia or 32 target samples (via in-context domain info, F.1 of Figure 1)
does not lead to significant improvements (comparing the shallow blue and yellow curves with
the shallow red curve). However, when combined with finetuning, this extra domain information
performs significantly better on ACS Pub.Cov. Since finetuning can be considered a method for
incorporating domain-specific information, this suggests that identifying the right domain information
is crucial.

Specific finetuning approaches are less crucial than expected. Given the large number of model
parameters and limited labeled target samples, one might expect parameter-efficient methods like
Low-Rank Adaptation (LoRA) and Prefix Tuning to offer a clear advantage. However, as shown in 7,
all methods significantly outperform the non-finetuned version when using LLM embeddings, and
the choice of finetuning method appears less significant in our setting.

An exception is prefix tuning on the ACS Pub.Cov task, where performance was several percentage
points lower. While this requires further investigation, our key takeaway is that under Y |X shifts, 1)
finetuning models using LLM embeddings can greatly enhance classification performance; 2) popular
finetuning methods yield comparable results.
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Allocation of labeled target samples matters. In Figure 8, we compare two allocation schemes of
64 labeled target samples. For the solid bars, all 64 samples are utilized as the validation dataset for
hyperparameter selection. For the shaded bars, we allocate 32 samples for validation and the remaining
32 samples for finetuning. Based on this, we initially explore and understand the impact of sample
allocation. For ACS Mobility and ACS Pub.Cov, target adaptation using LLM embeddings
(the shaded bar) significantly outperforms the validation approach (the solid bar). However, for ACS
Income, the improvement from target adaptation is only marginal. This shows that although target
adaptation is effective, its improvement is highly dependent on the specific distribution and Y |X shift
level. This raises further questions about how to optimally allocate resources. Although our findings
endorse considering target adaptation, identifying the best allocation strategy is left as future work.

4 DISCUSSION BASED ON THEORETICAL INSIGHTS

We take a brief examination of the theoretical insights that may lie behind our empirical findings.
While standard generalization bounds are vacuous for neural networks, we nevertheless find that
theoretical results from domain adaptation provide a useful starting point for understanding why fine-
tuning LLM embeddings with small target samples can result in superior generalization performance
under substantial Y |X shifts, particularly in comparison to tabular features.

Let ϕ(X) denote a feature map and Y a binary label. We let P and Q be the source and target
distributions. We consider a model class H of VC dimension d. For any model h ∈ H, we use
ϵP (h) := EP [I(h(ϕ(X)) ̸= Y )] to denote the expected 0-1 loss on the source domain and ϵ̂mP (h) its
empirical counterpart based on m i.i.d. samples from P . We define ϵQ(h) and ϵ̂mQ (h) on the target.

Although in practice we finetune on the target, we use a mixture problem as a rough approximation.
Suppose that we have (1− β)m i.i.d. samples from source domain P and (βm) i.i.d. samples from
target domain Q. Let ĥα,β be the minimizer of the α-weighted empirical error

ĥα,β := argmin
h∈H

{
αϵ̂βmQ (h) + (1− α)ϵ̂

(1−β)m
P (h)

}
.

The following classical result from Ben-David et al. (2010, Theorem 3) bounds the generalization
error on the target.
Proposition 1. For any δ ∈ (0, 1), with probability at least 1− δ,

ϵQ(ĥα,β)− inf
h∈H

ϵQ(h) ≤ 4

√
α2

β
+

(1− α)2

1− β

√
2d log(2(m+ 1)) + 2 log 8

δ

m

+ 2(1− α) dH∆H(PX , QX)︸ ︷︷ ︸
X-shifts

+2(1− α) inf
h∈H

{ϵP (h) + ϵQ(h)}︸ ︷︷ ︸
Y |X-shifts

,
(2)

where dH∆H(·, ·) denotes the H∆H-distance between two (marginal) distributions.

Since we use limited (32) labeled target samples for finetuning, β is small. Also, we use a smaller
learning rate for finetuning than for training on the source, implying that α is even smaller than

β. Thus, we expect the constants
√

α2

β + (1−α)2

1−β and (1 − α) to both be close to 1. Although
the VC-dimension d can be vacuously large for neural networks (a well-known defect in statistical
learning theory), having a large enough sample size m can generally make the first term comparable
to the next two terms. For the raw features ϕtabular(X) = X , we have observed empirically that
Y |X-shifts are salient, implying that the third term (related to Y |X-shifts) dominates the second term
(related to X-shifts), and it can also dominate the first term when Y |X shifts are particular significant.
In comparison, we conjecture that LLM embeddings ϕLLM can reduce the gap between EP [I(Y ̸=
h(z) | ϕLLM(X) = z] and EQ[I(Y ̸= h(z)) | ϕLLM(X) = z] by incorporating prior knowledge
encoded during LLM pre-training. Since ϵP (h) =

∫
EP [I(Y ̸= h(z)) | ϕ(X) = z] dPϕ(X)(z)

(and similarly for Q), we thus expect the third term to be much smaller than using raw features
ϕtabular(X). This suggests that when using LLM embeddings ϕLLM, the generalization bound can
be smaller than that of raw features ϕtabular(X), especially when Y |X shift is more significant under
raw features ϕtabular(X) = X; recall Figure 6.

We hope our empirical findings spur future theoretical investigations into the foundations of LLM-
based target adaptation.
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A MODEL TRAINING DETAILS

In this section, we outline the serialization scheme, the generation of additional domain information,
our model architecture, and the hyperparameters used for training and target adaptation.

A.1 SERIALIZATION SCHEME

As discussed in Section 2.1, serializing a row of tabular data, such as X , requires two components: a
task description and a description of the data.

Task description For the ACS Income, ACS Mobility, and ACS Public Coverage datasets, we
consider the same binary classification task as described in Ding et al. (2021a). We adopt concise
task descriptions as suggested by Hegselmann et al. (2023), as follows:

• ACS Income: Classify whether US working adults’ yearly income is above $50000 in
2018.

• ACS Mobility: Classify whether a young adult moved addresses in the last year.

• ACS Public Coverage : Classify whether a low-income individual, not eligible for
Medicare, has coverage from public health insurance.

Description of the data For all three ACS datasets, we utilize features as shown in (Ding et al.,
2021a, Appendix B), along with the domain name (state) to characterize the data. Specifically, for
data from the source state, we apply the source domain name, and for data from the target state, we
use the target domain name.

As illustrated in Figure 1 and recommended by Hegselmann et al. (2023), we adopt a straightforward
text template: ”The feature name is value.” However, for certain features with less common
or more complex feature names, we opt for a template as “The person (appropriate verb) value” to
more clearly convey the data description. For example, for the feature “Gave birth to child within the
past 12 months” with the value “No”, the serialization would be “The person did not give birth to a
child within the past 12 months.” The features that use this alternative template are as follows:

• ACS Income: class of worker;

• ACS Mobility: class of worker, disability, employment status of parents, citizenship,
military service, hearing difficulty, vision difficulty, cognitive difficulty, grandparent living
with grandchildren, employment status;

• ACS Public Coverage: disability, employment status of parents, citizenship, mobility,
military service, hearing difficulty, vision difficulty, cognitive difficulty, gave birth to child
within the past 12 months, employment status.

For features without associated values, we omit them during serialization.

A.2 ADDITIONAL DOMAIN INFORMATION

As shown in Section 2.2, we study three sources of domain information: Wikipedia, GPT-4, and la-
beled target samples. As we use the e5-mistral-7b-instruct to generate an LLM embedding
for the domain information, we need to specify both the ”Instruct” and ”Query” components.

For the ”Instruct” part, we apply the same task description as outlined in Section A.1. For the ”Query”
part, we utilize various descriptions of the additional domain information:

• Wikipedia: For all three datasets, we use the “Economy” section of each state’s Wikipedia
page as the additional domain information.

• GPT4: For each state, we pose the following question to GPT4, and use its response as the
additional domain:

– ACS Income: “We aim to develop a classifier to determine whether U.S. individuals
earned over $50000 in 2018, using features such as age, sex, educational attainment,
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race, class of worker, marital status, occupation, and hours worked per week over the
past 12 months. Given the unique economic and demographic profile of state name,
how might these factors influence income levels differently compared to other U.S.
states? Please provide a 2000-word summary detailing these differences.”

– ACS Mobility: “We aim to develop a classifier to determine whether a young adult
moved addresses in the last year, using features such as age, sex, educational attainment,
race, class of worker, marital status, occupation, total income, and hours worked per
week over the past 12 months. Given the unique economic and demographic profile of
state name, how might these factors influence mobility levels differently compared
to other U.S. states? Please provide a 2000-word summary detailing these differences.”

– ACS Public Coverage: “We aim to develop a classifier to determine whether
a low-income individual, not eligible for Medicare, has coverage from public health
insurance, using features such as age, sex, educational attainment, race, disability,
marital status, occupation, citizenship status, mobility status, military service, nativity,
total income, and employment status. Given the unique economic and demographic
profile of state name, how might these factors influence public coverage levels
differently compared to other U.S. states? Please provide a 2000-word summary
detailing these differences.”

• labeled target samples: We use the following template for 32 labeled target samples:

Here are some examples of the data: \n
description of one target sample \n
Answer: (Yes or No). \n \n
description of another target sample \n
Answer: (Yes or No). \n \n
...

We use the same data descriptions as in Section A.1, with the exception that the state/domain
name is omitted, as it is represented by the labeled target samples provided.

Shift Patterns The shift patterns of all settings are shown in Figure 9.
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Figure 9: Shift pattern analysis. For the 2550 source→target distribution shift pairs in ACS Income,
ACS Pub.Cov, ACS Mobility datasets respectively, we attribute the performance drop for each
source→target pair into Y |X-shifts (red curve) and X-shifts (blue curve), and sort all pairs according
to the drop introduced by Y |X-shifts. We draw the worst-500 settings in each dataset, and the
decomposition method used here is DISDE (Cai et al., 2023) with XGBoost as the reference model.

A.3 MODEL ARCHITECTURE

We detail the baselines used in our paper.

Fully-connected Neural Networks (NN) Given the varying input dimensions for Tabular features,
LLM embeddings, and LLM embeddings with additional domain information, we employ three
neural networks with similar architectures. We then train these networks and conduct target adaptation
using Empirical Risk Minimization (ERM).

For all three datasets using Tabular features, we use a hidden layer with output dimension being
hidden layer dim as a hyperparameter, a dropuput layer with dropout ratio being a
hyperparameter, ReLu activation. We then have another hidden layer with input and output dimension
both being hidden layer dim, and then softmax layer with dimension 2 as the output.

For datasets using Tabular features, the network includes a hidden layer where the output dimension
is set by the hyperparameter hidden layer dim. It is followed by a dropout layer (dropout
ratio as a hyperparameter), ReLU activation, another hidden layer the input and output dimensions
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are both equal to hidden layer dim. The network concludes with a softmax layer with an
output dimension of 2.

For datasets using only LLM embeddings, the input dimension is 4096, which is the output dimen-
sion of e5-mistral-7b-instruct. The network consists of three hidden layers with fixed
dimensions, where the input and output dimensions are (4096, 1024), (1024, 256), and (256, 128),
respectively. Each layer uses ReLU activation. Next, there’s a hidden layer with an input dimension
of 128 and an output dimension set by the hidden layer dim hyperparameter. This is followed
by a dropout layer (with dropout ratio as a hyperparameter), ReLU activation, and another
hidden layer where both the input and output dimensions are hidden layer dim. A ReLU
activation follows this final hidden layer, and the network concludes with a softmax layer that outputs
a dimension of 2.

For datasets using LLM embeddings concatenated with additional domain information, the input
dimension is 8192. We slightly update the first three hidden layers, with input and out dimensions
being (8192, 2048), (2048, 512), and (512, 128), respectively. All other neural network structure and
hyperparameters are the same as NNs with LLM embeddings only.

When applying low-rank adaptation (LoRA) for target adaptation, we introduce a low-rank adaptation
layer to each linear layer by incorporating two smaller matrices, A and B, both with a rank of 16.
Specifically, matrix A has dimensions corresponding to the input size and the rank, while matrix B
has dimensions corresponding to the rank and the output size. Matrix A is initialized with a mean of
0 and a standard deviation of 0.02, whereas matrix B is initialized with zeros. These matrices are
then multiplied together and added to the original weight matrix.

Tree Ensemble Models Gardner et al. (2022) show that several tree-based methods are competitive
on tabular datasets. And gradient-boosted trees (e.g., XGB (Chen & Guestrin, 2016), LGBM (Ke
et al., 2017), GBM (Natekin & Knoll, 2013)) are widely considered as the state-of-the-art methods
on tabular data. Therefore, we compare XGB, LGBM, and GBM in this work. For GBM, we use
the standard implementations in scikit-learn (Pedregosa et al., 2011). For XGB and LGBM,
we use the standard implementations in the xgboost package2 and the lightgbm package3. All
these methods are trained on CPUs.

DRO Methods Distributionally robust optimization (DRO) methods optimize the worst-case loss
over an ambiguity set P:

min
f∈F

sup
Q∈P

EQ[ℓ(f(X), Y )]. (3)

The ambiguity set is typically chosen as a “ball” around the training distribution Ptr

P(d, ϵ) = {Q : d(Q,Ptr) ≤ ϵ}, (4)

where d(·, ·) is a distance metric between probability measures and ϵ is the radius of set. When d is
set as the generalized f -divergence (including CVaR) as:

d(P,Q) = EQ

[
f
(dP
dQ

)]
, (5)

for the KL-DRO method (Hu & Hong, 2013), we use f(x) = x log x − (x − 1); for the χ2-DRO
method (Duchi & Namkoong, 2019), we use f(x) = (x− 1)2; for the CVaR-DRO problem (Rock-
afellar et al., 2000), we use f(x) = 0 if x ∈ [ 1α , α] and ∞ otherwise, and α controls the worst-case
ratio.

For Wasserstein DRO (Blanchet et al., 2019b), we choose d(·, ·) as the Wasserstein distance. Unified-
DRO (Blanchet et al., 2023b) combines Wasserstein distance and KL-divergence as d(·, ·), and
we follow their initial Github codebases and hyperparameter selection when implementing these
methods.

2https://pypi.org/project/xgboost/
3https://pypi.org/project/lightgbm/
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Table 2: Summary of methodologies: As baselines, we use basic models (LR, SVM, and NN),
GBDTs (XGB, LGBM, and GBM) and robust learning methods (KL-DRO, χ2-DRO, etc.). For
methods utilizing LLM embeddings, we consider different ways to incorporate domain information
and different model architectures and finetuning techniques.

Name Feature Domain Info Model Adaptation # of HPs Part of Fig. 1

LR Tabular - LR No Finetuning 34 -
SVM Tabular - SVM No Finetuning 34 -
GBDT Tabular - XGB, LGBM, GBM No Finetuning 200 -
KL-DRO Tabular - SVM No Finetuning 138 -
χ2-DRO Tabular - SVM No Finetuning 138 -
Wasserstein-DRO Tabular - SVM No Finetuning 17 -
Unified-DRO Tabular - SVM No Finetuning 150 -
CVaR-DRO Tabular - NN No Finetuning 200 -

Tabular | NN Tabular - NN
No Finetuning 96 -

Finetuning 12 -
LoRA 15 -

LLM | NN LLM
Embeddings - NN

No Finetuning 96 E.1
Finetuning 12 F.2

LoRA 15 F.2

LLM &
Wiki/GPT4 | NN

LLM
Embeddings Wikipedia or GPT4 NN

No Finetuning 48 E.2
Finetuning 12 F.2

LoRA 15 F.2
Prefix Tuning 18 F.3

LLM & In-Context
Domain Info | NN

LLM
Embeddings

Labeled
Target Samples NN No Finetuning 96 F.1

A.4 HYPERPARAMETERS FOR TRAINING AND TARGET ADAPTATION

For each algorithm, we maintain a grid of candidate hyperparameters as shown in Tables 3 and 4. and
perform hyperparameter selection as described in Section 3.1. When the number of hyperparameter
configurations exceeds 200, we randomly select 200 configurations to reduce computational cost and
maintain fairness in the comparison across all algorithms.
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Table 3: Training hyperparameter grids used in all experiments. ⋄ : for methods with the total grid
size above 200, we randomly sample 200 configurations for fair comparisons.

Model Feature Domain Info # of HPs Hyperparameter Value Range

SVM Tabular - 96

C {1e−2, 1e−1, 1, 1e1, 1e2, 1e3}
Kernel {linear,RBF}
Loss Squared Hinge
γ {0.1, 0.3, 0.5, 1, 1.5, 2, scale, auto}

LR Tabular - 23 L2 penalty
{1e−3, 3e−3, 5e−3, 7e−3, 1e−2,
3e−2, 5e−2, . . . , 1.3, 1.7, 5}

1e1, 5e1, 1e2, 5e2, 1e3, 5e3, 1e4}

Tabular | NN Tabular - 96

Learning Rate {0.001, 0.003, 0.005, 0.01}
Hidden Layer Dim {16, 32, 64, 128}

Dropout Ratio {0, 0.1}
Train Epoch {50, 100, 200}

GBM Tabular - 1680⋄

Learning Rate {1e−2, 1e−1, 5e−1, 1}
Num. Estimators {32, 64, 128, 256}

Max Depth {2, 4, 8, 16}
Min. Child Samples {1, 2, 4, 8}

LGBM Tabular - 1680⋄

Learning Rate {1e−2, 1e−1, 5e−1, 1}
Num. Estimators {64, 128, 256, 512}

L2-reg. {0, 1e−3, 1e−2, 1e−1, 1}
Min. Child Samples {1, 2, 4, 8, 16, 32, 64}

Column Subsample Ratio (tree) {0.5, 0.8, 1.}

XGB Tabular - 1944⋄

Learning Rate {0.1, 0.3, 1.0, 2.0}
Min. Split Loss {0, 0.1, 0.5}

Max. Depth {4, 6, 8}
Column Subsample Ratio (tree) {0.7, 0.9, 1}
Column Subsample Ratio (level) {0.7, 0.9, 1}

Max. Bins {128, 256, 512}
Growth Policy {Depthwise,Loss Guide}

KL-DRO Tabular - 117 Uncertainty Set Size ϵ {1e−4, . . . , 0.01, . . . , 0.99}
χ2-DRO Tabular - 117 Uncertainty Set Size ϵ {1e−4, . . . , 0.01, . . . , 0.99}

Wasserstein-DRO Tabular - 138 Uncertainty Set Size ϵ {1e−4, . . . , 0.01, . . . , 0.99, . . . , 3}

CVaR-DRO Tabular - 1620⋄ Worst-case Ratio α {0.01, 0.1, 0.2, 0.3, 0.5, 1.0}
Underlying Model Class NN

Unified-DRO Tabular - 180
Distance Type Linf

Uncertainty Set Size ϵ {1e−3, . . . , 9e−1}
θ1 {1.001, 1.01, 1.1, 1.5, 2, 3, 5, 10, 50, 100}

LLM | NN LLM - 48

Learning Rate {0.001, 0.01}
Hidden Layer Dim {32, 64, 128}

Dropout Ratio {0, 0.1}
Train Epoch {100, 200, 300, 500}

LLM & In-Context Domain
Info/Wiki/GPT4 | NN LLM

Labeled Target Samples
or Wikipedia

or GPT4
48

Learning Rate {0.001, 0.01}
Hidden Layer Dim {32, 64, 128}

Dropout Ratio {0, 0.1}
Train Epoch {100, 200, 300, 500}

Table 4: Target adaptation hyperparameter grids used in all experiments.

Model Target Adaptation Method # of HPs Hyperparameter Value Range

Tabular | NN or LLM | NN
or LLM & Wiki/GPT4 | NN Finetuning - 12 Learning Rate {10−7, 10−6, 10−5, 10−4}

Target adaptation Epoch {25, 50, 100}
Tabular | NN or LLM | NN
or LLM & Wiki/GPT4 | NN LoRA - 12 Learning Rate {10−6, 10−5, 10−4, 10−3, 0.01}

Target adaptation Epoch {25, 50, 100}

LLM & Wiki/GPT4 | NN Prefix Tuning - 18 Learning Rate {10−5, 10−4, 10−3, 0.01, 0.05, 0.1}
Target adaptation Epoch {25, 50, 100}
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