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Abstract001

Recent advances in large language models002
(LLMs) have shown impressive performance003
in passage reranking tasks. Despite their suc-004
cess, LLM-based methods still face challenges005
in efficiency and sensitivity to external biases.006
(i) Existing models rely mostly on autoregres-007
sive generation and sliding window strategies008
to rank passages, which incurs heavy computa-009
tional overhead as the number of passages in-010
creases. (ii) External biases, such as positional011
or semantic bias, hinder the model’s ability to012
accurately represent passages and the input-013
order sensitivity. To address these limitations,014
we introduce a novel passage reranking model,015
called Multi-View-guided Passage Reranking016
(MVP), MVP is a non-generative LLM-based017
reranking method that encodes query–passage018
information into diverse view embeddings with-019
out being influenced by external biases. For020
each view, it combines query-aware passage021
embeddings to produce a distinct anchor vec-022
tor, used to directly compute relevance scores023
in a single decoding step. Besides, it employs024
an orthogonal loss to make the views more025
distinctive. Extensive experiments demonstrate026
that MVP, with just 220M parameters, matches027
the performance of much larger 7B-scale fine-028
tuned models while achieving a 100× reduction029
in inference latency. Notably, the 3B-parameter030
variant of MVP achieves state-of-the-art perfor-031
mance on both in-domain and out-of-domain032
benchmarks.033

1 Introduction034

Passage reranking aims to assign fine-grained rel-035

evance scores to candidate passages – typically036

retrieved by a first-stage retriever (Robertson et al.,037

1994; Karpukhin et al., 2020) – by harnessing the038

language understanding capabilities of large lan-039

guage models (LLMs), in both zero-shot and fine-040

tuned settings. Recent studies (Sun et al., 2023;041

Liang et al., 2023) formulate a prompt that consists042

of a query and candidate passages and generate an043

Figure 1: Comparison of latency and nDCG@10 across
various reranking models. Latency refers to the time
required to rerank for a single query and nDCG@10 is
averaged over DL19 and DL20.

ordered list of passage identifiers in a zero-shot set- 044

ting. Subsequent work has fine-tuned open-source 045

LLMs by distilling knowledge from the teacher 046

model (Pradeep et al., 2023a,b), achieving compet- 047

itive performance. 048

Despite their success, LLM-based reranking 049

methods still face challenges in efficiency and sen- 050

sitivity to input order. Specifically, we address two 051

key issues for designing an efficient and effective 052

LLM-based reranker. 053

(i) How do we perform reranking without incurring 054

unnecessary inference? Efficient reranking hinges 055

on two key aspects: global ranking (evaluating 056

all candidates at once) and single pass decoding 057

(performing reranking with a single decoding step). 058

First, existing methods (Pradeep et al., 2023a,b) are 059

unable to include all candidate passages in a single 060

prompt due to input length limitations, leading to 061

rely on sliding-window algorithms, as illustrated 062

in Figure 2(a). Next, generative rerankers employ 063

autoregressive decoding, generating one passage 064

identifier at a time, which leads to substantial com- 065

putational overhead in Figure 2(b). 066
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Figure 2: Inference pipeline of a generative listwise
reranker. The total number of inferences is determined
by the product of (i) the number of prompts and (ii) the
window size required to evaluate all candidate passages.

(ii) How do we represent query-passage explic-067

itly without introducing bias? While LLMs show068

strong zero-shot reranking performance, the un-069

biased modeling of query-passage relationships070

remains an underexplored challenge due to com-071

mon biases. First, positional bias emerges in long-072

context prompts, a problem known as lost-in-the-073

middle (Liu et al., 2024a). Second, semantic bias074

arises when natural language tokens (e.g., "A",075

"1") are used as passage identifiers. These iden-076

tifiers may encode unintended priors, potentially077

biasing reranking—as observed in multiple-choice078

settings (Zheng et al., 2024).079

To this end, we propose a novel listwise rerank-080

ing model, Multi-View-guided Passage reranking081

(MVP). It consists of two key components under082

the Fusion-in-Decoder (FiD) architecture (Izacard083

and Grave, 2020).084

Multi-View Encoding. Each query–passage pair085

is encoded into learnable soft prompts in the FiD086

architecture. To eliminate positional bias, soft087

prompts are inserted at the same fixed positions088

across all passages. For each passage, distinct po-089

sitional embeddings are used to separate relevant090

views. Since these prompts are not tied to any pre-091

trained vocabulary, they allow for unbiased mod-092

eling of query-passage relationships. The encoder093

produces view-specific embeddings, called rele-094

vance vectors, which are then passed to the decoder095

to compute the final relevance scores.096

Anchor-Guided Decoding. Our method adopts a097

non-generative design that leverages anchor vec-098

tors for listwise relevance scoring across all candi-099

dates within a single decoding step. This approach100

operates independently from a language model-101

ing (LM) head. During decoding, MVP aggregates102

view-specific relevance embeddings from all candi-103

date passages using cross-attention in the decoder104

to produce anchor vectors. This design directly105

computes similarity-based scores, aligning both106

training and inference with the ranking objective 107

while substantially improving efficiency. 108

As illustrated in Figure 1, MVP-3B achieves 109

state-of-the-art performance on in-domain bench- 110

marks (DL19 and DL20). Notably, our 220M- 111

parameter model matches the nDCG@10 of 7B- 112

scale listwise rerankers while reducing inference 113

latency by up to 100×. These results highlight the 114

efficiency and scalability of our reranking approach, 115

demonstrating that high-quality reranking can be 116

achieved without the computational overhead of 117

large scale generative models. 118

Our contributions are summarized as follows: 119

• Efficient Listwise Reranker: We propose a novel 120

non-generative reranking method named MVP, 121

which enables global ranking in a single step. 122

• Robustness to External Biases: Our embedding- 123

based architecture is robust to positional and se- 124

mantic biases, enabling flexible adaptation to di- 125

verse passage input scenarios. 126

• Extensive Experiments: MVP achieves state-of- 127

the-art performance on both in-domain and out- 128

domain benchmarks. 129

2 Related Work 130

2.1 Rerranking with LLMs 131

Recent work has explored leveraging the natural 132

language understanding capabilities of large lan- 133

guage models (LLMs) for passage reranking (Zhu 134

et al., 2023; Liang et al., 2023). Depending on the 135

prompting strategy, methods can be categorized 136

into pointwise and listwise approaches. Pointwise 137

rerankers estimate the relevance between a query 138

and a single passage. For example, Some pointwise 139

approaches (Nogueira et al., 2019, 2020; Zhuang 140

et al., 2024) compute relevance scores using the 141

logits of relevance-related tokens such as “Yes” 142

or “No”. Other approaches (Sachan et al., 2022; 143

Zhuang et al., 2023b; Cho et al., 2023) estimate the 144

relevance of a document based on the probability 145

of generating the corresponding query sequence. 146

In contrast, (Xian et al., 2023) demonstrated that 147

listwise reranking methods outperform pointwise 148

approaches by comparing candidate passages at 149

once. Building on this, RankGPT (Sun et al., 2023) 150

employed GPT-4 (OpenAI, 2023) to achieve state- 151

of-the-art zero-shot reranking performance, and 152

later work distilled knowledge into open-source 153

LLMs (Pradeep et al., 2023a,b). While intuitive, 154

this generation-based approach, which introduces 155
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Model
Global

Ranking
Single Pass
Decoding

Bias Mitigation

Positional Semantic

ListT5 ✗ ✗ ✓ ✗
RankZephyr ✗ ✗ ✓ ✗
PE-Rank ✓ ✗ ✗ ✗
FIRST ✗ ✓ ✗ ✗

MVP ✓ ✓ ✓ ✓

Table 1: Comparison of generative LLM rerankers and
MVP with respect to bias mitigation, global ranking
capability, and generation target.

inefficiencies and hinders alignment with the goals156

of ranking.157

2.2 Generative Reranking with LLMs158

To address the limitations discussed in Sec-159

tion 1, various generative reranking methods have160

been proposed. To mitigate the positional bias,161

ListT5 (Yoon et al., 2024) leverages the FiD archi-162

tecture, while RankZephyr (Pradeep et al., 2023b)163

addresses the issue by shuffling input order and164

varying the number of passages during training.165

PE-Rank (Liu et al., 2024b) compresses each pas-166

sage into a single token, allowing global ranking,167

but suffers from information loss during compres-168

sion and projection. FIRST (Reddy et al., 2024)169

improves efficiency via single-pass decoding using170

the logits of the first generated token, yet supports171

neither global ranking nor effective bias mitigation.172

While prior work has tackled individual aspects173

of generation-based reranking, no method has si-174

multaneously achieved (i) mitigation of various bi-175

ases, (ii) global ranking capability, and (iii) single-176

pass decoding. A comparison with existing meth-177

ods is presented in Table 1.178

3 Proposed Method179

In this section, we propose a novel passage rerank-180

ing model, Multi-View-guided Passage reranking181

(MVP). It is based on the FiD architecture. As182

shown in Figure 3, A query-passage pair is encoded183

into multiple relevance vectors, each capturing a184

unique relevance signal from a different view (Sec-185

tion 3.1). The decoder generates anchor vectors for186

each view, which score passages via dot product187

with their relevance vectors (Section 3.2). Finally,188

we train the model solely with a ranking objective189

with an orthogonality regularization term to ensure190

that anchor vectors remain distinct (Section 3.3).191

3.1 Multi-View Encoding 192

To employ a query-aware passage embedding that 193

summarizes the entire context, we encode each 194

query-passage pair through a set of learnable soft 195

prompts. Given a query q and a set of n candi- 196

date passages [c1, c2, . . . , cn], we construct a dis- 197

tinct input prompt xi by prepending m view tokens 198

⟨v1⟩, ⟨v2⟩, . . . , ⟨vm⟩ to the query and the i-th pas- 199

sage. The relative positions of these view tokens 200

are fixed across all passages, ensuring that each 201

⟨vk⟩ consistently appears at the same location, re- 202

gardless of the query and passage content. Mean- 203

while, each view token in xi is assigned a unique 204

positional embedding, enabling the model to distin- 205

guish between views and capture diverse aspects 206

of the query–passage relationship. 207

xi = ⟨v1⟩ · · · ⟨vm⟩ | Query: q | Context: ci (1) 208

The FiD encoder processes constructed input 209

xi to obtain hidden states Hi. From these hidden 210

states, we extract the vectors corresponding to each 211

special token ⟨vk⟩, denoted as eik, representing 212

distinct views of query-passage relevance: 213

Hi = FiDencoder(xi), Hi ∈ RL×d (2) 214

eik = Hi[⟨vk⟩] for k = 1, . . . ,m (3) 215

Consequently, each candidate passage ci is 216

compressed into a set of m relevance vectors, 217

ei1, ei2, . . . , eim. The integration of the FiD archi- 218

tecture and position-controlled soft prompts effec- 219

tively eliminates both positional and semantic bi- 220

ases, enabling robust and view-specific encoding 221

of query–passage interactions. 222

3.2 Anchor-Guided Decoding 223

To minimize the computational overhead of sequen- 224

tial generation, MVP adopts anchor guided decod- 225

ing. Specifically, MVP generates multiple anchor 226

vectors by applying cross-attention over all can- 227

didate relevance vectors in the decoder, enabling 228

single-pass inference and global ranking without 229

autoregressive decoding. 230

Each anchor, derived from the relevance vec- 231

tors corresponding to each view, represents a dis- 232

tinct perspective of relevance. Specifically, given 233

n candidate passages and their k-th view rele- 234

vance vectors e1k, . . . , enk, we construct a matrix 235

Ek ∈ Rn×d as the key-value input to the decoder. 236

Ek is then transformed into an anchor vector ak 237

via cross-attention. 238
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Figure 3: The overall framework of MVP. (a) A query-passage pair is encoded into multiple relevance vectors,
where each vector represents a distinct view. (b) For every view, an anchor vector is generated, and the view-wise
relevance score is computed based on its similarity to the corresponding relevance vector. The final score is obtained
by aggregating scores across all views. (c) The model is trained with a ranking loss to match the target distribution
and an orthogonality loss to encourage diversity among anchor vectors.

Ek = [e1k; e2k; . . . ; enk] ∈ Rn×d (4)239

ak = FiDdecoder([BOS], Ek) ∈ R1×d (5)240

The relevance score from each view is computed241

by measuring similarity between a relevance vec-242

tor eik and its anchor ak, and the final score si is243

obtained by averaging across all m views:244

si =
1

m

m∑
k=1

⟨ak, eik⟩ (6)245

By utilizing multiple anchors, the model effec-246

tively evaluates candidate passages from diverse247

semantic views, enabling efficient and accurate248

scoring without the need for ranking list gener-249

ation. Importantly, this direct scoring mechanism250

removes the need to compute token-level logits,251

enabling both training and inference to rely solely252

on relevance-based objectives.253

3.3 Training254

Training MVP involves optimizing two comple-255

mentary objectives that jointly enhance ranking256

accuracy and representational diversity. The first257

is a ranking objective that enables the model to258

learn the relevance ordering of candidate passages 259

(Section 3.3.1). The second is an orthogonality ob- 260

jective that encourages each anchor to capture a 261

distinct perspective on relevance (Section 3.3.2). 262

3.3.1 Ranking Loss 263

As the ranking objective to train MVP, we adopt 264

the ListNet loss (Cao et al., 2007), which encour- 265

ages the predicted ranking scores to align with 266

the ground-truth relevance order. Given n candi- 267

date passages and their ground-truth ranks ri ∈ 268

[1, 2, . . . , n] (with ri = 1 indicating the most rele- 269

vant), each rank is converted into a relevance score 270

using a reciprocal transformation, i.e., yi = 1/ri. 271

We then apply a temperature-scaled softmax to 272

both ground-truth scores yi and predicted scores 273

si to obtain probability distributions, where τ is a 274

temperature hyperparameter: 275

P (yi) =
exp(yi/τ)∑n
j=1 exp(yj/τ)

(7) 276

P (si) =
exp(si/τ)∑n
j=1 exp(sj/τ)

(8) 277

The listwise ranking objective used to approxi- 278

mate the predicted probability for the i-th passage 279
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is defined as follows:280

LRank = −
n∑

i=1

P (yi) logP (si) (9)281

3.3.2 Orthogonal Loss282

Since MVP computes the relevance score for each283

passage by leveraging multiple anchor vectors,284

each anchor has to capture a distinct and comple-285

mentary view of the query-passage relationship.286

To this end, we introduce an orthogonal regular-287

ization loss that promotes diversity among anchor288

vectors, inspired by the Orthogonal Projection Loss289

(OPL) (Ranasinghe et al., 2021), which encourages290

orthogonality in feature representations. The loss291

is defined as:292

LOrthogonal =

m∑
k=1

m∑
l=1
l ̸=k

[ak,al]
2 (10)293

[xi,xj ] =
xi · xj

∥xi∥2 · ∥xj∥2
(11)294

Here, [ · , · ] denotes the cosine similarity opera-295

tor, and ∥ · ∥2 represents the L2 norm.296

This regularization encourages anchor vectors to297

remain in distinct directions, guiding the encoding298

stage to capture diverse semantic views across to-299

kens. The final training loss combines the primary300

ranking loss and the orthogonality regularization301

term:302

L = LRank + LOrthogonal (12)303

4 Experiments304

In this section, we first describe the training and305

evaluation setup for MVP. We then present four306

main results: (i) overall ranking performance, (ii)307

efficiency against various reranking models, (iii) ro-308

bustness to initial order, and (iv) ablation studies on309

key architectural components. All results for MVP310

are based on the T5-base model unless otherwise311

specified as 3B.312

4.1 Experimental Setup313

Datasets. We evaluated in-domain performance314

on the TREC-DL19, DL20 (Craswell et al., 2020,315

2021a), and assessed zero-shot out-of-domain per-316

formance on the BEIR (Thakur et al., 2021) bench-317

mark, which is designed to evaluate the general-318

ization ability of ranking models. Although BEIR319

comprises eight diverse datasets, we followed prior320

work (Sun et al., 2023) and conducted evaluations321

on eight datasets with relatively fewer queries. We 322

employed BM25 as the first-stage retrieval model 323

and measured reranking performance using Nor- 324

malized Discounted Cumulative Gain at rank 10 325

(nDCG@10). Note that while we use five passages 326

per query during training, we rerank all candidate 327

passages using single-pass decoding to measure 328

inference time. 329

Implementation Detail. To train MVP, we uti- 330

lized the Rank-DistiLLM (Schlatt et al., 2025) 331

dataset, which is constructed from the MS 332

MARCO Passage Ranking dataset (Nguyen et al., 333

2016) using 10,000 queries. For each query, 334

the top 100 candidate passages were first re- 335

trieved using ColBERTv2 (Santhanam et al., 2022), 336

and then re-ranking these passages with the 337

RankZephyr (Pradeep et al., 2023b). To construct a 338

more diverse training set, we sampled 5 candidate 339

passages 100 times per query, resulting in approxi- 340

mately 1 million instances. 341

We adopted T5-base and T5-3B (Raffel et al., 342

2020) as our backbone models. For optimization, 343

we applied DeepSpeed Stage 2. For T5-base, we 344

used a batch size of 16, gradient accumulation steps 345

set to 2, a learning rate of 1e-4, and a linear sched- 346

uler with a warm-up ratio of 5%. For T5-3B, we 347

used a batch size of 2, gradient accumulation steps 348

of 16, and a learning rate of 1e-5. The maximum 349

input sequence length was fixed at 256 tokens for 350

both models. Training was conducted for a sin- 351

gle epoch, taking approximately 5 hours on 2 × 352

NVIDIA RTX 3090 GPUs for T5-base, and 40 353

hours on 2 × NVIDIA A6000 GPUs for T5-3B. We 354

use m = 4 special tokens to represent the relevance 355

views, implemented using the T5 tokenizer’s pre- 356

defined tokens <extra_id_0> to <extra_id_3>, 357

and set τ = 0.8 to control the sharpness in the List- 358

Net loss. For validation, we use the TREC-DL21 359

dataset (Craswell et al., 2021b) with nDCG@10 as 360

the validation metric. 361

4.2 Ranking Performance 362

We compare MVP against seven reranking mod- 363

els built on the T5 architecture. Specifically, point- 364

wise models are MonoT5 (Nogueira et al., 2020) 365

and RankT5 (Zhuang et al., 2023a)). The list- 366

wise model is ListT5 (Yoon et al., 2024). For 7B- 367

scale rerankers, we employ RankVicuna (Pradeep 368

et al., 2023a), RankZephyr (Pradeep et al., 2023b), 369

FIRST (Reddy et al., 2024), and PE-Rank (Liu 370

et al., 2024b). Note that MVP is based on 220M 371
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Model DL19 DL20 Covid NFCorpus Signal News Robust04 SciFact Touche DBPedia BEIR Avg.

MonoT5 (220M) 71.5 67.0 78.3 35.7 32.0 48.0 53.4 73.1 29.6 42.8 49.1
RankT5 (220M) 72.4 68.3 77.7 35.1 30.8 45.4 54.3 73.5 37.1 43.7 49.7
ListT5 (220M) 71.8 68.1 78.3 35.6 33.5 48.5 52.1 74.1 33.4 43.7 49.9

MVP (220M) 74.3 69.2 80.2 36.0 32.7 49.1 55.1 75.0 39.1 43.8 51.4

MonoT5 (3B) 71.8 68.9 79.8 37.3 32.2 48.3 58.5 76.3 32.5 44.8 51.2
RankT5 (3B) 72.5 70.4 81.7 37.4 31.9 49.5 58.3 77.1 38.8 45.0 52.5
ListT5 (3B) 71.8 69.1 84.7 37.7 33.8 53.2 57.8 77.0 33.6 46.2 53.0
FIRST (7B) 72.4 71.1 82.4 36.3 34.0 52.4 54.6 75.0 38.0 46.3 52.6
PE-Rank (7B) 70.8 65.4 77.8 34.8 32.0 52.3 48.7 70.2 34.2 40.6 49.0
RankVicuna (7B) 66.5 66.4 79.5 32.5 33.3 45.0 47.0 68.8 32.9 44.5 48.1
RankZephyr (7B) 73.1 70.8 83.2 36.3 31.5 52.5 54.3 74.9 32.4 44.5 51.4

MVP (3B) 73.5 71.1 83.1 37.6 34.2 51.2 60.5 76.4 37.2 46.6 53.3

Table 2: Results (nDCG@10) of reranking top-100 passages on TREC and BEIR benchmarks. The initial candidate
passages are retrieved using BM25. The best-performing model in each section is highlighted in bold, and the
second-best is marked with underline.

Figure 4: Real-time FLOPs comparison of the models.
The reported performance is averaged over DL19 and
DL20.

and 3B base models.372

Table 2 reports the overall result. When evalu-373

ated at the T5-base scale, MVP outperforms other374

baselines of the same model size across most375

datasets. On the BEIR benchmark, MVP achieves376

an average nDCG@10 score of 51.4, surpassing377

MonoT5, RankT5, and ListT5 by 2.3, 1.7, and378

1.5 points. This performance is also comparable379

to that of RankZephyr (7B), a much larger model.380

On the TREC-DL19 and DL20 datasets, MVP also381

exceeds RankT5 by 1.9 and 0.9 points, respectively.382

We also compare the 3B variant of MVP with383

large-scale (3B-7B) LLM-based re-ranking models.384

MVP-3B achieves nDCG@10 scores of 73.5 on385

DL19, 71.1 on DL20, and 53.3 on the BEIR aver-386

age, outperforming all other models at the 3B and387

7B scales. These results suggest that the architec-388

tural advantages of MVP generalize well to larger389

model configurations.390

4.3 Efficiency 391

The key strength of MVP lies in its ability to rep- 392

resent each query-passage pair with multiple rel- 393

evance vectors and to perform anchor-guided de- 394

coding, achieving both high effectiveness and sig- 395

nificantly improved efficiency. To empirically val- 396

idate efficiency, we report both floating-point op- 397

erations (FLOPs) and latency. All experiments are 398

conducted on a 24GB NVIDIA RTX 3090 GPU. 399

FLOPs. To assess the computational efficiency 400

of each model, we measured FLOPs using Deep- 401

Speed’s FLOPs Profiler1. The evaluation was con- 402

ducted on 43 queries from the DL19 dataset. For 403

each query, we measured the FLOPs required to 404

rerank the top 10 passages from BM25-Top100 405

candidates. The input sequence length was set to 406

256 tokens. For ease of comparison, we normalized 407

MVP’s FLOPs to 1.02 with the relative FLOPs of 408

other models computed accordingly. As illustrated 409

in Figure 4, MVP achieves the lowest computa- 410

tional cost among all models while outperforming 411

them in ranking quality. Compared to the previous 412

listwise model ListT5, it reduces FLOPs by approx- 413

imately 82%. Notably, MVP also consumes fewer 414

operations than pointwise models such as MonoT5 415

and RankT5, despite delivering stronger reranking 416

performance. 417

Latency. We also measure the latency required to 418

rerank the top-10 passages from BM25-Top100 419

candidate passages. Latency is defined as the aver- 420

age time per query, measured in seconds. Our ex- 421

periments are conducted on DL19 and DL20, along 422

1We use DeepSpeed’s FLOPs profiler for measurement:
https://github.com/microsoft/DeepSpeed

2The exact FLOPs value is 197,983,445,625,792.
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Figure 5: Ranking performance (nDCG@10) for the reranker’s latency (s). Latency indicates the average time
required to rerank a single query.

with two datasets from the BEIR benchmark: Covid423

and NFCorpus. For fair comparison, all vLLM ac-424

celeration features are disabled, ensuring that the la-425

tency reflects the raw inference time of each model.426

The results in Figure 5 show that MVP achieves427

faster inference than existing listwise models across428

all datasets, even surpassing the pointwise model429

RankT5. Specifically on DL19, it achieves 100×430

faster than RankZephyr and 12.7× faster than431

FIRST, while maintaining comparable ranking432

performance. At the larger scale (3B-7B), MVP-433

3B offers a favorable trade-off between latency434

and ranking performance. Notably, even compared435

to FIRST, a well-balanced 7B model, MVP-3B436

achieves both faster inference and better reranking437

accuracy.438

In summary, the FLOPs and latency results con-439

firm that MVP is both efficient and effective for440

real-time reranking. The scoring strategy of MVP441

enables simultaneous evaluation of all candidates442

without repeated decoding, eliminating redundancy443

and supporting strong ranking performance.444

4.4 Robustness to Initial Order445

Most listwise reranking models are sensitive to the446

initial passage order due to two main factors: (1)447

positional bias, and (2) semantic bias introduced 448

by using natural language tokens (e.g., "1", "2") as 449

passage identifiers. To evaluate whether our model 450

effectively mitigates these biases, we conduct ex- 451

periments on the DL19, DL20, and News datasets. 452

We consider two passage reordering settings: (1) 453

Shuf., the same set of candidate passages is ran- 454

domly shuffled using three different seeds, and the 455

results are reported as averaged values; and (2) 456

Rev., where the input order is simply reversed. The 457

results are summarized in Table 3. 458

This robustness indicates that MVP effectively 459

mitigates positional and semantic biases, which 460

can be attributed to two key design choices: (1) 461

each passage is encoded independently, resulting in 462

shared positional information across all passages; 463

and (2) instead of using unique identifier tokens for 464

each passage, MVP encodes all passages using the 465

same view token, eliminating semantic bias. 466

4.5 Ablation Study 467

To evaluate the impact of key architectural com- 468

ponents on model performance, we design several 469

model variants and perform ablation studies. 470
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Initial Order DL19 DL20 News Average

MVP

BM25 74.3 69.2 49.1 64.2
Shuf. BM25 74.3 69.2 49.1 64.2 (±0.0)
Rev. BM25 74.3 69.2 49.1 64.2 (±0.0)

ListT5 (ts: m=5, r=2)

BM25 71.8 68.1 48.5 62.8
Shuf. BM25 71.2 68.2 48.6 62.7 (–0.1)
Rev. BM25 71.2 67.8 48.5 62.5 (–0.3)

RankZephyr (sw: w=20, s=10)

BM25 73.1 70.8 52.5 65.5
Shuf. BM25 73.1 70.7 51.3 65.0 (–0.4)
Rev. BM25 72.1 71.5 51.8 65.1 (–0.3)

FIRST (sw: w=20, s=10)

BM25 72.4 71.1 52.4 65.3
Shuf. BM25 70.0 69.4 47.3 62.2 (–3.1)
Rev. BM25 67.5 68.3 42.4 59.4 (–5.9)

PE-Rank (sw: w=20, s=10)

BM25 70.8 65.4 52.3 62.8
Shuf. BM25 66.0 58.5 46.8 57.1 (–5.7)
Rev. BM25 67.5 59.1 46.5 57.7 (–5.1)

Table 3: nDCG@10 scores under different initial input
orders. Values in parentheses indicate change relative to
the BM25 ranking order. ts denotes tournament sort and
sw denotes sliding window. For each sorting algorithm,
the basic operating unit (m → r), window size (w), and
stride (s) are set according to prior work.

Model DL19 DL20 BEIR Avg.

MVP 74.3 69.2 51.4
w/o LOrthogonal 73.6 66.7 50.7
w/o Multi-view Encoding 73.8 68.8 50.9

Table 4: nDCG@10 for MVP and its ablations on dif-
ferent training strategies. See Table 10 for full BEIR
results.

4.5.1 Training Strategies471

To investigate the impact of each component in472

MVP, we perform ablation experiments by remov-473

ing two key design elements: (i) orthogonality reg-474

ularization among anchors and (ii) the use of multi-475

view encoding. The results are reported in Table 4.476

w/o Orthogonality. Removing the orthogonality477

regularization among anchor vectors consistently478

degrades performance across datasets. This sug-479

gests that, in the absence of this constraint, differ-480

ent anchors tend to collapse into similar directions481

within the embedding space, leading to redundant482

rather than complementary representations. A de-483

tailed analysis of anchor vector similarities is pro-484

vided in Appendix C.1.485

w/o Multiple Token. Using a single special token486

Figure 6: Average nDCG@10 on BEIR with respect to
the number of view tokens.

to represent relevance results in a 0.4–0.5 point 487

drop in performance on average. This degradation 488

is attributed to the limited capacity of a single to- 489

ken to capture both query and passage information, 490

leading to a loss of discriminative features. 491

4.5.2 Number of View Tokens 492

To analyze the impact of the number of view to- 493

kens on model performance, we varied the number 494

of relevance tokens from 1 to 6 and evaluated the 495

average performance across BEIR datasets. As il- 496

lustrated in Figure 6, incorporating multiple views 497

leads to improved performance up to a certain point, 498

beyond which performance begins to degrade. This 499

suggests that, while orthogonality regularization 500

encourages representational diversity, an excessive 501

number of view tokens may introduce less infor- 502

mative signals, thereby degrading ranking perfor- 503

mance. 504

5 Conclusion 505

We presented MVP, a novel passage reranking 506

model that addresses key limitations of listwise 507

LLM-based approaches, including high computa- 508

tional cost and sensitivity to input order. By lever- 509

aging multi-view encoding through soft prompts 510

and multi-anchor guided decoding, MVP captures 511

diverse relevance signals efficiently via compact 512

context embeddings, enabling all candidate pas- 513

sages to be evaluated in a single pass—making it 514

particularly well-suited for real-world retrieval sce- 515

narios. Experimental results show that MVP, with 516

only 220M parameters, matches or surpasses the 517

performance of 7B-scale models while reducing 518

inference latency up to 100× . Moreover, its 3B 519

variant achieves state-of-the-art results on both in- 520

domain and out-of-domain benchmarks. 521
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6 Limitations522

While MVP employs a fixed number of views523

across all datasets—a simple and generally effec-524

tive strategy—using fewer views in some cases525

can reduce redundancy and improve performance.526

In addition, MVP aggregates relevance scores by527

assigning equal weights to all views. Although528

this uniform aggregation is straightforward, it may529

overlook the fact that different queries can bene-530

fit more from certain views than others. Exploring531

dynamic view selection or learning query-specific532

view weights remains a promising direction for533

future work.534

Ethics Statement535

This work fully respects ACL’s ethical guidelines.536

We have utilized scientific resources available for537

research under liberal licenses, and our use of these538

tools is consistent with their intended applications.539
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for text ranking with ranking losses. In Proceedings746
of the 46th International ACM SIGIR Conference on747
Research and Development in Information Retrieval,748
SIGIR 2023, Taipei, Taiwan, July 23-27, 2023, pages749
2308–2313.750

Shengyao Zhuang, Bing Liu, Bevan Koopman, and751
Guido Zuccon. 2023b. Open-source large language752
models are strong zero-shot query likelihood models753
for document ranking. In Findings of the Associa-754
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Association for Computational Linguistics.757

Model Training Data DL19 DL20

MVP RankDistiLLM 74.3 69.2
ListT5 RankDistiLLM 72.5 68.5

Table 5: nDCG@10 results comparing MVP and a
ListT5 variant trained on RankDistiLLM data, using
tournament sort

A Implementation Details 758

A.1 Passage Length Configuration 759

During Inference, We follow the passage length 760

configuration from ListT5 (Yoon et al., 2024), 761

where the maximum passage length for each 762

dataset is selected from 256, 512, 1024 based on the 763

average number of tokens in the query-passage pair. 764

For the signal dataset, however, we use a smaller 765

maximum length of 128, considering its short in- 766

put length. We found that this reduced setting did 767

not negatively impact performance. The final maxi- 768

mum input lengths used for each dataset are sum- 769

marized as follows: 770

‘dl19’: 256, ‘dl20’: 256, ‘trec-covid’: 512, ‘nf- 771

corpus’: 512, ‘signal’: 128, ‘news’: 1024, ‘ro- 772

bust04’: 1024, ‘scifact’: 512, ‘touche’ : 1024, 773

‘dbpedia-entity’ : 256 774

B Additional Experiments 775

B.1 Comparison with Generation-Based 776

Re-ranking 777

To further validate our approach, we trained the 778

ListT5 framework on our dataset. Following prior 779

work (Yoon et al., 2024), the model was configured 780

to take 5 passages as input and generate the top 2 781

passages. Results are shown in Table 5. 782

Despite being trained on the same dataset, our 783

Anchor based relevance estimation with multi- 784

view representation and reranking approach con- 785

sistently outperformed the generation-based model. 786

We attribute this performance gap to two main fac- 787

tors: (1) generation-based models are trained with 788

language modeling objectives, which are not in- 789

herently aligned with ranking tasks, and (2) our 790

method evaluates relevance from multiple perspec- 791

tives and aggregates the results, enabling more ac- 792

curate and robust ranking estimation. 793

B.2 Designs for View Tokens 794

To analyze the impact of view token design on re- 795

ranking performance, we compare three alternative 796

configurations: (1) First 4 Tokens: Following the 797
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EXTRA_ID FIRST 4 Numeric Alphabetic

DL19 74.3 74.2 73.4 73.2
DL20 69.2 68.7 67.7 68.1

COVID 80.2 78.4 78.5 78.8
NFCorpus 36.0 35.7 35.5 35.3
Signal 33.0 32.2 32.0 33.0
NEWS 49.1 49.4 48.7 49.0
Robust04 55.1 54.2 54.1 54.9
SciFact 75.0 74.6 73.5 73.8
Touche 39.1 39.7 40.4 40.4
DBPedia 43.8 44.3 43.9 43.8

BEIR Avg. 51.4 51.0 50.8 51.1

Table 6: nDCG@10 results for different view token
designs.

5 10 20 100

DL19 74.3 73.7 74.0 68.1
DL20 69.2 68.0 67.0 62.4

COVID 80.2 80.1 80.1 76.3
NFCorpus 36.0 35.9 35.3 34.3
Signal 32.7 32.1 31.3 32.0
NEWS 49.1 48.6 47.2 46.0
Robust04 55.1 55.4 53.8 52.5
SciFact 75.0 74.4 74.1 69.3
Touche 39.1 39.0 36.9 35.2
DBPedia 43.8 44.0 43.4 40.7

BEIR Avg. 51.4 51.2 50.3 48.3

Table 7: nDCG@10 performance with varying candidate
sampling sizes during training.

FiD-Light (Hofstätter et al., 2023) approach, the798

first four tokens in the input prompt are reused799

without introducing dedicated special tokens; (2)800

Numeric Tokens: View tokens are replaced with801

number-based tokens (1, 2, 3, 4); (3) Alphabetic802

Tokens: Character-based tokens (A, B, C, D) are803

used as view tokens.804

Table 6 demonstrate that the <extra_id> tokens805

defined in the T5 tokenizer, as adopted by the pro-806

posed MVP framework, are the most effective. This807

result suggest that:808

(1) Learnable token embeddings specifically809

trained to encode query-passage relevance are more810

effective than simply reusing initial prompt tokens;811

(2) Moreover, numeric and alphabetic tokens may812

already carry semantic meaning from pretraining,813

leading to potential conflicts with their intended814

function as compression tokens, ultimately result-815

ing in degraded performance.816

View 1 View 2 View 3 View 4 MAX Mean

DL19 72.8 71.5 72.7 73.5 73.5 74.3
DL20 66.3 65.9 68.0 68.3 68.4 69.2

COVID 78.9 78.8 79.9 80.0 80.1 80.2
NFCorpus 35.7 32.4 31.4 36.2 33.1 36.0
Signal 30.6 33.1 32.6 32.7 33.4 32.7
NEWS 47.5 44.7 49.9 48.0 46.9 49.1
Robust04 52.2 51.4 54.4 55.3 53.4 55.1
SciFACT 74.1 58.5 57.0 74.7 73.4 75.0
Touche 34.2 37.2 38.2 38.6 37.9 39.1
DBPedia 43.1 42.0 41.9 43.6 43.7 43.8

BEIR Avg. 49.5 47.2 48.2 51.1 50.2 51.4

Table 8: nDCG@10 comparison of view-wise score
aggregation methods, including individual views, MAX,
and Mean. The Mean strategy corresponds to the default
aggregation method used in our proposed framework
MVP.

Relevance Vectors Anchor Vectors

MVP 0.4910 (0.0229) -0.0025 (0.0010)
w/o Orthogonal 0.8815 (0.0232) 0.9800 (0.0062)

Table 9: Mean (standard deviation) of pairwise co-
sine similarities. Similarities are calculated respectively
among relevance vectors and anchor vectors.

B.3 Effect of Sampling Size 817

We further analyze the impact of the number of 818

candidate passages used during training on model 819

performance. The setting with 100 candidates fol- 820

lows the original configuration of Rank-DistilLM, 821

while the settings with 10 and 20 candidates involve 822

randomly sampling 10 or 20 passages per training 823

instance, respectively. The results are summarized 824

in Table 7. 825

Interestingly, we observe a performance degrada- 826

tion as the number of candidate passages increases. 827

We attribute this to the fact that, when the num- 828

ber of candidates is large, the target distribution 829

becomes overly flattened, thereby diminishing the 830

distinction between highly relevant and irrelevant 831

passages. 832

C Additional Analysis of MVP 833

C.1 Impact of Orthogonal Regularization 834

To verify whether orthogonality promotes separa- 835

tion across views, we analyze the pairwise cosine 836

similarities within anchor vectors and relevance 837

vectors on the DL20 dataset, which contains 54 838

queries, each associated with 100 candidate pas- 839

sages. We compare the results between MVP and 840
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Model COVID NFCorpus Signal News Robust04 SciFact Touche DBPedia Avg.

MVP 80.2 36.0 32.7 49.1 55.1 75.0 39.1 43.8 51.4
w/o LOrthogonal 79.1 35.6 31.4 48.1 54.6 74.3 38.4 43.9 50.7
w/o Multi-view Encoding 78.8 35.8 32.6 48.7 55.2 73.2 39.1 44.2 50.9

Table 10: Full BEIR results for the ablation study on training strategies.

its variant without orthogonality regularization. For841

anchor vectors, we compute the average pairwise842

similarities among the 4 anchors for each query3843

and report the average across 54 queries. For rel-844

evance vectors, we also compute the average pair-845

wise similarities among the four vectors produced846

for each query-passage pair, and report the average847

over all 5,400 pairs.848

The results are presented in Table 9. As shown,849

removing the orthogonality constraint leads to a850

substantial increase in similarity among both an-851

chor and relevance vectors. This indicates that the852

relevance vectors capture highly similar signals,853

and the anchor vectors assess relevance using over-854

lapping criteria. Consequently, this reduces view855

diversity and leads to performance degradation.856

C.2 Effectiveness of View Aggregation857

We conducted an additional analysis to verify858

whether the proposed model effectively aggregates859

information from each view. Table 8 presents the860

results of this analysis, where each column repre-861

sents a different aggregation strategy. Specifically,862

columns labeled View 1, ..., View 3 show perfor-863

mance when reranking is performed using scores864

from each individual view alone, while the col-865

umn labeled Max indicates performance obtained866

by selecting the highest relevance score among all867

views as the final relevance score. Lastly, the col-868

umn labeled Mean corresponds to our proposed869

MVP approach, where the final relevance score is870

calculated by averaging scores across all views.871

Experimental results demonstrate that, the MVP872

approach of averaging scores across views consis-873

tently outperforms in most scenarios. In contrast,874

the MAX strategy results in decreased performance,875

which can be attributed to the inconsistency intro-876

duced by selecting the final score from different877

views. Since each view captures distinct relevance878

perspectives, relying on a single highest score may879

lead to instability and undermine the overall rank-880

ing consistency.881

3four vectors generate six unique pairs.

C.3 Full Reranking Results from Ablation 882

Studies 883

Following the analysis in Section 4.5.1, Table 10 884

reports the full reranking results from the ablation 885

experiments. 886
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