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Abstract

In recent years, generated content in music001
has gained significant popularity, with large002
language models being effectively utilized to003
produce human-like lyrics in various styles,004
themes, and linguistic structures. This techno-005
logical advancement supports artists in their006
creative processes but also raises issues of007
authorship infringement, consumer satisfac-008
tion and content spamming. To address these009
challenges, methods for detecting generated010
lyrics are necessary. However, existing works011
have not yet focused on this specific modal-012
ity or on creative text in general regarding013
machine-generated content detection methods014
and datasets. In response, we have curated the015
first dataset of high-quality synthetic lyrics and016
conducted a comprehensive quantitative eval-017
uation of various few-shot content detection018
approaches, testing their generalization capa-019
bilities and complementing this with a human020
evaluation. Our best few-shot detector, based021
on LLM2Vec, surpasses stylistic and statistical022
methods, which are shown competitive in other023
domains at distinguishing human-written from024
machine-generated content. It also shows good025
generalization capabilities to new artists and026
models, and effectively detects post-generation027
paraphrasing. This study emphasizes the need028
for further research on creative content detec-029
tion, particularly in terms of generalization030
and scalability with larger song catalogs. All031
datasets, pre-processing scripts, and code are032
available publicly on GitHub and Hugging Face033
under the Apache 2.0 license.034

1 Introduction035

In recent years, generated content has become in-036

creasingly widespread across various modalities,037

including audio (Kong et al., 2020), image (Ho038

et al., 2020), video (Singer et al., 2023; Thambiraja039

et al., 2023), and text (Brown et al., 2020). This040

technological progress has been influencing numer-041

ous fields, such as literature, visual arts, and en-042

tertainment. Music, in particular, has experienced043

a notable impact from this trend, with the emer- 044

gence of tools like Suno AI1 and ChatGPT (Ope- 045

nAI, 2023) facilitating faster and more accessible 046

content creation by generating lyrics (Nikolov et al., 047

2020; Qian et al., 2023; Tian et al., 2023) and au- 048

dio (Copet et al., 2023), thereby broadening the 049

scope of artistic activities and creation. 050

The widespread adoption of accessible Large 051

Language Models (LLMs) like BLOOM (Scao 052

et al., 2023), Mistral (Jiang et al., 2023), Chat- 053

GPT (OpenAI, 2023) and LLaMa 2 (Touvron et al., 054

2023) has the potential to transform the way cre- 055

ative text is written. These freely available models 056

can produce text with human-like quality at min- 057

imal cost, making them highly accessible for cre- 058

ative tasks such as writing poems (Popescu-Belis 059

et al., 2023), song lyrics (Qian et al., 2023), movie 060

scripts (Zhu et al., 2023b), and other types of cre- 061

ative content (Swanson et al., 2021; Chakrabarty 062

et al., 2024). The advent of machine-generated text 063

offers a wealth of possibilities for artists, providing 064

new sources of inspiration and a means to over- 065

come creative blocks (Zhu et al., 2024; Behrooz 066

et al., 2024). In the music domain, by leveraging 067

these advanced LLMs, songwriters could create 068

content on diverse themes, styles and linguistic 069

structures. 070

However, this widespread adoption of LLMs 071

also raises concerns about authorship infringement, 072

consumer satisfaction 2 and content spamming. To 073

manage the dissemination of such content and pre- 074

vent potential abuses, it is crucial to develop meth- 075

ods for detecting machine-generated lyrics. But 076

yet, no related works focus on detecting machine- 077

generated creative content like poems or lyrics, de- 078

spite their significantly different nature from other 079

types of documents. This difference stems from 080

their unique semantic and rhythmic structure, as 081

well as the multiple socio-cultural references they 082
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convey (Spanu, 2019).083

Various approaches have been considered in084

the past to tackle this detection task, and are of-085

ten modeling it as a binary classification problem086

(Mitchell et al., 2023), where detectors distinguish087

between human-written and machine-generated088

content from various black-box systems. How-089

ever, none of them have been assessed on cre-090

ative content and are often limited in terms of data091

and model generalization (Uchendu et al., 2020;092

Bakhtin et al., 2019).093

In order to overcome this, we propose the fol-094

lowing contributions:095

• The curation and release of the first dataset096

of human-like synthetic lyrics, allowing to097

perform machine-generated content detection.098

• A quantitative study of seven few-shot content099

detection approaches including LLM2Vec,100

UAR, Min-K % Prob and Shannon entropy101

on this new type of data, lyrics.102

• An evaluation of the detectors regarding their103

capacity to generalize to newer artists and gen-104

erative models of different sizes, trained with105

various procedures, and a study of the impact106

of the paraphrasing attack on the detectors.107

• A human evaluation on the detection of108

machine-generating lyrics.109

The datasets, pre-processing scripts, and codes re-110

lated to this work are accessible on Hugging Face 3111

and Github 4 under Apache 2.0 license in compli-112

ance with content copyrights.113

2 Related Work114

The detection of machine-generated content is115

a well-established task (Lavergne et al., 2008;116

Badaskar et al., 2008), with its origins in vari-117

ous fields of machine learning (Rana et al., 2022;118

Ahmed et al., 2022; Zhou and Lim, 2021; Guarn-119

era et al., 2024; Bammey, 2024). Historically, the120

focus has been on identifying generated content121

across different modalities such as newspapers and122

scientific articles for text, or voice spoofing for au-123

dio. However, recent advances in generative model124

quality and creativity have highlighted the need for125

detectors capable of handling more sophisticated126

forms of text, such as creative content. The music127

industry, in particular, faces multiple modalities128

3Hidden for double-blind.
4Hidden for double-blind.

vulnerable to machine-generated content, with cur- 129

rent efforts primarily addressing audio detection 130

(Zang et al., 2024; Wu et al., 2017; Afchar et al., 131

2024). This has led to a significant gap in the liter- 132

ature regarding the detection of machine-generated 133

textual creative content such as lyrics, compelling 134

us to focus first on general methods for detecting 135

machine-generated text. 136

Machine-generated text detection is commonly 137

formulated as a classification task (Liu et al., 2023; 138

Huang et al., 2024). One way of solving it is 139

to use supervised learning, where classification 140

models based on textual encoders (Abburi et al., 141

2023; Wu et al., 2023; Pu et al., 2023; Wang et al., 142

2023) or LLMs (Macko et al., 2023; Antoun et al., 143

2024; Chen et al., 2023; Kumarage et al., 2023) 144

are trained on a dataset containing both machine- 145

generated and human-written texts. However, those 146

supervised models are trained to explicitly detect 147

a very particular set of machine-generated data 148

and may suffer from over-fitting issues on unseen 149

data (Uchendu et al., 2020; Bakhtin et al., 2019), 150

such as newer artists or generative models. 151

In a different line of research, attempts have been 152

made to differentiate between machine-generated 153

and human-written texts based on statistical anoma- 154

lies in the entropy or perplexity by estimating 155

token-level log probabilities (Su et al., 2023; Zhu 156

et al., 2023a; Sadasivan et al., 2024). Other ap- 157

proaches, like DetectGPT (Mitchell et al., 2023), 158

found that machine-generated texts can be detected 159

after a few intensive perturbations, outperform- 160

ing previous methods. Parallel studies explored 161

watermark-based detection (Abdelnabi and Fritz, 162

2021; Chakraborty et al., 2023; Kirchenbauer et al., 163

2023), but these methods suffer from the need to ac- 164

cess model logits, which is not feasible for models 165

available exclusively through APIs, such as GPT-4 166

Turbo or Claude 3. 167

3 Datasets 168

As highlighted in related works, most of the text 169

detection studies have focused on textual data of a 170

very different nature than lyrics in terms of struc- 171

ture, semantics and vocabulary. Consequently, 172

there is currently a lack of validated corpus suit- 173

able for detecting machine-generated lyrics. More- 174

over, most studies on machine-generated content 175

detection use generated data by simply relying 176

on LLMs outputs, without validating the content. 177

These studies often do not evaluate the soundness 178

of generated data by humans nor explicitly mention 179

post-generation steps where generation artifacts or 180

sparse character encodings could be removed from 181

2

Hidden for double-blind.
Hidden for double-blind.


the text. For our experiments, we require a dataset182

comprising two types of lyrics: human-written and183

machine-generated. Due to the absence of such a184

dataset, we opted to construct one ourselves.185

Our goal with this dataset is to develop meth-186

ods based on a single generative model and three187

artists, to assess the scalability of our approaches188

across six additional models and two more artists.189

To do so, we started curating human-written lyrics190

from a music metadata provider, LyricsFind 5. The191

machine-generated lyrics were automatically gener-192

ated by seven large language models (LLMs) under193

controlled conditions, as we will explain in further194

sections. We chose this approach to focus exclu-195

sively on text generation, avoiding the use of other196

types of lyric generators that incorporate multiple197

modalities such as melody or audio (Qian et al.,198

2023; Tian et al., 2023).199

3.1 Human-written Lyrics Collection200

To narrow the scope of our study, we first focus on201

five well-known English-speaking artists: Drake,202

Ed Sheeran, Post Malone, Taylor Swift, and The203

Weeknd. These artists were selected based on the204

previous year’s Billboard "Top Artists" lists 6. This205

selection allows us to obtain a substantial amount206

of lyrics from the provider.207

We constrained the curated lyrics to those avail-208

able on the provider’s server and filtered them so209

that they must have been released within the past210

year and a half. This prevents data leakage into the211

models used for our detectors.212

Additionally, we filtered the lyrics by language,213

ensuring that only English lyrics were included. So,214

we collected language tags given by the provider215

and used our language tagger, trained on 50 lan-216

guages from MASSIVE (FitzGerald et al., 2023),217

to double-check the content’s language, since some218

mistakes were present in the providers data. We219

also implemented a deduplication process to avoid220

multiple variations of the same song due to dif-221

ferent delivery formats (album, single, live, etc.),222

based on the text.223

3.2 Synthetic Lyrics Generation224

The quality of the generated outputs influences225

the difficulty of the task and the system’s gener-226

alization capability. To maintain high-quality and227

human-like lyrics, we employed a four-step pro-228

cess. We empirically evaluate each step’s output229

by visually inspecting it for potential issues or gen-230

5lyricfind.com
6billboard.com/charts/year-end/top-artists

eration artifacts, and we continuously enhance the 231

normalization and filtering steps accordingly. 232

Step 1 - Generation. The first step consists of 233

generating a few thousand lyrics using each of the 234

7 models from Section 3.4 by using the prompt 235

listed in the Appendix A and conditioned during in- 236

context learning with 3 lyrics from the same artist 237

and taken from the 150 human-written lyrics (Table 238

1). To ensure the generated lyrics closely resemble 239

the real ones, we instruct the model to adhere to 240

the same structure and guidelines as outlined by 241

the provider’s formatting guidelines 7, listing these 242

guidelines as bullet points in the prompt. Further- 243

more, to maximize the use of our available data, we 244

condition the models by varying the order of the 245

few-shot examples, as demonstrated in the work 246

of Lu et al. (2022), which acts as a seed and diver- 247

sifies the model’s outputs. The hyperparameters 248

used to generate the lyrics are listed in Table 6 and 249

all the models are quantized in GGUF Q4 to ensure 250

they can run efficiently on an 8GB M1 MacBook, 251

suitable for an isolated individual using consumer- 252

grade hardware with reasonable inference times. 253

Step 2 - Normalization. Next, we normalize 254

the generated lyrics using various regular expres- 255

sions developed along the process and based on the 256

model’s output, in order to prevent artifacts absent 257

from real lyrics. For instance, we remove punctua- 258

tion at the end of sentences when needed, eliminate 259

quotations, and remove references to the genera- 260

tion process (such as "note: the lyrics generated," 261

"written in the style," or "here’s an example of a 262

song") as well as indications of offensive content 263

(e.g. "I cannot generate inappropriate"). 264

Step 3 - Filtering. After, we sample the gener- 265

ated lyrics to align with the typical style of the 266

artists by employing statistical metrics drawn from 267

their real lyrics. It includes parameters like sen- 268

tence length, number of verses, verse size, and 269

overall word count. During generation, each metric 270

distribution of the human-written lyrics is repre- 271

sented in box plots, and the generated content must 272

fall within the interquartile range to be preserved. 273

Step 4 - Semantic similarity. Lastly, we conduct 274

a semantic similarity comparison between the gen- 275

erated lyrics and the human-written ones, retaining 276

up to 150 synthetic lyrics that are the most semanti- 277

cally similar to real ones for each artist / generative 278

model combination. This semantic similarity is per- 279

formed using Sentence Transformers (Reimers and 280

7docs.lyricfind.com/LyricFind_LyricFormattingGuidelines.pdf
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Gurevych, 2019) library and all-MiniLM-L6-v2281

(Wang et al., 2021) model.282

3.3 Data split283

Human-written lyrics from three artists (Drake,284

Post Malone and Ed Sheeran) were used for the285

few-shot generation of synthetic lyrics (Section286

3.2) and the few-shot detectors (Section 4). Specif-287

ically, for the detection methods, we subsample288

300 lyrics equally distributed across these artists289

with 50 human-written and 50 machine-generated290

lyrics obtained using only LLaMa 2 13B for each291

of them. Relying on only one model during the292

detection is made to allow us to test the general-293

ization capabilities of the detectors across newer294

models.295

We reserved two artists (The Weeknd and Taylor296

Swift) exclusively for the evaluation to demonstrate297

the detector’s generalization capabilities. The final298

evaluation set comprises 4,572 synthetic lyrics and299

625 human-written ones, with the artist distribution300

as follows in Table 1:301

Artists Generated Human-written
Vector Space ("Train")

Seen (S)
Drake 50† 50

Post Malone 50† 50
Ed Sheeran 50† 50

Evaluation ("Test")

Seen (S)
Drake 931 128

Post Malone 769 42
Ed Sheeran 902 84

Unseen (U ) Taylor Swift 922 153
The Weeknd 898 68

Total 4,572 625

Table 1: Distribution of the dataset labels across artists.
†LLaMa 2 13B is the only model seen as machine-
generated lyrics in the vector space, while all the 7
models are available in the test set.

3.4 Generative Models302

Various types of autoregressive LLMs have been303

used to generate the synthetic lyrics. Our choice304

was guided by the need for diversified architec-305

tures, model sizes and training procedures, in order306

to include content from various models runnable307

on consumer-grade hardware and ensure general-308

ization. Three model types have been selected:309

Foundation Models. The foundation models are310

LLMs trained from scratch using a wide range of311

data crawled from the web. LLaMa 2 13B (Tou-312

vron et al., 2023), LLaMa 3 8B (AI@Meta, 2024)313

and Mistral 7B (Jiang et al., 2023) are the three314

models we selected due to their very interesting315

performances to size ratio.316

Small Language Models These models offer per- 317

formances very close to those from previous foun- 318

dation models while being much smaller. We only 319

focused on TinyLLaMa 1.1B (Zhang et al., 2024) 320

because other models of the same size such as Phi 321

1.5 (Li et al., 2023) or Pythia 1.4B (Biderman et al., 322

2023), could not consistently generate lyrics with- 323

out any form of hallucination. 324

Instruction-tuned Lastly, the instruction-tuned 325

models are models based on the weights of the 326

previous foundation models and fine-tuned on syn- 327

thetic instructions that look very similar to human 328

prompts. We selected three models: First, Wiz- 329

ardLM2 7B (Xu et al., 2024), which is based on 330

Mistral 7B and fine-tuned using DPO (Rafailov 331

et al., 2023) on 250K human-like instructions ob- 332

tained from the 52K instructions of Alpaca (Taori 333

et al., 2023). Vicuna 7B (Chiang et al., 2023) is 334

based on LLaMa 2 7B and fine-tuned on 70K user- 335

shared conversations collected from ShareGPT, a 336

website where people share their ChatGPT inter- 337

actions. Zephyr 7B (Tunstall et al., 2023), de- 338

rived from Mistral 7B, has been fine-tuned on two 339

datasets: UltraChat (Ding et al., 2023), which in- 340

cludes 1.47 million multi-turn dialogues, and Ul- 341

traFeedback (Cui et al., 2024), which comprises 342

64,000 instructions. 343

4 Text Detection Methods 344

Detecting machine-generated lyrics can be ap- 345

proached as a binary classification task, catego- 346

rizing them into two classes: "human-written" and 347

"machine-generated" based on a set of features. 348

One effective method for this is to fine-tune an 349

encoder-based classifier like BERT on a set of refer- 350

ence data (Liu et al., 2023). This classifier can then 351

provide a probability distribution for new lyrics that 352

need to be classified. Another approach involves us- 353

ing the k-nearest neighbors (k-NN) algorithm. This 354

method builds a dynamic vector index using lyrics 355

referenced over time. When new lyrics need to be 356

analyzed, a distance-based algorithm retrieves the 357

k closest points to the query and typically returns 358

the most frequent label among them. 359

The first approach, while powerful, requires re- 360

training from scratch whenever new ground-truth 361

data is available, and it has limitations in explain- 362

ability and in controlling the impact of individual 363

features. Conversely, the k-NN approach is more 364

suited for low-resource environments, facilitating 365

detection even with a limited number of lyrics 366

(few-shot) and allowing for continuous system up- 367

dates by incorporating new examples of machine- 368
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generated and human-written lyrics, thereby im-369

proving detection performance over time as lyrics370

are manually flagged by communities or editorial371

teams. Making us motivated to use it.372

In the following sections, we introduce a wide373

range of features used to characterize the limited374

number of lyrics when projected into the vector375

space and utilized to make the few-shot k-nearest376

neighbor classification.377

4.1 Random baseline378

For each of the lyrics, we randomly attribute one379

of the two classes, "human-written" or "machine-380

generated".381

4.2 Maximum Negative Log-Likelihood382

This approach consists of computing the token’s383

level negative log-likelihood of the lyrics by using384

an autoregressive LLM. In our case, we selected385

a model that is not in the list of models used to386

generate the lyrics, specifically LLaMa 2 7B.387

Since lyrics are composed of individual verses388

which can be altered independently through human389

intervention (e.g. post-editing in the creative pro-390

cess or to fool a detector in case of an attack), we391

decided to compute the log probabilities of the to-392

kens considering only the verse at the time as our393

context. It also allows us to distribute the computa-394

tion and get faster inference time. Once we obtain395

those token’s level negative log-likelihood, we take396

the maximum value across all the verses and use it397

as a one-dimensional vector of statistical features398

for the lyrics.399

4.3 Perplexity400

The perplexity (PPL) consists of getting a lyrics401

level metric obtained by an exponential average of402

the negative log-likelihood of the lyrics.403

PPL(X) = exp

{
−1

t

t∑
i

log pθ(xi|x<i)

}
404

Where log pθ(xi|x<i) is the negative log-405

likelihood of the current token (xi) considering406

the past tokens window (x<i) of the sequence (t).407

It allows us to encapsulate the overall probability408

of the lyrics being formulated as they are into a sin-409

gle value. The higher the perplexity (PPL), the less410

likely it is that the lyrics are human-written. How-411

ever, there can be exceptions, as artistic writing412

may be more "surprising".413

4.4 Shannon Entropy 414

The Shannon entropy is used as a measure of the 415

self-information (Shannon, 1948) inside the proba- 416

bility distributions of a sequence. In the case of the 417

lyrics and token’s level negative log-likelihood, this 418

information represents the sparsity or the diversity 419

of the vocabulary used to construct the verse. 420

H(X) = −
∑
x∈X

p(x) log p(x) 421

We combine both the highest and lowest entropy 422

computed per lyrics verse in a 2-dimensional vector, 423

in order to capture the intrinsic variability of the 424

lyrics and have a comprehensive overview of it. 425

4.5 Min-K% Prob 426

The Min-K% Prob method, introduced by Shi et al. 427

(2024), involves selecting a subsample of K% of 428

the lowest token-level negative log-likelihood prob- 429

abilities from the entire set of lyrics. These prob- 430

abilities are then averaged to create a single one- 431

dimensional document-level feature. In our case, 432

we selected a K = 10, based on the observations 433

in Appendix F 434

4.6 Semantic and Syntactic Embeddings 435

We used dense semantic embeddings obtained us- 436

ing the library Sentence Transformers (SBERT) 437

by Reimers and Gurevych (2019) and the model 438

all-MiniLM-L6-v2 from Wang et al. (2021) in or- 439

der to capture the differences in the semantic and 440

syntactic structure (Jawahar et al., 2019) of the 441

lyrics written by humans and machines. 442

4.7 Authorship Embeddings 443

Unlike SBERT embeddings, the Universal Author- 444

ship Representation model (UAR) from Soto et al. 445

(2021) generates stylistic representations of lyrics 446

by capturing the author’s writing styles. Soto et al. 447

(2024) adapted this model to determine whether a 448

given text was written by a human or not. For this 449

purpose, UAR embeddings were fine-tuned using 450

a contrastive learning approach, with positive sam- 451

ples from one Reddit user and negative samples 452

from another. Two types of datasets were used, 453

resulting in the MUD and CRUD model variants, 454

which were trained on data from 1 and 5 million 455

distinct Reddit users respectively. 456

4.8 LLM2Vec 457

LLM2Vec is an unsupervised method designed 458

to convert auto-regressive LLMs into text en- 459

coders. This transformation is achieved through 460
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Lyrics Generators
D

et
ec

to
rs

Generators Models LLaMa 2 13B† LLaMa 3 8B Mistral 7B TinyLLaMa Vicuna WizardLM2 Zephyr Human-written
Artists S U S U S U S U S U S U S U S U Overall

Random 45.37 42.86 52.00 53.67 51.33 49.00 50.16 48.75 52.89 45.33 46.87 53.33 53.11 49.67 47.98 41.34 47.52
Statistics Methods

Perplexity 62.33 48.70 67.78 67.00 78.89 84.00 57.96 45.33 63.78 53.33 71.92 72.67 68.44 73.33 57.20 53.59 60.77
Max. Neg. Log-Likelihood 89.17 89.61 80.89 85.33 75.78 74.33 77.58 72.33 90.44 90.00 63.19 55.67 81.56 78.33 83.44 89.38 82.44
Shannon Entropy

Max 73.70 80.68 91.56 95.00 88.22 94.00 50.60 58.92 68.89 76.33 71.64 73.00 70.00 76.00 77.44 71.24 75.36
Max+Min 78.16 81.66 94.44 91.33 88.44 88.67 64.63 60.17 87.33 80.33 68.57 65.33 72.22 78.33 80.61 82.76 80.06

Min-K% Prob (k=10) 73.41 56.33 88.22 90.00 92.44 93.67 70.50 51.00 73.56 63.00 93.19 96.67 88.00 90.67 70.73 88.56 79.23
Embeddings Methods

SBERT 84.45 68.02 89.11 87.67 86.89 94.33 54.74 55.17 74.22 62.33 87.88 91.67 78.22 69.00 74.84 73.53 76.06
LLM2Vec

LLaMa 3 8B 90.31 86.53 97.56 98.33 95.11 96.67 70.03 59.42 92.22 90.67 78.32 80.00 90.44 87.67 94.73 95.59 90.97
LLaMa 2 7B 82.87 82.47 95.33 97.67 77.78 88.00 57.46 45.33 86.67 83.33 45.07 48.33 72.67 74.33 97.63 90.77 84.48

UAR
CRUD 69.18 88.80 68.67 64.33 74.67 81.00 32.84 32.92 47.56 48.67 44.81 44.67 63.33 81.67 90.64 89.13 74.83
MUD 79.89 85.23 65.56 43.67 84.22 88.00 32.69 37.42 46.44 40.67 53.19 59.00 72.67 93.33 95.39 95.75 79.18

Table 2: Recall of the 7 generator models (x-axis) against human-written lyrics by each of the 8 detection methods
(y-axis). S refers to the artists seen in the vector space and U to the unseen ones. The overall micro recall score
between human-written and machine-generated labels is reported in the last column. For each category of detectors,
the best-performing one is in bold and the second-best is underlined. †LLaMa 2 13B is the only model seen in the
vector space (Table 1).

a three-step process inspired by techniques from461

BERT (Devlin et al., 2019) and Sentence Trans-462

formers (Reimers and Gurevych, 2019). The steps463

include enabling bidirectional attention, imple-464

menting masked next-token prediction, and apply-465

ing unsupervised contrastive learning. Together,466

these steps enhance the model’s ability to capture467

meaningful textual information as a vector.468

5 Experiments469

The machine-generated lyrics detection can be470

modeled as a binary classification problem, similar471

to other types of generated text detection mentioned472

in the related works. The first class is "human-473

generated" which refers to the original lyrics ex-474

tracted from the provider. The second class is475

"machine-generated" and refers to the synthetic476

lyrics automatically generated by the LLMs.477

5.1 Metrics478

To evaluate the performance of our detectors and479

their capacity to generalize to new generative mod-480

els and artists, we choose to use the recall for each481

of each generator / detector combination and the482

micro-recall computed over both classes "human-483

written" and "machine-generated", thus mentioned484

as the "overall" metric in Table 2.485

Recall is a more suitable metric than accuracy486

because we want to minimize false negatives for487

human-generated lyrics while maximizing true pos-488

itives for synthetic lyrics and the overall metric. In489

the context of a synthetic content detection system,490

it is less problematic to confuse synthetic lyrics491

with human-written ones, than to incorrectly clas-492

sify human-written lyrics as generated. 493

5.2 Results 494

First, we observe in Table 2 that no single model 495

excels equally across all generators and artists, and 496

none of the generators consistently outperforms the 497

detectors. The performance difference during the 498

evaluation between artists seen (S) in the k-NN 499

and those unseen (U ) as referred to in Section 1, 500

depends on the generator and detector used. Unsur- 501

prisingly, artists not represented in the vector space 502

tend overall to perform worse than those that are. 503

For generators, there is no clear pattern related to 504

their presence in the vector space, while the only 505

seen generator, LLaMa 2 13B, performs similarly 506

to unseen ones, which shows the generalization of 507

our approaches to different generative models. 508

However, some generators, such as WizardLM2 509

and TinyLLaMa, are less frequently detected, pos- 510

sibly due to their different architectures captur- 511

ing linguistic properties better, resulting in higher- 512

quality lyrics. On the other hand, foundation 513

models like LLaMa 2 13B, Mistral 7B or some 514

instruction-tuned models like Vicuna and Zephyr 515

are more frequently detected by both statistical 516

and embeddings-based methods, indicating a bad 517

generalization than other types of models which 518

are aimed at human-like interactions such as Wiz- 519

ardLM2. 520

We also observe significant differences among 521

detectors in their ability to correctly label human- 522

written lyrics, a critical criterion discussed in Sec- 523

tion 5.1. Some detectors tend to mislabel human- 524

written lyrics as machine-generated, possibly due 525

to a collapsed vector space that lacks sufficient 526
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differentiation. Specifically, the Shannon entropy,527

LLM2Vec, and UAR-based approaches are par-528

ticularly accurate and favor human-written labels,529

which makes them the most suitable detectors in530

our use case. Despite LLM2Vec embeddings built531

from LLaMa 2 7B being the most accurate for532

human-written lyrics, it is not the overall most ef-533

fective embeddings-based method. It is worth notic-534

ing that LLaMa 3 8B outperforms LLaMa 2 7B by535

an overall difference of 6.49%. These LLM2Vec536

detectors significantly surpass others, including537

UAR embeddings, previously considered in the538

literature (Soto et al., 2024) as more effective com-539

pared to earlier methods like statistical approaches540

or SBERT. For UAR, MUD performs better than541

CRUD by 4.35%, highlighting the benefits of us-542

ing embeddings built from a more diverse range of543

users. The best-performing statistical method is the544

maximum negative log-likelihood, and offers very545

good performances compared to UAR CRUD and546

SBERT. The same detector outperforms the Shan-547

non entropy by 2.38% when using maximum and548

minimum features and the perplexity by 21.67%.549

5.3 Human evaluation550

The human evaluation aims to classify given lyrics551

as either "human-written" or "machine-generated"552

based solely on individual perception of the lyrics,553

fluency, coherence, and structure. We ensure that554

participants aren’t familiar with the artists and555

haven’t recognized many songs during the annota-556

tion process (Figure 4), in order to prevent having557

a biased experimental protocol. This approach al-558

lows for direct comparison with automatic detec-559

tors and addresses three questions:560

• Is the quality of the generated lyrics sufficient561

to serve as ground truth?562

• How do a small subset of humans perform on563

this task compared to the automatic detectors?564

• Are there similarities in the criteria used by565

humans and detectors for their judgments?566

To achieve this, a random subsample of 70 lyrics567

was selected, evenly split between generated and568

human-written, and uniformly distributed across569

different artists and models. Participants are un-570

aware of this distribution to prevent bias and only571

see one isolated lyric at a time when annotating.572

They are asked to fill out a form where they have573

to select between one of the two classes: "human-574

written" or "machine-generated", and to rate their575

confidence on a scale from 1 to 4, as detailed in576

Appendix C. The performance of each participant 577

and the detectors is detailed below in the Table 3: 578

Participant ID Machine-generated Human-written Overall
Recall Confidence Recall Confidence

Participant 1 54.28 3.14 97.14 3.68 75.71
Participant 2 40.00 2.20 43.44 2.05 41.72
Participant 3 57.14 2.20 78.50 2.42 67.82
Participant 4 74.28 2.37 82.88 2.45 78.58

Statistics Methods
Perplexity 51.42 - 69.96 - 60.70
Negative Log-Likelihood 40.00 - 76.66 - 58.33
Shannon Entropy 60.00 - 70.04 - 65.02
Min-K% Prob (k=10) 54.28 - 50.71 - 52.50

Embeddings Methods
SBERT 82.85 - 78.83 - 80.84
LLM2Vec

LLaMa 2 7B 94.28 - 98.18 - 96.23
LLaMa 3 8B 97.14 - 91.36 - 94.25

UAR
CRUD 65.71 - 100.00 - 82.86
MUD 68.57 - 94.84 - 81.71

Table 3: Human participants’ performance on a subsam-
ple of 70 lyrics.

The standard deviation in participant’s scores is 579

substantial, with a difference of 14.53%. Partici- 580

pant 4 achieved the highest score at 78.58%, while 581

Participant 2 had the lowest at 41.72%. This vari- 582

ability is likely due to Participant 2’s difficulty in 583

identifying distinguishable patterns to guide her 584

decisions as mentioned in Appendix 4. Partici- 585

pants 1, 3 and 4 performed better than statistical 586

methods but worse than embeddings-based meth- 587

ods. Overall, embeddings-based methods outper- 588

form humans, providing better performance on 589

both classes simultaneously by capturing the sen- 590

tence’s inner structure and sequence sparsity, unlike 591

humans who rely on superficial judgments. 592

Additionally, humans tend to identify human- 593

written lyrics more accurately than machine- 594

generated ones, a trend observed in 75% of the 595

detectors. It is also evident that TinyLLaMa is the 596

easiest generator for humans to identify, with a 90% 597

recall, while LLaMa 3, WizardLM2, and Zephyr 598

are the hardest, each with a 40% recall. These re- 599

sults indicate very different behaviors compared to 600

those observed by detectors, reinforcing the idea 601

that humans and machines assess lyrics very differ- 602

ently. 603

In terms of the agreement, participants com- 604

pletely agreed on the label 28.57% of the time. In 605

the remaining 71.43% of cases, at least one partici- 606

pant disagreed with the others. This significantly 607

reduced the values of Kappa Cohen and Gwet’s 608

AC1 as shown in Table 5, highlighting the task’s 609

difficulty and the divergences among participants. 610

The Kappa scores involving Participant 2 indicate 611

that annotations are very close to or worse than 612

random, as negative Kappa and Gwet’s AC1 val- 613
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Lyrics Generators
Generators Models LLaMa 2 13B LLaMa 3 8B Mistral 7B TinyLLaMa Vicuna WizardLM2 Zephyr Human-written

D
et

ec
to

rs

Artists S U S U S U S U S U S U S U S U Overall
Statistics Methods

Max. Neg. Log-Likelihood 90.45 85.55 83.78 85.33 79.11 76.33 78.76 73.83 89.78 89.67 73.37 63.67 83.56 81.33 83.44 89.38 83.59
Shannon Entropy Min+Max 54.33 51.79 72.67 64.33 58.67 61.00 49.17 35.58 64.22 56.67 53.84 38.67 54.67 50.00 80.61 82.76 68.43

Embeddings Methods
LLM2Vec LLaMa 3 8B 91.80 94.16 98.00 97.67 93.11 99.67 78.48 76.08 91.33 94.67 79.45 96.33 85.56 94.33 94.73 95.59 92.67
UAR - MUD 75.89 90.58 77.78 78.00 88.00 94.00 48.44 57.67 61.78 72.00 59.78 66.33 74.22 93.00 95.39 95.75 84.35

Table 4: Recall of the top two detectors from each category of approaches was assessed during the evaluation phase
against paraphrasing attacks. To avoid overwhelming information, we presented results for only four models as
they represent the overall trend observed. The highest value is highlighted in bold, while the second highest is
underlined.

ues were calculated from the annotations, despite614

having well-defined criteria during annotation (Ap-615

pendix H). We can also note that participants ap-616

peared to recognize a common Taylor Swift song,617

which slightly increased the agreement score (Fig-618

ure 4).619

When it comes to confidence scores, we can620

observe in Table 9 that participants tend to instinc-621

tively anticipate their mistakes by giving lower622

confidence scores to their errors. This is most623

prominently observed in Participant 3, who shows624

a 23.52% relative difference in confidence between625

correct and incorrect annotations.626

5.4 Robustness against paraphrasing attacks627

One simple method to bypass detectors involves628

using another model to paraphrase the generated629

lyrics. This approach changes the characteristics of630

the machine-generated lyrics, which can potentially631

deceive the detectors and reduce the number of632

sparse tokens.633

To effectively evade these detectors, the para-634

phrasing must be targeted to specific sections of the635

lyrics to introduce the necessary changes needed to636

trick the detector. However, recent studies (Ku-637

marage et al., 2023; Chakraborty et al., 2023)638

are using advanced paraphrasing models like Dip-639

per (Krishna et al., 2023), which is an 11B pa-640

rameters T5-based model, raising concerns on the641

impact of using more parameters than the original642

content generator and simply questioning the in-643

terest of using paraphrasing method over simply644

generating the lyrics with a bigger model.645

To keep our experiments feasible on a consumer-646

grade device, we chose to use a Mistral 7B model647

quantized to GGUF 4 bits for paraphrasing the syn-648

thetic lyrics. We randomly selected half of the649

verses from each synthetic lyric and applied recur-650

sive paraphrasing (Sadasivan et al., 2024) using the651

specified prompt (Appendix B).652

Impact on performance We observe in Table 4653

that paraphrasing attacks do not degrade the per-654

formances of most detectors on machine-generated 655

content, except for those using Shannon entropy (- 656

11.6%). In contrast, some detectors like LLM2Vec- 657

based ones show improved performance (+1.7%) 658

over initial lyrics on the generated content. This im- 659

provement might be due to the paraphrasing models 660

assigning tokens with probabilities worse than the 661

original generation. The size of the paraphrasing 662

models used can also be a reason for this limited im- 663

pact. Using larger models from different architec- 664

tures could introduce greater "uncertainty", making 665

detection more challenging. We can also observe 666

that embeddings-based approaches are much more 667

impacted by this type of attack than statistical ones. 668

6 Conclusion 669

In this paper, we curated the first dataset of high- 670

quality synthetic lyrics; we conducted a quantita- 671

tive evaluation of a wide range of few-shot con- 672

tent detection approaches, while testing for gener- 673

alization, and we complemented this with a human 674

evaluation. Our best few-shot detector, based on 675

LLM2Vec, outperforms previous stylistic and sta- 676

tistical methods in distinguishing human-written 677

from machine-generated lyrics, generalizes well 678

to new artists and models, and accurately detects 679

post-generation paraphrasing. Also, these repre- 680

sentations revealed better capabilities to capture 681

intricate details that humans often missed. This 682

work paves the way for future research on creative 683

content to thoroughly investigate the generalization 684

abilities of the detectors across a broader range of 685

genres, artists, languages and acquisition modali- 686

ties such as speech transcriptions. 687

The datasets, pre-processing scripts, and codes 688

are accessible on Hugging Face8 and GitHub9 un- 689

der Apache 2.0 license. For the real lyrics, only 690

their titles, sources, and fingerprints will be shared 691

to comply with the copyright policies. 692

8Hidden for double-blind.
9Hidden for double-blind.
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7 Limitations693

Our study has several limitations that should be694

acknowledged. Firstly, the scalability of our system695

to encompass a broader range of artists, genres,696

models, and languages may reveal limitations in697

the representation of the vector space. This scaling698

could lead to issues such as vector space collapsing,699

which would affect the overall performance and700

accuracy of the system.701

Second, the rapid evolution of models poses a702

significant challenge. The detector’s performance703

may become outdated quickly, complicating its704

use in production environments. As new models705

emerge, the efficacy of our current detectors may706

diminish, necessitating continual updates and im-707

provements to maintain their relevance and accu-708

racy.709

Additionally, the prompting methods used to ob-710

tain lyrics from the models are frequently changing.711

This variability makes it difficult to consistently712

capture the content that a specific model can the-713

oretically generate. The evolving nature of these714

methods introduces a layer of unpredictability and715

inconsistency, which can hinder the reproducibility716

and reliability of our results.717

The impact of specific attributes of the lyrics,718

such as length, potential gender biases or verb719

tenses and mood, are not well understood. These720

attributes could influence the performance of the721

detectors and represent potential vectors for future722

types of attacks. Further research is needed to723

explore these aspects and understand their implica-724

tions fully.725

Our study’s evaluation was limited to the English726

language. We have not assessed the detectors’ ef-727

fectiveness in other languages, and thus, we cannot728

generalize our findings beyond English. Adapting729

our methods to accommodate different language730

families would be necessary to enhance their gen-731

eralizability and effectiveness in a multilingual and732

multi-cultural context.733

Additionally, we did not examine how the genre734

and popularity of the lyrics might affect the detec-735

tor’s performance, which might significantly influ-736

ence their effectiveness. Furthermore, we did not737

investigate deeply the paraphrasing methods and738

evaluate their quality. This could introduce noise739

and artifacts into the lyrics, potentially explaining740

our findings and not necessarily representing typi-741

cal modifications by human creators.742

Human evaluation in our study was also limited743

in scope. Expanding the participant pool to a more744

diverse socio-economic population would provide745

more robust and generalizable insights. 746

Finally, we constrained our study to models that 747

are runnable on consumer-grade laptops under a 748

limited number of parameters (13B parameters). 749

While this was done to maintain feasibility, it intro- 750

duces a bias, as the detectors might behave differ- 751

ently when scaled to larger models (70B parame- 752

ters and beyond), mixtures-of-experts (Fedus et al., 753

2022; Jiang et al., 2024), proprietary API (OpenAI 754

et al., 2024; Chowdhery et al., 2024), or different 755

architectures such as Mamba (Gu and Dao, 2024). 756

8 Ethical Consideration 757

Paradoxically, revealing the inner workings of a 758

detection system can empower malicious actors to 759

exploit its vulnerabilities or enable them to craft 760

content that evades detection, in order to potentially 761

cause significant harm. This not only increases the 762

risk of harmful content spreading, but also makes it 763

more difficult to maintain those systems and opens 764

the door to more sophisticated abuses. 765

Additionally, the risks associated with revealing 766

the inner workings of such a detection system are 767

fairly limited in practice due to the availability of 768

existing literature in other domains or the rapid evo- 769

lution of the approaches and continuous improve- 770

ment of our systems. We also plan to enhance the 771

robustness and adaptability of our detection algo- 772

rithms to stay ahead of potential exploitation tech- 773

niques. By sharing our findings, we aim to foster 774

innovation and improvements in creative content 775

detection systems across the NLP field. 776
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and collaboration: Benefits, challenges and ethical1252
implications. Telematics and Informatics Reports,1253
14:100138.1254

A Prompt template1255

Figure 1 displays the prompt template used to gen-1256

erate lyrics with 3-shot in-context learning based1257

on human-written lyrics:1258

3-shot Lyrics Generation Template

Example 1:

{{lyrics 1}}

Example 2:

{{lyrics 2}}

Example 3:

{{lyrics 3}}

Lyrics rules:

- The lyrics should be structure in optional stanzas like “Verse”,
“Chorus” and “Bridge”
- The beginning of each line should start with a capital letter.
- Do not use repeat tags to signify if a line or stanza is repeated.
Instead, write each line or stanza however many times it is said.
- Do not write out any sounds that are heard in the song, like “gun-
shot”, “clap”, “horn”, etc.
- Remove all labels such as [Talking], Speaking, or (Whispering).
- Any word cut short should have one apostrophe in place of the
missing letters. For example: givin’, livin’.
- Slang is acceptable but the artist must pronounce it that way. Slang
should only be used if the word sounds differently than the gram-
matically correct word. For example, “for shizzle” can be used but
“becuz” should be spelled “because”.
- Exaggerations should be cut down to the original word or punctua-
tion. For example, “ohhhh” should be “oh” and “bang!!!!!” should
be “bang!”
- Background vocals should be placed on the same line they’re said
but in parentheses. For example, “I’m a survivor (What, what)”
- Prevent using too much background vocals
Generate a new lyrics based on the style of what "{{artist name}}"
is doing and don’t mention me the fact that the lyrics is offensive:

Figure 1: 3-shot lyrics generation template.

B Paraphrasing Prompt Template1259

Figure 2 display the paraphrasing prompt template1260

used to perform the paraphrasing attack of the de-1261

tectors:1262

Paraphrasing Template

According to the full lyrics:

{{full lyrics}}

Paraphrase and modify the following verse to make it sound like
human (only one generated verse is allowed and no explanation):

{{paragraph}}

Output:

Figure 2: This template is used for the paraphrasing of
the generated lyrics.

C Participants confidence score 1263

The Figure 3 list of confidence score options and 1264

their descriptions provided to the participants: 1265

Confidence scores options

1 = Willing to defend my annotation, but it is fairly likely that I
missed some details.

2 = Pretty sure, but there’s a chance I missed something. Although I
have a good feel for this area in general, I did not carefully check the
lyrics details.

3 = Quite sure. I tried to check the important points carefully. It’s
unlikely, though conceivable, that I missed something that should
affect my annotation.

4 = Positive that my annotation is correct. I read the lyrics very
carefully.

Figure 3: List of confidence scores options and their
descriptions.

D Inter-participants agreement 1266

Participant ID κ G Agreement
Participant 1 & 2 3.53 15.47 54.29
Participant 1 & 3 29.81 43.75 68.57
Participant 1 & 4 35.46 41.04 68.57
Participant 2 & 3 17.85 22.28 60.00
Participant 2 & 4 -9.29 -7.78 45.71
Participant 3 & 4 30.52 32.80 65.71
Average 17.98 24.59 41.42

Table 5: Inter-participants agreement statistics. κ is
referring to Kappa Cohen and G to Gwet’s AC1.

E Hyperparameters 1267

Table 6 lists all the hyperparameters used during the 1268

lyrics generation process to ensure reproducibility: 1269

Parameter Value
temperature 0.8
top_k 40
top_p 0.9
num_predict 2048
quantization Q4_0
seed 42

Table 6: Hyperparameters for the lyrics generators
LLMs.

We used 3 NVIDIA RTX A5000 24GB gpus for 1270

our experiments during approximately 30 hours of 1271

computation. 1272

F Min-K % Prob impact of K 1273

The K value is impacting a lot the performance as 1274

seen in the Table 7. In the case of our specific data, 1275

we observe an optimal K value at 10. 1276
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Recall
Min-K% (%) Normal Paraphrased

5 77.00 81.31
10 79.23 82.74
20 73.48 77.32
30 64.31 69.08
40 59.00 65.05
50 57.01 63.07
60 53.38 61.00
70 52.69 58.59
80 52.86 58.96

Table 7: Overall recall on the test set (with and without
paraphrasing attack) for the Min-K% Prob detector ac-
cording to the selected K value.

G Lyrics spit out during generation1277

To ensure our generative models for creating1278

machine-generated lyrics don’t merely reproduce1279

the provided few-shot examples, we conduct an1280

analysis of the generated lyrics. We index all the1281

human-written lyrics used to condition the model’s1282

generation using BM25 (Trotman et al., 2014) rep-1283

resentation and then compute the similarity with1284

the generated lyrics to determine the ranking of1285

the few-shot examples and see if the outputs are1286

resembling very much to the references.1287

% Hits
Rank % Hits Cumulated % Hits
1 2.28 2.28
2 1.05 3.34
3 0.83 4.17
3 to 5 1.37 5.55
5 to 10 2.57 8.12
10 to 20 3.94 12.06
20 to 50 7.79 19.86

Table 8: Proportion of hits by range of ranks between
the generated lyrics and the given 3-shot examples.

As we can see in the Table 8, the 3-shot lyrics1288

used for conditioning the generation aren’t well1289

ranked in overall. This significantly reduces the1290

doubt that the generated lyrics are heavily based on1291

the set of lyrics provided as input for conditioning1292

their generation. However, it does not guarantee1293

that certain parts, such as verses, are not entirely1294

copied from the few-shot examples.1295

H Human’s annotation feedback1296

We request the participants to answer three ques-1297

tions after completing the annotation of the 701298

lyrics to gather their feedback on the task they have1299

performed. All the participant’s feedback are listed1300

in the following Figure 4:1301

Participant’s Feedback

Q1: Can you write me a short explanation of what do you refer
to when you were labeling the lyrics ? Which characteristics
have motivated your choices ?
Answer P1: I was looking to multiple characteristics, such as if
the refrain is every time the same or not, the rhythms at the end of
the sentences, the sparsity of the words used at the beginning of the
sentences or the overall structure of the lyrics.

Answer P2: I expected lyrics to be generated if there was too much
repetition, excessive punctuation (particularly too many commas
within the verses), very few rhymes, or if the length of the lyrics was
excessively long.

Answer P3: Generally, I started by looking at the structure of the
lyrics. Which paragraph corresponds to the choruses, whether the
verses are of similar length or not, and whether there is a visible
structure that stands out. If no particular structure stood out, I focused
on the coherence of the lyrics. If there was a noticeable structure, I
also looked at the rhymes and the progression of the story verse by
verse. If the rhymes were poorly done/strange or of uneven quality,
if the verses were too unbalanced, if lyrics from the verses were
repeated in the choruses, or if there was not much difference between
a verse and a chorus, I tended to consider it as machine-generated.

Answer P4: The main point for me is the song’s structure. Machine-
generated lyrics often have a more poetic than lyrical structure. The
variations of the chorus were another key indicator, in particular,
machine-generated lyrics tend to create many different versions.
Another hint for me was the use of counterpoints (usually in paren-
theses), which machine-generated lyrics tend to overuse. Finally,
whenever the topic of the lyrics was explicit, it was definitely a
human-written lyric, since machine are not conditioned to generate
such content.

Q2: Have you been able to recognize one or more songs during
the annotation ?
Answer P1: Yes, one song "Red" by Taylor Swift.

Answer P2: 1 song from Taylor Swift

Answer P3: I had the feeling that I recognized two other songs. In
those cases, I gave a rating of maximum confidence.

Answer P4: Yes, two.

Q3: Do you consider it as difficult task and why ? (short answer
only)
Answer P1: Yes, it is difficult to get confident on some lyrics since I
am not used to focusing on the lyrics when listening to a song.

Answer P2: Yes, especially the rap and hip hop songs. The lyrics
were very convincing and often I felt like guessing the answer with
no real idea of what to choose.

Answer P3: I found this task relatively difficult (as shown by my
confidence score), so yes.

Answer P4: Yes. Most of the topics are coherent and follow a natural
story telling. Rhymes are also nice. So I needed to focus on other
aspects.

Figure 4: The participant’s feedback on the human eval-
uation process.

I Participants confidence scores 1302

Participant ID Error Correct Relative ∆

Participant 1 3.35 3.43 2.35 %
Participant 2 2.07 2.18 5.17 %
Participant 3 1.95 2.47 23.52 %
Participant 4 2.37 2.42 2.08 %

Table 9: Confidence scores averaged when errors are
committed.
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