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Abstract

In imaging inverse problems, we would like to know how close the recovered image is to the
true image in terms of full-reference image quality (FRIQ) metrics like PSNR, SSIM, LPIPS,
etc. This is especially important in safety-critical applications like medical imaging, where
knowing that, say, the SSIM was poor could potentially avoid a costly misdiagnosis. But
since we don’t know the true image, computing FRIQ is non-trivial. In this work, we combine
conformal prediction with approximate posterior sampling to construct bounds on FRIQ
that are guaranteed to hold up to a user-specified error probability. We demonstrate our
approach on image denoising and accelerated magnetic resonance imaging (MRI) problems.

1 Introduction

In imaging inverse problems, one aims to recover a true image x0 from noisy/distorted/incomplete measure-
ments y0 = A(x0) (Arridge et al., 2019). Denoising, deblurring, inpainting, super-resolution, limited-angle
computed tomography, and accelerated magnetic resonance imaging (MRI) are examples of linear inverse
problems, while phase-retrieval, de-quantization, low-light imaging, and image-to-image translation are
examples of non-linear inverse problems. Such problems are ill-posed, in that many hypotheses of x0 are
consistent with both the measurements y0 and prior knowledge about x0. To complicate matters, different
recovery methods are biased towards different plausible image hypotheses, leading to important differences in
reconstruction quality. For example, modern deep-network approaches can sometimes hallucinate (Cohen
et al., 2018; Belthangady & Royer, 2019; Hoffman et al., 2021; Muckley et al., 2021; Bhadra et al., 2021;
Gottschling et al., 2023; Tivnan et al., 2024), i.e., generate visually pleasing recoveries that differ in important
ways from the true image x0. Thus, there is a strong need to quantify the accuracy of a given recovery,
especially in safety-critical applications like medical imaging (Chu et al., 2020; Banerji et al., 2023).

In image recovery, “accuracy” can be defined in different ways. Classical metrics like mean-squared error
(MSE), or its scaled counterpart peak signal-to-noise ratio (PSNR), are convenient for theoretical analysis
but do not always correlate well with human perceptions of image quality. This fact inspired the field of
full-reference image-quality (FRIQ) assessment (Lin & Kuo, 2011; Wang, 2011), which led to the well-known
Structural Similarity Index Measure (SSIM) (Wang et al., 2004) that is still popular today. However, progress
continues to be made. Most recent methods leverage the internal features of deep neural networks, which
are said to mimic the processing architecture of the human visual cortex (Yamins & DiCarlo, 2016; Lindsay,
2021). A popular example of the latter is Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al.,
2018). In the end, though, the best choice of metric may depend on the application. For example, in magnetic
resonance imaging (MRI), the goal is to provide the radiologist with an image recovery that leads to an
accurate diagnosis. A recent clinical MRI study (Kastryulin et al., 2023) found that, among 35 tested metrics,
Deep Image Structure and Texture Similarity (DISTS) (Ding et al., 2020a) correlated best with radiologists’
perceptions.

In this work, our goal is to provide rigorous bounds on the FRIQ m(x̂0, x0) of a recovery x̂0 = h(y0) relative
to the true image x0. Here, h(·) is an arbitrary image-recovery scheme and m(·, ·) is an arbitrary FRIQ
metric. The key challenge is that x0 is unknown. To our knowledge, there exists no prior work on providing
FRIQ guarantees in image recovery. Our contributions are as follows.
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1. We propose a framework to bound the FRIQ m(x̂0, x0) of a recovered image x̂0 without access to the
true image x0. Our framework uses conformal prediction (Vovk et al., 2005; Angelopoulos & Bates,
2023) to construct bounds that hold with probability at least 1 − α under certain exchangeability
assumptions and where α ∈ (0, 1) is chosen by the user.

2. We show how posterior-sampling-based image recovery can be used to construct conformal bounds
that adapt to the measurements y0 and reconstruction x̂0.

3. We demonstrate our approach on two linear inverse problems: denoising of FFHQ faces (Karras et al.,
2019) faces and recovery of fastMRI knee images (Zbontar et al., 2018) from accelerated multicoil
measurements.

From the perspective of uncertainty quantification (UQ), one could say that our goal is to bound the
uncertainty on FRIQ m(x̂0, x0) that arises due to x0 being unknown. As such, our approach to UQ differs
from typical ones in image recovery. There, uncertainty is typically quantified on individual pixels, with the
overall result being a pixel-wise uncertainty map. To construct these maps, it’s popular to use (approximate)
posterior samplers (Adler & Öktem, 2018; Tonolini et al., 2020; Edupuganti et al., 2021; Jalal et al., 2021;
Sun & Bouman, 2021; Laumont et al., 2022; Zach et al., 2023; Wen et al., 2023a; Bendel et al., 2023; Wu
et al., 2024) or Bayesian neural networks (BNNs) (Kendall & Gal, 2017; Xue et al., 2019; Barbano et al., 2021;
Ekmekci & Cetin, 2022; Narnhofer et al., 2022) to draw many reconstructions from the distribution of plausible
x0 for a given y0 (i.e., the posterior distribution pX0|Y0(·|y0)), from which pixel-wise standard-deviations
can be estimated. An alternative is to utilize conformal prediction to produce pixel-wise intervals that are
guaranteed to contain the true pixel value with high probability (Angelopoulos et al., 2022b; Horwitz &
Hoshen, 2022; Teneggi et al., 2023; Kutiel et al., 2023; Narnhofer et al., 2024). Although these uncertainty
maps can be visually interesting, they do not quantify uncertainty on multi-pixel structures of interest, such
as hallucinations or anatomical features relevant to medical diagnosis (e.g., tumors).

To our knowledge, there exist relatively few works on multi-pixel UQ, and none target FRIQ. For example,
Durmus et al. (2018) use hypothesis testing to infer the presence/absence of a structure-of-interest within
the maximum a posteriori (MAP) image recovery, but their method relies on inpainting to construct the
structure-absent hypothesis, which may not be accurate. Sankaranarayanan et al. (2022) use conformal
prediction to compute uncertainty intervals on the presence/absence of semantic attributes (e.g., whether a
face has a smile, glasses, etc.) but their method requires a “disentangled” generative adversarial network
(GAN) that generates image samples given a set of attribute probabilities. Belhasin et al. (2023) compute
conformal prediction intervals on the principal components of the posterior covariance matrix. Lastly, given
measurements y0 = A(x0) and a downstream imaging task µ(·) ∈ R (e.g., soft-output classification), Wen
et al. (2024) compute conformal bounds on the true task output µ(x0). While interesting, none of the above
works quantify the uncertainty on FRIQ metrics like PSNR, SSIM, LPIPS, DISTS, etc., due to x0 being
unknown.

2 Background

Conformal prediction (CP) (Vovk et al., 2005; Angelopoulos & Bates, 2023) is a powerful framework for
computing uncertainty intervals on the output of any black-box predictor. CP makes no assumptions on the
distribution of the data, yet provides probabilistic guarantees that the true target lies within the constructed
uncertainty interval. In this paper, we focus on the common variant known as split CP (Papadopoulos et al.,
2002; Lei et al., 2018).

We now provide a brief background on split CP. Given features u0 ∈ U , the goal of CP is to construct a
set Cλ(ẑ0) that contains an unknown target z0 ∈ Z with high probability. Here, Cλ(·) is constructed so
that |Cλ(ẑ0)| is monotonically non-decreasing in λ ∈ R for any fixed ẑ0, and ẑ0 = f(u0) is some prediction
from a black-box model f(·). Split CP accomplishes this goal by calibrating λ using a dataset of feature
and target pairs {(ui, zi)}n

i=1 that has not been used to train f(·). In particular, it first constructs the set
dcal ≜ {(ẑi, zi)}n

i=1 using ẑi = f(ui) and then finds a λ̂(dcal) to provide the marginal coverage guarantee (Lei
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& Wasserman, 2014)
Pr

{
Z0 ∈ C

λ̂(Dcal)
(Ẑ0)

}
≥ 1 − α, (1)

where α is a user-chosen error rate. Here and in the sequel, we use capital letters to denote random variables
and lower-case letters to denote their realizations. In words, (1) guarantees that the unknown target Z0 falls
within the interval C

λ̂(Dcal)
(Ẑ0) with probability at least 1 − α when averaged over the randomness in the test

data (Z0, Ẑ0) and calibration data Dcal.

While there are a number of ways to describe CP calibration of λ (Vovk et al., 2005; Angelopoulos & Bates,
2023), we will focus on the method from Angelopoulos et al. (2022a). It starts by defining the empirical
miscoverage as

r̂n(λ; dcal) ≜
1
n

n∑
i=1

1{zi /∈ Cλ(ẑi)}, (2)

where 1{·} is the indicator function. The empirical miscoverage measures the proportion of targets zi that
land outside of Cλ(ẑi) in the calibration set dcal. Note the dependence on λ, which controls the size of the
prediction interval. The calibration procedure then sets λ at

λ̂(dcal) = inf
{
λ : r̂n(λ; dcal) ≤ α− 1−α

n

}
, (3)

which can be found using a simple binary search. Intuitively, the λ chosen in (3) yields an empirical
miscoverage that is slightly more conservative than the desired α in order to handle the finite size of the
calibration set. When {(Z0, Ẑ0), (Z1, Ẑ1), . . . , (Zn, Ẑn)} are exchangeable (a weaker condition than i.i.d.), (3)
ensures that (1) holds (Angelopoulos et al., 2022a). See the overviews (Angelopoulos & Bates, 2023; Vovk
et al., 2005) for more details on conformal prediction.

3 Proposed approach

Consider an imaging inverse problem, where we observe distorted, incomplete, and/or noisy measurements
y0 = A(x0) of a true image x0. Suppose that x̂0 = h(y0) is a reconstruction of x0 provided by some image
recovery method h(·) and that z0 = m(x̂0, x0) ∈ R is some FRIQ metric on x̂0 with respect to the true x0.
We would like to know z0, especially in safety critical applications. For example, if z0 was unacceptable, then
perhaps we could use a different recovery method h(·) or collect more measurements y0. But z0 cannot be
directly computed because, in practice, x0 is unknown.

Our key insight is that it’s possible to construct a set Cλ(ẑ0) that is guaranteed to contain the unknown
FRIQ z0 with high probability. This can be done using CP, at least when one has access to calibration data
{(xi, yi)}n

i=1 of true image and measurement pairs that agrees with the test (x0, y0) in the sense that the
resulting FRIQ pairs {(ẑi, zi)}n

i=0 are statistically exchangeable.

Our general approach is as follows. Using {(xi, yi)}n
i=1 , we compute the image recovery x̂i = h(yi) and the

corresponding true FRIQ zi = m(x̂i, xi) for each i = 1, . . . , n. Then we construct an estimator f(·) that
produces an FRIQ estimate ẑi = f(ui) for some choice of ui. Several choices of f(·) and ui will be described
in the sequel. We then collect the results into the set dcal = {(ẑi, zi)}n

i=1 and calibrate the λ parameter of the
FRIQ prediction interval Cλ(ẑi) using CP.

We now describe our choice of prediction interval Cλ(·). In the sequel, we will refer to those metrics m(·, ·)
for which a higher value indicates better image quality (e.g., PSNR, SSIM) as higher-preferred (HP) metrics,
and those for which a lower value indicates better image quality (e.g., LPIPS, DISTS) as lower-preferred
(LP) metrics. We choose to construct the prediction set for the i-th sample as

Cλ(ẑi) = [β(ẑi, λ),∞) for HP metrics and Cλ(ẑi) = (−∞, β(ẑi, λ)] for LP metrics, (4)

where we choose the lower/upper bound β(·, ·) as

β(ẑi, λ) = ẑi − λ for HP metrics and β(ẑi, λ) = ẑi + λ for LP metrics. (5)
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Figure 1: Overview of method: Given a recovery x̂0 of true image x0, approximate posterior samples {x̃(j)
0 }c

j=1,
and a calibration set dcal, we construct a prediction interval C

λ̂(dcal)

(
ẑ0

)
that is guaranteed to contain the

unknown true FRIQ z0 = m(x̂0, x0) with probability at least 1 − α.

By calibrating the bound parameter λ as λ̂(dcal) using (3), we obtain the following marginal coverage guarantee
for the test sample (Ẑ0, Z0):

Pr
{
Z0 ∈ C

λ̂(Dcal)
(Ẑ0)

}
≥ 1 − α, (6)

which holds when {(Z0, Ẑ0), (Z1, Ẑ1), . . . , (Zn, Ẑn)} are exchangeable (Angelopoulos et al., 2022a). In partic-
ular, β(Ẑ0, λ̂(Dcal)) lower-bounds the unknown true HP metric value Z0, or upper-bounds the unknown true
LP metric value Z0, with probability at least 1 − α, where α is selected by the user. A smaller error-rate α
will tend to yield a looser bound, but—importantly—the coverage guarantee (6) will hold for any chosen
α ∈ (0, 1). In the sequel, we will refer to β(ẑ0, λ̂(dcal)) as the “conformal bound” on z0. Note that the
conformal bound can “adapt” to the test measurements y0 and reconstruction x̂0 through ẑ0 = f(u0) for
appropriate choices of f(·) and u0.

Below we describe different ways to construct f(·) and u0, which in turn yield conformal bounds with different
properties. Appendix D investigates violations of the exchangeability assumption.

3.1 A non-adaptive bound on recovered-image FRIQ

As a simple baseline, we start with the choice f(·) = 0. In this case, u0 is inconsequential and ẑ0 = 0, and so
the conformal bound β(ẑ0, λ̂(dcal)) will depend on the calibration set dcal but not the test measurements y0 or
reconstruction x̂0. We refer to such bounds as “non-adaptive.” As we demonstrate in Sec. 4, non-adaptivity
leads to conservative bounds. Still, this non-adaptive bound is valid in the sense of guaranteed marginal
coverage (6) under the exchangeability assumption.

3.2 Intuitions on constructing adaptive FRIQ bounds

Our approach to constructing adaptive FRIQ bounds is based on the following probabilistic viewpoint.
Conditioned on the observed measurements y0, we can model the unknown FRIQ as Z0 = m(x̂0, X0)
for x̂0 = h(y0) and X0 ∼ pX0|Y0(·|y0). The distribution pX0|Y0(·|y0) is often referred to as the posterior
distribution on X0 given the measurements Y0 = y0.

Let us first consider the ideal and unrealistic case that the y0-conditional FRIQ distribution pZ0|Y0(·|y0) is
known. And let’s consider the case of HP metrics, noting that all of our arguments can be easily modified
to cover LP metrics. If pZ0|Y0(·|y0) was known, then constructing a lower-bound β on Z0 that holds with
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probability ≥ 1 − α could be directly accomplished by finding the β ∈ R that satisfies Pr{Z0 ≥ β|Y0 =y0} ≥
1 − α, which is known as the αth quantile of Z0|Y0 =y0.

Now suppose that the distribution of Z0|Y0 = y0 was unknown, but instead one had access to an infinite
number of perfect posterior image samples {x̃(j)

0 }∞
j=1. By “perfect” we mean that x̃(j)

0 are independent
realizations of X0|Y0 =y0. From them, one could construct posterior FRIQs {z̃(j)

0 }c
j=1 using z̃(j)

0 ≜ m(x̂0, x̃
(j)
0 ).

Importantly, {z0, z̃
(1)
0 , z̃

(2)
0 , z̃

(3)
0 , . . . } are i.i.d. realizations of Z0|Y0 =y0. Thus, to construct a lower bound β

on Z0|Y0 =y0 that holds with probability 1 − α, one could use the empirical quantile of {z̃(j)
0 } , i.e.,

β = lim
c→∞

EmpQuant
(
α, {z̃(j)

0 }c
j=1

)
, (7)

which converges to the αth quantile of Z0|Y0 =y0 (Fristedt & Gray, 2013).

In practice, one will not have access to an infinite number of perfect posterior image samples. However, it is
not difficult to obtain a finite number of approximate posterior samples {x̃(j)

0 }c
j=1. From them, one could

estimate the αth quantile of Z0|Y0 =y0 and subsequently calibrate that (imperfect) estimate using conformal
prediction. Two such strategies are described below.

3.3 An adaptive bound on recovered-image FRIQ

Suppose that, for each i ∈ {0, 1, . . . , n}, we have access to c ≥ 1 approximate posterior image samples {x̃(j)
i }c

j=1
produced by a black-box posterior image sampler such as those listed in Sec. 1. Guided by the intuitions from
Sec. 3.2, we propose the following for HP metrics. For each i, we first compute the corresponding approximate
posterior FRIQs {z̃(j)

i }c
j=1 using z̃(j)

i = m(x̂i, x̃
(j)
i ) and then set ẑi at their empirical quantile

ẑi = EmpQuant
(
α, {z̃(j)

i }c
j=1

)
= f(ui) for

{
f(·) = EmpQuant(α, ·)
ui = [z̃(1)

i , . . . , z̃
(c)
i ]⊤ ∈ Rc.

(8)

We then use dcal = {(ẑi, zi)}n
i=1 to calibrate the bound parameter λ using (3), yielding λ̂(dcal). Finally, we

plug this λ and ẑ0 into (5) to get β(ẑ0, λ̂(dcal)), which is our conformal bound on the true FRIQ z0. From
Sec. 2, we know that this conformal bound satisfies the coverage guarantee (6) under the exchangeability
assumption. Furthermore, it adapts to the measurements y0 and reconstruction x̂0 through their effect on
ẑ0 and {z̃(j)

0 }c
j=1, unlike the non-adaptive bound from Sec. 3.1. We refer to these conformal bounds as the

“quantile” bounds.

Recalling Sec. 3.2, one could interpret ẑ0 as a rough estimate of the αth quantile of Z0|Y0 = y0 and λ̂(dcal) as
an additive correction that accounts for the finite and approximate nature of the posterior image samples
{x̃(j)

0 }c
j=1 used to construct ẑ0. For LP metrics, we would instead compute the (1 − α)-empirical quantile in

(8). Figure 1 illustrates the overall methodology.

3.4 A learned adaptive bound on recovered-image FRIQ

In Sec. 3.2, we reasoned that the αth quantile of Z0|Y0 =y0 yields a valid HP FRIQ bound, but we noted that
this quantile is not directly observable. Thus, in Sec. 3.3, we used the αth empirical quantile of {z̃(j)

i }c
j=1 as

a rough estimate “ẑi” of the desired quantile, after which we used CP to correct this estimate and obtain a
valid HP FRIQ bound. However, it is well known from the CP literature that inaccurate base estimators
cause loose conformal bounds (Angelopoulos & Bates, 2023). Thus, in this section, we aim to improve our
estimate of the αth quantile of Z0|Y0 =y0.

Inspired by conformalized quantile regression (Romano et al., 2019), we propose to estimate the αth quantile
of Z0|Y0 = y0 using

ẑi = f(ui; θ) with ui = [z̃(1)
i , . . . , z̃

(c)
i ]⊤ ∈ Rc, (9)
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ω = z

Figure 2: Scatter plots show the non-adaptive (purple) and quantile (green) bounds β(ẑk, λ̂(dcal[t])) versus
the true FRIQ zk over FFHQ test samples k. The black line shows where β = z, and a fraction α = 0.05 of
samples are on the side of the line that violates the bound. The quantile bound tracks the true zk much
better than the non-adaptive bound. The red and blue stars correspond to the images in the red and blue
boxes: the red recovery represents better FRIQs and blue represents worse.

where θ are predictor parameters trained using quantile regression (QR) (Koenker & Bassett, 1978). An
example f(·; θ) is given in App. G. In the case of an HP metric, this manifests as

arg min
θ

n+ntrain∑
i=n+1

(
αmax(0, zi − ẑi(θ)) + (1 − α) max(0, ẑi(θ) − zi)

)
+ γρ(θ), (10)

using a training set dtrain = {(ui, zi)}n+ntrain
i=n+1 that is independent of the calibration samples {(ui, zi)}n

i=1 and
test sample (u0, z0).

The first term in (10) is the pinball loss (Koenker & Bassett, 1978), which encourages an α-fraction of training
samples to violate the HP bound ẑi ≤ zi. The ρ(·) term in (10) is regularization that avoids overfitting θ to
the training set. The regularization weight γ can be tuned using k-fold cross-validation. The θ-dependence of
ẑi is made explicit in (10).

Once the predictor f(·; θ) is trained, it can be used to obtain the quantile estimates {ẑi}n
i=0. Then dcal ≜

{(ẑi, zi)}n
i=1 can be used to calibrate the bound parameter λ using (3). As before, the resulting conformal

bound β(ẑ0, λ̂(dcal)) will enjoy the coverage guarantee (6) under the exchangeability assumption. To handle
LP metrics, we would swap α with 1 − α in (10). Note that any estimation function f(·; θ) can be used in (9)
and the best choice will vary with the application. Through the remainder of the paper, we describe these
bounds as the “regression” bounds.

4 Numerical experiments

We now consider two imaging inverse problems: image denoising and accelerated MRI. For each, we evaluate
the proposed bounds using the PSNR, SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018), and DISTS
(Ding et al., 2020a) metrics.

4.1 Denoising

Data: For true images, we use a random subset of 4000 images from the Flickr Faces HQ (FFHQ) (Karras
et al., 2019) validation dataset, to which we added white Gaussian noise of standard deviation σ = 0.75 to

6
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Figure 3: Examples from the FFHQ denoising experiment. Top row: true image and low-LPIPS recovery.
Bottom row: true image and high-LPIPS recovery. True LPIPS reported in blue and quantile upper-bound
in red. (Recall that LPIPS assigns lower values to better recoveries.)
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Figure 4: Mean conformal bound versus number of posterior samples c for FFHQ denoising.

create the measurements y0. The first 1000 images were used to train the predictor f(·; θ) in (9) and the
remaining 3000 were used for calibration and testing.

Recovery: To recover x̂0 from y0, a denoising task, we use the Denoising Diffusion Restoration Model
(DDRM) (Kawar et al., 2022a). Following (Kawar et al., 2022a), we run DDRM with a Denoising Diffusion
Probabilistic Model (DDPM) (Ho et al., 2020) pretrained on the CelebA-HQ dataset (Karras et al., 2018).
To increase sampling diversity, we used η = 1 and ηb = 0.5 but set all other hyperparameters at their default
values. For each measurement yi, we use one DDRM sample for the image estimate x̂i and c independent
samples for {x̃(j)

i }c
j=1.

Conformal bounds: We evaluate the proposed bounding methods from Secs. 3.1, 3.3, and 3.4, which we
refer to as the non-adaptive, quantile, and regression bounds, respectively. For the regression bound, we
use a quantile predictor f(·, θ) that takes the form of a linear spline with two knots (see Appendix G for
more details).

Validation procedure: Because the coverage guarantee (6) involves random calibration data and test data,
we evaluate our methods using T Monte-Carlo trials. For each trial t ∈ {1, . . . , T}, we randomly select 70%
of the 3000 non-training samples to create the calibration set dcal[t] with indices i ∈ Ical[t], and we use the
remaining 30% of the non-training samples for a test fold with indices k ∈ Itest[t]. In particular, we compute
λ̂ using dcal[t] and then, for each test sample index k, we compute the bound β(ẑk, λ̂(dcal[t])). Finally, we
average performance across the test indices of trial t and then average those results across the T trials. Unless
specified otherwise, we used error rate α = 0.05, T = 10 000, and c = 32 samples for the adaptive bounds.

7
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Table 1: Mean empirical coverage for all bounds with α = 0.05 and T = 10 000 on the FFHQ denoising task
(± standard error). Quantile and regression bounds are computed with c = 32.

Bound DISTS LPIPS PSNR SSIM
Non-adaptive 0.95000 ± 0.00009 0.95016 ± 0.00009 0.95004 ± 0.00009 0.95010 ± 0.00009

Quantile 0.95002 ± 0.00009 0.95013 ± 0.00009 0.95003 ± 0.00009 0.95006 ± 0.00009
Regression 0.95013 ± 0.00009 0.95026 ± 0.00009 0.95001 ± 0.00009 0.95006 ± 0.00009

Bound versus true metric: Ideally, an FRIQ bound should track the true FRIQ in the sense that the
bound is small when the true FRIQ is small and large when the true FRIQ is large. To assess this tracking
behavior, Fig. 2 shows scatter plots of the non-adaptive and quantile bounds β(ẑk, λ̂(dcal[t])) versus the true
FRIQ zk for the test indices k ∈ Itest[t] of a single Monte Carlo trial, along with the true image xk and recovery
x̂k for two test samples. The sample highlighted in red has better subjective visual quality compared to the
one in blue, and this ranking is reflected in both the true FRIQ metrics zk and the corresponding quantile
bounds, but not the non-adaptive bound. Figure 3 shows six additional samples from the FFHQ denoising
experiment, three with low (true) LPIPS and three with high (true) LPIPS, along with the respective true
images. The quantile upper-bound on LPIPS is superimposed on each recovery. We see that the bounds
are valid in the sense that they did not under-predict the true LPIPS and adaptive in the sense that the
bounding value is lower when the true LPIPS is lower.

Empirical Coverage: To verify the coverage guarantee in (6) is satisfied, we compute the empirical coverage

EC[t] ≜ 1
|Itest[t]|

∑
k∈Itest[t]

1{zk ∈ C
λ̂(Dcal)

(ẑk)}, (11)

for each Monte Carlo trial t. In Table 1, we report the average empirical coverage and standard error across
T = 10 000 trials for all three methods on the FFHQ data using a target error rate of α = 0.05. For all
methods, the average empirical coverage is very close to the theoretical coverage of 1 − α = 0.95 regardless of
the metric, demonstrating close adherence to the theory. In Appendix A, we further demonstrate that this
adherence holds independent of the choice of c.

MCB versus bounding method and number of posterior samples c: To assess the tightness of
the conformal bounds, we average the bound β(ẑk, λ̂(dcal[t])) over the test indices k ∈ Itest[t] and the Monte
Carlo trials t to yield the “mean conformal bound” (MCB). Figure 4 plots the MCB versus the number of
posterior samples c used for the adaptive bounds. The figure shows that the non-adaptive bound is looser
(i.e., smaller for the HP metrics PSNR and SSIM and larger for the LP metrics DISTS and LPIPS) than
the two adaptive bounds. For both adaptive bounds, Fig. 4 shows only minor bound improvement with
increasing c, suggesting that the adaptive bounds are robust to the choice of c, and that small values of c
could suffice if sample-generation was computationally expensive. (We discuss computation time below.)

Interestingly, Fig. 4 shows relatively little improvement when going from the quantile bound to the regression
bound. This may be due to our choice of a linear spline with two knots for f(·; θ), but experiments with
higher spline orders and/or more knots did not yield improved results, and neither did experiments with
XGBoost (Chen & Guestrin, 2016) models for f(·; θ). Additional experiments that hold the number of test
samples at 900 and vary ntrain and ncal such that ntrain + ncal = 3100 (see Appendix B) also show little change
in the performance of the quantile and regression bounds. Thus, for our experimental data, the effort to
train the estimation function f(·; θ) from (9) may not be justified, given the good performance of the simple
empirical-quantile estimation function f(·) from (8). But the behavior may be different with other datasets.

Computation time: Using a single NVIDIA V100 GPU with 32GB of memory, computing a single DDRM
sample takes approximately 2.73 seconds. Once the calibration constant λ̂(dcal) is known, computing c = 32
FRIQ samples {z̃(j)

0 }c
j=1 and β(ẑ0, λ̂(dcal)) takes around 217ms, 320ms, 5ms, and 6ms for DISTS, LPIPS,

PSNR, and SSIM, respectively.

8



Under review as submission to TMLR

DISTS ↓ LPIPS  ↓ PSNR ↑ SSIM ↑

True Quality, 𝑧 True Quality, 𝑧 True Quality, 𝑧 True Quality, 𝑧

Bo
un

d 
𝛽

non-adaptive bound quantile bound
<latexit sha1_base64="I4WZgYMyhpckkJI8AF/2OWebVSY=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRKR6kYounFZwT6kDWUymbRDZ5IwcyPU0K0/4Fb/wJ249T/8Ab/DSZuFbT0wcDjnXu6Z48WCa7Dtb6uwsrq2vlHcLG1t7+zulfcPWjpKFGVNGolIdTyimeAhawIHwTqxYkR6grW90U3mtx+Z0jwK72EcM1eSQcgDTgkY6aHnMSD4Cj/1yxW7ak+Bl4mTkwrK0eiXf3p+RBPJQqCCaN117BjclCjgVLBJqZdoFhM6IgPWNTQkkmk3nQae4BOj+DiIlHkh4Kn6dyMlUuux9MykJDDUi14m/ud1Ewgu3ZSHcQIspLNDQSIwRDj7Pfa5YhTE2BBCFTdZMR0SRSiYjuau+DqLNimZYpzFGpZJ66zq1Kq1u/NK/TqvqIiO0DE6RQ66QHV0ixqoiSiS6AW9ojfr2Xq3PqzP2WjByncO0Rysr18uA5hL</latexit>
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Figure 5: Scatter plots show the non-adaptive (blue) and quantile (orange) bounds β(ẑk, λ̂(dcal[t])) versus the
true FRIQ zk over MRI test indices k ∈ Itest[t] at acceleration R = 8. The black line shows where β = z. A
fraction of α = 0.05 samples are on the side of the line that violates the bound. Note that the quantile bound
tracks the true zk much better than the non-adaptive bound.

4.2 Accelerated MRI

We now simulate our methods on accelerated multicoil MRI (Knoll et al., 2020; Hammernik et al., 2023).
MRI is a medical imaging technique known for excellent soft tissue contrast without subjecting the patient to
harmful ionizing radiation. MRI has slow scan times, though, which reduce patient throughput and comfort.
In accelerated MRI, one collects only 1/R of the measurements specified by the Nyquist sampling theorem,
thus speeding up the acquisition process by rate R. For R > 1, however, the inverse problem may become
ill-posed, in which case one may be interested in bounding the FRIQ of the recovered image.

Data: We utilize the non-fat-suppressed subset of the multicoil fastMRI knee dataset (Zbontar et al.,
2018), yielding 17286 training images and 2188 validation images. To simulate the imaging process, we
retrospectively sub-sample in the spatial Fourier domain (the “k-space”) using random Cartesian masks that
give acceleration rates R ∈ {16, 8, 4, 2}. See App. F for additional details.

Recovery: To generate approximate posterior samples for the adaptive bounds, we utilize the conditional
normalizing flow (CNF) from Wen et al. (2023a). Although in App. E we investigate what happens when
the same CNF is also used as the recovery network h(·), in this section we use the well-known E2E-VarNet
(Sriram et al., 2020a)—a deterministic reconstruction approach, for h(·). Both networks are trained to work
well with all four acceleration rates R. (See App. G for training details.) Similar to Sec. 4.1, we found that the
regression bound did not provide significant gain over the quantile bound and so, to streamline our discussion,
we consider only the quantile and non-adaptive bounds for MRI. As before, we evaluate performance over
T = 10 000 Monte Carlo trials with a random 70% calibration and 30% test split of the validation data. All
experiments use an error-rate α = 0.05. Methods are separately calibrated for each acceleration rate.

Bound versus true-metric: Figure 5 shows scatter plots of the true FRIQ zk versus the non-adaptive and
quantile bounds β(ẑk, λ̂(dcal[t])) for the test indices k ∈ Itest[t] in a single Monte-Carlo trial t. The results
are shown for R = 8 acceleration and c = 32 samples in the adaptive bounds. Except for a few outliers,
the quantile bound closely tracks the true FRIQ zk, demonstrating good adaptivity, while the non-adaptive
bounds remain constant with zk.

Multi-round measurement: To showcase the practical impact of our bounds, we adapt the multi-round
measurement protocol from Wen et al. (2024), where measurements are collected over multiple rounds until
the uncertainty bound falls below a threshold. In our setting, measurements are first collected at acceleration
R = 16, an image recovery is computed, and a conformal upper-bound on its DISTS is computed. If the
bounding value is lower than a pre-determined threshold τ , signifying that the recovery is (with probability
1 − α) of sufficient diagnostic quality (Kastryulin et al., 2023), then measurement collection stops. If not,
additional measurements are collected and combined with the previous ones to yield an acceleration of R = 8,
and the process repeats. We allow up to five measurement rounds, corresponding to final accelerations of
R ∈ {16, 8, 4, 2, 1}.
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Figure 6: Fraction of accepted slices versus fi-
nal acceleration rate for multi-round MRI using
DISTS with τ = 0.16. Error bars show standard
deviation.

Table 2: Average results for a multi-round MRI simu-
lation where measurement collection stop once bounds
are below a user-set threshold τ . Results shown
for T = 10 000 trials using the DISTS metric with
α = 0.05, τ = 0.16, and c = 32 (± standard error).

Method Average
Acceleration

Acceptance
Empirical
Coverage

Non-adaptive 2.000 ± 0.000 0.9504 ± 0.0001
Quantile 3.973 ± 0.001 0.9323 ± 0.0001

Figure 7: Examples of the multi-round MRI measurement procedure with DISTS at α = 0.05, τ = 0.16, and
c = 32. Error images at each acceleration R are shown with the quantile bound (orange) and true metric
(white). The red box indicates the measurement round at which the bound falls below the threshold τ and
the measurement procedure concludes.

Once again, we report average results across T = 10 000 trials. We set the DISTS acceptance threshold at
τ = 0.16, which requires the non-adaptive approach to use acceleration R = 2 in order to guarantee 1 − α
empirical coverage. Figure 6 plots the fraction of test image slices accepted by the multi-round protocol at
each acceleration rate R with τ = 0.16. With the quantile bound, the measurements stop after three of fewer
rounds (i.e., R ≥ 4) in more than 80% of the cases. With the non-adaptive bound, the measurements stop
after four rounds (i.e., R = 2) in all cases. Table 2 shows that, with the quantile bound, the multi-round
protocol attains an average acceleration of R = 3.973, which far surpasses the R = 2 acceleration achieved
with the non-adaptive bound. Table 2 also shows that the empirical coverage of the multi-round accepted
slices is very close to 1 − α, despite having only coverage guarantees (6) for a single-round measurement
at each acceleration rate. Figure 7 shows examples of the image-error, the true DISTS, and its quantile
upper-bound for each measurement round. With the threshold set at τ = 0.16, the example on the top would
collect two rounds of measurements (i.e., R = 8) while the example at the bottom would collect three rounds
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Figure 8: Fraction of accepted slices versus fi-
nal acceleration rate for multi-round MRI using
PSNR with τ = 33dB. Error bars show standard
deviation.

Table 3: Average results for a multi-round MRI sim-
ulation where measurement collection stop once the
PSNR bound is above a user-set threshold τ . Results
shown for T = 10 000 trials with α = 0.05, τ = 33.0
dB, and c = 32 (± standard error).

Method Average
Acceleration

Acceptance
Empirical
Coverage

Non-adaptive 2.000 ± 0.000 0.9503 ± 0.0001
Quantile 4.048 ± 0.001 0.9514 ± 0.0001

of measurements (i.e., R = 4), as demarcated by the red squares. See App. C for additional qualitative
results.

We now repeat the multi-round experiment using the (perhaps more familiar) metric of PSNR. We set the
acceptability threshold at τ = 33.0 dB, which requires the non-adaptive approach to use acceleration R = 2
to guarantee 1 − α empirical coverage. Similar to what happened when DISTS was used, Fig. 8 shows that
the quantile bound allows a large proportion of the slices to be collected at R ≥ 4. In Tab. 3, we see that this
results in an average accepted acceleration rate of R = 4.048, over twice the acceleration achieved with the
non-adaptive bound.

Computation time: The E2E-VarNet takes approximately 104ms to generate a single posterior sample,
while the CNF take about 1.22 seconds to generate 32 posterior samples (corresponding to c = 32) on a single
NVIDIA V100. The computation time of the metrics and bounds is on par with the times reported for the
FFHQ experiments.

Limitations: We acknowledge multiple limitations in our proposed methodology. 1) Our methods require
access to calibration data {(xi, yi)}n

i=1 that is similar enough to the test data (x0, y0) for the FRIQ pairs
{(zi, ẑi)}n

i=0 to be modeled as statistically exchangeable. More work is required to make our methods robust
to distribution shift (see App. D), although Tibshirani et al. (2019); Barber et al. (2023); Cauchois et al.
(2024) suggest some paths forward. 2) Our methods will be most impactful when there exists evidence that
the FRIQ metric is well matched to the application (e.g., DISTS for MRI (Kastryulin et al., 2023)). For
some applications, additional work is required to determine which metrics are more appropriate. 3) Our MRI
application ideas are preliminary and not ready for practical use; rigorous clinical trials are needed to tune
and validate the methodology on a much larger and diverse cohort of data. 4) The learned adaptive bound
from Sec. 3.4 requires training a quantile regression model, and our FFHQ denoising experiment suggests that
it may not be easy to significantly outperform the simpler adaptive bound from Sec. 3.3. 5) The posterior
samplers that we considered in our numerical experiments target only aleatoric uncertainty, and sharper
conformal bounds might be attained with posterior samplers that also target epistemic uncertainty (e.g.,
Ekmekci & Cetin (2023)). 6) Because our methods are based on CP (or, equivalently, conformal risk control
under the indicator loss (Angelopoulos et al., 2022a)), the marginal guarantee (6) holds with probability
1 − α over random test data (e.g., Ẑ0, Z0) and calibration sets Dcal. A more fine-grained coverage could be
achieved via the Risk-Controlling Prediction Sets (RCPS) framework from Bates et al. (2021), which employs
two user-selected error rates α, δ ∈ (0, 1) to yield coverage guarantees like

Pr
[

Pr
{
Z0 ∈ C

λ̂(Dcal)

(
Ẑ0

)∣∣Dcal
}

≥ 1 − α
]

≥ 1 − δ (12)
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in place of (6). In (12), α controls the Dcal-conditional error while δ controls the error over Dcal.

5 Conclusion

For imaging inverse problems, we used conformal prediction to construct bounds on the FRIQ of a recovered
image relative to the unknown true image. When constructed using a calibration set that is statistically
exchangeable with the test sample, our bounds are guaranteed to hold with high probability. Two of our
methods leveraged approximate-posterior-sampling schemes to yield tighter conformal bounds that adapt to
the measurements and reconstruction. Our approaches were demonstrated on image denoising and accelerated
multicoil MRI, illustrating the broad applicability of our work.

Broader Impact Statement

By providing conformal bounds on the FRIQ of recovered images, we anticipate that our framework will
positively impact the field of imaging inverse problems by providing rigorous guarantees on recovery accuracy.
Our methods may help to give confidence that recovered images can be trusted, especially in safety-critical
applications. However, the marginal coverage guarantee in (6) holds on average across random calibration and
test data, but not conditionally for a given measurement y0 and/or calibration set dcal. Furthermore, before
our methods are ready for practical use, clinical studies with large and diverse datasets must be performed to
guide the choice of FRIQ metrics, error rates α, recovery schemes h(·), and conformal bounding strategies.
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Table 4: Mean empirical coverage for the quantile method with α = 0.05 and T = 10 000 on the FFHQ
denoising task (± standard error)

c DISTS LPIPS PSNR SSIM
1 0.95002 ± 0.00009 0.94997 ± 0.00009 0.95013 ± 0.00009 0.94989 ± 0.00009
2 0.95006 ± 0.00009 0.95003 ± 0.00009 0.95001 ± 0.00009 0.95022 ± 0.00009
4 0.94997 ± 0.00009 0.95008 ± 0.00009 0.94986 ± 0.00009 0.94999 ± 0.00009
8 0.95020 ± 0.00009 0.95015 ± 0.00009 0.95019 ± 0.00009 0.94991 ± 0.00009
16 0.94998 ± 0.00009 0.94999 ± 0.00009 0.95009 ± 0.00009 0.95008 ± 0.00009
32 0.95002 ± 0.00009 0.95013 ± 0.00009 0.95003 ± 0.00009 0.95006 ± 0.00009

Table 5: Mean empirical coverage for the regression method with α = 0.05 and T = 10 000 on the FFHQ
denoising task (± standard error)

c DISTS LPIPS PSNR SSIM
1 0.94994 ± 0.00009 0.94970 ± 0.00009 0.95009 ± 0.00009 0.95014 ± 0.00009
2 0.95011 ± 0.00009 0.94953 ± 0.00009 0.94985 ± 0.00009 0.95004 ± 0.00009
4 0.94996 ± 0.00009 0.94946 ± 0.00009 0.95003 ± 0.00009 0.94995 ± 0.00009
8 0.95004 ± 0.00009 0.94964 ± 0.00009 0.94999 ± 0.00009 0.95017 ± 0.00009
16 0.94986 ± 0.00009 0.94964 ± 0.00009 0.95007 ± 0.00009 0.94987 ± 0.00009
32 0.95013 ± 0.00009 0.95026 ± 0.00009 0.95001 ± 0.00009 0.95006 ± 0.00009

A Empirical coverage

In Sec. 4.1, we empirically demonstrated that the coverage guarantees in (6) are met for the non-adaptive,
quantile, and regression bounds in the FFHQ denoising experiments. Here, we further demonstrate that these
guarantees hold regardless of the number of posterior samples c used to compute the adaptive bounds. Tables
4 and 5 show the average empirical coverage for the quantile and regression method, respectively, across
T = 10 000 trials for different values of c and α = 0.05. The same number of posterior samples c is used
during calibration and to compute the adaptive bounds during testing. Again, we observe that the average
empirical coverage is very close to the desired 1 − α in all cases though there are very slight deviations as a
result of finite trials, number of calibration samples, and number of testing samples.

In Table 6, we report the mean empirical coverage for the quantile method in the MRI experiments with
α = 0.05, c = 32, and acceleration rate R ∈ {2, 4, 8, 16} across T = 10 000 trials. For any value of R, we see
the empirical coverage is very close to the theoretical 1 − α = 0.95 coverage; thus, once again, our method
shows close compliance to the theory.

B Additional FFHQ denoising experiments

Effect of training and calibration set size: For FFHQ denoising, we now investigate how the amount of
training and calibration data affect the mean conformal bound. Following the same Monte Carlo procedure
as Sec. 4.1, we fix the number of testing samples to 900 but change the proportion of ntrain versus ncal for
the remaining 3100 samples. In Fig. 9, we show the mean conformal bounds as the proportion of training
samples varies, starting with 0.1 and going up to 0.95, for T = 10 000, c = 32, and α = 0.05. Both adaptive
methods still provide noticeable gains over the non-adaptive bound. Even with additional training samples,
however, the regression bounds show relatively little improvement over the quantile bounds. Based on (3),
the conformal bounds should grow more conservative as the number of calibration points decreases for the
non-adaptive and quantile bounds. However, this effect is not evident until very small calibration set sizes
(e.g., when the fraction of calibration samples is 0.05).
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Table 6: Mean empirical coverage for the quantile method across accelerations with α = 0.05, c = 32, and
T = 10 000 on the accelerated MRI task (± standard error). All coverages are above the expected coverage of
1 − α = 0.95

R DISTS LPIPS PSNR SSIM
2 0.9503 ± 0.0001 0.9503 ± 0.0001 0.9504 ± 0.0001 0.9504 ± 0.0001
4 0.9504 ± 0.0001 0.9503 ± 0.0001 0.9505 ± 0.0001 0.9504 ± 0.0001
8 0.9503 ± 0.0001 0.9504 ± 0.0001 0.9503 ± 0.0001 0.9503 ± 0.0001
16 0.9504 ± 0.0001 0.9504 ± 0.0001 0.9505 ± 0.0001 0.9506 ± 0.0001
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Figure 9: Mean conformal bound versus the proportion of training samples for FFHQ denoising with
ntrain + ncal = 3100 samples.
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Figure 10: Mean Pearson correlation coefficient between each conformal bound and the true FRIQ versus the
number of posterior samples c for FFHQ denoising.

Correlation between conformal bound and true FRIQ: Figure 2 visually demonstrates that the
quantile bound tracks the true FRIQ much better than the non-adaptive bound. To quantify this tracking
behavior, we compute the Pearson correlation coefficient between each conformal bound β(ẑk, λ̂(dcal[t])) and
the true FRIQ zk over the test indices k ∈ Itest[t] for each Monte-Carlo trial t. In Fig. 10, we plot the mean
(across T = 10000 trials) Pearson correlation coefficient versus c for each bound. Since the non-adaptive
bound is constant with zk, its correlation equals 0. However, the two adaptive approaches demonstrate
a correlation coefficient above 0.5, and up to 0.7, depending on the metric. These correlation coefficients
quantify the adaptivity of our bounds and explain, in part, why the adaptive bounds led to better average
acceleration rates than the non-adaptive bound in the multi-round measurement experiment of Sec. 4.2.

C Additional MRI experiments

Effect of number of posterior samples c in conformal bound: For the case of FFHQ denoising,
Sec. 4.1 demonstrated the number of posterior samples c has a limited effect on the conformal bounds for the
FFHQ experiments. We now investigate whether the same occurs with MRI. Figure 11 plots the percent
improvement in MCB as c increases relative to the MCB for c = 1. From the figure, we see less than a 1.5%
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Figure 11: Percent improvement in MCB versus number of samples c used in the quantile bound for the
accelerated MRI experiments.

improvement over c = 1 for any metric, suggesting that the quantile method is indeed robust to the choice of
c for both experiments.

Multi-round measurement samples: In Fig. 12, we show the zero-filled measurement, recovered image,
and absolute-error map at each acceleration rate. The conformal bound is imposed on the reconstructions for
the case when α = 0.05, τ = 0.16, and c = 32. Following the multi-round measurement protocol described
in Sec. 4.2, the reconstruction at R = 8 (marked in red) would be deemed sufficient (βi < τ), and the
measurement collection would end.

D Empirical investigation of distribution shift

As previously mentioned, a general limitation of CP methods like Angelopoulos et al. (2022a) is the requirement
of exchangeability, which in our case applies to the pairs {(Ẑi, Zi)}n

i=0. This requirement may be violated
when there is a distributional shift between the test data (x0, y0) and the calibration data {(xi, yi)}n

i=1, which
can then cause a distributional shift between the corresponding FRIQ quantities (ẑ0, z0) and {(ẑi, zi)}n

i=1.

In the case of MRI, such distributional shifts may arise for various reasons, some of which would be easy
to prevent while others would be more difficult. For example, if the CP method was calibrated on knee
images, one would not want to immediately test on brain images, but instead recalibrate a CP method on
brain images. Likewise, if the CP method was calibrated with data from one manufacturer and/or strength
of scanner, then it would be best to test on data from the same manufacturer and/or strength of scanner.
Still, due to limited calibration data, situations may arise where a distribution shift is inevitable. Thus, we
perform a study to analyze the sensitivity of our proposed method to distribution shifts.

For this study, we use the validation fold of the non-fat-suppressed multicoil fastMRI knee dataset Zbontar
et al. (2018), which contains 100 3D volumes. A volume contains all the images collected for a single patient,
with each image showing a different slice of the knee (from front to back). To induce a realistic yet controllable
distribution shift, we choose calibration images from only the center slices of these volumes, and refer to
the center slices as “location l = 0.” We then create one test set with images from slice locations l = 0,
another test set with images from slice location l = 1, and so on, until slice location l = 10 (which typically
corresponds to an edge slice). Example images from various slice locations are shown in Fig. 13.

We first evaluate the coverage of the quantile bound using T = 10 000 Monte Carlo trials, error-rate α = 0.1,
acceleration R = 8, an E2E-VarNet Sriram et al. (2020a) sample for x̂i, and c = 32 posterior samples for ui.
For each trial t ∈ {1, . . . , T}, we construct the calibration set by randomly sampling 70 of the 100 center
slices. For the same t, we form the test data at location l = 0 using the remaining 30 slices, and we form
the test data at locations l > 0 by randomly sampling 30 of the 200 available slices. Figure 15 plots the
mean empirical coverage over the T trials as a function of test slice location l. As expected, the desired 1 − α
coverage is met when l = 0. However, the behavior of the empirical coverage for l > 0 varies depending
on the metrics. The coverage for LPIPS tends to decrease slightly as the slice location l increases, and the
coverage for PSNR only falls below 1 − α after l = 7. Surprisingly, for the DISTS and SSIM metrics, the
coverage remains well above 1 − α for all slice locations, suggesting the bounds remain valid, but become
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Figure 12: Qualitative example of the multi-round MRI experiment with DISTS at α = 0.05, τ = 0.16, and
c = 32. The measurement, recovery, and absolute error are shown for all accelerations. The quantile bound
(orange) and true DISTS (white) are imposed on the reconstructions. The red box indicates the accepted
reconstruction where the bound first falls below the threshold τ .

slightly over-conservative for l > 0. Overall, the results demonstrate our bounds are quite robust to small
distributional shifts with only a minor loss in coverage for certain metrics.

To visualize the distribution shift versus test location l, we consider the difference between the true FRIQ
zk and the FRIQ estimate ẑk for each test index k ∈ Itest[t] in a single trial t. This difference is zk − ẑk for
LP metrics and ẑk − zk for HP metrics. Figure 14 shows the histogram of this difference for test locations
l ∈ {0, 5, 10}. As expected, these histograms deviate more as the test location l increases, although the
amount of deviation depends on the FRIQ metric. For PSNR, we see the histogram shifting slightly to the
right, while for SSIM, the histogram starts to shrink in width.
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Figure 13: Qualitative examples of images from different slice locations. Slice location 0 indicates the center
slice of a volume while larger slice locations are further towards the edges of a volume.
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Figure 14: Histograms of the difference between the true FRIQ zk

and the FRIQ estimate ẑk for test indices k in the test fold Itest[t]
of a single trial. Histograms are shown for test slice locations
l = 0, 5, 10. Note the increasing shift in distribution from the
calibration set as l increases.

Slice Location

Co
ve

ra
ge

Figure 15: The average empirical cover-
age across T = 10000 trials for test sets
at different slice locations. All trials are
calibrated with images from slice location
0 with α = 0.1, R = 8, and c = 32.

Figure 15 suggests that one could select a more conservative α to ensure sufficiently high coverage under
small distributional shifts, but at the cost of more conservative bounds. In fact, this is largely the mechanism
behind distributionally robust CP extensions like Cauchois et al. (2024). We leave such generalizations to
future work.

E MRI reconstruction from a CNF

In the MRI experiments of Sec. 4.2, we used the E2E-VarNet from Sriram et al. (2020a) for MRI image
recovery and the CNF from Wen et al. (2023a) adaptive bound computation. In this section, we investigate
what happens when the CNF from Wen et al. (2023a) is also used for image recovery.

When using an approximate posterior sampler for image recovery, one has the option of averaging p ≥ 1
posterior samples. For example, when one is interested in estimating xi from yi with high PSNR, or
equivalently low MSE, it makes sense to set x̂i as the minimum MSE (MMSE) or conditional-mean estimate
E{Xi|Yi =yi}. The MMSE estimate can be approximated by the empirical mean

x̂i = 1
p

c+p∑
j=c+1

x̃
(j)
i , (13)

with large p. The indices on j in (13) are chosen to avoid the samples {x̃(j)
i }c

j=1 used for the adaptive bounds.

However, because the MMSE estimate can look unrealistically smooth, one may instead be interested in
producing an image estimate with good SSIM, DISTS, or LPIPS performance. In this case, smaller values
of p may be more appropriate. For example, Bendel et al. (2023) found that, for multicoil brain MRI at
acceleration R = 8 with their conditional GAN, the best choices were p = 8 for SSIM and p = 2 for both
DISTS and LPIPS. This is can explained by the perception-distortion tradeoff (Blau & Michaeli, 2018), which
says that, as the MSE distortion improves, the perceptual quality tends to decrease. In the end, each FRIQ
metric prefers a particular tradeoff between perceptual quality and distortion, and thus a particular p when
sample averaging. In the sequel, we consider different choices for p when using the CNF for image recovery.
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Table 7: Average reconstruction performance on the fastMRI (Zbontar et al., 2018) knee validation set for
R = 16 (± standard error)

Network DISTS ↓ LPIPS ↓ PSNR ↑ SSIM ↑
E2E-VarNet 0.209 ± 0.001 0.354 ± 0.001 30.301 ± 0.043 0.807 ± 0.001
CNF (p = 1) 0.183 ± 0.001 0.312 ± 0.001 28.244 ± 0.039 0.688 ± 0.002
CNF (p = 2) 0.167 ± 0.001 0.292 ± 0.001 29.091 ± 0.039 0.730 ± 0.001
CNF (p = 4) 0.165 ± 0.001 0.287 ± 0.001 29.588 ± 0.039 0.755 ± 0.001
CNF (p = 8) 0.173 ± 0.001 0.296 ± 0.001 29.862 ± 0.039 0.770 ± 0.001
CNF (p = 16) 0.184 ± 0.001 0.314 ± 0.001 30.006 ± 0.039 0.777 ± 0.001
CNF (p = 32) 0.193 ± 0.001 0.333 ± 0.001 30.080 ± 0.039 0.781 ± 0.001

Table 8: Average reconstruction performance on the fastMRI (Zbontar et al., 2018) knee validation set for
R = 8 (± standard error)

Network DISTS ↓ LPIPS ↓ PSNR ↑ SSIM ↑
E2E-VarNet 0.151 ± 0.001 0.262 ± 0.001 33.459 ± 0.047 0.864 ± 0.001
CNF (p = 1) 0.136 ± 0.000 0.248 ± 0.001 30.796 ± 0.044 0.761 ± 0.002
CNF (p = 2) 0.118 ± 0.000 0.225 ± 0.001 31.754 ± 0.044 0.799 ± 0.001
CNF (p = 4) 0.119 ± 0.000 0.219 ± 0.001 32.329 ± 0.043 0.821 ± 0.001
CNF (p = 8) 0.128 ± 0.001 0.228 ± 0.001 32.650 ± 0.043 0.834 ± 0.001
CNF (p = 16) 0.138 ± 0.001 0.243 ± 0.001 32.819 ± 0.043 0.840 ± 0.001
CNF (p = 32) 0.145 ± 0.001 0.255 ± 0.001 32.907 ± 0.043 0.843 ± 0.001

Table 9: Average reconstruction performance on the fastMRI (Zbontar et al., 2018) knee validation set for
R = 4 (± standard error)

Network DISTS ↓ LPIPS ↓ PSNR ↑ SSIM ↑
E2E-VarNet 0.110 ± 0.001 0.181 ± 0.001 36.030 ± 0.053 0.905 ± 0.001
CNF (p = 1) 0.100 ± 0.000 0.191 ± 0.001 33.090 ± 0.048 0.826 ± 0.001
CNF (p = 2) 0.087 ± 0.000 0.170 ± 0.001 34.073 ± 0.048 0.856 ± 0.001
CNF (p = 4) 0.090 ± 0.000 0.166 ± 0.001 34.666 ± 0.048 0.873 ± 0.001
CNF (p = 8) 0.099 ± 0.000 0.171 ± 0.001 34.998 ± 0.047 0.882 ± 0.001
CNF (p = 16) 0.106 ± 0.001 0.178 ± 0.001 35.174 ± 0.047 0.887 ± 0.001
CNF (p = 32) 0.110 ± 0.001 0.184 ± 0.001 35.265 ± 0.047 0.889 ± 0.001

Average reconstruction performance: To get a sense for how the CNF compares to the E2E-VarNet,
and for how the choice of p affects the CNF, we report average PSNR, SSIM, DISTS, and LPIPS on the
non-fat-suppressed subset of the fastMRI knee validation set at acceleration rates R = 16, 8, 4, and 2 in
Tables 7, 8, 9, and 10, respectively. There we see that the E2E-VarNet outperforms the CNF in PSNR and
SSIM at all accelerations, while the CNF outperforms the E2E-VarNet in DISTS and LPIPS in all cases other
than LPIPS at R = 2.

Empirical Coverage: We first investigate empirical coverage using the same Monte-Carlo validation
procedure described in Sec. 4.2, again with T = 10000 trials. Table 11 reports the average empirical coverage
for the quantile bounds with different choices of p at R = 8. As with all previous experiments, the coverage is
above and very close to the desired 1 − α value for all choices of p.

Effect of acceleration rate R and choice of recovery method: Figure 16 plots the mean conformal
bound (MCB) of the quantile method with c = 32 versus the acceleration rate R for different image estimates
x̂i. The image estimate x̂ is computed using either the E2E-VarNet point estimate or a p-sample average
from the CNF with different values of p. In all cases, the MCB improves as the acceleration R decreases, as
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Table 10: Average reconstruction performance on the fastMRI (Zbontar et al., 2018) knee validation set for
R = 2 (± standard error)

Network DISTS ↓ LPIPS ↓ PSNR ↑ SSIM ↑
E2E-VarNet 0.059 ± 0.000 0.094 ± 0.001 39.692 ± 0.060 0.947 ± 0.001
CNF (p = 1) 0.059 ± 0.000 0.118 ± 0.000 36.810 ± 0.054 0.907 ± 0.001
CNF (p = 2) 0.054 ± 0.000 0.105 ± 0.000 37.667 ± 0.054 0.923 ± 0.001
CNF (p = 4) 0.055 ± 0.000 0.100 ± 0.000 38.171 ± 0.054 0.931 ± 0.001
CNF (p = 8) 0.058 ± 0.000 0.099 ± 0.000 38.448 ± 0.054 0.935 ± 0.001
CNF (p = 16) 0.060 ± 0.000 0.099 ± 0.000 38.593 ± 0.054 0.937 ± 0.001
CNF (p = 32) 0.061 ± 0.000 0.099 ± 0.000 38.668 ± 0.054 0.939 ± 0.001

Table 11: Mean empirical coverage for the quantile method with α = 0.05, c = 32, and T = 10 000 on the
R = 8 accelerated MRI task (± standard error). All coverages are above the expected coverage of 1−α = 0.95

p DISTS LPIPS PSNR SSIM
1 0.9503 ± 0.0001 0.9503 ± 0.0001 0.9505 ± 0.0001 0.9504 ± 0.0001
2 0.9505 ± 0.0001 0.9503 ± 0.0001 0.9504 ± 0.0001 0.9505 ± 0.0001
4 0.9503 ± 0.0001 0.9503 ± 0.0001 0.9505 ± 0.0001 0.9504 ± 0.0001
8 0.9505 ± 0.0001 0.9504 ± 0.0001 0.9504 ± 0.0001 0.9505 ± 0.0001
16 0.9505 ± 0.0001 0.9502 ± 0.0001 0.9504 ± 0.0001 0.9504 ± 0.0001
32 0.9504 ± 0.0001 0.9506 ± 0.0001 0.9504 ± 0.0001 0.9505 ± 0.0001

expected. But, as discussed above, each metric benefits from a different choice of p. DISTS and LPIPS prefer
p ∈ {2, 4} while PSNR and SSIM prefer p = 32. The figure also shows that the MCB for the p-optimized
CNF-based method is better than the MCB for the E2E-VarNet-based method with both DISTS and LPIPS
but not with PSNR and SSIM. Thus, the recovery method that yields the tightest bounds may depend on
the metric of interest.

Multi-round MRI: Since Figure 16 reveals the tightest bounds on DISTS are obtained when the CNF
posterior average with p = 4 is used for the image estimate x̂, we repeat the multi-round experiment from
Sec. 4.2 with this setup. As before, we set α = 0.05 and c = 32. The DISTS acceptance threshold is set at
τ = 0.11, where the non-adaptive approach requires R = 2 for acceptance. In Figure 17, we plot the number
of slices that were collected at each acceleration rate. Here, the non-adaptive approach always accepts slices
at R = 2 while the quantile bound accepts nearly 50% of the slices at R = 4. Table 12 shows that this equates
to an average accepted acceleration rate of 2.596, with an empirical coverage of 0.9434 at acceptance. This
demonstrates that, when considering multi-round recovery performance, the relative performance of different
bounding strategies may depend on which image recovery model is used. In any case, the modularity of
our proposed framework allows one to improve multi-round performance through the choice of the recovery
model, the posterior sampler, and/or the conformal bound.

Distribution Shift: We repeat the distribution shift analysis from Appendix D using a single CNF posterior
sample as the image estimate x̂, i.e. p = 1, with α = 0.1, c = 32, and R = 8. As before, we can visualize
the distribution shift by looking at the histograms of the difference between the true FRIQ zk and FRIQ
estimate ẑk for each test index k ∈ Itest[t] as the test location l increases. Figure 18 shows the histograms
for test locations l ∈ {0, 5, 10}. It shows more distinct distributional shifts compared to Appendix D: as l
increases, the PSNR histogram noticeably shifts to the right and widens, while the histogram for LPIPS
becomes bimodal. Not surprisingly, these more dramatic shifts lead to a decrease in coverage for all metrics
in Fig. 19 as l increases. We do note, however, that both SSIM and PSNR retain a coverage at or above
1 − α until l = 4, demonstrating a certain level of robustness.
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Figure 16: Mean conformal bound versus acceleration R for accelerated MRI. Results shown for the quantile
bound with x̂ computed from the E2E-VarNet point estimate (shown in pink) or the p-sample average from
CNF posteriors. Various p shown.
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Figure 17: Fraction of accepted slices versus fi-
nal acceleration rate for multi-round MRI using
DISTS. Both methods use a p-posterior average
for the recovery with p = 4, c = 32, α = 0.05, and
τ = 0.11. Error bars show standard deviation.

Table 12: Average results for a multi-round MRI
simulation where measurement collection stop once
bounds are below a user-set threshold τ . Results
shown for T = 10 000 trials using the DISTS metric
with α = 0.05, τ = 0.11, p = 4, and c = 32 (± stan-
dard error).

Method Average
Acceleration

Acceptance
Empirical
Coverage

Non-adaptive 2.000 ± 0.000 0.9504 ± 0.0001
Quantile 2.596 ± 0.001 0.9434 ± 0.0001

F MRI subsampling mask details

For the MRI experiments, we simulate the collection of measurements at four acceleration ratesR = {16, 8, 4, 2}.
These measurements are collected in the 2D spatial frequency domain known as k-space, and the pattern
with which these samples are collected is called a sampling mask.

For this study, we use a Cartesian sampling procedure where full lines of the 2D k-space are collected
progressively. Starting with R = 16, we utilize a Golden Ratio Offset (GRO) (Joshi et al., 2022) sampling
mask with GRO-specific parameters s = 15 and α = 8. This gives a fully-sampled region of 9 lines in the
center of k-space known as the autocalibration signal (ACS) region. To simulate the iterative collection of
measurements, we build upon this mask for R = 8. We first collect central lines to obtain an ACS region of
16 lines before sampling additional k-space lines with a sampling probability inversely proportional to the
distance from the center. Additional lines are collected until the desired acceleration R = 8 is met. This
procedure is repeated for R = 4 and R = 2 to acquire masks with ACS widths of 24 and 32, respectively.
Fig. 20 illustrates examples of the resulting masks.
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<latexit sha1_base64="lcjhmu0/c7fc9apDCx362fkTu/4=">AAACEXicbVBLTsMwFHTKr5Rf+OzYWFRIbKgShArLCjYsi0Q/UhtFjuO0Vh0nsh1QG+UUXIAt3IAdYssJuADnwGmzoC0j2RrNvKc3Gi9mVCrL+jZKK6tr6xvlzcrW9s7unrl/0JZRIjBp4YhFoushSRjlpKWoYqQbC4JCj5GON7rN/c4jEZJG/EGNY+KEaMBpQDFSWnLNo/4T9ckQqXSSuSN4Dif6d82qVbOmgMvELkgVFGi65k/fj3ASEq4wQ1L2bCtWToqEopiRrNJPJIkRHqEB6WnKUUikk07TZ/BUKz4MIqEfV3Cq/t1IUSjlOPT0ZIjUUC56ufif10tUcO2klMeJIhzPDgUJgyqCeRXQp4JgxcaaICyozgrxEAmElS5s7oov82hZRRdjL9awTNoXNbteq99fVhs3RUVlcAxOwBmwwRVogDvQBC2AwQS8gFfwZjwb78aH8TkbLRnFziGYg/H1C3jQnUo=</latexit>
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Figure 18: Histograms of the difference between the true FRIQ
zk and the FRIQ estimate ẑk for test samples k in the test fold
of a single trial. Histograms are shown for test slice locations
l = 0, 5, 10. Note the increasing shift in distribution from the
calibration set as l increases.
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Figure 19: The average empirical cover-
age across T = 10000 trials for test sets
at different slice locations. All trials are
calibrated with images from slice location
0 with α = 0.1, R = 8, p = 1, and c = 32.

Figure 20: MRI sampling masks in k-space for each acceleration rate R. White pixels indicate the measurement
was collected for that location in k-space. The masks are designed in a nested fashion where each mask
contains all the measurements of higher R.

G Training/Model details

For the regression bound in Sec. 3.4, where ui ∈ Rc, we use a quantile predictor of the form

f(ui; θ) = ψ(ui)⊤w + b with θ = [w, b]⊤, , (14)

where ψ(·) is a linear spline with two knots, t1 and t2, implemented via the truncated power basis

ψ(ui) = [ui; (ui − t11)+; (ui − t21)+] ∈ R3c, (15)

with 1 the c-dimensional vector of ones and (x)+ ≜ max(x, 0). The two knots were placed at the 1
3 and 2

3
empirical quantiles of the mean training feature { 1

c

∑c
j=1 z̃

(j)
i }ncal+ntrain

i=ncal+1 , respectively. Essentially, for each
feature in ui, (14) implements a piece-wise-linear regression function with three distinct pieces. To promote
consistency in ui = [z̃(1)

i , z̃
(2)
i , . . . , z̃

(c)
i ]⊤ across different i, the spline function ϕ(·) first sorts the values
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{z̃(j)
i }c

j=1 within each ui. For ρ(θ) in (10), we use ridge regularization on the weights w. The resulting (10) is
a quadratic program, which can be optimized using any convex solver. To tune the regularization weight γ,
we use K-fold cross validation with K = 5 folds and select the weight that provides the lowest mean pinball
loss across the 5 folds.

For DDRM, we use the author’s implementation (Kawar et al., 2022b), which is publicly available under an
MIT license.

Both fastMRI reconstruction models were trained once with all four acceleration rates. For each sample in
an epoch, one of the four sampling masks is randomly drawn, allowing the model to see each sample at a
different acceleration throughout the training.

With the E2E-VarNet, we use the author’s codebase (Sriram et al., 2020b), which is released under an MIT
license. For training, we utilize the default hyperparameters provided by the authors for the model on the
fastMRI knee leaderboard. The model was trained for 50 epochs with a batch size of 16 and learning rate of
0.0001 using SSIM (Wang et al., 2004) as the loss function. This takes around 38 hours on a single NVIDIA
V100 with 32GB of memory.

To train the CNF, we start with the author’s implementation (Wen et al., 2023b) that is available under an
MIT license. We modify the architecture slightly in order to better handle multiple accelerations. First, we
include an invertible attention module, iMAP (Sukthanker et al., 2022), to the end of the base flow step.
Then, we increase the number of initial channels in the conditioning network to 256. Using 2 layers and 10
flows steps in each layer, we train the CNF to minimize the negative log-likelihood objective. The model
is trained for 150 epochs with batch size 8 and learning rate 0.0001. On a single NVIDIA V100, this takes
around 335 hours.

To compute the quadratic program for Sec. 4.1, we use the qpsolver (Caron et al., 2024) package under a
LGPL 3.0 license along with the CVXOPT (Andersen et al., 2023) package under a GNU General Public
License.

We use the TorchMetrics (Borovec et al., 2022) package under the Apache 2.0 license to compute PSNR,
SSIM, and LPIPS. We use the author’s code at (Ding et al., 2020b) for DISTS under a MIT license. For
multicoil MRI, we first compute the magnitude images using the “root-sum-of-squares” (RSS) (Roemer et al.,
1990) before computing any metric. Since DISTS and LPIPS require a 3-channel image, we repeat the
magnitude image for all three channels and normalize the values to be between 0 and 1 before computing
either metric.

All models use the PyTorch (Paszke et al., 2019) framework with a custom license allowing open use. The
E2E-VarNet and CNF are implemented using PyTorch Lightning (Falcon et al., 2019) under an Apache 2.0
license.

H Datasets

The Flickr-Faces-HQ (FFHQ) (Karras et al., 2019) is publicly available under the Creative Commons BY-NC-
SA 4.0 license. The fastMRI (Zbontar et al., 2018) datasets is available under a royalty-free license for internal
research and educational purposes by the NYU fastMRI initiative. The providers have deidentified and
manually inspected images and metadata for protected health information (PHI) as part of an IRB-approved
study.
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