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Abstract001

With the continuous progress of remote sensing002
technology, an increasing number of remote003
sensing images containing rich geographical004
and environmental information is obtained. Un-005
like natural images, remote sensing images usu-006
ally cover a large area and have complex spatial007
distribution, making it a challenge to accurately008
extract and describe changes from images. In009
order to effectively mine and utilize the rich010
semantic information contained in the image011
to guide the decoder to generate high-quality012
change descriptions, we propose an efficient013
semantic attention network (ESAN). Specifi-014
cally, we first perform global efficient semantic015
representation (GESR) on the obtained remote016
sensing feature map to promote the understand-017
ing of complex scenes in remote sensing im-018
ages. Then we further propose a cross-semantic019
feature enhancement module (CSFE) to effec-020
tively distinguish semantic changes from irrel-021
evant changes. Finally, we input the obtained022
image features into the adaptive multi-layer023
Transformer decoder to guide the generation024
of change description. Extensive experiments025
on two representative remote sensing datasets,026
Dubai-CC and LEVIR-CC, demonstrate the su-027
periority of the proposed model over many ad-028
vanced technologies.029

1 Introduction030

With the rapid development of remote sensing tech-031

nology, a large amount of high-resolution remote032

sensing image data has been acquired. Remote033

sensing images are not only used for scientific re-034

search, but also widely used in damage assessment035

(Xu et al., 2019), urban planning (Chen and Shi,036

2020), environmental monitoring (de Bem et al.,037

2020) and other fields. Accurate and semantically038

rich descriptions of these image changes not only039

help to improve the image interpretation capabil-040

ity, but also make remote sensing images easier to041

be understood by non-specialized users. In addi-042

tion, the accurate change description also provides043

a powerful tool for decision-making, planning man- 044

agement and disaster response. 045

The remote sensing image change description 046

task aims to describe the change content in a re- 047

mote sensing image pair in natural language. It 048

involves two remote sensing images, usually cor- 049

responding to different points in time in the same 050

area. The model needs to understand the differ- 051

ences between these two images, including changes 052

in features, new or disappeared elements, etc., and 053

generate text descriptions that can clearly express 054

these changes. Change descriptions have recently 055

gained attention in geoscience and remote sensing 056

due to their ability to extract high-level semantic 057

information about land cover changes. 058

In recent years, several methods have been pro- 059

posed to improve the performance of image change 060

description models. 061

Early pioneer work (Jhamtani and Berg- 062

Kirkpatrick, 2018) proposed a task to describe the 063

difference between similar image pairs through 064

object-level difference description. Subsequent re- 065

search focused on the relationship between seman- 066

tic changes and interference factors, and proposed a 067

series of models, including dual dynamic attention 068

model (DUDA) (Park et al., 2019), viewpoint adap- 069

tive matching encoding (Shi et al., 2020), multi- 070

change caption transformer (MCCFormers) (Qiu 071

et al., 2021), etc., to cope with the challenges in 072

the actual scene. At the same time, some meth- 073

ods emphasize the importance of tasks, such as 074

new training schemes (Hosseinzadeh and Wang, 075

2021) and multimodal end-to-end siamesed dif- 076

ference captioning model (SDCM) (Ariyo et al., 077

2019a). Recent work has further explored the 078

relationship-aware attention mechanism (Tu et al., 079

2023b, 2021b), distance-sensitive self-attention 080

(DSA) (Ji et al., 2023), cyclic consistency (VACC) 081

(Kim et al., 2021), etc., to improve the model ’s 082

perception of complex changes. Methods such as 083

the new modeling framework (Yao et al., 2022) and 084
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the progressive scale-aware network (PSNet) (Liu085

et al., 2023a) aim to optimize the overall perfor-086

mance of the model. The studies work together to087

overcome the challenges of semantic understand-088

ing, viewpoint change and multi-scale information089

utilization, and provide rich exploration and innova-090

tion for the task of remote sensing image change de-091

scription. However, although significant progress092

has been made in the task of image change descrip-093

tion, there are still some deficiencies in semantics.094

At present, the change description model for re-095

mote sensing images lacks fine-grained semantic096

understanding, which often needs to rely on global097

context information to obtain a more accurate inter-098

pretation. For example, a single pixel change may099

only have a clear meaning in the global context. In100

order to provide scene background for fine-grained101

changes and make the model better understand the102

semantics of local changes, we proposes an Effi-103

cient Semantic Attention Network (ESAN), which104

uses different semantic relationship modules and105

adaptive decoder based on Transformer to generate106

remote sensing change descriptions. Through a107

large number of experiments, we prove that ESAN108

can produce a more accurate and realistic descrip-109

tion of the changes between remote sensing image110

pairs, and achieve the best performance compared111

with the existing change description methods.112

The contributions of this paper are summarized113

as follows:114

(1) GESR module is designed to enhance the115

feature extraction of global semantics, which oper-116

ates at the perceptual level, deeply mines internal117

feature associations, grasps global association in-118

formation, and provides scenarios for fine-grained119

semantic understanding.120

(2) CSFE module is designed to facilitate the ac-121

curate identification and description of fine-grained122

changes. It carefully checks and compares the in-123

formation between the image ’s own features and124

the common difference features, especially pays at-125

tention to the difference representation, and obtains126

the actual semantic changes based on the global127

features.128

(3) In order to improve the adaptive ability of the129

model, a multi-stage adaptive Transformer model130

is formed as the decoder to translate the obtained131

change features into natural language sentences.132

Extensive experiments show that ESAN outper-133

forms other state-of-the-art methods on the Dubai-134

CC and LEVIR-CC datasets.135

2 Related Work 136

2.1 Image Captioning 137

Describing image content in natural language has 138

been an active area of artificial intelligence re- 139

search. A variety of image description methods 140

dedicated to improving the state of the art of image 141

description have been proposed. In order to fully 142

exploit the short-term spatial semantic relations, 143

(Li et al., 2022) introduced the long-short-term re- 144

lational converter (LSRT). On the other hand, the 145

paper (Tu et al., 2022) proposed an internal and 146

relational embedding transformer (I2Transformer) 147

to effectively understand caption semantics and the 148

relationship between them. (Yu et al., 2022) ap- 149

plied the dual attention mechanism to the pyramid 150

feature map, fully considering the context infor- 151

mation. Although the self-attention (SA) network 152

has achieved great success in image captioning, the 153

existing SA network has the problems of distance 154

insensitivity and low-rank bottleneck. To this end, 155

(Ji et al., 2023) introduced distance-sensitive self- 156

attention (DSA) and multi-branch self-attention 157

(MSA). The traditional attention mechanism usu- 158

ally only considers the one-way flow from vision 159

to linguistics, resulting in that the visual features 160

of attention are usually irrelevant to the state of 161

the target word. (Tu et al., 2023b) improved the 162

traditional attention mechanism and proposed a 163

relationship-aware attention mechanism, namely, 164

visual-to-visual homogeneity graph (HMG) and 165

linguistic-to-visual heterogeneity graph (HTG), re- 166

spectively. These studies have made in-depth ex- 167

plorations of image caption generation tasks at dif- 168

ferent levels. Although some achievements have 169

been made in semantic understanding, there is still 170

room for improvement. 171

2.2 Change Captioning 172

In recent years, the task of image change descrip- 173

tion has attracted wide attention, and researchers 174

have proposed a series of innovative methods to 175

solve this task. (Jhamtani and Berg-Kirkpatrick, 176

2018) made a pioneering contribution to this field, 177

proposing for the first time the task of describing 178

the difference between similar image pairs. Sub- 179

sequently, (Park et al., 2019) introduced the Dou- 180

ble Dynamic Attention Model (DUDA), which dis- 181

tinguishes the interference factors and semantic 182

changes. In order to solve the viewpoint change 183

problem, (Shi et al., 2020) proposed viewpoint 184

adaptive matching coding. Different from other 185
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methods, (Hosseinzadeh and Wang, 2021) explored186

a new image change description training scheme.187

(Qiu et al., 2021) introduced the multi-change cap-188

tion transformer (MCCFormers). (Tan et al., 2019)189

elaborated on the editing transformation between190

two images, providing a theoretical basis for sub-191

sequent research. Further, (Ariyo et al., 2019b)192

proposed a fully convolutional CaptionNet (FCC).193

Through the multi-modal end-to-end connected194

difference caption model (SDCM), (Ariyo et al.,195

2019a) captured, aligned, and calculated the dif-196

ferences between the two image features. (Chang197

and Ghamisi, 2023) proposed an attention change198

caption network, focusing on generating accurate199

captions. In order to improve the model ’s ability200

to perceive various changes, a neighborhood con-201

trast transformer is designed in (Tu et al., 2023a).202

In addition, (Yue et al., 2023) proposed the inter-203

nal and internal representation interaction network204

(I3N), which focuses on learning fine differential205

representation. (Kim et al., 2021) proposed a view-206

independent changing subtitle network with cyclic207

consistency (VACC). Facing the challenges, (Yao208

et al., 2022) proposed a new modeling framework209

to learn stronger visual and linguistic associations.210

Then, (Liu et al., 2023a) introduced a progressive211

scale-aware network (PSNet) to solve the weak-212

nesses in multi-scale information extraction and213

utilization. Finally, (Huang et al., 2022) proposed214

an instance-level fine-grained differential caption-215

ing (IFDC) model, which focuses on the rich ex-216

plicit features of the object. However, although217

the above research has made significant progress,218

there are still some shortcomings. First of all, the219

current method mainly focuses on the description220

of object-level differences, while fine-grained se-221

mantic changes still need to be further explored.222

Secondly, there is still a lack of comprehensive223

solutions for subtle semantic changes in specific224

scenarios and complex situations. In addition, the225

current research pays less attention to the rich ex-226

plicit features of objects in the context, which may227

pose some challenges in accurately locating chang-228

ing objects.229

3 ESAN Model230

The description task for remote sensing image231

change aims to generate semantic descriptions232

of remote sensing image changes through auto-233

mated methods. Formally, given a pair of im-234

ages (I1, I2), the model generates a caption de-235

scribing what has been changed between I1 and 236

I2: f (I1, I2; θ) → Ĉ, where θ denotes the model 237

parameters of the change captioning network and 238

Ĉ represents the generated caption. 239

As shown in Figure 1, the architecture of our 240

method consists of three parts : (1) GESR module 241

quickly captures the global semantic information of 242

the image from two different directions; (2) CSFE 243

module is responsible for the information flow in- 244

teraction between different features, and learns 245

the contrast information between them, so as to 246

pay attention to the semantic information of actual 247

changes; (3) The multi-stage adaptive Transformer 248

decoder translates the learned change features into 249

natural language sentences. 250

3.1 Global Efficient Semantic Representation 251

Given a dual-temporal image pair (I1, I2), we first 252

use the pre-trained ResNet101 (He et al., 2016) 253

model to extract image features and represent them 254

as X1, X2, respectively, where, the feature map 255

Xi ∈ RC×H×W , C, H , W represent the number, 256

height, and width of channels, respectively. 257

However, the features extracted by the ResNet 258

network are relatively sparse and independent. It is 259

difficult to distinguish fine-grained changes from a 260

large number of unrelated object regions by using 261

these features alone. In fact, there is a semantic 262

relationship between these original object features 263

(Wu et al., 2019; Huang et al., 2020; Yin et al., 264

2020). In image understanding, capturing the se- 265

mantic relationship between objects is crucial for a 266

comprehensive understanding of the image. 267

Global context information can provide the rela- 268

tionship between objects in the image, scene struc- 269

ture and deeper semantic understanding (Huang 270

et al., 2019). Remote sensing images involve com- 271

plex scenes. Therefore, global context information 272

is of great significance for the task of remote sens- 273

ing image caption generation, which is helpful to 274

improve the comprehensive performance of image 275

understanding. For remote sensing images, high- 276

resolution feature maps are often generated, while 277

non-local neural networks need to generate huge 278

attention maps to measure the relationship between 279

each pixel pair, resulting in high computational 280

complexity and occupying a large amount of CPU 281

memory. 282

We first implicitly model the global semantic 283

relationship in each image. Then, we use a self- 284

attention block to dynamically learn the relation- 285

ship between different positions according to the 286
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Figure 1: Overall architecture of our ESAN model.

semantic information of each position in the input287

sequence. For remote sensing images with a wide288

range of coverage, we believe that it is very impor-289

tant to capture the effective semantic information290

of each position in the sequence.291

We first use two 1×1 convolution layers on the292

feature map Xi ∈ RC×H×W to generate two fea-293

ture maps Q and K, where {Q,K} ∈ RC′×H×W ,294

C ′ is the number of channels after dimensionality295

reduction, and the value is less than C. At each po-296

sition p in the Q-space dimension, the vector Qp ∈297

RC′
can be obtained. At the same time, by extract-298

ing features from K, the feature vector set Ωp ∈299

R(H+W−1)×C′
is obtained, which is located in the300

same row or column as the position p. Then the at-301

tention map A ∈ R(H+W−1)×(H×W ) is calculated302

by Equation 1, where i = [1, . . . ,H +W − 1].303

Ai,p = softmax(QpΩ
T
i,p) (1)304

At the same time, another 1 × 1 convolution layer305

is used to generate the feature V ∈ RC×H×W306

on Xi ∈ RC×H×W . On each position p in the307

V space dimension, the vector Vp ∈ RC and a308

set ϕp ∈ R(H+W−1)×C are obtained,ϕp is the set309

of eigenvectors in V that are in the same row or310

column as the position p. Finally, we can obtain311

the global context information as Equation 2:312

X ′
p =

H+W−1∑
i=0

Ai,pϕi,p +Xp (2)313

Where, Xp is the eigenvector of position p in X ′ ∈314

RC×H×W . After that, we transform the existing315

feature map X
′
i ∈ RC×H×W into X

′
i ∈ RC×N ,316

where N = H×W , i ∈ (1, 2). Then, Q, K, V are317

embedded into the same-dimensional embedding.318

The process can be denoted as Equation 3:319

X
′′
i = Softmax

(X
′
iW

Q
i )(X

′
iW

K
i )

T

√
dk

 (X
′
iW

V
i )

(3)320

Where WQ
i , WK

i , W V
i are learnable parameter 321

matrices, i ∈ (1, 2). dk is the dimension of the 322

vector. Softmax is the activation function. 323

After adding the global context information to 324

the local feature X, the feature has a wide context 325

view, which can better capture the global seman- 326

tic information of the image. When the model 327

can deeply grasp the comprehensive information 328

in the image, it can better distinguish between se- 329

mantic changes and irrelevant changes. That is 330

to say, the results of the global efficient semantic 331

representation module are used as the input of the 332

cross-semantic feature enhancement stage, which 333

effectively constructs the relationship between im- 334

age sequence features, which is the basis for obtain- 335

ing reliable difference representation in the cross- 336

semantic feature enhancement stage. 337

3.2 Cross-Semantic Feature Enhancement 338

In order to enable the model to effectively locate se- 339

mantic changes without being affected by irrelevant 340

changes, we designed a cross-semantic feature en- 341

hancement module to effectively reveal the change 342

features. Through feature interaction, the comple- 343

mentary relationship between different time-phase 344

features is retrieved, supplementary information is 345

learned, and the model ’s ability to compare and 346

locate different time-phase features is improved. 347

After GESR module, we get X
′′
1 and X

′′
2 as the 348

input of CSFE module, and then we capture the 349

semantic difference X
′′
diff in object features and re- 350

lationships through X
′′
2 −X

′′
1 . Due to the existence 351

of interference information, the difference feature 352

X
′′
diff contains irrelevant information. Through 353

the semantic information flow interaction between 354

X
′′
diff and X

′′
1 , and between X

′′
diff and X

′′
2 , we 355

can distinguish semantic changes from unrelated 356

changes (such as seasonal changes). 357

Firstly, the tokens of Ti are projected to one sep- 358

arate matrix Qi ∈ RHW×C to compute a set of 359
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queries. And then, the tokens of Tdiff are pro-360

jected to the other two separate matrices Kdiff ,361

Vdiff ∈ RHW×C to compute a set of keys and362

values (Equation 4).363

Qi = TiW
Q,Kdiff = TdiffW

K , Vdiff = TdiffW
V

(4)364

Where WQ, WK , W V are learnable parameter365

matrices and i ∈ (1, 2).366

Secondly, the matrix is built via dot-product op-367

eration, followed by a softmax function normalizes368

the scores. After that, the feature vectors X̃1 and369

X̃2 are obtained by multiplying the matrix with370

Vdiff (Equation 5), which refines the features X
′′
1371

and X
′′
2 by leveraging the similarity across seman-372

tics. That is to say, we can establish the character-373

istic relationship between the corresponding posi-374

tions between X
′′
1 and X

′′
diff , and between X

′′
2 and375

X
′′
diff . Where dk is the dimension of the vector376

and i ∈ (1, 2).377

X̃i = softmax

(
Qi Kdiff

T

√
dk

)
Vdiff , (5)378

Thirdly, the vectors X̃1 and X̃2 are added to the379

original input sequence through a residual connec-380

tion (Dosovitskiy et al., 2021) (Equation 6), where381

WO denotes the output weight matrix before FFN382

layer and i ∈ (1, 2).383

X̃ ′
i = ∂1X̃iW

O + ∂2X
′′
i (6)384

Finally, the feed-forward network (FFN) as that385

in the standard Transformer is applied to further386

improve the robustness and accuracy of the model387

and output the enhanced features X̂1 and X̂2 (Equa-388

tion 7). Where ∂1, ∂2, ∂3, ∂4 are the learnable389

parameters.390

X̂i = ∂3X̃ ′
i + ∂4FFN

(
X̃ ′

i

)
(7)391

3.3 Description Generation392

In the image description task, the Transformer393

decoder (Vaswani et al., 2017) has multiple ad-394

vantages over the traditional LSTM decoder. For395

example, Transformer captures long-distance de-396

pendencies through parallel computing and self-397

attention mechanisms, and provides spatial infor-398

mation through position coding. Therefore, we use399

the decoder shown in Fig 2 to generate the change400

description.401

Specifically, each decoder consists of N stacked402

Transformer decoding blocks. Each block consists403

Word Embedding
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Normalization

Encoder-Decoder Cross-Attention

Normalization

Feed Forward

Normalization

Linear & Softmax

Output

Encoder

Positional 
Encoding

β1

β2

β3

wi

γ1

γ2

γ3

Vi

×N

Figure 2: Visualization of the description generator.

of a masked multi-head attention layer, an Encoder- 404

Decoder cross-attention layer and a feed forward 405

layer. Now we represent the visual sequence ob- 406

tained from the visual encoder as ṼI . We cannot di- 407

rectly import descriptive sentences into the model, 408

so each word in the sentence is represented as a one- 409

hot vector wi. The description decoder takes wi as 410

input, and the masked multi-head attention mech- 411

anism embeds the word through Equation 8. And 412

the embedding feature Ê [W ] is calculated. Then, 413

through Encoder-Decoder cross-attention, Ê [W ] 414

is used to query the most relevant hidden layer fea- 415

ture Ĥ from the visual feature ṼI . After that, Ĥ 416

learns the enhanced representation H̃ through the 417

forward propagation network. 418

E [W ] = {E [w1] , . . . ;E [wm]} (8) 419

We apply learnable coefficients on each branch 420

of the residual connection, such as β1 , β2 , β3 , γ1, 421

γ2, γ3, so that each layer can be adaptively adjusted 422

according to the characteristics of the upper and 423

lower layers, thereby increasing the adaptability 424

of the model. By adjusting these parameters, the 425

model can better control the information interaction 426

between different levels and realize the dynamic 427

adjustment of different levels of features. 428

After stacking N Transformer decoding blocks, 429

the hidden layer state output of the last block hN 430
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E.D D.D BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr-D
1 1 84.36 77.06 69.73 63.56 38.82 73.86 131.07
2 1 86.03 78.14 70.87 64.86 40.10 74.82 135.60
3 1 84.99 76.42 68.62 62.06 39.24 74.76 135.57
4 1 82.50 73.45 65.96 59.92 38.20 73.10 130.17
1 2 84.87 76.10 68.86 62.93 39.58 74.19 134.66
2 2 84.90 76.59 69.25 63.15 39.65 74.40 134.94
3 2 85.21 76.38 69.17 63.34 39.70 74.41 135.07
4 2 85.12 77.09 69.80 63.75 39.00 73.83 132.59
1 3 85.80 77.32 69.80 63.32 39.57 74.42 134.89
2 3 85.78 77.06 69.42 63.23 40.04 74.84 136.47
3 3 83.54 74.62 67.41 61.70 39.14 73.77 132.45
4 3 84.98 76.77 69.08 62.88 39.17 73.98 132.62
1 4 84.71 76.24 69.02 63.25 39.34 74.10 133.66
2 4 85.34 77.30 70.08 64.01 39.91 74.95 135.66
3 4 85.21 77.04 69.78 63.69 39.33 73.90 133.72
4 4 85.00 76.58 68.91 62.44 39.04 73.18 130.56

Table 1: Performance of ESAN model at different depths on the LEVIR-CC dataset.

is used to predict the probability of each output431

word, which is expressed as Equation 9. Where432

W T is the weight matrix, bi is the bias term, hNi433

is the hidden layer state vector representation (the434

attention output of the i-th position), and pi is the435

probability of the i-th word.436

pi = softmax
(
W ThNi + bi

)
(9)437

4 Experiments and Results438

4.1 Datasets439

We use LEVIR-CC and Dubai-CC datasets. The440

former provided by Liu et al. (Liu et al., 2022),441

which focuses on multiple changing scenes and ob-442

jects. And the latter dataset, introduced by Hoxha443

et al. (Hoxha et al., 2022), offers a comprehen-444

sive description of urban transformation within the445

Dubai region. See Appendix A.1.1 for a detailed446

introduction.447

4.2 Evaluation Metrics448

Following the most advanced change description449

methods (Ji et al., 2023; Yu et al., 2022; Qiu et al.,450

2020; Tu et al., 2021a; Ak et al., 2023), we use451

four common indicators to evaluate the accuracy of452

all methods, namely BLEU-N (where N = 1,2,3,4)453

(Papineni et al., 2002), ROUGE-L (Lin, 2004), ME-454

TEOR (Banerjee and Lavie, 2005) and CIDEr-D455

(Vedantam et al., 2015). By comparing the consis-456

tency between the model output and the real ground457

B
L

E
U

-4

M
E

T
E

O
R

R
O

U
G

E
-L

C
ID

E
r-

D

B
L

E
U

-4

M
E

T
E

O
R

R
O

U
G

E
-L

C
ID

E
r-

D

B
L

E
U

-4

M
E

T
E

O
R

R
O

U
G

E
-L

C
ID

E
r-

D

change                         no change                         total

-5

0

5

10

15

20

25

30

35

In
c
re

a
s
e
d
 (

%
)

GESR

CSFE

ESAN

Figure 3: Ablation studies on LEVIR-CC.

reference data, these indicators provide a compre- 458

hensive assessment of the effect of the change de- 459

scription model. The higher the measurement score, 460

the higher the similarity between the generated sen- 461

tence and the reference sentence, that is, the higher 462

the accuracy of the change description. 463

4.3 Experimental Details 464

The method based on the PyTorch framework is 465

trained and evaluated on the NVIDIA A100 or 466

V100. We use ResNet-101 (He et al., 2016) pre- 467

trained to extract image features. The dimension 468

of the image features and the hidden state used in 469

DG module is set to 1024. During training, we use 470

the Adam optimizer (Kingma and Ba, 2015) with 471

the learning rate of 0.0001. At the same time, the 472
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Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr-D
LEVIR-CC
DUDA (2019) 81.44 72.22 64.24 57.79 37.15 71.04 124.32
MCCFormer-S (2021) 79.90 70.26 62.68 56.68 36.17 69.46 120.39
MCCFormer-D (2021) 80.42 70.87 62.86 56.38 37.29 70.32 124.44
PSNet (2023a) 83.86 75.13 67.89 62.11 38.80 73.60 132.62
Chg2Cap (2023) 86.14 78.08 70.66 64.39 40.03 75.12 136.61
RSICCformer (2022) 84.72 76.27 68.87 62.77 39.61 74.12 134.12
Prompt-CC (2023b) 83.66 75.73 69.10 63.54 38.82 73.72 136.44
ESAN(Ours) 86.03 78.14 70.87 64.86 40.10 70.82 135.60
Average ↑ 3.88% ↑ 5.63% ↑ 6.61% ↑ 7.47% ↑ 4.92% — ↑ 4.66%
Dubai-CC
DUDA (2019) 58.82 43.59 33.63 25.39 22.05 48.34 62.78
MCCFormer-S (2021) 52.97 37.02 27.62 22.57 18.64 43.29 53.81
MCCFormer-D (2021) 64.65 50.45 39.36 29.48 25.09 51.27 66.51
RSICCformer (2022) 67.92 53.61 41.37 31.28 25.41 51.96 66.54
Chg2Cap (2023) 72.04 60.18 50.84 41.70 28.92 58.66 92.49
ESAN(Ours) 73.56 61.62 52.44 42.89 30.02 60.72 99.84
Average ↑ 17.62% ↑ 29.46% ↑ 41.79% ↑ 48.88% ↑ 27.76% ↑ 20.93% ↑50.54%

Table 2: Comparison with the state of the art.

training batch size is set to 32. After each epoch,473

the model is evaluated on the validation set, and474

the best performance model is selected according475

to the highest BLEU-4 score to evaluate the test476

set. We evaluate the performance of the model on477

the test set from the following three aspects: 1)478

the whole data set; 2) the data set only containing479

the image pairs with changes; 3) the data set only480

containing the image pairs without changes. For481

the data set only containing the image pairs with482

changes, the recognition accuracy and the sensitiv-483

ity of the model to the changed area are reflected.484

For the data set only containing the image pairs485

without changes, there are some changes only in486

the interference factors. It is used to verify whether487

the model can correctly identify the interference488

factors in the image and provide meaningful de-489

scription.490

4.4 Ablation Studies491

In order to clarify the contribution of each module492

of the network, we verify the overall performance493

of each block of the method by simultaneously test-494

ing the model performance under the changed im-495

age pairs and the unchanged image pairs. Baseline496

is without any module. The experimental results on497

LEVIR-CC are shown in Fig 3. In the overall data498

set performance, using GESR, the model has im-499

proved in all indicators, such as BLEU-4 increased500

<I1> <I2> <Eimg>

Reference: 

a row of houses is built by the road.

Prediction:

some houses are built along the road.

Reference: 

a villa appears at the bottom left corner of the scene.

Prediction: 

a villa appears in the lower-left corner of the scene.

Reference:

many trees are removed and some houses are 

constructed beside the road.

Prediction: 

a road with many houses around is built to replace the 

forest.

Figure 4: Case studies of our model on the LEVIR-CC
dataset.

by 6.24% and CIDEr-D increased by 5.71%. Com- 501

pared with the base model, after adding CSFE, 502

BLEU-4, METEOR, ROUGE-L and CIDEr-D in- 503

creased by 18.2%, 10.89%, 10.16% and 14.94%, 504

respectively. Using GESR, CSFE, and the combi- 505

nation of the two are applicable. The results show 506

that it is very effective to rely on GESR to obtain 507

the global semantic information and use CSFE to 508

capture the difference representation. The results of 509

the same settings on Dubai-CC dataset are shown 510

in Appendix A.1.2 511

4.5 Parameter Analysis 512

In order to evaluate the performance of the model at 513

different depths, a series of experiments in Table 1 514

were performed. E.D represents the depth of the en- 515
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coder, and D.D represents the depth of the decoder.516

When E.D = 2 and D.D = 1, the model exhibits517

outstanding performance. See appendix A.1.3 for518

other similar experiments.519

4.6 Performance Comparison520

In order to evaluate the relative advantages and521

disadvantages of our method in the remote sensing522

image change description task, the performance523

with other advanced change description methods is524

compared and the results are shown in Table 2.525

The results show that ESAN performs better than526

other advanced methods in key indicators such as527

BLEU-1, BLEU-2, BLEU-3, BLEU-4 and ME-528

TEOR, with an average increase of 3.88%, 5.63%,529

6.61%, 7.47% and 4.92%, respectively on LEVIR-530

CC. Compared with Prompt-CC advanced method,531

the model shows superior performance, and the in-532

dicators of BLEU-1, BLEU-2, BLEU-3 and BLEU-533

4 are improved 2.83%, 3.18%, 2.56% and 2.08%,534

respectively. And the key indicators of BLEU-2,535

BLEU-3, BLEU-4 and METEOR are higher than536

the recently excellent Chg2Cap, and the model537

shows competitive results. In general, ESAN per-538

forms better than other methods. The results on539

Dubai-CC dataset show that ESAN has achieved540

the best results on all indicators, with an aver-541

age increase of 17.62%, 29.46%, 41.79%, 48.88%,542

27.76%, 20.93% and 50.54%, respectively. BLEU-543

4 increased to 42.89, METEOR increased to 30.02,544

ROUGE-L increased to 60.72, and CIDEr-D in-545

creased to 99.84. Compared with the recently out-546

standing Chg2Cap, EASN is 2.85%, 3.80%, 3.51%547

and 7.95% higher on BLEU-4, METEOR, ROUGE-548

L and CIDEr-D, respectively. It fully demonstrates549

that our network can use the semantic relationship550

to generate a description closer to the reference551

sentence.552

4.7 Qualitative evaluation553

In order to evaluate the quality of the change de-554

scriptions generated by our model, we visualize555

the image embedding and the predicted change de-556

scription generated by the description decoder, as557

shown in Fig 4 and Fig 5, where I1 and I2 represent558

the images captured at time 1 and time 2, respec-559

tively. Eimg is the image embedding and Ediff is560

the difference image embedding extracted by the561

semantic relation embedding encoder.562

As shown in Fig 4 and Fig 5, we can see that the563

difference captions generated by ESAN can accu-564

rately locate the change area and highlight it. At the565

Figure 5: Case studies of our model on the Dubai-CC
dataset.

same time, in the case of image pairs invariant, the 566

network focuses on identifying invariant objects. 567

Taking the last pair of images in Fig 5 as an exam- 568

ple, we can see that the scene interference is very 569

large. Compared with the first standard descrip- 570

tion, our model not only successfully describes the 571

changing target, namely "residence", but also de- 572

scribes a more advanced scene concept, namely 573

"desert". This is because ESAN uses the global 574

semantic information to more fully understand and 575

describe objects in the entire image and their rela- 576

tionships in the scene. It demonstrates the ability 577

of our model to accurately locate and describe the 578

differences from noisy real world environments. 579

5 Conclusion 580

In this paper, we propose an efficient semantic at- 581

tention network (ESAN). The network has signifi- 582

cant advantages in fully understanding the internal 583

semantic information of the image by efficiently 584

obtaining the semantic relationship between image 585

features. In addition, the network can effectively 586

identify and ignore interference factors. Therefore, 587

it is good at accurately representing image changes 588

and generating descriptions with rich semantics. 589

Limitations 590

We propose a new remote sensing image change 591

description method, ESAN. Although it has been 592

verified the performance on the general datasets, 593

through the observation of relevant visualization 594

cases and the analysis of the generated change de- 595

scription statements, it is found that the change de- 596

scription statements are not perfect in some logical 597

expressions and still need to be further optimized. 598
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In addition, with the increase of the sample size of599

the experimental data set, how to further optimize600

the model for large-scale remote sensing image601

data is also the direction of our future research.602
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A Appendix843

A.1 Additional Experimental Setup844

A.1.1 Datasets845

LEVIR-CC is composed of 10,077 small bi-846

temporal tiles with a size of 256 × 256 pixels, and847

each tile is annotated as containing changes or not848

containing changes. Among them, there are 5038849

image pairs with changes and 5039 image pairs850

without changes. Each image pair is composed of851

five different sentence descriptions, and the length852

of most sentences is between 5 and 15 words. In853

the experiment, the data set is divided into training854

set, validation set and test set, including 6815, 1333855

and 1929 image pairs respectively. The original im-856

ages in Dubai-CC dataset have been trimmed into857

500 tiles of sizes 50 × 50, with five change descrip-858

tions annotated for each small bitemporal tile. In859

the course of the experiments, the dataset has been860

divided into three parts: training, validation, and861

testing sets, comprising 300, 50, and 150 bitempo-862

ral tiles, respectively. The images were enlarged863

to dimensions of 256 × 256 pixels prior to being864

processed by the network.865

A.1.2 Ablation Experiment 866
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Figure 6: Ablation studies on Dubai-CC.

A.1.3 Model Parameter Comparison 867

Experiment 868
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E.D D.D BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr-D
1 1 72.22 59.9 51.24 42.99 30.57 62.35 102.09
2 1 73.97 62.10 53.26 45.37 30.83 60.04 97.59
3 1 66.44 53.28 43.72 36.46 25.67 54.23 80.49
4 1 71.51 57.90 48.85 41.05 29.05 57.59 88.39
1 2 60.34 50.90 43.54 36.86 24.41 51.09 76.62
2 2 63.32 50.11 42.24 37.80 23.63 53.24 81.45
3 2 70.64 59.03 49.55 41.32 29.14 58.08 91.22
4 2 65.80 54.45 46.24 40.11 26.81 55.63 86.65
1 3 69.57 57.66 47.90 39.69 28.38 56.17 79.96
2 3 59.73 51.09 44.96 39.68 25.19 52.33 89.56
3 3 64.33 52.45 43.59 36.21 23.82 53.47 78.71
4 3 64.03 50.85 42.27 33.91 26.62 50.92 68.48
1 4 69.80 54.35 44.04 35.55 26.30 53.65 70.66
2 4 62.86 54.08 47.37 39.47 26.28 53.98 85.17
3 4 60.53 45.74 37.70 33.40 22.30 50.59 74.18
4 4 64.12 52.77 44.79 35.73 24.81 55.16 74.29

Table 3: Performance of ESAN model at different depths on the Dubai-CC dataset.
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