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Abstract

With the continuous progress of remote sensing
technology, an increasing number of remote
sensing images containing rich geographical
and environmental information is obtained. Un-
like natural images, remote sensing images usu-
ally cover a large area and have complex spatial
distribution, making it a challenge to accurately
extract and describe changes from images. In
order to effectively mine and utilize the rich
semantic information contained in the image
to guide the decoder to generate high-quality
change descriptions, we propose an efficient
semantic attention network (ESAN). Specifi-
cally, we first perform global efficient semantic
representation (GESR) on the obtained remote
sensing feature map to promote the understand-
ing of complex scenes in remote sensing im-
ages. Then we further propose a cross-semantic
feature enhancement module (CSFE) to effec-
tively distinguish semantic changes from irrel-
evant changes. Finally, we input the obtained
image features into the adaptive multi-layer
Transformer decoder to guide the generation
of change description. Extensive experiments
on two representative remote sensing datasets,
Dubai-CC and LEVIR-CC, demonstrate the su-
periority of the proposed model over many ad-
vanced technologies.

1 Introduction

With the rapid development of remote sensing tech-
nology, a large amount of high-resolution remote
sensing image data has been acquired. Remote
sensing images are not only used for scientific re-
search, but also widely used in damage assessment
(Xu et al., 2019), urban planning (Chen and Shi,
2020), environmental monitoring (de Bem et al.,
2020) and other fields. Accurate and semantically
rich descriptions of these image changes not only
help to improve the image interpretation capabil-
ity, but also make remote sensing images easier to
be understood by non-specialized users. In addi-
tion, the accurate change description also provides

a powerful tool for decision-making, planning man-
agement and disaster response.

The remote sensing image change description
task aims to describe the change content in a re-
mote sensing image pair in natural language. It
involves two remote sensing images, usually cor-
responding to different points in time in the same
area. The model needs to understand the differ-
ences between these two images, including changes
in features, new or disappeared elements, etc., and
generate text descriptions that can clearly express
these changes. Change descriptions have recently
gained attention in geoscience and remote sensing
due to their ability to extract high-level semantic
information about land cover changes.

In recent years, several methods have been pro-
posed to improve the performance of image change
description models.

Early pioneer work (Jhamtani and Berg-
Kirkpatrick, 2018) proposed a task to describe the
difference between similar image pairs through
object-level difference description. Subsequent re-
search focused on the relationship between seman-
tic changes and interference factors, and proposed a
series of models, including dual dynamic attention
model (DUDA) (Park et al., 2019), viewpoint adap-
tive matching encoding (Shi et al., 2020), multi-
change caption transformer (MCCFormers) (Qiu
et al., 2021), etc., to cope with the challenges in
the actual scene. At the same time, some meth-
ods emphasize the importance of tasks, such as
new training schemes (Hosseinzadeh and Wang,
2021) and multimodal end-to-end siamesed dif-
ference captioning model (SDCM) (Ariyo et al.,
2019a). Recent work has further explored the
relationship-aware attention mechanism (Tu et al.,
2023b, 2021b), distance-sensitive self-attention
(DSA) (Jietal., 2023), cyclic consistency (VACC)
(Kim et al., 2021), etc., to improve the model ’s
perception of complex changes. Methods such as
the new modeling framework (Yao et al., 2022) and



the progressive scale-aware network (PSNet) (Liu
et al., 2023a) aim to optimize the overall perfor-
mance of the model. The studies work together to
overcome the challenges of semantic understand-
ing, viewpoint change and multi-scale information
utilization, and provide rich exploration and innova-
tion for the task of remote sensing image change de-
scription. However, although significant progress
has been made in the task of image change descrip-
tion, there are still some deficiencies in semantics.

At present, the change description model for re-
mote sensing images lacks fine-grained semantic
understanding, which often needs to rely on global
context information to obtain a more accurate inter-
pretation. For example, a single pixel change may
only have a clear meaning in the global context. In
order to provide scene background for fine-grained
changes and make the model better understand the
semantics of local changes, we proposes an Effi-
cient Semantic Attention Network (ESAN), which
uses different semantic relationship modules and
adaptive decoder based on Transformer to generate
remote sensing change descriptions. Through a
large number of experiments, we prove that ESAN
can produce a more accurate and realistic descrip-
tion of the changes between remote sensing image
pairs, and achieve the best performance compared
with the existing change description methods.

The contributions of this paper are summarized
as follows:

(1) GESR module is designed to enhance the
feature extraction of global semantics, which oper-
ates at the perceptual level, deeply mines internal
feature associations, grasps global association in-
formation, and provides scenarios for fine-grained
semantic understanding.

(2) CSFE module is designed to facilitate the ac-
curate identification and description of fine-grained
changes. It carefully checks and compares the in-
formation between the image ’s own features and
the common difference features, especially pays at-
tention to the difference representation, and obtains
the actual semantic changes based on the global
features.

(3) In order to improve the adaptive ability of the
model, a multi-stage adaptive Transformer model
is formed as the decoder to translate the obtained
change features into natural language sentences.
Extensive experiments show that ESAN outper-
forms other state-of-the-art methods on the Dubai-
CC and LEVIR-CC datasets.

2 Related Work

2.1 Image Captioning

Describing image content in natural language has
been an active area of artificial intelligence re-
search. A variety of image description methods
dedicated to improving the state of the art of image
description have been proposed. In order to fully
exploit the short-term spatial semantic relations,
(Li et al., 2022) introduced the long-short-term re-
lational converter (LSRT). On the other hand, the
paper (Tu et al., 2022) proposed an internal and
relational embedding transformer (I 2Transformer)
to effectively understand caption semantics and the
relationship between them. (Yu et al., 2022) ap-
plied the dual attention mechanism to the pyramid
feature map, fully considering the context infor-
mation. Although the self-attention (SA) network
has achieved great success in image captioning, the
existing SA network has the problems of distance
insensitivity and low-rank bottleneck. To this end,
(Jiet al., 2023) introduced distance-sensitive self-
attention (DSA) and multi-branch self-attention
(MSA). The traditional attention mechanism usu-
ally only considers the one-way flow from vision
to linguistics, resulting in that the visual features
of attention are usually irrelevant to the state of
the target word. (Tu et al., 2023b) improved the
traditional attention mechanism and proposed a
relationship-aware attention mechanism, namely,
visual-to-visual homogeneity graph (HMG) and
linguistic-to-visual heterogeneity graph (HTG), re-
spectively. These studies have made in-depth ex-
plorations of image caption generation tasks at dif-
ferent levels. Although some achievements have
been made in semantic understanding, there is still
room for improvement.

2.2 Change Captioning

In recent years, the task of image change descrip-
tion has attracted wide attention, and researchers
have proposed a series of innovative methods to
solve this task. (Jhamtani and Berg-Kirkpatrick,
2018) made a pioneering contribution to this field,
proposing for the first time the task of describing
the difference between similar image pairs. Sub-
sequently, (Park et al., 2019) introduced the Dou-
ble Dynamic Attention Model (DUDA), which dis-
tinguishes the interference factors and semantic
changes. In order to solve the viewpoint change
problem, (Shi et al., 2020) proposed viewpoint
adaptive matching coding. Different from other



methods, (Hosseinzadeh and Wang, 2021) explored
a new image change description training scheme.
(Qiu et al., 2021) introduced the multi-change cap-
tion transformer (MCCFormers). (Tan et al., 2019)
elaborated on the editing transformation between
two images, providing a theoretical basis for sub-
sequent research. Further, (Ariyo et al., 2019b)
proposed a fully convolutional CaptionNet (FCC).
Through the multi-modal end-to-end connected
difference caption model (SDCM), (Ariyo et al.,
2019a) captured, aligned, and calculated the dif-
ferences between the two image features. (Chang
and Ghamisi, 2023) proposed an attention change
caption network, focusing on generating accurate
captions. In order to improve the model ’s ability
to perceive various changes, a neighborhood con-
trast transformer is designed in (Tu et al., 2023a).
In addition, (Yue et al., 2023) proposed the inter-
nal and internal representation interaction network
(I3N), which focuses on learning fine differential
representation. (Kim et al., 2021) proposed a view-
independent changing subtitle network with cyclic
consistency (VACC). Facing the challenges, (Yao
et al., 2022) proposed a new modeling framework
to learn stronger visual and linguistic associations.
Then, (Liu et al., 2023a) introduced a progressive
scale-aware network (PSNet) to solve the weak-
nesses in multi-scale information extraction and
utilization. Finally, (Huang et al., 2022) proposed
an instance-level fine-grained differential caption-
ing (IFDC) model, which focuses on the rich ex-
plicit features of the object. However, although
the above research has made significant progress,
there are still some shortcomings. First of all, the
current method mainly focuses on the description
of object-level differences, while fine-grained se-
mantic changes still need to be further explored.
Secondly, there is still a lack of comprehensive
solutions for subtle semantic changes in specific
scenarios and complex situations. In addition, the
current research pays less attention to the rich ex-
plicit features of objects in the context, which may
pose some challenges in accurately locating chang-
ing objects.

3 ESAN Model

The description task for remote sensing image
change aims to generate semantic descriptions
of remote sensing image changes through auto-
mated methods. Formally, given a pair of im-
ages (Iy,I2), the model generates a caption de-

scribing what has been changed between I; and
Iy: f(I,12;0) — C, where 0 denotes the model
parameters of the change captioning network and
C represents the generated caption.

As shown in Figure 1, the architecture of our
method consists of three parts : (1) GESR module
quickly captures the global semantic information of
the image from two different directions; (2) CSFE
module is responsible for the information flow in-
teraction between different features, and learns
the contrast information between them, so as to
pay attention to the semantic information of actual
changes; (3) The multi-stage adaptive Transformer
decoder translates the learned change features into
natural language sentences.

3.1 Global Efficient Semantic Representation

Given a dual-temporal image pair (1, I2), we first
use the pre-trained ResNet101 (He et al., 2016)
model to extract image features and represent them
as X1, Xo, respectively, where, the feature map
X, € REXHIXW o g W represent the number,
height, and width of channels, respectively.

However, the features extracted by the ResNet
network are relatively sparse and independent. It is
difficult to distinguish fine-grained changes from a
large number of unrelated object regions by using
these features alone. In fact, there is a semantic
relationship between these original object features
(Wu et al., 2019; Huang et al., 2020; Yin et al.,
2020). In image understanding, capturing the se-
mantic relationship between objects is crucial for a
comprehensive understanding of the image.

Global context information can provide the rela-
tionship between objects in the image, scene struc-
ture and deeper semantic understanding (Huang
et al., 2019). Remote sensing images involve com-
plex scenes. Therefore, global context information
is of great significance for the task of remote sens-
ing image caption generation, which is helpful to
improve the comprehensive performance of image
understanding. For remote sensing images, high-
resolution feature maps are often generated, while
non-local neural networks need to generate huge
attention maps to measure the relationship between
each pixel pair, resulting in high computational
complexity and occupying a large amount of CPU
memory.

We first implicitly model the global semantic
relationship in each image. Then, we use a self-
attention block to dynamically learn the relation-
ship between different positions according to the
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Figure 1: Overall architecture of our ESAN model.

semantic information of each position in the input
sequence. For remote sensing images with a wide
range of coverage, we believe that it is very impor-
tant to capture the effective semantic information
of each position in the sequence.

We first use two 1x1 convolution layers on the
feature map X; € REO*H*W to generate two fea-
ture maps @ and K, where {Q, K} € RC'*HxW
('’ is the number of channels after dimensionality
reduction, and the value is less than C'. At each po-
sition p in the ()-space dimension, the vector @, €
R can be obtained. At the same time, by extract-
ing features from K, the feature vector set {2p €
RUHEAFW-1)xC" 4o obtained, which is located in the
same row or column as the position p. Then the at-
tention map A € RUTW-Dx(HxW) s calculated
by Equation 1, where ¢ = [1,..., H + W —1].

Aip= softmam(QpQZp) (1)

At the same time, another 1 x 1 convolution layer
is used to generate the feature V' € RE*H*W
on X; € RE*H*W  On each position p in the
V space dimension, the vector V, € RC and a
set ¢, € REAW-1XC gpe obtained, ¢, is the set
of eigenvectors in V that are in the same row or
column as the position p. Finally, we can obtain
the global context information as Equation 2:

H+W-1

Z Ai,p¢i,p + Xp
=0

X! = 2)
Where, X, is the eigenvector of position p in X’ €
REXHXW = After that, we transform the existing
feature map X; € RO**W into X; € RO*N,
where N = H xW,i € (1,2). Then, Q, K, V are
embedded into the same-dimensional embedding.
The process can be denoted as Equation 3:

WOXWT
X, = Softmax (X \)/(%ZWZ ) (X;w¥)
3)

Where I/VZ-Q, W, WY are learnable parameter
matrices, ¢ € (1,2). dj is the dimension of the
vector. Softmax is the activation function.

After adding the global context information to
the local feature X, the feature has a wide context
view, which can better capture the global seman-
tic information of the image. When the model
can deeply grasp the comprehensive information
in the image, it can better distinguish between se-
mantic changes and irrelevant changes. That is
to say, the results of the global efficient semantic
representation module are used as the input of the
cross-semantic feature enhancement stage, which
effectively constructs the relationship between im-
age sequence features, which is the basis for obtain-
ing reliable difference representation in the cross-
semantic feature enhancement stage.

3.2 Cross-Semantic Feature Enhancement

In order to enable the model to effectively locate se-
mantic changes without being affected by irrelevant
changes, we designed a cross-semantic feature en-
hancement module to effectively reveal the change
features. Through feature interaction, the comple-
mentary relationship between different time-phase
features is retrieved, supplementary information is
learned, and the model ’s ability to compare and
locate different time-phase features is improved.
After GESR module, we get X f and X, ; as the
input of CSFE module, and then we capture the
semantic difference X c,zli ¢ In object features and re-

lationships through X. é’ -X 1’. Due to the existence
of interference information, the difference feature
Xgi 7 contains irrelevant information. Through
the semantic information flow interaction between
X;iff and Xi/, and between X;Z-ff and Xg, we
can distinguish semantic changes from unrelated
changes (such as seasonal changes).

Firstly, the tokens of T; are projected to one sep-
arate matrix Q; € R to compute a set of



queries. And then, the tokens of Tg; ¢ are pro-
jected to the other two separate matrices Ky ,
Vaigr € RHWXC 4 compute a set of keys and
values (Equation 4).

Qi =TW9 Kairp = Taig W, Vaigp = Taig WV

“)
Where W, WK, WV are learnable parameter
matrices and ¢ € (1, 2).

Secondly, the matrix is built via dot-product op-
eration, followed by a softmax function normalizes
t@ scores. After that, the feature vectors )?1 and
Xy are obtained by multiplying the matrix with
Vairr (Equation 5), which refines the features X f
and X. ; by leveraging the similarity across seman-
tics. That is to say, we can establish the character-
istic relationship between the corresponding posi-
tions between X and X C’l'i 77> and between X 5 and

Xcll/i I Where dj, is the dimension of the vector
andi € (1,2).

— Qi Kdz‘ffT
i = t — if [ 5
X sof max( i Vaifr )

Thirdly, the vectors )71 and )?/2 are added to the
original input sequence through a residual connec-
tion (Dosovitskiy et al., 2021) (Equation 6), where
WO denotes the output weight matrix before FEN
layer and i € (1,2).

X! = 0 X;WO + 8, X! ©)

Finally, the feed-forward network (FFN) as that
in the standard Transformer is applied to further
improve the robustness and accuracy of the model
and output the enhanced features X, and X, (Equa-
tion 7). Where 01, 02, 03, 04 are the learnable
parameters.

X; = 05X + O, FFN ()?') 7

3.3 Description Generation

In the image description task, the Transformer
decoder (Vaswani et al., 2017) has multiple ad-
vantages over the traditional LSTM decoder. For
example, Transformer captures long-distance de-
pendencies through parallel computing and self-
attention mechanisms, and provides spatial infor-
mation through position coding. Therefore, we use
the decoder shown in Fig 2 to generate the change
description.

Specifically, each decoder consists of N stacked
Transformer decoding blocks. Each block consists
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Figure 2: Visualization of the description generator.

of a masked multi-head attention layer, an Encoder-
Decoder cross-attention layer and a feed forward
layer. Now we represent the visual sequence ob-
tained from the visual encoder as f/v] We cannot di-
rectly import descriptive sentences into the model,
so each word in the sentence is represented as a one-
hot vector w;. The description decoder takes w; as
input, and the masked multi-head attention mech-
anism embeds the word through Equation 8. And
the embedding feature  [W] is calculated. Then,
through Encoder-Decoder cross-attention, E [IV]
is used to query the most relevant hidden layer fea-
ture H from the visual feature VI After that, H
learns the enhanced representation H through the
forward propagation network.

EW]={E[w],...;Elwn]} 8

We apply learnable coefficients on each branch
of the residual connection, such as 51 , B2, B3, 71,
v2, 773, 0 that each layer can be adaptively adjusted
according to the characteristics of the upper and
lower layers, thereby increasing the adaptability
of the model. By adjusting these parameters, the
model can better control the information interaction
between different levels and realize the dynamic
adjustment of different levels of features.

After stacking N Transformer decoding blocks,
the hidden layer state output of the last block iV



ED D.D BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr-D
1 1 84.36 77.06 69.73 63.56 38.82 73.86 131.07
2 1 86.03 78.14 70.87 64.86 40.10 74.82 135.60
3 1 84.99 76.42 68.62 62.06 39.24 74.76 135.57
4 1 82.50 73.45 65.96 59.92 38.20 73.10 130.17
1 2 84.87 76.10 68.86 62.93 39.58 74.19 134.66
2 2 84.90 76.59 69.25 63.15 39.65 74.40 134.94
3 2 85.21 76.38 69.17 63.34 39.70 74.41 135.07
4 2 85.12 77.09 69.80 63.75 39.00 73.83 132.59
1 3 85.80 77.32 69.80 63.32 39.57 74.42 134.89
2 3 85.78 77.06 69.42 63.23 40.04 74.84 136.47
3 3 83.54 74.62 67.41 61.70 39.14 73.77 132.45
4 3 84.98 76.77 69.08 62.88 39.17 73.98 132.62
1 4 84.71 76.24 69.02 63.25 39.34 74.10 133.66
2 4 85.34 77.30 70.08 64.01 39.91 74.95 135.66
3 4 85.21 77.04 69.78 63.69 39.33 73.90 133.72
4 4 85.00 76.58 68.91 62.44 39.04 73.18 130.56

Table 1: Performance of ESAN model at different depths on the LEVIR-CC dataset.

is used to predict the probability of each output
word, which is expressed as Equation 9. Where
WT is the weight matrix, b; is the bias term, hfv
is the hidden layer state vector representation (the
attention output of the i-th position), and p; is the
probability of the i-th word.

p; = softmazx (WTth + bi) 9)

4 Experiments and Results

4.1 Datasets

We use LEVIR-CC and Dubai-CC datasets. The
former provided by Liu et al. (Liu et al., 2022),
which focuses on multiple changing scenes and ob-
jects. And the latter dataset, introduced by Hoxha
et al. (Hoxha et al., 2022), offers a comprehen-
sive description of urban transformation within the
Dubai region. See Appendix A.1.1 for a detailed
introduction.

4.2 Evaluation Metrics

Following the most advanced change description
methods (Ji et al., 2023; Yu et al., 2022; Qiu et al.,
2020; Tu et al., 2021a; Ak et al., 2023), we use
four common indicators to evaluate the accuracy of
all methods, namely BLEU-N (where N = 1,2,3.4)
(Papineni et al., 2002), ROUGE-L (Lin, 2004), ME-
TEOR (Banerjee and Lavie, 2005) and CIDEr-D
(Vedantam et al., 2015). By comparing the consis-
tency between the model output and the real ground
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Figure 3: Ablation studies on LEVIR-CC.

reference data, these indicators provide a compre-
hensive assessment of the effect of the change de-
scription model. The higher the measurement score,
the higher the similarity between the generated sen-
tence and the reference sentence, that is, the higher
the accuracy of the change description.

4.3 Experimental Details

The method based on the PyTorch framework is
trained and evaluated on the NVIDIA A100 or
V100. We use ResNet-101 (He et al., 2016) pre-
trained to extract image features. The dimension
of the image features and the hidden state used in
DG module is set to 1024. During training, we use
the Adam optimizer (Kingma and Ba, 2015) with
the learning rate of 0.0001. At the same time, the



Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr-D
LEVIR-CC

DUDA (2019) 81.44 72.22 64.24 57.79 37.15 71.04 124.32
MCCFormer-S (2021) 79.90 70.26 62.68 56.68 36.17 69.46 120.39
MCCFormer-D (2021) 80.42 70.87 62.86 56.38 37.29 70.32 124.44
PSNet (2023a) 83.86 75.13 67.89 62.11 38.80 73.60 132.62
Chg2Cap (2023) 86.14 78.08 70.66 64.39 40.03 75.12 136.61
RSICCformer (2022) 84.72 76.27 68.87 62.77 39.61 74.12 134.12
Prompt-CC (2023b)  83.66 75.73 69.10 63.54 38.82 73.72 136.44
ESAN(Ours) 86.03 78.14 70.87 64.86 40.10 70.82 135.60
Average 1388% 1563% 1661% 1747% 14.92% — 1 4.66%
Dubai-CC

DUDA (2019) 58.82 43.59 33.63 25.39 22.05 48.34 62.78
MCCFormer-S (2021) 52.97 37.02 27.62 22.57 18.64 43.29 53.81
MCCFormer-D (2021) 64.65 50.45 39.36 29.48 25.09 51.27 66.51
RSICCformer (2022) 67.92 53.61 41.37 31.28 25.41 51.96 66.54
Chg2Cap (2023) 72.04 60.18 50.84 41.70 28.92 58.66 92.49
ESAN(Ours) 73.56 61.62 52.44 42.89 30.02 60.72 99.84
Average 117.62% 129.46% 141.79% 148.88% 127.76%  120.93% 150.54%

Table 2: Comparison with the state of the art.

training batch size is set to 32. After each epoch,
the model is evaluated on the validation set, and
the best performance model is selected according
to the highest BLEU-4 score to evaluate the test
set. We evaluate the performance of the model on
the test set from the following three aspects: 1)
the whole data set; 2) the data set only containing
the image pairs with changes; 3) the data set only
containing the image pairs without changes. For
the data set only containing the image pairs with
changes, the recognition accuracy and the sensitiv-
ity of the model to the changed area are reflected.
For the data set only containing the image pairs
without changes, there are some changes only in
the interference factors. It is used to verify whether
the model can correctly identify the interference
factors in the image and provide meaningful de-
scription.

4.4 Ablation Studies

In order to clarify the contribution of each module
of the network, we verify the overall performance
of each block of the method by simultaneously test-
ing the model performance under the changed im-
age pairs and the unchanged image pairs. Baseline
is without any module. The experimental results on
LEVIR-CC are shown in Fig 3. In the overall data
set performance, using GESR, the model has im-
proved in all indicators, such as BLEU-4 increased

ses is built by the road.

rediction:
some houses are built along the road.

Reference:
avilla appears at the bottom left corner of the scene.
Prediction:

avilla appears in the lower-left corner of the scene

Reference:
many trees are removed and some houses are
beside the road.

# |aroad with many houses around is built to replace th
forest.

Figure 4: Case studies of our model on the LEVIR-CC
dataset.

by 6.24% and CIDEr-D increased by 5.71%. Com-
pared with the base model, after adding CSFE,
BLEU-4, METEOR, ROUGE-L and CIDEr-D in-
creased by 18.2%, 10.89%, 10.16% and 14.94%,
respectively. Using GESR, CSFE, and the combi-
nation of the two are applicable. The results show
that it is very effective to rely on GESR to obtain
the global semantic information and use CSFE to
capture the difference representation. The results of
the same settings on Dubai-CC dataset are shown
in Appendix A.1.2

4.5 Parameter Analysis

In order to evaluate the performance of the model at
different depths, a series of experiments in Table 1
were performed. E.D represents the depth of the en-



coder, and D.D represents the depth of the decoder.
When E.D = 2 and D.D = 1, the model exhibits
outstanding performance. See appendix A.1.3 for
other similar experiments.

4.6 Performance Comparison

In order to evaluate the relative advantages and
disadvantages of our method in the remote sensing
image change description task, the performance
with other advanced change description methods is
compared and the results are shown in Table 2.

The results show that ESAN performs better than
other advanced methods in key indicators such as
BLEU-1, BLEU-2, BLEU-3, BLEU-4 and ME-
TEOR, with an average increase of 3.88%, 5.63%,
6.61%, 7.47% and 4.92%, respectively on LEVIR-
CC. Compared with Prompt-CC advanced method,
the model shows superior performance, and the in-
dicators of BLEU-1, BLEU-2, BLEU-3 and BLEU-
4 are improved 2.83%, 3.18%, 2.56% and 2.08%,
respectively. And the key indicators of BLEU-2,
BLEU-3, BLEU-4 and METEOR are higher than
the recently excellent Chg2Cap, and the model
shows competitive results. In general, ESAN per-
forms better than other methods. The results on
Dubai-CC dataset show that ESAN has achieved
the best results on all indicators, with an aver-
age increase of 17.62%, 29.46%, 41.79%, 48.88%,
27.76%, 20.93% and 50.54%, respectively. BLEU-
4 increased to 42.89, METEOR increased to 30.02,
ROUGE-L increased to 60.72, and CIDEr-D in-
creased to 99.84. Compared with the recently out-
standing Chg2Cap, EASN is 2.85%, 3.80%, 3.51%
and 7.95% higher on BLEU-4, METEOR, ROUGE-
L and CIDEr-D, respectively. It fully demonstrates
that our network can use the semantic relationship
to generate a description closer to the reference
sentence.

4.7 Qualitative evaluation

In order to evaluate the quality of the change de-
scriptions generated by our model, we visualize
the image embedding and the predicted change de-
scription generated by the description decoder, as
shown in Fig 4 and Fig 5, where I; and I represent
the images captured at time 1 and time 2, respec-
tively. Ejpg is the image embedding and Ey;y is
the difference image embedding extracted by the
semantic relation embedding encoder.

As shown in Fig 4 and Fig 5, we can see that the
difference captions generated by ESAN can accu-
rately locate the change area and highlight it. At the

Prediction: The arca appears the same.

GT1: There is no difference.
GT2: Nothing has changed in this arca.

Prediction: A small green arca appears in the desert.

Prediction: A residence was built in the desert.

GTL: The area was urbanized.
GT2: Streets and buildings appeared in the desert.

Figure 5: Case studies of our model on the Dubai-CC
dataset.

same time, in the case of image pairs invariant, the
network focuses on identifying invariant objects.
Taking the last pair of images in Fig 5 as an exam-
ple, we can see that the scene interference is very
large. Compared with the first standard descrip-
tion, our model not only successfully describes the
changing target, namely "residence", but also de-
scribes a more advanced scene concept, namely
"desert". This is because ESAN uses the global
semantic information to more fully understand and
describe objects in the entire image and their rela-
tionships in the scene. It demonstrates the ability
of our model to accurately locate and describe the
differences from noisy real world environments.

5 Conclusion

In this paper, we propose an efficient semantic at-
tention network (ESAN). The network has signifi-
cant advantages in fully understanding the internal
semantic information of the image by efficiently
obtaining the semantic relationship between image
features. In addition, the network can effectively
identify and ignore interference factors. Therefore,
it is good at accurately representing image changes
and generating descriptions with rich semantics.

Limitations

We propose a new remote sensing image change
description method, ESAN. Although it has been
verified the performance on the general datasets,
through the observation of relevant visualization
cases and the analysis of the generated change de-
scription statements, it is found that the change de-
scription statements are not perfect in some logical
expressions and still need to be further optimized.



In addition, with the increase of the sample size of
the experimental data set, how to further optimize
the model for large-scale remote sensing image
data is also the direction of our future research.
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A Appendix

A.1 Additional Experimental Setup
A.1.1 Datasets

LEVIR-CC is composed of 10,077 small bi-
temporal tiles with a size of 256 x 256 pixels, and
each tile is annotated as containing changes or not
containing changes. Among them, there are 5038
image pairs with changes and 5039 image pairs
without changes. Each image pair is composed of
five different sentence descriptions, and the length
of most sentences is between 5 and 15 words. In
the experiment, the data set is divided into training
set, validation set and test set, including 6815, 1333
and 1929 image pairs respectively. The original im-
ages in Dubai-CC dataset have been trimmed into
500 tiles of sizes 50 x 50, with five change descrip-
tions annotated for each small bitemporal tile. In
the course of the experiments, the dataset has been
divided into three parts: training, validation, and
testing sets, comprising 300, 50, and 150 bitempo-
ral tiles, respectively. The images were enlarged
to dimensions of 256 x 256 pixels prior to being
processed by the network.
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Figure 6: Ablation studies on Dubai-CC.
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ED D.D BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr-D
1 1 72.22 59.9 51.24 42.99 30.57 62.35 102.09
2 1 73.97 62.10 53.26 45.37 30.83 60.04 97.59
3 1 66.44 53.28 43.72 36.46 25.67 54.23 80.49
4 1 71.51 57.90 48.85 41.05 29.05 57.59 88.39
1 2 60.34 50.90 43.54 36.86 24.41 51.09 76.62
2 2 63.32 50.11 42.24 37.80 23.63 53.24 81.45
3 2 70.64 59.03 49.55 41.32 29.14 58.08 91.22
4 2 65.80 54.45 46.24 40.11 26.81 55.63 86.65
1 3 69.57 57.66 47.90 39.69 28.38 56.17 79.96
2 3 59.73 51.09 44.96 39.68 25.19 52.33 89.56
3 3 64.33 52.45 43.59 36.21 23.82 53.47 78.71
4 3 64.03 50.85 42.27 33.91 26.62 50.92 68.48
1 4 69.80 54.35 44.04 35.55 26.30 53.65 70.66
2 4 62.86 54.08 47.37 39.47 26.28 53.98 85.17
3 4 60.53 45.74 37.70 33.40 22.30 50.59 74.18
4 4 64.12 52.77 44.79 35.73 24.81 55.16 74.29

Table 3: Performance of ESAN model at different depths on the Dubai-CC dataset.
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