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ABSTRACT

Reinforcement learning (RL) has been commonly used in practice. To deal with
the numerous states and actions in real applications, the function approximation
method has been widely employed to improve the learning efficiency, among which
the linear function approximation has attracted great interest both theoretically
and empirically. Previous works on the linear Markov Decision Process (MDP)
mainly study two settings, the stochastic setting where the reward is generated
in a stochastic way and the adversarial setting where the reward can be chosen
arbitrarily by an adversary. All these works treat these two environments separately.
However, the learning agents often have no idea of how rewards are generated and a
wrong reward type can severely disrupt the performance of those specially designed
algorithms. So a natural question is whether an algorithm can be derived that can
efficiently learn in both environments but without knowing the reward type. In this
paper, we first consider such best-of-both-worlds problem for linear MDP with
the known transition. We propose an algorithm and prove it can simultaneously
achieve O(poly logK) regret in the stochastic setting and Õ(

√
K) regret in the

adversarial setting where K is the horizon. To the best of our knowledge, it is the
first such result for linear MDP.

1 INTRODUCTION

Reinforcement learning (RL) studies the problem where a learning agent interacts with the environ-
ment over time and aims to maximize its cumulative rewards in a given horizon. It has a wide range
of real applications including robotics (Kober et al., 2013), games (Mnih et al., 2013; Silver et al.,
2016), etc. The environment dynamics are usually modeled by the Markov Decision Process (MDP)
with a fixed transition function. We consider the general episodic MDP setting where the interactions
last for several episodes and the length of each episode is fixed (Jin et al., 2018; 2020b; Luo et al.,
2021; Yang et al., 2021). In each episode, the agent first observes its current state and would decide
which action to take. After making the decision, it receives an instant reward and the environment
will then transfer to the next state. The cumulative reward in an episode is called the value and the
objective of the agent is equivalent to minimizing the regret defined as the cumulative difference
between the optimal value and its received values over episodes.

Many previous works focus on the tabular MDP setting where the state and action space are finite
and the values can be represented by a table (Azar et al., 2017; Jin et al., 2018; Chen et al., 2021;
Luo et al., 2021). Most of them study the stochastic setting with the stationary reward in which
the reward of a state-action pair is generated from a fixed distribution (Azar et al., 2017; Jin et al.,
2018; Simchowitz & Jamieson, 2019; Yang et al., 2021). Since the reward may change over time in
applications, some works consider the adversarial MDP where the reward can be arbitrarily generated
among different episodes (Yu et al., 2009; Rosenberg & Mansour, 2019; Jin et al., 2020a; Chen et al.,
2021; Luo et al., 2021). All of these works pay efforts to learn the value function table to find the
optimal policy and the computation complexity highly depends on the state and action space size.

However, in real applications such as the Go game, there are numerous states and the value function
table is huge, which brings a great challenge to the computation complexity for traditional algorithms
in the tabular case. To cope with the dimensionality curse, a rich line of works employ the function
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approximation methods, such as the linear function and deep neural networks, to approximate the
value functions or the policies to improve learning efficiency. These methods also achieve great
success in practical scenarios such as the Atari and Go games (Mnih et al., 2013; Silver et al., 2016).
Despite their great empirical performances, it also brings a series of challenges in deriving theoretical
analysis. To build a better theoretical understanding of these approximation methods, lots of works
start from deriving regret guarantees for linear function classes.

The linear MDP is a popular model which assumes both the transition and reward at a state-action
pair are linear in the corresponding d-dimensional feature (Jin et al., 2020b; He et al., 2021; Hu et al.,
2022). There are also mainly two types of the reward. For the stochastic setting, Jin et al. (2020b)
provides the first efficient algorithm named Least-Square Value Iteration UCB (LSVI-UCB) and show
that the its regret over K episodes can be upper bounded by O(

√
K). To seek for a tighter result with

respect to the specific problem structure, He et al. (2021) provide a new analysis for LSVI-UCB and
show it achieves an O(poly logK) instance-dependent regret upper bound. The adversarial setting is
much harder than the stochastic one since the reward can change arbitrarily but the agent can only
observe the rewards on the experienced trajectory. For this more challenging case, a regret upper
bound of order O(

√
K) is only obtained in the case with known transition by Neu & Olkhovskaya

(2021). All these works separately treat two environment types.

However, the learning agent usually has no idea of how the reward is generated. And once the reward
type is wrong, the specially designed algorithm for a separate setting may suffer great loss. Thus
deriving an algorithm that can adapt to different environment types becomes a natural solution for this
problem. This direction has attracted great research interest in simpler bandit (Bubeck & Slivkins,
2012; Zimmert et al., 2019; Lee et al., 2021; Kong et al., 2022) and tabular MDP settings (Jin & Luo,
2020; Jin et al., 2021b) but still remains open in linear MDP.

In this paper, we try to answer the question of deriving best-of-both-worlds (BoBW) guarantees for
linear MDP. Due to the challenge of learning in the adversarial setting, we also consider the known
transition case. We propose an algorithm that continuously detects the real environment type and
adjusts its strategy. It has been shown that our algorithm can simultaneously achieve O(poly logK)

regret in the stochastic setting and Õ(
√
K) regret in the adversarial setting. To the best of our

knowledge, these are the first BoBW results for linear MDP. It is also worth noting that our BoBW
algorithm relies on an algorithm that can achieve a high-probability guarantee for the adversarial
setting, which previous works fail to provide. And we propose the first analysis for a high-probability
regret bound in the adversarial linear MDP.

2 RELATED WORK

Linear MDP. Recently, deriving theoretically guaranteed algorithms for RL with linear function
approximation has attracted great interests. The linear MDP model is one of the most popular one.
Jin et al. (2020b) develop the first efficient algorithm LSVI-UCB both in sample and computation
complexity for this setting. They show that the algorithm achieves O(

√
d3H3K) regret where d is the

feature dimension and H is the length of each episode. This result is recently improved to the optimal
order O(dH

√
K) by Hu et al. (2022) with a tighter concentration analysis. Apart from UCB, the

TS-type algorithm has also been proposed for this setting (Zanette et al., 2020a). All these results do
not consider the specific problem structure. In the stochastic setting, deriving an instance-dependent
regret is more attractive to show the tighter performances of algorithms in a specific problem. This
type of regret has been widely studied under the tabular MDP setting (Simchowitz & Jamieson, 2019;
Yang et al., 2021). He et al. (2021) is the first to provide this type of regret in linear MDP. Using a
different proof framework, they show that the LSVI-UCB algorithm can achieve O(d3H5 logK/∆)
where ∆ is the minimum value gap in the episodic MDP.

All these works consider the stochastic setting with stationary rewards. Neu & Olkhovskaya (2021)
first attempts to analyze the more challenging adversarial environment. They consider a simplier
setting with known transition and provide an O(

√
dHK) regret upper bound. For unknown transition

case, Luo et al. (2021) provide an O(d2/3H2K2/3) upper bound with the help of a simulator and
O(d2H4K14/15) guarantee for the general case. Above all, even in the separate adversarial setting,
O(

√
K) regret is only derived for known transition case. We also study the known transition
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setting and try to provide Õ(
√
K) regret in the adversarial setting while simultaneously achieving

O(poly logK) regret if the environment is truly stochastic.

Best-of-both-worlds. The question of reaching best-of-both-worlds results is first proposed by
Bubeck & Slivkins (2012) for bandit setting, a special case of episodic MDP with H = 1. Their
proposed algorithm assumes the setting is stochastic and continuously detects whether the assumption
is satisfied. Such a detection-based method is shown to achieve O(poly logK) regret in the stochastic
setting and O(

√
K) in the adversarial setting, which is later improved by Auer & Chiang (2016).

Similar detection-based techniques have also been adopted in more general linear bandit (Lee et al.,
2021) and graph feedback (Kong et al., 2022) settings to achieve BoBW guarantees. Another line
of works consider using Follow-the-Regularized-Leader (FTRL) to adapt to different environment
types (Zimmert & Seldin, 2019; 2021). This type of algorithm is shown to be tighter than Bubeck &
Slivkins (2012); Auer & Chiang (2016) in the bandit setting and also attracts lots of interest in more
complex problems such as combinatorial bandits (Zimmert et al., 2019; Chen et al., 2022).

The first BoBW result in the MDP setting is provided by Jin & Luo (2020) in the tabular case. Due
to the challenge of the problem, they first study the known transition setting. Their approach to
achieving BoBW is the FTRL algorithm with a newly designed regularizer, which result is later
improved by Jin et al. (2021b) and also generalized to the unknown transition case. To the best of our
knowledge, we are the first to consider the BoBW problem in linear MDP. We also start from the
known transition setting and our algorithm is based on detection.

RL with general function approximation The linear mixture MDP is another popular RL model
with linear function approximation. It assumes the transition function can be approximated by a
weighted average over several transition kernels. In the stochastic setting, both instance-independent
(Ayoub et al., 2020; Zhou et al., 2021) and dependent regret bound (He et al., 2021) have been derived.
And in the adversarial setting, only full information case has been studied, where the agent has access
to the rewards of all state-action pairs (Cai et al., 2020; He et al., 2022). Apart from linear function
approximation, there is also a rich line of works considering general function classes, such as the
setting with low Bellman rank (Jiang et al., 2017; Zanette et al., 2020b), low Eluder dimension (Wang
et al., 2020; Kong et al., 2021) and low Bellman Eluder dimension (Jin et al., 2021a).

3 SETTING

We consider the episodic MDP setting where the agent interacts with the environment for K episodes
with known transition. The episodic MDP can be represented by M(S,A, H, {rk}Kk=1 , P ) where
S is the state space, A is the action space, H is the length of each episode, rk =

{
rk,h

}H
h=1

is the
reward function and P = {Ph}Hh=1 is the known transition probability function. Specifically, at
each episode k and step h ∈ [H], rk,h(s, a) ∈ [0, 1] and Ph(· | s, a) ∈ [0, 1]|S| are the reward and
transition probability at state s ∈ S by taking action a ∈ A, respectively.

We focus on stationary policies. Denote π = {πh}Hh=1 as a policy mapping from the state space
to an action distribution where πh : S → ∆A. For each episode k ∈ [K], the agent would start
from the first state sk,1 := s1

1 and determine the policy πk. Then at each step h ∈ [H] of episode
k, it first observes the current state sk,h and then perform the action ak,h ∼ πk,h(· | sk,h). The
agent would receive a random reward yk,h := rk,h(sk,h, ak,h) + ϵk,h, where ϵk,h is an independent
zero-mean noise. The environment then transfers to the next state sk,h+1 based on the transition
function P (· | sk,h, ak,h). The episode ends when the last state sk,H+1 is reached.

We focus on linear MDP with known transition where the reward functions are linear in a given
feature mapping (Jin et al., 2020b; He et al., 2021). The formal definition is as follows.

Assumption 1. (Linear MDP with known transition) M(S,A, H, {rk}Kk=1 , P ) is a linear MDP
with a known feature mapping ϕ : S × A → Rd such that for each step h ∈ [H], there exists an
unknown vector θh where for each (s, a) ∈ S ×A, rk,h(s, a) =

〈
ϕ(s, a), θk,h

〉
.

1The deterministic starting state is only for expositional convenience. Our algorithm and analysis can directly
handle random starting states with a distribution.
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In the stochastic setting, the reward function {rk}Kk=1, or namely the reward parameter {θk}Kk=1, is
fixed over different episodes k ∈ [K]. And in the adversarial setting, the reward parameter {θk}Kk=1
can be chosen arbitrarily by an adversary (which may be possibly dependent on previous policies).

We evaluate the performance of a policy π by its value functions. Specifically, for any episode k and
step h, denote the Q-value function Qπ

k,h(s, a) as the expected reward that will be obtained by the
agent starting from (sk,h, ak,h) = (s, a) with policy π, which is formally defined as

Qπ
k,h(s, a) = E

 H∑
h′=h

yk,h′ | π, sk,h = s, ak,h = a

 .

Similarly, the value function V π
k,h(s) of any state s is defined as

V π
k,h(s) = E

 H∑
h′=h

yk,h′ | π, sk,h = s

 .

In the following paper, we abuse a bit notation by using V π
k := V π

k,1(s1) to represent the value of
policy π at the starting state s1 and episode k. Define ϕπ,h = E

[
ϕ(sh, ah) | π

]
as the expected

feature vector that the policy π visits at step h. It is worth noting that this recovers the state-action
visitation probability in the tabular setting. And according to the definition, the value function of
policy π at episode k can be represented as V π

k =
∑H

h=1

〈
ϕπ,h, θk,h

〉
.

In this paper, we consider optimizing both the stochastic and adversarial environments within a finite
policy set Π. Given a policy set Π, the learning agent would determine the policy πk ∈ Π in each
episode k ∈ [K]. Let π∗ ∈ argmaxπ

∑K
k=1 V

π
k be one optimal policy in Π that maximizes the

cumulative value functions over K episodes, which is assumed to be unique in the stochastic setting
similar to previous works in tabular MDP (Jin & Luo, 2020; Jin et al., 2021b) and bandit setting (Lee
et al., 2021; Zimmert & Seldin, 2019; 2021). Denote the cumulative regret compared with π∗ ∈ Π
over K episodes as

Reg(K; Π) =

K∑
k=1

(
V π∗

k − V πk

k

)
. (1)

4 ALGORITHM

In this section, we propose a detection-based algorithm to optimize both stochastic and adversarial
environments for linear MDP with a given policy set Π. Our algorithm is mainly inspired by the
detection technique of Lee et al. (2021) for BoBW in linear bandits. At a high level, the algorithm first
assumes the environment is truly adversarial and continuously detect whether it could be a stochastic
one. Its design relies on a new linear MDP algorithm that can return well-concentrated estimators for
values of policies and also achieve sub-linear regret in the adversarial setting with high probability.

Previous works on adversarial linear MDP fail to provide a high-probability guarantee and thus no
existing algorithms satisfy this property. In Appendix D, we propose a variant of Geometric Hedge
(Algorithm 4), which is initially designed for the simple bandit case (Bartlett et al., 2008), and provide
a new analysis for it in the linear MDP setting. We show that this algorithm satisfies the following
properties and can be used to derive the BoBW results. It is also worth noting that this algorithm is
the first to achieve a high-probability regret guarantee for adversarial linear MDP.
Theorem 1. Given a policy set Π, the regret of our proposed Algorithm 4 in the adversarial setting
can be upper bounded by

Reg(K; Π) ≤ O
(√

dH3K log
(
|Π|/δ

))
(2)

with probability at least 1− δ.

Further, at each episode k, Algorithm 4 returns a value estimator V̂ π
k for each policy π ∈ Π. Choosing

constant L0 = 4dH log
(
|Π|/δ

)
, C1 ≥ 215dH3 log

(
K|Π|/δ

)
and C2 ≥ 20, it holds that for any
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k0 ≥ L0 and policy π ∈ Π,

k0∑
k=1

(
V π
k − V πk

k

)
≤
√

C1k0 − C2

∣∣∣∣∣∣
k0∑
k=1

(
V̂ π
k − V π

k

)∣∣∣∣∣∣
with probability larger than 1− δ.

Our main BoBW algorithm is a phased algorithm and is presented in Algorithm 1. It takes Algorithm
4 satisfying Theorem 1 with parameter L0 and C1 as input. The first epoch is of length L0 and the
length of the following epochs would grow exponentially as Line 4. During each epoch, it executes
Algorithm 2, which we refer to as the BoBW main body (Line 3).

Algorithm 1 BoBW for linear MDP
1: Input: Algorithm 4 with parameter C1 and L0; Set L := L0. Maximum duration K.
2: while number of episodes k ≤ K do
3: Execute Algorithm 2 (BoBW main body) with parameter L and receive output k0
4: Set L = 2k0
5: end while

Algorithm 2 (BoBW main body) takes the Algorithm 4 with parameter C1 and L as input. Here L can
just be regarded as the minimum number of episodes that Algorithm 4 needs to run to collect enough
observations. The algorithm first assumes the environment is adversarial and executes Algorithm
4 in at least L episodes (which we refer to as the first phase). As shown in Theorem 1, Algorithm
4 guarantees that when running for more than L episodes, the regret compared with any policy π
and the distance between its estimated V value and the real V value would be no larger. Based on
these concentration properties, if a policy π̂ shows consistent better performance than all of the other
policies (Line 5), we have the reason to believe that the environment is truly stochastic. Being aware
of this, as shown in Line 6, Algorithm 2 would transfer to the stochastic phase (Line 9-18, which we
refer to as the second phase) with the estimated V values returned by Algorithm 4.

Since the estimated values by Algorithm 4 can well approximate the real values of policies, the
exploration in the stochastic setting can be conducted by the estimated value gaps to obtain a problem-
dependent regret bound. The objective is to identify the optimal policy and maximize the collected
rewards, which can be implemented by an optimization problem (Algorithm 3). Taking the estimated
value gap ∆̂ as input, Algorithm 3 would return a probability distribution p∗ over the policy set
Π. Intuitively, p∗ maximizes the expected values of policies while ensuring the uncertainty of all
policies to be smaller than its sub-optimality gap. In Appendix A, we show that when ∆̂ is estimated
accurately, selecting policies based on p∗ can reach a problem-dependent regret upper bound.

Back to the main body of Algorithm 2, after computing the distribution pk based on the current
estimated ∆̂ (Line 10), it also mixes this policy distribution with a one-hot vector eπ̂ to ensure
that the estimated optimal policy π̂ can be observed for enough times and the variance of its
following estimators can thus be low (Line 11). The algorithm then samples a policy πk according
to this mixed distribution and executes it in this episode. Then based on the received rewards
yk,h at each step h and the total reward Yk =

∑H
h=1 yk,h, the value estimations of policies can

be further updated. Due to the technical reason, here for the estimated optimal policy π̂ and other
policies π, we use different estimators. Specifically, we use the importance weighted estimator to
approximate the value of π̂. The reason for using mixed policy distribution p̃ is just to ensure the
low variance of this estimator. And for other policies, we use the standard least square estimators
(Line 13). Based on these newly estimated values of policies, the algorithm can then update the
estimation for their sub-optimality gaps as Line 14. To get a tighter analysis, when computing
the value gap of π, we use the traditional estimator of it by Algorithm 4 in the first k0 episodes
and the Catoni estimator for the recent k − k0 episodes. Formally speaking, the Catoni estimator
Catoniα

(
{X1, X2, · · ·Xn}

)
is defined as the unique root of f(z) =

∑n
i=1 Φ

(
α (Xi − z)

)
, where

Φ(y) = log
(
1 + y + y2/2

)
if y ≥ 0 and Φ(y) = − log

(
1− y + y2/2

)
otherwise. The hyper-

parameter απ
k is set as

√
4 log

(
k|Π|/δ

)
/
∑k

κ=k0+1

(
2κ∆̂2

π/βκ + 9dH
)

which mainly follows Lee

et al. (2021) but with the careful consideration in MDP setting.
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Algorithm 2 BOBW main body
1: Input: A new instance of Algorithm 4 with parameter C1, parameter L
2: Define: fK = logK
3: for each episode k = 1, 2, · · · do
4: Execute and update Algorithm 4, receive value estimators V̂ π

k for each π ∈ Π
5: if k ≥ L and there exists a policy π̂ ∈ Π such that

k∑
s=1

Ys ≤
k∑

s=1

V̂ π̂
s + 5

√
fKC1k , (3)

k∑
s=1

Ys ≥
k∑

s=1

V̂ π
s + 25

√
fKC1k , ∀π ̸= π̂ . (4)

then
6: k0 = k, ∆̂π = 1

k0

(∑k
s=1 V̂

π̂
s − V̂ π

s

)
, ∆̂ =

{(
∆̂π

)
π∈Π

}
; break

7: end if
8: end for
9: for episode k = k0 + 1, k0 + 2, · · · do

10: Compute pk = OP(k, ∆̂)
11: Compute p̃k(π) =

1
2eπ̂ + 1

2pk(π), where eπ̂ is a one-hot vector with 1 only at policy π̂
12: Sample πk ∼ p̃k and execute πk

13: Receive rewards Yk =
∑H

h=1 yk,h and calculate V̂ π
k for each π ∈ Π as follows

∀π ̸= π̂ : V̂ π
k =

H∑
h=1

ϕ⊤
π,hΣ

−1
k,hϕπk,hyk,h , where Σk,h =

∑
π

p̃k(π)ϕπ,hϕ
⊤
π,h ; (5)

V̂ π̂
k =

Yk

p̃k (π̂)
1{πk = π̂} . (6)

14: For each π ̸= π̂, compute ∆̂π as

∆̂π
k =

1

k

 k0∑
s=1

V̂ π
s + (k − k0)Robk,π −

k∑
s=1

V̂ π̂
s

 , with Robk,π = Catoniαπ
k

(
{V̂ π

s }ks=k0+1

)
(7)

15: if

∃π ̸= π̂ , ∆̂π
k /∈

[
0.39∆̂π, 1.81∆̂π

]
or (8)

k∑
s=k0+1

(
V̂ π̂
s − Ys

)
≥ 20

√
fKC1k0 (9)

then
16: Return k0
17: end if
18: end for

Is is worth noting that an adversarial setting may be disguised as stochastic scenarios and fool
the algorithm to enter in the stochastic phase. Thus the agent still needs to be vigilant about the
possible change of the environment. The detection conditions (Line 15) are set for this objective. To
be specific, if the estimated sub-optimality gap of a policy changes obviously compared with the
original estimation by Algorithm 4 in the adversarial phase or the regret compared with π̂ is large,
the algorithm can determine that the environment may not be stochastic and would terminiate the
current epoch and enter in the next epoch with parameter k0 (Line 16).
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Algorithm 3 Optimization problem (OP)
(
k, ∆̂

)
1: Define βk = 215H log

(
|Π|k/δ

)
2: Return the minimizer p∗ of the following constrained optimization problem

min
p

∑
π∈Π

pπ∆̂π (10)

s.t.
H∑

h=1

∥∥ϕπ,h

∥∥2
Σ−1

h (p)
≤ k∆̂π

βk
+ 4dH and

∑
π∈Π

pπ = 1 , (11)

where Σh(p) =
∑

π pπϕπ,hϕ
⊤
π,h.

5 THEORETICAL ANALYSIS

In this section, we provide the theoretical guarantee and the analysis of Algorithm 1 in both stochastic
and adversarial settings

The first is about the stochastic setting. Since the value function remains the same for different
episodes, we simplify the notation and use V π to represent the real value of policy π ∈ Π. Before
presenting the main results, we first introduce the sub-optimality gaps that will be used.

Definition 1. For each policy π ∈ Π, define ∆π = V π∗ − V π as the sub-optimality gap of π
compared with the optimal policy π∗ ∈ argmaxπ∈Π V π . Further let ∆min = minπ:∆π>0 ∆π be the
minimum non-negative value gap.

Theorem 2 provides a regret upper bound for Algorithm 1 in the stochastic setting.
Theorem 2. (Regret bound in the stochastic setting) With probability at least 1 − δ, Algorithm 1
guarantees that

Reg(K; Π) ≤ O

(
dH2 log(K) log

(
|Π|K/δ

)
∆min

)
. (12)

And if the environment is adversarial, the regret of Algorithm 1 can be upper bounded as Theorem 3.
Theorem 3. (Regret bound in the adversarial setting) With probability at least 1− δ, Algorithm 1
guarantees that

Reg(K; Π) ≤ O
(√

dH3K log(K) log
(
|Π|K/δ

))
. (13)

Due to the space limit, the full proof of these two theorems are deferred to Appendix B and C. We
will provide a proof sketch for them in later sections.

Technique challenge and novelty. There are mainly two types of algorithms to deal with the
BoBW problem: the switch-based method which actively detects the environment type, e.g., Bubeck
& Slivkins (2012), and the FTRL-based method which adapts to different environments, e.g. Zimmert
& Seldin (2019). The approach in Bubeck & Slivkins (2012) first assumes the setting to be stochastic
and would detect whether a policy’s value has changed. Such an approach in our setting brings an
O(
√
|Π|) dependence in the regret for adversarial setting which is not idealistic as the policy set

size can be large. And the success of FTRL for BoBW mainly relies on a self-bounding inequality
that bounds the regret by the chosen probabilities of policies. But such a technique is challenging
with linear structure. As discussed by Lee et al. (2021), even for the single-state linear bandit setting,
connecting FTRL with OP is hard.

Our approach relies on a new observation that the value of each policy can be written as the inner
product between the expected state-action visitation feature ϕπ and the unknown reward feature θ.
From this view, we are able to reduce the problem to linear optimization and existing techniques for
linear optimization can be used. To the best of our knowledge, we are the first to introduce this type
of linear optimization for the regret minimization problem in MDP and such reduction may be of
independent interest.
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Relationship between our ∆π and the gapmin in He et al. (2021). To compare our ∆π with
gapmin in He at al. (2021), we assume the optimal policy π∗ ∈ Π is just the global optimal policy.
Recall that gapmin is defined as minh,s,a

{
gaph(s, a) : gaph(s, a) > 0

}
where gaph(s, a) = V ∗

h (s)−
Q∗

h(s, a). In general, ∆π can be decomposed as ∆π = V ∗
1 (s1)− V π

1 (s1) = V ∗
1 (s1)−Qπ

1 (s1, a
′) ≥

V ∗
1 (s1)−Q∗

1(s1, a
′) = gap1(s1, a

′) where the first equality follows He et al. (2021, Eq. (B.2)) and
pπh(s, a) is the visitation probability of state-action (s, a) at step h by following π. This shows that
∆π ≥ pπgapmin in the worst case where pπ is the minimum none-zero visitation probability of policy
π at some state-action pair.

And there are also cases where our defined ∆π is larger than that in He et al. (2021). When both the
policy and transition are deterministic (Ortner, 2010; Tranos & Proutiere, 2021; Dann et al., 2021;
Tirinzoni et al., 2022), we have ∆π =

∑H
h=1 gaph(sh, ah) ≥ gapmin. And in the stochastic transition

case, if all sub-optimal policies happen to not select the optimal action in argmaxa Q
∗
1(s1, a),

∆π = V ∗
1 (s1)− V π

1 (s1) = V ∗
1 (s1)−Qπ

1 (s1, a
′) ≥ V ∗

1 (s1)−Q∗
1(s1, a

′) = gap1(s1, a
′) ≥ gapmin,

where a′ is the action selected by π at the first step and the last inequality is due to gap1(s1, a
′) > 0.

In the above two cases, our our sub-optimality gap is larger than previously defined gap and our
dependence on the gap is better.

To the best of our knowledge, Algorithm 1 is the first that can simultaneously achieve O(poly logK)

regret in the stochastic setting and Õ(
√
K) regret in the adversarial setting for linear MDP problem.

It is also worth noting that previous works on the separate adversarial setting only provide the
upper bound for the expected regret (Neu & Olkhovskaya, 2021), and we are the first to provide a
high-probability guarantee.

5.1 REGRET ANALYSIS IN THE STOCHASTIC SETTING

In the stochastic setting, we consider the regret in two phases of each epoch separately. We first
show that, the first phase (which we call as the adversarial phase, Line 3-8 in Algorithm 2) will
terminate after k0 episodes where k0 ∈

[
64fKC1/∆

2
min, 900fKC1/∆

2
min

]
with high probability,

and the optimal policy π∗ ∈ Π can be identified. Lemma 1 summarizes the formal claims.
Lemma 1. In the stochastic setting, in each epoch, the following 4 claims hold.
1. With probability at least 1− 4δ, k0 ≤ max

{
900fKC1

∆2
min

, L
}

.
2. With probability at least 1− δ, π̂ = π∗.
3. With probability at least 1− 2δ, k0 ≥ 64fKC1

∆2
min

.

4. With probability at least 1− 3δ, ∆̂π ∈ [0.7∆π, 1.3∆π] ,∀π ̸= π∗.

The detailed proof of Lemma 1 is deferred to Appendix B. We next will give a proof sketch of
Theorem 2 based on the results of Lemma 1. According to claim 1 in Lemma 1, we know that
k0 = O

(
fKC1/∆

2
min

)
, so we can bound the regret in the first phase using the guarantees of

Algorithm 4 in Theorem 1 by
√
C1k0 = O

(
C1

√
log(K)/∆min

)
.

And after k0 episodes, the algorithm would transfer to the second phase, which we call as the
stochastic phase (Line 9-18 in Algorithm 2). If the environment is truly stochastic, the values of all
policies would remain stationary and the detection condition (Line 15 in Algorithm 2) would never be
satisfied. Thus the stochastic phase will not end (proved in Lemma 8 in Appendix B). As for the regret
suffered in this phase, we can analyze it using the properties of OP. According to claim 4 in Lemma
1, the estimated sub-optimality gap is close to the real sub-optimality gap as ∆̂π ∈

[
∆π/

√
3,
√
3∆π

]
.

Thus performing policies based on the solution of OP with ∆̂ can reach the real instance optimality.

Specifically, we can first bridge the gap between the expected regret and the regret that occurred using
Freedman inequality (Lemma 12).

k∑
s=k0+1

∆πs
≤ 2

k∑
s=k0+1

∑
π

p̃s(π)∆π + 2H log

(
1

δ

)
.

Recall that p̃ is computed based on OP under ∆̂, which is close to the real sub-optimality gap
∆. The regret occurred in phase 2 in episodes k larger than a problem dependent constant M =

8
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O
(
dHβK/∆2

min

)
, which is the dominating part in the expected regret, can be bounded using Lemma

7 with r = 3:
k∑

s=M

∑
π

p̃s(π)∆π ≤
k∑

s=M

72dHβs

∆mins
= O

(
dHβk log(k)

∆min

)
.

Above all, we can conclude that with probability at least 1− δ, the regret can be upper bounde as

Reg (K; Π) = O
(
dHβK log(K)

∆min

)
= O

(
dH2 log(K) log

(
|Π|K/δ

)
∆min

)
.

5.2 REGRET ANALYSIS IN THE ADVERSARIAL SETTING

In the adversarial setting, the regret in the first phase can be guaranteed with the property of Algorithm
4 in Theorem 1. Here we will mainly analyze the second phase. We first show that in the second
phase of each epoch, the returned policy π̂ is actually the optimal policy in Π.

Lemma 2. For any episode k in the second phase, the policy π̂ has the most accumulated value in Π

during episodes 1 to k. That is, π̂ ∈ argmaxπ∈Π

∑k
κ=1 V

π
κ .

Since π̂ is the optimal policy in Π, the regret can be written as the sum of the deviation between the
value of the selected policy πs and V π̂

s

k∑
s=k0+1

(
V π̂
s − V πs

s

)
=

k∑
s=k0+1

[(
V̂ π̂
s − Ys

)
+
(
Ys1{πs = π̂}+ V π̂

s 1{πs ̸= π̂} − V̂ π̂
s

)
+

((
V π̂
s 1{πs = π̂} − Ys1{πs = π̂}

)
+ (Ys − V πs

s )

)]
.

According to the detection condition (equation 9) in Algorithm 2, the first term can be upper bounded
by O

(√
fKC1k0

)
. As for the second and last term, Freedman inequality (Lemma 12) also provides

an upper bound O (C1k0) for them. Above all, the regret in a single epoch can be upper bounded
by O

(√
fKC1k0

)
. According to the choice of the minimal duration L in each epoch, the length k0

of the first phase in an epoch is at most half of that in the next epoch. Thus the final regret can be
bounded as

Reg (K; Π) = O
(√

C1K log(K)
)
= O

(√
dH2KβK log(K)

)
.

6 CONCLUSION

In this paper, we propose the first BoBW algorithm for linear MDP that can simultaneously achieve
O(poly logK) regret in the stochastic setting and Õ(

√
K) regret in the adversarial setting. Our

approach relies on the new observation that the value function of a policy can be written as the sum of
the inner products between the expected state-action visitation feature ϕπ,h and the unknown reward
parameter θh at different steps h ∈ [H]. And the problem can thus be regarded as an online linear
optimization problem.

Apart from these BoBW results, we also propose a new analysis that can reach a high-probability
regret guarantee for adversarial linear MDP, which is also the first such result in the literature.

An important future direction is to remove the assumption of unique optimal policy in the stochastic
setting. This assumption also appears in previous BoBW works for tabular MDP (Jin & Luo, 2020;
Jin et al., 2021b) and linear bandits (Lee et al., 2021) which destroys the generality of the results but
is challenging to be removed due to the hardness of the BoBW objective and the complex structure
of MDP. Extending the current results to the unknown transition setting is also prospective. This
is hoped to be solved by some new techniques since the current approach highly depends on the
known state-action visitation feature. Deriving an FTRL-type algorithm for this objective is also an
interesting future direction. It still remains open even in the simpler linear bandit setting without the
transition between different states.

9
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A ANALYSIS OF OP

The analysis of OP mainly follows the op problem for linear bandits (Lee et al., 2021) but with the
consideration of the special structure of linear MDP. In this section, we provide some useful lemmas
for OP in linear MDP.
Lemma 3. First, consider the constrained optimization problem:

min
p∈∆Π

∑
π

pπ∆̂π − 2

ξ

H∑
h=1

(− ln(det(Σh(p)))) ,

where Σh(p) =
∑

π pπϕπ,hϕ
⊤
π,h.

The optimal choice of p = p∗ yields that:∑
π∈Π

p∗π∆̂π ≤ 2dH

ξ
,

H∑
h=1

∥ϕπ,h∥2Σ−1
h (p∗)

≤ ξ∆̂π

2
+ dH , ∀π ∈ Π .

Proof. Here we relaxed the constraint that pπ be a valid distribution on Π to
∑

π pπ ≤ 1 since there
must be π̂∗ where ∆̂π̂∗ = 0, so we can always add up the probability on π̂∗ to make it a distribution.
Applying the KKT conditions and setting the derivatives with respect to each pπ in the Lagrangian to
zero, we got:

0 = ∆̂π − 2

ξ

H∑
h=1

∥ϕπ,h∥2Σ−1
h (p∗)

− λπ + λ ,

where λπand λ are the respective Lagrange multipliers for the constraints of pπ ≥ 0 and
∑

π pπ ≤ 1,
thus we have λ ≥ 0 and

∑
π λπpπ = 0 . Multiplying the above equation with p∗π and summing over

π ∈ Π, we got:

0 =
∑
π∈Π

p∗π∆̂π − 2

ξ

H∑
h=1

p∗π∥ϕπ,h∥2Σ−1
h (p∗)

− λπp
∗
π + λp∗π


=
∑
π∈Π

p∗π∆̂π − 2

ξ

H∑
h=1

∑
π∈Π

p∗π∥ϕπ,h∥2Σ−1
h (p∗)

+ λ .

Notice that: ∑
π∈Π

∥ϕπ,hp
∗
π∥2Σ−1

h (p∗)
=
∑
π∈Π

p∗πϕπ,hΣ
−1
h (p∗)ϕ⊤

π,h

=
∑
π∈Π

Tr
(
p∗πϕπ,hϕ

⊤
π,hΣ

−1
h (p∗)

)

= Tr

∑
π∈Π

p∗πϕπ,hϕ
⊤
π,hΣ

−1
h (p∗)


= d .

Plugging in this result, we got:

0 =
∑
π∈Π

p∗π∆̂π − 2

ξ
dH + λ

≥
∑
π∈Π

p∗π∆̂π − 2

ξ
dH .
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So that ∑
π∈Π

p∗π∆̂π ≤ 2

ξ
dH ,

and λ ≤ 2
ξdH , since

∑
π∈Π p∗π∆̂π ≥ 0.

Above all,

H∑
h=1

∥ϕπ,h∥2Σ−1
h (p∗)

=
ξ

2
(∆̂π − λπ + λ) ≤ ξ

2
(∆̂π + λ) ≤ ξ∆̂π

2
+ dH .

Lemma 4. Suppose that for any h ∈ {1, 2, · · · , H},
{
ϕπ,h |π ∈ Π

}
spans Rd. Denote pΠ as

a uniform distribution on Π and let κ ∈ (0, 1
2 ). For any G ⊂ Π, there exists distribution on

q ∈ PG such that
∑H

h=1∥ϕπ,h∥2Σ−1
h (qG,κ)

≤ 2dH , where qG,κ = κpΠ + (1− κ)q and Σh(q
G,κ) =∑

π∈Π qG,κ
π ϕπ,hϕ

⊤
π,h.

Proof. Denote PG,κ =
{
κpΠ + (1− κ)q |q ∈ PG

}
.

min
q∈PG,κ

max
π∈G

H∑
h=1

∥ϕπ,h∥2Σ−1
h (q)

= min
q∈PG,κ

max
p∈PG

H∑
h=1

Tr

∑
π∈G

pπϕπ,hϕ
⊤
π,h

∑
π∈Π

qπϕπ,hϕ
⊤
π,h

−1

= max
p∈PG

min
q∈PG,κ

H∑
h=1

Tr

∑
π∈G

pπϕπ,hϕ
⊤
π,h

∑
π∈Π

qπϕπ,hϕ
⊤
π,h

−1

(14)

≤ max
p∈PG

H∑
h=1

Tr

(∑
π∈G

pπϕπ,hϕ
⊤
π,h)

∑
π∈Π

(
κ

|Π|
+ (1− κ)pπ

)
ϕπ,hϕ

⊤
π,h

−1


≤2 max
p∈PG

H∑
h=1

Tr


∑

π∈Π

(
κ

|Π|
+ (1− κ)pπ

)
ϕπ,hϕ

⊤
π,h

∑
π∈Π

(
κ

|Π|
+ (1− κ)pπ

)
ϕπ,hϕ

⊤
π,h

−1


=2dH .

Where the second inequality is due to Sion’s minimax theorem as equation 14 is linear in p and
convex in q. The last inequality is due to 1− κ ≥ 1

2 .

Lemma 5. Let pπ be the solution of OP(k, ∆̂), then we have :∑
π∈Π

pπ∆̂π ≤ O
(
dHβk√

k

)
. (15)

Proof. We transform p∗ in Lemma 3 to a solution satisfying OP.
Choosing ξ as

√
k

βk
in Lemma 4, and let G = {π ∈ Π : ∆̂π ≤ 1√

k
}, construct the distribution

q = 1
2p

∗ + 1
2q

G,κ, where qG,κ is the distribution stated above with κ = 1√
k

in Lemma 4, we have for
π ∈ G,

H∑
h=1

∥ϕπ,h∥2Σ−1
h (q)

≤ 4dH;

14
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and for π /∈ G,

H∑
h=1

∥ϕπ,h∥2Σ−1
h (q)

≤ 2

(
ξ∆̂π

2
+ dH

)
≤

√
k∆̂π

βk
+ 2dH ≤ k∆̂2

π

βk
+ 4dH .

So distribution q satisfy the constraints of OP.
For the optimal solution p of OP, we have:∑

π∈Π

pπ∆̂π

≤qπ∆̂π =

(
1

2
p∗ +

1

2
qG,κ

)
∆̂π

≤dHβk√
k

+
H

2
√
k
+

1

2
√
k
= O

(
dHβk√

k

)
.

Lemma 6. Given{∆̂π}π∈Π, suppose there exists unique π̂ such that ∆̂π̂ = 0, and ∆̂min =

min∆̂π>0∆̂π. Let pπ be the solution of OP(k,∆), when k ≥ 16dHβk

∆̂2
min

, we have
∑

π∈Π pπ∆̂π ≤
24dHβk

∆̂mink
.

Proof. let Gi = {π ∈ Π : 2i−1∆̂2
min ≤ ∆̂2

π ≤ 2i∆̂2
min } and n be the largest index that Gi is not

empty. Define zi =
dHβk

2i−2∆̂2
mink

and κ = 1
n2n . Define the distribution p̃ as follows:

For π ̸= π̂,

p̃π =
∑
i≥1

ziq
Gi,κ
π ;

for π̂,

p̃π̂ = 1−
∑
π ̸=π̂

p̃π .

We show it’s a valid distribution over Π:

p̃π̂ =1−
∑
π ̸=π̂

p̃π

=1−
∑
π ̸=π̂

∑
i

ziq
Gi,κ
π

≥1−
∑
i≥1

zi −
∑
i≥1

∑
π∈Gi

∑
j ̸=i

zjq
Gj ,κ
π

=1−
∑
i≥1

zi −
∑
i≥1

∑
π∈Gi

∑
j ̸=i

zj
n2n|Π|

≥1− 2
∑
i≥1

zi

≥1

2
.

Where the last inequality is due to k ≥ 16dHβk

∆̂2
min

.
For π ̸= π̂ and π ∈ Gi,

H∑
h=1

∥∥ϕπ,h

∥∥2
Σ−1

h (p̃)
≤

H∑
h=1

∥∥ϕπ,h

∥∥2(∑
π∈Π ziq

Gi,κ
π ϕπ,hϕ⊤

π,h

)−1 ≤ 2dH

zi
≤ k∆̂2

π

βk
+ 4dH .
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For π̂,
H∑

h=1

∥∥ϕπ̂,h

∥∥2
Σ−1

h (p̃)

≥
H∑

h=1

∥∥∥Σ−1
h (p̃)ϕπ̂,h

∥∥∥2
Σ−1

h (p̃)

≥
H∑

h=1

∥∥∥Σ−1
h (p̃)ϕπ̂,h

∥∥∥2(
1
2ϕπ̂,hϕ⊤

π̂,h

)

≥1

2

H∑
h=1

∥∥ϕπ̂,h

∥∥4
Σ−1

h (p̃)

≥ 1

2H

 H∑
h=1

∥∥ϕπ̂,h

∥∥2
Σ−1

h (p̃)

2

,

where the last inequality is due to Cauchy inequality.
So that:

H∑
h=1

∥∥ϕπ̂,h

∥∥2
Σ−1

h (p̃)
≤ 2H .

Thus, p̃ satisfy the constraints of OP.
Now we bound the result of OP. By the optimality of pπ:∑

π∈Π

pπ∆̂π ≤
∑
π∈Π

p̃π∆̂π

=
∑
i≥1

∑
π∈Gi

ziq
Gi,κ +

∑
j ̸=i

zj
1

n2n|Π|

 2
i
2 ∆̂min

≤
∑
i≥1

∑
π∈Gi

∑
j ̸=i

dHβk

n2n+j− i
2−2|Π|∆̂mink

+
∑
i≥1

dHβk

2
i
2−2∆̂mink

≤2
∑
i≥1

dHβk

2
i
2−2∆̂mink

≤ 24dHβk

∆̂mink
.

Lemma 7. Suppose that ∆̂π ∈
(

1√
r
∆π,

√
r∆π

)
, then the solution pπ of OP(k, ∆̂) for k ≥ 16rdHβk

∆2
min

yields that : ∑
π∈Π

pπ∆π ≤ 24rdHβk

∆mink
.

Proof. By the condition on ∆π , we have t ≥ 16rdHβk

∆2
min

≥ 16dHβk

∆̂2
min

, and that ∆π∗ = ∆̂π∗ = 0. Thus,∑
π∈Π

pπ∆π ≤
√
r
∑
π∈Π

pπ∆̂π ≤
√
r
24dHβk

∆̂mink
≤ 24rdHβk

∆mink
.

Where the inequality is due to Lemma 6.

B ANALYSIS IN THE STOCHASTIC SETTING

Proof of Lemma 1. First, we show the following properties, for any k in phase 1:

C2

∣∣∣∣∣∣
k∑

s=1

V̂ π
s − V π

s

∣∣∣∣∣∣ ≤
√
C1k +

k∑
s=1

V πs
s − V π

s ≤
√
C1k + k∆π .
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Here we denote DEVk,π =
∣∣∣∑k

s=1 V̂
π
s − V π

s

∣∣∣.
Claim 1’s proof: Let k = max{ 900fKC1

∆2
min

, L} and assume that phase 1 has not finished at episode
k. Set π̂ = π∗, and we show that the termination conditions hold with high probability at episode
k. According to the Azuma-Hoeffding inequality, since Ys − V πs

s is a martingale sequence and that
|Ys − V πs

s | ≤ H ,

k∑
s=1

Ys ≤
k∑

s=1

V πs
s +

√
C1k

≤
K∑
s=1

V π∗

s +
√
C1k

≤
K∑
s=1

V̂ π∗

s + 2
√

C1k

≤
K∑
s=1

V̂ π∗

s + 3
√

fKC1k ,

so equation 3 is satisfied.
For all π ̸= π∗, we have:

k∑
s=1

V̂ π
s − Ys =

k∑
s=1

(
V̂ π
s − V π

s

)
+
(
V π
s − V π∗

s

)
+
(
V π∗

s − V πs
s

)
+ (V πs

s − Ys)

≤DEVk,π − k∆π +
√
C1k − C2DEVk,π∗ +

√
C1k

≤2
√
fKC1k +

1

C2

(√
C1k + k∆π

)
− k∆π

≤− 0.95k∆π + 2.1
√

fKC1k .

Since k ≥ 900fKC1

∆2
π

, thus k∆π ≥ 30
√
fKC1k for all π ̸= π∗. So −0.95k∆π + 2.1

√
fKC1k ≤

−25
√
fKC1k.

Thus:
k∑

s=1

Ys ≥
k∑

s=1

V̂ π
s + 25

√
fKC1k .

So equation 4 is satisfied.
Claim 2’s proof: Using equation 3 and equation 4, we got:

k0∑
s=1

V̂ π̂
s − V̂ π

s ≥ 20
√
fKC1k0 , ∀π ̸= π̂ . (16)

However, with probability at least 1− δ, for any π ̸= π∗

k0∑
s=1

V̂ π
s − V̂ π∗

s ≤
k0∑
s=1

(
V̂ π
s − V π

s

)
+
(
V π
s − V π∗

s

)
+
(
V π∗

s − V̂ π∗

s

)
≤DEVk0,π +DEVk0,π∗ − k0∆π

≤ 1

C2

(√
C1k0 + k0∆π

)
+

1

C2

√
C1k0 − k0∆π

≤5
√
fKC1k0 .

So we must have π̂ = π∗.

17
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Claim 3’s proof: Suppose that k0 ≤ 64fKC1

∆2
min

. Let π be the policy with minimal estimated gap, that
is: ∆π = ∆min.

k0∑
s=1

V̂ π∗

s − V̂ π
s ≤k0∆min +DEVk0,π +DEVk0,π∗

≤k0∆min +
1

C2

(
2
√

C1k0 + k0∆min

)
≤2k0∆min + 2

√
fKC1k0

≤16
√
fKC1k0 + 2

√
fKC1k0

=18
√
fKC1k0 .

Which contradicts with equation 16.

Claim 4’s proof: ∣∣∣k0∆̂π − k0∆π

∣∣∣ ≤DEVk0,π +DEVk0,π∗

≤ 1

C2

(
2
√

C1k0 + k0∆π

)
≤
√
fKC1k0 +

1

C2
k0∆π

≤0.3k0∆π .

The last inequality is due to k0 ≥ 64fKC1

∆2
min

.
So we have:

∆̂π ∈ [0.7∆π, 1.3∆π] , ∀π ̸= π∗ .

Lemma 8. With probability at least 1− δ, phase 2 never ends.

Proof. For equation 9, we decompose it as

k∑
s=k0+1

V̂ π̂
s − Ys =

k∑
s=k0+1

(
V π̂
s − V πs

s

)
+

(
V πs
s − Ys +

Ys − V π̂
s

p̃s(π̂)
1{πs = π̂}

)

+

(
V π̂
s

p̃s(π̂)
1{πs = π̂} − V π̂

s

)
.

First we deal with the second term, which is a martingale difference sequence. It’s variance is
bounded as:

E

(V πs
s − Ys +

Ys − V π̂
s

p̃s(π)
1{πs = π̂}

)2


=p̃s(π̂)E

[
(V πs

s − Ys)
2

(
1− 1

p̃s(π̂)

)2
]
+
(
1− p̃s(π̂)

)
E
[
(V πs

s − Ys)
2
]

≤2H2
(
1− p̃s(π̂)

)
.

The third term is also a martingale difference sequence, whose variance can be bounded as:

E

( V π̂
s

p̃s(π̂)
1{πs = π̂} − V π̂

s

)2
 ≤ 2H2

(
1− p̃s(π̂)

)
.

18
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Thus, using the Freedman inequality for the second and third term, we got:
k∑

s=k0+1

(
V πs
s − Ys +

Ys − V π̂
s

p̃s(π̂)
1{πs = π̂}

)
+

(
V π̂
s

p̃s(π̂)
1{πs = π̂} − V π̂

s

)

≤8H

√√√√ k∑
s=k0+1

(
1− p̃s (π̂)

)
log

(
K

δ

)
+ 6H log

(
K

δ

)
.

For the first term, we bound it’s variance against it’s expectation
∑

π ̸=π̂ p̃s(π)
(
V π̂
s − V π

s

)
as follows:

E


V π̂

s − V πs
s −

∑
π ̸=π̂

p̃s(π)
(
V π̂
s − V π

s

)2


=p̃s (π̂)E


∑

π ̸=π̂

p̃s(π)
(
V π̂
s − V π

s

)2
+

(
1− p̃s (π̂)

)
E


V π̂

s − V πs ̸=π̂
s −

∑
π ̸=π̂

p̃s(π)
(
V π̂
s − V π

s

)2


≤p̃s (π̂)H
2
(
1− p̃s (π̂)

)2
+
(
1− p̃s (π̂)

)
H2
(
2− p̃s (π̂)

)2
≤4H2

(
1− p̃s (π̂)

)
.

Using Freedman inequality for the martingale difference sequence above:
k∑

s=k0+1

V π̂
s − V πs

s

≤
k∑

s=k0+1

∑
π ̸=π̂

p̃s(π)
(
V π̂
s − V π

s

)
+ 4H

√√√√ k∑
s=k0+1

(
1− p̃s (π̂)

)
log

(
K

δ

)
+ 2H log

(
K

δ

)

≤
k∑

s=k0+1

∑
π ̸=π̂

p̃s(π) (∆π −∆π̂) + 4H

√√√√ k∑
s=k0+1

(
1− p̃s (π̂)

)
log

(
K

δ

)
+ 2H log

(
K

δ

)

≤1

2

k∑
s=k0+1

∑
π ̸=π̂

ps(π)∆π + 4H

√√√√ k∑
s=k0+1

(
1− p̃s (π̂)

)
log

(
K

δ

)
+ log

(
K

δ

)
,

(17)

where the last inequality is conditioned on that π∗ = π̂.
Using Lemma 7 and equation 31, we have:

1

2

∑
π ̸=π̂

ps(π)∆π ≤ 36dHβs

∆mins
, (18)

1− p̃s (π̂) ≤
12dHβs

∆̂2
mins

. (19)

Finally, we have:
k∑

s=k0+1

V̂ π̂
s − Ys

≤36dHβk log(k)

∆min
+ 12H

√√√√ k∑
s=k0+1

12dHβs

∆̂2
mins

log

(
K

δ

)
+ 8H log

(
K

δ

)

≤52dHβk log(k)

∆̂min

+ 72
dH log(k)

∆̂min

βK√
215

(20)

≤20dHβK log(k)

√
k0

fKC1
(21)

≤20
√
fKC1k0 ,

19
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where inequality 21 is due to claim 3 that k0 ≥ 64fKC1

∆2
min

≥ 37fKC1

∆̂2
min

, inequality 20 is due to ∆̂ ∈
[0.7∆, 1.3∆] which is claim 4; and fKC1 ≥ dH2βK log(k).
So equation 9 is never satisfied.
According to equation 28 and equation 30, we have:∣∣∣∣∣∣

k∑
s=1

V π
s −

k0∑
s=1

V̂ π
s − (k − k0)Robk,π

∣∣∣∣∣∣ ≤ 1.4k∆̂π

10
,

∣∣∣∣∣∣
k∑

s=1

V̂ π̂
s − V π̂

s

∣∣∣∣∣∣ ≤ 2
√
fKC1k ≤ 0.1k∆̂π .

Where the last inequality is due to equation 27.
So: ∣∣∣k∆̂k,π − k∆π

∣∣∣ ≤
∣∣∣∣∣∣

k∑
s=1

V π
s −

k0∑
s=1

V̂ π
s − (k − k0)Robk,π

∣∣∣∣∣∣+
∣∣∣∣∣∣

k∑
s=1

V̂ π̂
s − V π̂

s

∣∣∣∣∣∣ ≤ 0.24k∆̂π .

Thus:

∆̂k,π ≤ ∆π + 0.24∆̂π ≤ 1

0.7
∆̂π + 0.24∆̂π ≤ 1.81∆̂π ,

∆̂k,π ≥ ∆π − 0.24∆̂π ≥ 1

1.3
∆̂π − 0.24∆̂π ≥ 0.39∆̂π .

So equation 8 is never satisfied.

Proof of Theorem 2 . Now, we bound the deviation between the actual regret and the real regret in
phase 2. Using Freedman inequality on the martingale difference sequence ∆πs −

∑
π p̃s(π)∆π:

k∑
s=k0+1

∆πs
≤

k∑
s=k0+1

∑
π

p̃s(π)∆π + 2

√√√√log

(
1

δ

) k∑
s=k0+1

E
[
∆2

πs

]
+H log

(
1

δ

)

≤
k∑

s=k0+1

∑
π

p̃s(π)∆π + 2

√√√√log

(
1

δ

)
H

k∑
s=k0+1

E [∆πs
] +H log

(
1

δ

)

≤
k∑

s=k0+1

∑
π

p̃s(π)∆π + 2

√√√√log

(
1

δ

)
H

k∑
s=k0+1

∑
π

p̃s(π)∆π +H log

(
1

δ

)

≤2

k∑
s=k0+1

∑
π

p̃s(π)∆π + 2H log

(
1

δ

)
.

(22)

Denote M be the episode that first satisfy M ≥ 48dHβM

∆2
min

.
For k ≥ M , we have:

k∑
s=M

∑
π

p̃s(π)∆π =

k∑
s=M

∑
π

1

2
ps(π)∆π

≤
k∑

s=M

36dHβs

∆mins

≤O
(
dHβk log(k)

∆min

)
,

(23)

where the inequality is due to Lemma 7 with r = 3.
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For k < M , according to Lemma 5 we have:

M∑
s=k0+1

∑
π

p̃s(π)∆π =

M∑
s=k0+1

∑
π

1

2
ps(π)∆π

≤
M∑

s=k0+1

O
(
dHβs√

s

)
≤O

(
dHβM

√
M
)
.

During phase 1, we have:

k0∑
s=1

V π∗

s − V πs
s ≤

√
C1

900fKC1

∆2
min

≤ O

(
C1

√
log(K)

∆min

)
.

Since we condition on that phase 2 never ends, we have:

K∑
s=1

∆πs
≤O

(
C1

√
log(K)

∆min

)
+O

(
dHβK log(K)

∆min

)
+O

(
dHβM

√
M
)

≤O

dH2 log(K) log
(

|Π|K
δ

)
∆min

 .

C ANALYSIS IN THE ADVERSARIAL SETTING

Proof of Lemma 2. First, we bound the deviation of estimation in Phase 1. For any episode k in
phase 1, we have:

k∑
s=1

V π
s − V πs

s ≤
√
C1K − C2

∣∣∣∣∣∣
k∑

s=1

V̂ π
s − V π

s

∣∣∣∣∣∣
≤
√
C1K − (C2 − 1)

∣∣∣∣∣∣
k∑

s=1

V̂ π
s − V π

s

∣∣∣∣∣∣+
k∑

s=1

(
V π
s − V̂ π

s

)
.

Thus: ∣∣∣∣∣∣
k∑

s=1

V̂ π
s − V π

s

∣∣∣∣∣∣ ≤ 1

C2 − 1

√C1K +

k∑
s=1

V πs
s − V̂ π

s

 .

At time k0: ∣∣∣∣∣∣
k0∑
s=1

V̂ π
s − V π

s

∣∣∣∣∣∣ ≤ 1

C2 − 1

√C1K +

k0∑
s=1

V πs
s − V̂ π

s


≤ 1

C2 − 1

2
√
C1K +

k0∑
s=1

Ys − V̂ π
s


≤ 1

C2 − 1

2
√
C1K + 5

√
fKC1k0 +

k0∑
s=1

V̂ π̂
s − V̂ π

s


≤ 1

C2 − 1

(
7
√
fKC1k0 + k0∆̂π

)
.

(24)
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Next, we bound the deviation of (k − k0)Robk,π for π ̸= π̂.
The variance of V̂ π

κ is bounded as follows:

E
[(

V̂ π
κ

)2]
=E


 H∑

h=1

(
r̂πκ,h

)2


≤H

H∑
h=1

E
[(

r̂πκ,h

)2]
≤ H

H∑
h=1

∥∥ϕπ,h

∥∥2
Σ̃−1

κ,h

≤2H

H∑
h=1

∥∥ϕπ,h

∥∥2
Σ−1

κ,h

≤ 2H

(
κ∆̂2

π

βκ
+ 4dH

)
.

Using the properties of the Catoni estimator, we have:∣∣∣∣∣∣
k∑

κ=k0

V π
κ − (k − k0)Robk,π

∣∣∣∣∣∣
≤απ

k

k∑
κ=k0+1

E
[(

V̂ π
κ − V π

κ

)2]
+

V π
κ − 1

k − k0

k∑
κ=k0

V π
κ

2
+

2 log
(

k2|Π|
δ

)
απ
k

≤απ
k

k∑
κ=k0+1

H

(
2
κ∆̂2

π

βκ
+ 9dH

)
+

4 log
(

k|Π|
δ

)
απ
k

(25)

≤4

√√√√H log

(
k|Π|
δ

) k∑
κ=k0+1

(
2
κ∆̂2

π

βκ
+ 9dH

)
. (26)

Where equation 26 is by our choice of απ
k .

Since equation 3 and equation 4 provides that:

∆̂π =
1

k0

k0∑
s=1

V̂ π̂
s − V̂ π

s ≥ 20

√
fKC1

k0
= 20

√
fKβKdH2

k0
, (27)

we have 9dH ≤ k0∆̂
2
π

βK
≤ 2κ∆̂2

π

βκ
.

Thus we have: ∣∣∣∣∣∣
k∑

κ=k0

V π
k − (k − k0)Robk,π

∣∣∣∣∣∣ ≤4

√√√√H log

(
k|Π|
δ

) k∑
κ=k0+1

4
κ∆̂2

π

βκ

≤4

√√√√H log

(
k|Π|
δ

)
4k

βk

k∑
κ=k0+1

∆̂2
π

≤ 1

16
k∆̂π .

Combining terms, we have:∣∣∣∣∣∣
k∑

s=1

V π
s −

k0∑
s=1

V̂ π
s − (k − k0)Robk,π

∣∣∣∣∣∣ ≤ 1.4k∆̂π

10
. (28)

Finally, we bound the deviation of V̂ π̂ .
In the first k0 episodes, since ∆̂π̂ = 0, according to equation 24, we have that:∣∣∣∣∣∣

k0∑
s=1

V π̂
s − V̂ π̂

s

∣∣∣∣∣∣ ≤√fkC1k0 . (29)
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In phase 2, since E
[
V̂ π̂
k

]
= V π̂

k is an unbiased estimator of the true value function, according to

Freedman inequality, and that E
[(

V̂ π̂
k

)2]
= E

[
Y 2
k

p̃2
k(π̂)

1{πk = π̂}
]
≤ H2

p̃k(π̂)
≤ 2H2, we have:∣∣∣∣∣∣

k∑
s=k0+1

V̂ π̂
s − V π̂

s

∣∣∣∣∣∣ ≤ 2

√
2H2k log

k|Π|
δ

+ 2H log
k|Π|
δ

≤
√

C1k .

Combining the two terms, we have:∣∣∣∣∣∣
k∑

s=1

V̂ π̂
s − V π̂

s

∣∣∣∣∣∣ ≤ 2
√
fKC1k . (30)

In sum,

k∑
s=1

V π̂
s − V π

s

≥
k−1∑
s=1

V π̂
s − V π

s − 2H

≥
k0∑
s=1

(
V̂ π̂
s − V̂ π

s

)
+

 k−1∑
s=k0+1

V̂ π̂
s − (k − k0 − 1)Robk−1,π

− 2
√
fKC1(k − 1)− 1.4(k − 1)∆̂π

10
− 2H

≥(k − 1)∆̂k−1,π − 3(k − 1)∆̂π

10
≥ 0 ,

where the second to last inequality is due to equation 27, and the last one is due to equation 8.

Proof of Theorem 3. Finally, we proof the regret bound in adversarial setting. For the regret in phase
2, we can decompose it as follows.

k∑
s=k0+1

V π̂
s − V πs

s

=
k∑

s=k0+1

(
V̂ π̂
s − Ys

)
+
(
Ys1{πs = π̂}+ V π̂

s 1{πs ̸= π̂} − V̂ π̂
s

)
+

[(
V π̂
s 1{πs = π̂} − Ys1{πs = π̂}

)
+ (Ys − V πs

s )

]
.

The first term is bounded by equation 9:

k∑
s=k0+1

V̂ π̂
s − Ys ≤ O

(√
fKC1k0

)
.

The second term is a martingale difference sequence since:

E
[
Ys1{πs = π̂}+ V π̂

s 1{πs ̸= π̂} − V̂ π̂
s

]
=p̃s (π̂)E

[
Ys −

Ys

p̃s (π̂)

]
+
(
1− p̃s (π̂)

)
V π̂
s

=p̃s (π̂)

(
1− 1

p̃s (π̂)

)
E [Ys] +

(
1− p̃s (π̂)

)
V π̂
s

=0 .
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It’s variance is bounded as:

E
[(

Ys1{πs = π̂}+ V π̂
s 1{πs ̸= π̂} − V̂ π̂

s

)2]
=p̃s (π̂)E

[(
Ys −

Ys

p̃s (π̂)

)2
]
+
(
1− p̃s (π̂)

) (
V π̂
s

)2
≤p̃s (π̂)

(
1− 1

p̃s (π̂)

)2

H2 +
(
1− p̃s (π̂)

)
H2

≤2H2
(
1− p̃s (π̂)

)
,

where the last inequality is due to p̃s (π̂) ≥ 1
2 .

The third term is also a martingale difference sequence, whose variance is bounded as:

E

[((
V π̂
s 1{πs = π̂} − Ys1{πs = π̂}

)
+ (Ys − V πs

s )

)2
]

≤
(
1− p̃s (π̂)

)
E
[
(Ys − V πs

s )
2
]

≤
(
1− p̃s (π̂)

)
4H2 .

Also, we have:

1− p̃s (π̂) ≤
1

2
ps (π̂) =

1

2

∑
π ̸=π̂

ps (π) ≤
1

2

∑
π ̸=π̂

ps (π)
∆̂π

∆̂min

≤ 12dHβs

∆̂2
mins

. (31)

Thus, using Freedman inequality on the last two terms, we got:

k∑
s=k0+1

V π̂
s − V πs

s

≤O

√fKC1k0 +

√√√√log
k

δ
H2

k∑
s=1

dHβs

∆̂2
mins

+H log
k

δ



≤O

√fKC1k0 +

√√√√ log
(

k
δ

)
dH3 log(k)βkk0

fKC1
+H log

k

δ


≤O

(√
fKC1k0

)
.

(32)

Combining with the regret in phase 1, the regret in one epoch is bounded as:

k∑
s=1

V π̂
s − V πs

s ≤ O
(√

fKC1k0

)
.

Since the duration time k0 of phase 1 is at least twice as the length of phase 1 in the previous epoch,
we have that the sum of

√
k0 in all the epochs is bounded by an constant factor of the square root of

duration time in phase 1 of the last epoch, which is bounded by
√
K.

Summation over all the epochs, we have :

Reg (K; Π) = O
(√

C1K log(K)
)
= O

√dH3K log(K) log

(
|Π|K
δ

) .
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Algorithm 4 Geometric Hedge for Linear Adversarial MDP Policies

1: Input: policy set Π, γ = min

 1
2 ,

√
dH log

(
|Π|
δ

)
K

, η = γ
4dH2

2: Initialize: ∀π ∈ Π, w1 (π) = 1,W1 := |Π|. ∀h from 1 to H , compute the G-optimal design
gh(π) on the set of feature visitations: {ϕπ,h, π ∈ Π}. Denote g(π) = 1

H

∑H
h=1 gh(π)

3: for each episode k = 1 to K do
4: ∀π ∈ Π,

pk (π) = (1− γ)
wk (π)

Wk
+ γg(π)

5: Select πk ∈ Π according to the probability pk(π) and collect rewards yk,h
6: Calculate reward estimators: θ̂k,h = Σ−1

k,hϕπk,hyk,h, and r̂πk,h = ϕ⊤
π,hθ̂k,h, V̂ π

k =
∑H

h=1 r̂
π
k,h,

where Σk,h =
∑

π pk(π)ϕπ,hϕ
⊤
π,h

7: Compute the optimistic estimate of the value function:

Ṽ π
k =

H∑
h=1

r̂πk,h + 2ϕ⊤
π,hΣ

−1
k,hϕπ,h

√
H

log
(
1
δ

)
dK


8: And we transform it into loss functions: lk,h(sh, ah) = 1− rk,h(sh, ah), lπk,h = 1− rπk,h

Lπ
k,h =

H∑
h=1

lπk,h = H − V π
k,h

L̂π
k,h =

H∑
h=1

l̂πk,h =

H∑
h=1

(
1− r̂πk,h

)
= H − V̂ π

k,h

L̃π
k,h = H − Ṽ π

k,h

9: update using the loss estimators:

∀π ∈ Π, wk+1(π) = wk(π) exp
(
−ηL̃π

k

)
,Wk+1 =

∑
π∈Π

wk+1(π)

10: end for

D HIGH PROBABILITY GUARANTEE FOR ADVERSARIAL LINEAR MDP

First, we bound the deviation between the estimated value and the true value of policy π.

Lemma 9. Denote DEVK,π =
∣∣∣∑K

k=1 V̂
π
k − V π

k

∣∣∣, then we have:

DEVK,π =

∣∣∣∣∣∣
K∑

k=1

V̂ π
k − V π

k

∣∣∣∣∣∣ =
∣∣∣∣∣∣

K∑
k=1

L̂π
k − Lπ

k

∣∣∣∣∣∣
≤ 1

C2

K∑
k=1

H∑
h=1

∥∥ϕπ,h

∥∥2
Σ−1

k,h

√
H log

(
1
δ

)
dK

+ C2

√
dKH log

(
1

δ

)
+ 2

(
dH2

γ
+H

)
log

(
1

δ

)
.

Proof. First, we show that V̂ π
k is an unbiased estimate of V π

k :

E
[
V̂ π
k

]
=

H∑
h=1

E
[
V̂ π
k,h

]
=

H∑
h=1

ϕ⊤
π,hΣ

−1
k,hE

[
ϕπk,hyk,h

]
,
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using the tower rule of expectation, we have:

E
[
ϕπk,hyk,h

]
= E

[
ϕπk,hr

πk

k,h

]
= E

[
ϕπk,hϕ

⊤
πk,h

θk,h

]
= Σk,hθk,h ,

so

E
[
V̂ π
k

]
=

H∑
h=1

ϕ⊤
π,hθk,h = V π

k .

Denote σ2 =
∑K

k=1 Var
(
V̂ π
k

)
, then:

σ2 ≤
K∑

k=1

E


 H∑

h=1

ϕ⊤
π,hΣ

−1
k,hϕπk,hyk,h

2


≤
K∑

k=1

H

H∑
h=1

E
[(

ϕ⊤
π,hΣ

−1
k,hϕπk,hyk,h

)2]

≤H

K∑
k=1

H∑
h=1

∥∥ϕπ,h

∥∥2
Σ−1

k,h

.

Also, due to the properties of G-optimal design, we have:∥∥ϕπ,h

∥∥2(∑
π gh(π)ϕπ,hϕ⊤

π,h

)−1 ≤ d ,

and Σk,h ⪰ γ
H

∑
π gh(π)ϕπ,hϕ

⊤
π,h. Thus we have

∥∥ϕπ,h

∥∥2
Σ−1

k,h

≤ dH
γ , ∀π ∈ Π, so V̂ π

k ≤ dH2

γ . Using

Freedman inequality, the sum of the martingale difference sequence V̂ π
k − V π

k is bounded as:∣∣∣∣∣∣
K∑

k=1

V̂ π
k − V π

k

∣∣∣∣∣∣ ≤ 2

√√√√H

K∑
k=1

H∑
h=1

∥∥ϕπ,h

∥∥2
Σ−1

k,h

log

(
1

δ

)
+

(
dH2

γ
+H

)
log

(
1

δ

)

≤ 1

C2

K∑
k=1

H∑
h=1

∥∥ϕπ,h

∥∥2
Σ−1

k,h

√
H log

(
1
δ

)
dK

+ C2

√
dKH log

(
1

δ

)
+ 2

(
dH2

γ
+H

)
log

(
1

δ

)
,

where the last inequality is due to the geometric mean-arithmetic mean inequality.

Lemma 10.

Lπk

k −
K∑

k=1

∑
π

pk(π)L̂
π
k

=

K∑
k=1

∑
π

pk(π)V̂
π
k −

K∑
k=1

V πk

k

≤H
(√

d+ 1
)√

2K log

(
1

δ

)
+

4

3

(
H +

dH2

γ

)
log

(
1

δ

)
.

Proof.
K∑

k=1

∑
π

pk(π)V̂
π
k −

K∑
k=1

V πk

k =

K∑
k=1

H∑
h=1

(∑
π

pk(π)r̂
π
k,h − rπk

k,h

)
. (33)

Using lemma 6 in Bartlett et al. (2008), we have:∣∣∣∣∣∣
K∑

k=1

rπk

k,h −
K∑

k=1

∑
π

pk(π)r̂
π
k,h

∣∣∣∣∣∣ ≤
(√

d+ 1
)√

2K log

(
1

δ

)
+

4

3

(
dH

γ
+ 1

)
log

(
1

δ

)
.

Since
∣∣∣θ̂⊤k,hϕπ,h

∣∣∣ ≤ dH
γ .

Plugging it into equation 33, we finish the proof.
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Lemma 11. With probability at least 1− δ, we have :

K∑
k=1

∑
π

pk(π)
(
L̃π
k

)2
≤ 2(d+ 1)KH2 + 2

dH3

γ

√
2K log

(
1

δ

)
+

8dH3 log
(
1
δ

)
γ

.

Proof. Since L̂π
k = H − V̂ π

k ,
(
L̂π
k

)2
≤
(
V̂ π
k

)2
+H2, we have:

K∑
k=1

∑
π

pk(π)
(
L̂π
k

)2
≤

K∑
k=1

∑
π

pk(π)
(
V̂ π
k

)2
+KH2 .

Using Cauchy-Schwarz inequality, we have:

(
V̂ π
k

)2
≤ H

H∑
h=1

(
r̂πk,h

)2
.

So,

K∑
k=1

∑
π

pt(π)
(
r̂πk,h

)2
=

K∑
k=1

∑
π

pt(π)θ̂
⊤
k,hϕπ,hϕ

⊤
π,hθ̂k,h

=

K∑
k=1

∑
π

θ̂⊤k,hΣk,hθ̂k,h

≤
K∑

k=1

ϕ⊤
πk,h

Σ−1
k,hϕπk,h .

Notice that using the definition of Σk,h and properties of the G-optimal design,

E
[
ϕ⊤
πk,h

Σ−1
k,hϕπk,h

]
= d ,

ϕ⊤
πk,h

Σ−1
k,hϕπk,h ≤ dH

γ
.

Applying the Hoeffding bound, we got:

K∑
k=1

∑
π

pt(π)
(
r̂πk,h

)2
≤ dK +

dH

γ

√
2K log

(
1

δ

)
.

Thus:

K∑
k=1

∑
π

pk(π)
(
V̂ π
k

)2
≤H

H∑
h=1

K∑
k=1

∑
π

pt(π)
(
r̂πk,h

)2
≤dKH2 +

dH3

γ

√
2K log

(
1

δ

)
.
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And:

(
L̃π
k

)2
=

L̂π
k −

H∑
h=1

2ϕ⊤
π,hΣ

−1
k,hϕπ,h

√
H

log
(
1
δ

)
dK


2

≤2
(
L̂π
k

)2
+ 2

 H∑
h=1

2ϕ⊤
π,hΣ

−1
k,hϕπ,h

√
H

log
(
1
δ

)
dK


2

≤2
(
L̂π
k

)2
+ 2H

H∑
h=1

4
∥∥ϕπ,h

∥∥2
Σ−1

k,h

ϕ⊤
π,hΣ

−1
k,hϕπ,h

H log
(
1
δ

)
dK

≤2
(
V̂ π
k

)2
+ 2H2 + 8

dH

γ

H∑
h=1

ϕ⊤
π,hΣ

−1
k,hϕπ,h

H log
(
1
δ

)
dK

.

So we conclude that:

K∑
k=1

∑
π

pk(π)
(
L̃π
k

)2
≤2

K∑
k=1

∑
π

pk(π)
(
L̂π
k

)2
+

8H2 log 1
δ

γK

K∑
k=1

H∑
h=1

∑
π

pk(π)ϕ
⊤
π,hΣ

−1
k,hϕπ,h

≤2(d+ 1)KH2 + 2
dH3

γ

√
2K log

(
1

δ

)
+

8dH3 log
(
1
δ

)
γ

.

Proof of Theorem 1 . Now we analyze the potential function. Using classical techniques, we got that
counter part of equation (2) in Bartlett et al. (2008):

log

(
WK

W1

)
=

K∑
k=1

log

(
Wk

Wk−1

)

=

K∑
k=1

log

(∑
π

wk(π)

Wk−1
exp

(
−ηL̃π

k

))

≤
K∑

k=1

log

(∑
π

pk(π)− γgπ
1− γ

(
1− ηL̃π

k + η2
(
L̃π
k

)2))
(34)

≤
K∑

k=1

∑
π

pk(π)− γgπ
1− γ

(
−ηL̃π

k + η2
(
L̃π
k

)2)

≤ η

1− γ

 K∑
k=1

∑
π

−pk(π)L̃
π
k + γ

K∑
k=1

∑
π

g(π)L̃π
k + η

K∑
k=1

∑
π

pk(π)
(
L̃π
k

)2 , (35)
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where inequality 34 is due to the constraint that
∣∣∣ηL̃π

k

∣∣∣ ≤ 1.
Using Lemma 10, we have:

K∑
k=1

∑
π

∑
π

−pk(π)L̃
π
k

=

K∑
k=1

∑
π

−pk(π)L̂
π
k + 2

K∑
k=1

H∑
h=1

∑
π

pk(π)ϕ
⊤
π,hΣ

−1
k,hϕπ,h

√
H

log
(
1
δ

)
dK

=

K∑
k=1

∑
π

−pk(π)L̂
π
k + 2H

√
dKH log

(
1

δ

)

≤
K∑

k=1

−Lπk

k +H
(√

d+ 1
)√

2K log

(
1

δ

)
+

4

3

(
H +

dH2

γ

)
log

(
1

δ

)
+ 2H

√
dKH log

(
1

δ

)
.

Using Lemma 9 and choosing C2 = 1
2 , we have:

K∑
k=1

L̃π
k ≤

K∑
k=1

Lπ
k +DEVk,π −

K∑
k=1

H∑
h=1

2ϕ⊤
π,hΣ

−1
k,hϕπ,h

√
H

log
(
1
δ

)
dK

≤
K∑

k=1

Lπ
k +

1

2

√
dKH log

(
1

δ

)
+ 2

(
dH2

γ
+H

)
log

(
1

δ

)

≤KH +
1

2

√
dKH log

(
1

δ

)
+ 2

(
dH2

γ
+H

)
log

(
1

δ

)
.

Thus equation 35 becomes:

log

(
WK

W1

)
≤ η

1− γ

− K∑
k=1

Lπk

k +H
(√

d+ 1
)√

2K log

(
1

δ

)
+

4

3

(
H +

dH2

γ

)
log

(
1

δ

)
+ 2H

√
dKH log

(
1

δ

)
+ 2ηγKH + η

1
2

√
dKH log

(
1

δ

)
+ 2

(
dH2

γ
+H

)
log

(
1

δ

)
+ 2η2

2(d+ 1)KH2 + 2
dH3

γ

√
2K log

(
1

δ

)
+

8dH3 log
(
1
δ

)
γ


≤η

−
K∑

k=1

Lπk

k

+ 2η2

2(d+ 1)KH2 + 2
dH3

γ

√
2K log

(
1

δ

)
+

8dH3 log
(
1
δ

)
γ


+ 2η

H (√d+ 1
)√

2K log

(
1

δ

)
+

4

3

(
H +

dH2

γ

)
log

(
1

δ

)
+ 2H

√
dKH log

(
1

δ

)
+ 2ηγKH + η

1
2

√
dKH log

(
1

δ

)
+ 2

(
dH2

γ
+H

)
log

(
1

δ

) .

(36)
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And we also have for ∀π ∈ Π,

log

(
WK

W1

)
≥η

 K∑
k=1

−L̃π
k

− log
(
|Π|
)

≥η

 K∑
k=1

−Lπ
k −DEVK,π +

K∑
k=1

H∑
h=1

2ϕ⊤
π,hΣ

−1
k,hϕπ,h

√
H

log
(
1
δ

)
dK

− log
(
|Π|
)
,

(37)

where the last inequality is due to Lemma 9.
Plugging equation 36 and equation 37 together, we have that for ∀π ∈ Π:

K∑
k=1

Lπk

k − Lπ
k ≤DEVk,π −

K∑
k=1

H∑
h=1

2ϕ⊤
π,hΣ

−1
k,hϕπ,h

√
H

log
(
1
δ

)
dK

+ 4

(
dH2

γ
+H

)
log

(
1

δ

)
+

log|Π|
η

+ 5H

√
dKH log

(
1

δ

)

+ 2H
(√

d+ 1
)√

2K log

(
1

δ

)
+

8

3

(
H +

dH2

γ

)
log

(
1

δ

)

+ 2γKH + 4η

(d+ 1)KH2 +
dH3

γ

√
2K log

(
1

δ

)+
16ηdH3 log 1

δ

γ
.

(38)

When K ≥ L0 = 4dH log
(

|Π|
δ

)
and γ ≤ 1

2 ,

∣∣∣L̃π
k

∣∣∣ ≤ H +
∣∣∣Ṽ π

k

∣∣∣ ≤ H +
dH2

γ

1 + 2

√
H log

(
1
δ

)
dK

 ≤ 4dH2

γ
.

So the choice of η = γ
4dH2 ensures

∣∣∣ηL̃π
k

∣∣∣ ≤ 1. Plugging in our choice of η, equation 38 then
becomes:

K∑
k=1

Lπk

k − Lπ
k ≤

(
1

C2
− 2

) K∑
k=1

H∑
h=1

2ϕ⊤
π,hΣ

−1
k,hϕπ,h

√
H

log
(
1
δ

)
dK


+O

√dH3K log

(
1

δ

)
+

dH2

γ
log

(
|Π|
δ

)
+ γKH

 .

Choosing C2 = 1
2 , we have:

K∑
k=1

Lπk

k − Lπ
k ≤ O

√dH3K log

(
1

δ

)
+

dH2

γ
log

(
|Π|
δ

)
+ γKH

 . (39)

And by our choice of γ = min

 1
2 ,

√
dH log

(
|Π|
δ

)
K

 =

√
dH log

(
|Π|
δ

)
K , we have:

Reg (K; Π) ≤
K∑

k=1

Lπk

k − Lπ
k ≤ O

√dH3K log

(
|Π|
δ

) . (40)
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For K ≤ L0 = 4dH log
(

|Π|
δ

)
, we have:

Reg (K; Π) ≤ KH ≤
√
KL0H = O

√dH3K log

(
|Π|
δ

) . (41)

Combining equation 41 and equation 40, we prove the regret bound.
Moreover, when K ≥ L0, choosing C2 ≥ 20 and recalling the definition of DEVk,π in Lemma 9,

K∑
k=1

V π
k − V πk

k =

K∑
k=1

Lπk

k − Lπ
k

≤−
K∑

k=1

H∑
h=1

2ϕ⊤
π,hΣ

−1
k,hϕπ,h

√
H

log
(
1
δ

)
dK

+O

√dH3K log

(
1

δ

)
+

dH2

γ
log

(
|Π|
δ

)
+ γKH


≤− C2DEVK,π +O

√dH3K log

(
1

δ

)
+

dH2

γ
log

(
|Π|
δ

)
+ γKH

 .

Applying a union bound for all the possible k0 ∈ {1, 2, · · ·K}, we conclude with at least probability
1− δ, we have:

k0∑
k=1

V π
k − V πk

k ≤
√
C1k0 − C2DEVk0,π .

With the constant C1 = O
(
dH3 log

(
|Π|K
δ

))
≥ dH2βK , proving Theorem 1.

E CONCENTRATION INEQUALITIES

Lemma 12. [Freedman inequality(Freedman, 1975)] Let F0 ⊂ F1 ⊂ · · · ⊂ FT be a filtration
and let X1, X2, · · ·XT be random variables such that Xt is Ft measurable, E

[
Xt|Ft−1

]
= 0,

|Xt| ≤ b almost surely, and
∑T

t=1 E
[
X2

t |Ft−1

]
≤ V for some fixed V > 0 and b > 0. Then, for any

δ ∈ (0, 1), we have with probability at least 1− δ,

T∑
t=1

Xt ≤ 2
√
V log

(
1/δ
)
+ b log

(
1/δ
)
.

Lemma 13 (Concentration inequality for Catoni estimators (Wei & Luo, 2018; Lee et al., 2021)).
Let F0 ⊂ F1 ⊂ · · · ⊂ Fn be a filtration and let X1, X2, · · ·Xn be random variables such that
Xi is Fi measurable, E

[
Xi|Fi−1

]
= µi for some fixed µi, and

∑n
i=1 E

[
(Xi − µi)

2 |Fi−1

]
≤ V

for some fixed V . Denote µ = 1
n

∑n
i=1 µi and let µ̂n,α be the Catoni’s robust mean estima-

tor of X1, X2, · · ·Xn with a fixed parameter α, that is, µ̂n,α is the unique root of the func-
tion: f(z) =

∑n
i=1 Φ

(
α (Xi − z)

)
, where Φ(y) = log

(
1 + y + y2/2

)
if y ≥ 0 and Φ(y) =

− log
(
1− y + y2/2

)
otherwise.

Then for any δ ∈ (0, 1), as long as n is large enough that n ≥ α2
(
V +

∑n
i=1 (µi − µ)

2
)
+

2 log
(
1/δ
)
, we have with probability at least 1− 2δ,

∣∣µ̂n,α − µ
∣∣ ≤ α

(
V +

∑n
i=1 (µi − µ)

2
)

n
+

2 log
(
1/δ
)

αn
.
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Choosing α optimally, we have:

∣∣µ̂n,α − µ
∣∣ ≤ 2

n

√√√√√2

V +

n∑
i=1

(µi − µ)
2

 log
(
1/δ
)
.

In particular, if µ1 = µ2 = · · · = µn, we have:∣∣µ̂n,α − µ
∣∣ ≤ 2

n

√
2V log

(
1/δ
)
.
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