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ABSTRACT

Transfer learning on graphs drawn from varied distributions (domains) is in great
demand across many applications. Emerging methods attempt to learn domain-
invariant representations using graph neural networks (GNNs), yet the empirical
performances vary and the theoretical foundation is limited. This paper aims at
designing theory-grounded algorithms for graph domain adaptation (GDA). (i)
As the first attempt, we derive a model-based GDA bound closely related to two
GNN spectral properties: spectral smoothness (SS) and maximum frequency re-
sponse (MFR). This is achieved by cross-pollinating between the OT-based (opti-
mal transport) DA and graph filter theories. (ii) Inspired by the theoretical results,
we propose algorithms regularizing spectral properties of SS and MFR to improve
GNN transferability. We further extend the GDA theory into the more challenging
scenario of conditional shift, where spectral regularization still applies. (iii) More
importantly, our analyses of the theory reveal which regularization would improve
performance of what transfer learning scenario, (iv) with numerical agreement
with extensive real-world experiments: SS and MFR regularizations bring more
benefits to the scenarios of node transfer and link transfer, respectively. In a nut-
shell, our study paves the way toward explicitly constructing and training GNNs
that can capture more transferable representations across graph domains. Codes
are released at https://github.com/Shen-Lab/GDA-SpecReg.

1 INTRODUCTION

Many applications call for “transferring” graph representations learned from one distribution
(domain) to another, which we refer to as graph domain adaptation (GDA). Examples include
temporally-evolved social networks (Wang et al., 2021), molecules of different scaffolds (Hu et al.,
2019), and protein-protein interaction networks in various species (Cho et al., 2016). In general,
this setting of transfer learning is challenging due to the data-distribution shift between the training
(source) and test (target) domains (i.e. PS(G, Y ) ̸= PT(G, Y )). In particular, such a challenge
escalates for graph-structured data that are abstractions of diverse nature (You et al., 2021; 2022).

Despite the tremendous needs arising from real-world applications, current methods for GDA (as re-
viewed in Section 2) mostly fall short in delivering competitive target performance with theoretical
guarantee. Inevitably those approaches assuming distribution invariance (or adopting heuristic prin-
ciples) are restricted in theory (Garg et al., 2020; Verma & Zhang, 2019). The emerging approaches
(Zhang et al., 2019; Wu et al., 2020) straightforwardly apply adversarial training between source
and target representations, intentionally founded on the DA theory to bound the target risk (Redko
et al., 2020). However, the generic DA bound in theory is agnostic to graph data and models, which
could be more precisely tailored for graphs. We therefore set out to explore the following question:
How to design algorithms to boost transfer performance across different graph domains, with the
grounded theoretical foundation? Our step-by-step answers are as follows.

(i) Derivation of model-based GDA bound. Building upon the rigorous assurance established
in the DA theory (Section 3), we start by directly rewriting the OT-based (optimal transport) DA
bound (Redko et al., 2017; Shen et al., 2018) for graphs (Corollary 1), which is closely coupled
with the Lipschitz constant of graph encoders. The nontrivial challenge here is how to formulate
GNN Lipschitz w.r.t the distance metric of non-Euclidean data. Leveraging the graph filter theory
(Gama et al., 2020; Arghal et al., 2021), we first state that GNNs can be constructed stably w.r.t. the
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misalignment of edges and that of node features, multiplied by two spectral properties respectively:
spectral smoothness (SS) and maximum frequency response (MFR) (Lemma 1). Subsequently, we
utilize SS and MFR to formulate GNN Lipschitz w.r.t graph distances into a general form, and
instantiate it as (informally) max

{
O(SS),O(MFR)

}
w.r.t. the commonly-used matching distance

(Gama et al., 2020; Arghal et al., 2021) (Lemma 2). This leads to the first model-based GDA bound.

(ii) Theory-grounded spectral regularization. One potential way to tighten the DA bound is to
modulate the Lipschitz constant (Section 3). Guided by the theoretical results above, we are well-
motivated to propose spectral regularization (i.e. SSReg and MFRReg) to restrict the target risk
bound (Section 4.2). We also extend the GDA theory into the more challenging conditional-shift
scenario (Li et al., 2021a; Zhao et al., 2019) (Lemma 3), where spectral regularization still applies.

(iii) Interpretation on how theory drives practice. Our further analyses on theory reveal which
regularization would improve performance of what graph transfer scenario: specifically, SSReg and
MFRReg are respectively beneficial to the scenarios of node transfer and link transfer (Section 4.2),
(iv) with extensive numerical evidences from un/semi-supervised (cross-species protein-protein
interaction) link prediction and (temporally-shifted paper topic) node classification (Section 5).

2 RELATED WORKS
Self-supervision on graphs. Graph self-supervised learning, surging recently, learns empirically
more generalizable representations through exploiting vast unlabelled graph data (please refer to
(Xie et al., 2021) for a comprehensive review). The success of self-supervision largely hinges on
big data and, more importantly, heuristically-designed pretext tasks. The tasks can be predictive
(Velickovic et al., 2019; Hu et al., 2019; Jin et al., 2020; You & Shen, 2022; You et al., 2020b; Chien
et al., 2021; Talukder et al., 2022) or contrastive (You et al., 2020a; Zhu et al., 2020b; Qiu et al.,
2020; Wei et al., 2022), which does not provide theoretical guarantee of the target performance and,
as a result, occasionally leads to “negative transfer” in practice (Hu et al., 2019; You et al., 2020a).

Transferring GNNs with explicit covariate shifts. To promote target performance, one line of
work is to utilize more data and make specific assumptions. One such example is to assume the ac-
cess to source labels and the explicit covariate shift that PS(Y |G) = PT(Y |G) and PS(G) ̸= PT(G)
in a specific way, which enables theoretical tools for certain guarantees. (Ruiz et al., 2020; Yehudai
et al., 2021) study the specific setting of size generalization and use the graphon theory (Lovász,
2012) to develop size-invariant representations. (Bevilacqua et al., 2021) works on transfer learning
in shifting d-patterns of subgraphs and adopts the theory of GNN expressiveness (Xu et al., 2018;
Morris et al., 2019) to demonstrate the existence of negative-transferring GNNs despite their univer-
sal approximation capability. Accordingly, the study proposes d-pattern classification pre-training
to help escape from negative-transferring GNNs. These methods are restricted to the designated
transfer learning scenarios. Besides, some other works (Fan et al., 2021; Sui et al., 2021; Li et al.,
2021b; Kenlay et al., 2021; Chen et al., 2022; Li et al., 2022; Zhang et al., 2022; Jin et al., 2022)
adopt the implicit covariate shift assumption with source labels while lacking assurance in theory,
e.g. (Wu et al., 2022a;b) assumes that the shift could be implicitly modeled with an environment
learner (please refer to (Gui et al., 2022) for a comprehensive review).

Graph domain adaptation. To deliver a generally applicable guarantee, several methods (Dai et al.,
2019; Cai et al., 2021; Zhang et al., 2019; Wu et al., 2020; Xu et al., 2022) additionally utilize target
graphs to learn domain-invariant representations. According to the DA theory (Ben-David et al.,
2007; 2010; Redko et al., 2020; Zhang et al., 2020; Yan et al., 2017), the target risk is guaranteed
to be bounded (please refer to (Redko et al., 2020) for a comprehensive review). The generic DA
bound is not designated for graph data or encoders where further improvement could be achieved.

3 PRELIMINARIES
Problem setup. We are given i.i.d. samples (Verma & Zhang, 2019; Zhu et al., 2021; Cong et al.,
2021) and their labels {(Gn, Yn)}NS

n=1 from the source distribution PS(G, Y ) of graphs G ∈ G and
labels Y ∈ Y , where G = {V,E} is associated with the set of nodes V and edges E, together
with the node feature X ∈ R|V |×D and adjacency matrices A ∈ R|V |×|V |. We also have access
to unlabeled samples {Gn}NT

n=1 from the marginalized target distribution
∫
PT(G, Y )dY . With the

covariate shift assumption that PS(G) ̸= PT(G),PS(Y |G) = PT(Y |G) (Ben-David et al., 2007;
2010), we are expected to train a graph neural network (GNN) h : G → Y with the accessible data
and then evaluate on target samples from PT(G, Y ).

2



Published as a conference paper at ICLR 2023

Domain adaptation with optimal transport. Studies on transfer learning across distinctly dis-
tributed data have proliferated in the past few years, known as domain adaptation (DA) (Redko et al.,
2020). Based on the aforementioned problem setup, we decompose the trained GNN h = g ◦ f into
the feature extractor f : G → RD′

(Z = f(G)) and discriminator g : RD′ → Y (Y = g(Z)). With-
out the loss of generalizability, we consider a binary classification task where Y = [0, 1] and Y ∈ Y
is the probability to belong to class 1. We denote the labeling function given representations as
ĝ : RD′ → Y , and the (empirical) source and target risks as ϵ̂S(g, ĝ) = 1

NS

∑NS

n=1 |g(Zn)− ĝ(Zn)|
and ϵT(g, ĝ) = EPT(Z)

{
|g(Z) − ĝ(Z)|

}
, respectively. Applying DA with optimal transport (OT),

if the covariate shift holds on representations that PS(Y |Z) = PT(Y |Z), the target risk ϵT(g, ĝ) is
bounded as in the following theorem.

Theorem 1 (Redko et al., 2017; Shen et al., 2018; Li et al., 2021a) Suppose that the learned
discriminator g is Cg-Lipschitz where the Lipschitz norm ∥g∥Lip = maxZ1,Z2

|g(Z1)−g(Z2)|
ρ(Z1,Z2)

= Cg

holds for some distance function ρ (Euclidean distance here). Let H := {g : Z → Y} be the
set of bounded real-valued functions with the pseudo-dimension Pdim(H) = d that g ∈ H, with
probability at least 1− δ the following inequality holds:

ϵT(g, ĝ) ≤ ϵ̂S(g, ĝ) +

√
4d

NS
log(

eNS

d
) +

1

NS
log(

1

δ
) + 2CgW1

(
PS(Z),PT(Z)

)
+ ω, (1)

where ω = min∥g∥Lip≤Cg

{
ϵS(g, ĝ)+ ϵT(g, ĝ)

}
denotes the model discriminative ability (to capture

source and target data), and the first Wasserstein distance is defined as (Villani, 2009):

W1(P,Q) = sup
∥g∥Lip≤1

{
EPS(Z)g(Z)− EPT(Z)g(Z)

}
. (2)

The thorough tightness justification of the OT-based DA bound can be found in ((Redko et al.,
2020), Section 5.3-5.5). The theorem indicates that the generalization gap depends on both the
domain-divergence 2CgW1(PS(Z),PT(Z)) and the model discriminability ω.

Adversarial training. Motivated from Theorem 1 (or its variants differing mainly in distribution
divergence metrics (Ben-David et al., 2007; 2010; Mansour et al., 2009)), a well-developed practice
is to learn domain-invariant representations via jointly optimizing the source risk and the distribution
divergence term (conceptually, W1(PS(Z),PT(Z))) as in (Redko et al., 2017; Shen et al., 2018):

min
f,∥g∥Lip≤Cg

1

NS

NS∑
n=1

ℓ(g ◦ f(Gn), Yn) + γŴ1

(
PS(f(G)),PT(f(G))

)
, (3)

where ℓ is the loss function used for training, Ŵ1 is the empirically calculated first Wasserstein
distance with implementation details following (Shen et al., 2018) presented in Appendix E, and
γ is the trade-off factor. Besides co-optimizing Ŵ1, implementing domain classifiers is another
effective way to alleviate the domain discrepancy (Zhang et al., 2019; Wu et al., 2020).

4 METHODS

4.1 MODEL-BASED DA BOUND FOR GRAPH-STRUCTURED DATA

Noticing that the generic DA theory (Theorem 1) is agnostic to data structures and encoders, our first
step is to directly rewrite it for graph-structured data (G) accompanied with graph feature extractors
(f ) as follows. The covariate shift assumption is now reframed as PS(Y |G) = PT(Y |G).

Corollary 1. Let’s assume that the learned discriminator is Cg-Lipschitz continuous as described
in Theorem 1, and the graph feature extractor f (also referred to as GNN) is Cf -Lipschitz that
∥f∥Lip = maxG1,G2

∥f(G1)−f(G2)∥2

η(G1,G2)
= Cf for some graph distance measure η. Let H := {h :

G → Y} be the set of bounded real-valued functions with the pseudo-dimension Pdim(H) = d that
h = g ◦ f ∈ H, with probability at least 1− δ the following inequality holds:

ϵT(h, ĥ) ≤ ϵ̂S(h, ĥ) +

√
4d

NS
log(

eNS

d
) +

1

NS
log(

1

δ
) + 2CfCgW1

(
PS(G),PT(G)

)
+ ω, (4)

where the (empirical) source and target risks are ϵ̂S(h, ĥ) = 1
NS

∑NS

n=1 |h(Gn) − ĥ(Gn)| and
ϵT(h, ĥ) = EPT(G)

{
|h(G) − ĥ(G)|

}
, respectively, where ĥ : G → Y is the labeling function

for graphs and ω = min∥g∥Lip≤Cg,∥f∥Lip≤Cf

{
ϵS(h, ĥ) + ϵT(h, ĥ)

}
.
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The property in Corollary 1 designated for GNNs, as we focus on, is the Lipschitz constant
Cf = maxG1,G2

∥f(G1)−f(G2)∥2

η(G1,G2)
. Success in instantiating this conceptual model-related property

for graphs provides important insights into how to rationally construct or train GNNs for better
transferability. Other data-relevant properties (e.g. W1(PS(G),PT(G))) are left to future works.

Instantiating the GNN Lipschitz constant is however nontrivial. The distance metric η(G1, G2) is
formulated w.r.t non-Euclidean structures and its computation hinges on solving the graph matching
problem whose time complexity is exponential in the number of nodes (Riesen & Bunke, 2009;
Riesen et al., 2010).

Rather than working on the denominator of the Lipschitz norm, we take an alternative perspective
of the numerator, i.e. ∥f(G1) − f(G2)∥2, which is related to the GNN stability (potentially mul-
tiplied with the distance term to eliminate the denominator). This essentially motivates us to draw
a connection between transferability and stability. Thanks to the permutation invariance property
of GNNs, graph matching does not need to be solved here. Building upon the graph filter theory
(Gama et al., 2020; Arghal et al., 2021), we first state that GNNs can be constructed stably:

□ Lemma 1. Suppose that G is the set for graphs of the size the size NG after padding with isolated
nodes, similar to (Zhu et al., 2021). Given ∀G1, G2 ∈ G and A1 = U1Λ1U

T
1 , A2 = U2Λ2U

T
2 , the

eigen decomposition for adjacency matrices A1 and A2 that Λ1 = diag([λ1,1, ..., λ1,NG
]),Λ2 =

diag([λ2,1, ..., λ2,NG
]) (eigen values are sorted in the descending order). A GNN is con-

structed by composing a graph filter and nonlinear mapping that f(G1) = r(σ(S(A1)X1W )) =
r(σ(U1S(Λ1)U

T
1 X1W )) where S is the polynomial function that S(A1) =

∑∞
k=0 skA

k
1 , W ∈

RD×D′
is the learnable weight matrix, r is the mean/sum/max readout function to pool node repre-

sentations, and the pointwise nonlinearity holds as |σ(b) − σ(a)| ≤ |b − a|,∀a, b ∈ R. Assuming
∥X∥op ≤ 1 and ∥W∥op ≤ 1 (∥·∥op stands for operator norm), the following inequality holds:

∥f(G1)− f(G2)∥2 ≤ Cλ(1 + τ
√
NG)∥A1 − P ∗A2P

∗T∥F

+O(∥A1 − P ∗A2P
∗T∥2F) + max

{
|S(Λ2)|

}
∥X1 − P ∗X2∥F, (5)

where τ = (∥U1 − U2∥F + 1)2 − 1 stands for the eigenvector misalignment which can be bounded,
P ∗ = argminP∈Π

{
∥X1 − PX2∥F + ∥A1 − PA2P

T∥F
}

, Π is the set of permutation matrices,
O(∥A1 − P ∗A2P

∗T∥2F) is the remainder term with bounded multipliers defined in (Gama et al.,
2020), and Cλ is the spectral Lipschitz constant that ∀λi, λj , |S(λi)− S(λj)| ≤ Cλ|λi − λj |.
Proof. See Appendix A.

The lemma integrates the stability properties w.r.t. node feature and edge perturbations in (Gama
et al., 2020) and (Arghal et al., 2021), respectively, where Cλ tied to edge perturbations characterizes
spectral smoothness (SS) of the underlining graph filter, and max(|S(Λ2)|) tangled with node feature
perturbations defines maximum frequency response (MFR). We note that in practice for Lemma 1,
no padding is actually needed if the summation pooling is adopted as in our experiments (Xu et al.,
2018), since the padded nodes do not contribute to the graph embedding (Zhu et al., 2021). Analysis
on more sophisticated architectures is left to future works.

We next instantiate the GNN Lipschitz constant for the commonly-used matching distance (Gama
et al., 2020; Arghal et al., 2021) in the following lemma, achieved by eliminating the distance term
in the numerator and denominator of the GNN Lipschitz constant.

□ Lemma 2. Suppose that G is the set for graphs of the size NG after padding with isolated
nodes, similar to (Zhu et al., 2021). We define the matching distance between G1, G2 ∈ G as
η(G1, G2) = minP∈Π

{
∥X1 − PX2∥F + ∥A1 − PA2P

T∥F
}

. Suppose that the edge perturbation
is bounded that ∀G1, G2 ∈ G, ∥A1 − P ∗A2P

∗T∥F ≤ ε with the optimal permutation P ∗, and there
exists an eigenvalue λ∗ ∈ R to achieve the maximum |S(λ∗)| < ∞. We can then calculate the
Lipschitz constant of GNN as:

Cf = max
{
CλK1 + εK2, |S(λ∗)|

}
, (6)

where K1,K2 is the supremes of (1 + τ
√
NG) and the remainder multiplier in Lemma 1, respec-

tively, following similar philosophies in ((Gama et al., 2020), Theorem 1).

Proof. See Appendix B.
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Figure 1: An overview of spectral regular-
ization. In implementation we regularize on
the subtraction between numerators and de-
nominators multiplied by certain threshold,
considering the numerical instability issue in
division.

To recap, Cλ and |S(λ∗)| characterize SS and MFR, re-
spectively. Thereafter, the direct incorporation of Corol-
lary 1 and Lemma 2 results in the first model-based DA
bound for graph data. It builds the foundation to under-
stand and further develop GDA algorithms. Although in
our theory GNN is assumed to be composed of a graph
filter and a nonlinear activation layer, in practice such an
architecture is ubiquitous, well-known for its simplicity
and effectiveness (Wu et al., 2019; Li et al., 2019). We
also provide theory for two-layer GNNs in Appendix I
which is naturally extendable to multi-layer architectures
via induction.

4.2 THEORY-GROUNDED
SPECTRAL REGULARIZATION

Recall that, in the DA inequality (4) (see also Section 3),
the gap between the target and source risks is bounded
with (i) the distribution divergence between source and
target (W1 term) multiplied by Lipschitz constants, and (ii) the discriminative capability of NNs
to capture invariant knowledge (the ω term) restricted by Lipschitz constants. This indicates that
varying the Lipschitz constant results in the intrinsic trade-off between domain-divergence and dis-
criminability to vary the DA bound.

Therefore, in search of a sweet spot in the trade-off, one way to tighten the bound is to regularize the
Lipschitz constant of NNs. Equipped with the derived graph model-based DA bound in Section 4.1,
we are now ready to propose regularizing the GNN spectral properties of SS or MFR for balancing
between domain-divergence and discriminability. We implement regularization as follows.

Implementations. Driven by the analysis, we incorporate spectral regularization (SpecReg ∈
{SSReg, MFRReg}, SSReg for Cλ and MFRReg for |S(λ∗)| in equation (6)) into the traditional
domain-invariant representation learning framework (3) as follows:

min
f,∥g∥Lip≤Cg

1

NS

NS∑
n=1

ℓ(g ◦ f(Gn), Yn) + γŴ1

(
PS(f(G)),PT(f(G))

)
+ γ′SpecReg

(
f, {Gn}NS

n=1, {Gn}NT
n=1

)
, (7)

where γ′ is the trade-off factor, tuned over {1, 1e-1, 1e-2, 1e-3} through validation. Denote Z =

f(G) and the spectral signals Z̃ = UTZ, X̃ = UTX , SS and MFR regularization (SSReg, MFRReg)
are specifically implemented by regularizing on the spectral outputs w.r.t. spectral inputs as:

SSReg
(
f, {Gn}NS

n=1, {Gn}NT
n=1

)
=

∑
D∈{S,T}

1

ND

ND∑
n=1

sum
(
ReLU(abs(Z̃n[2 : NG, :]

− Z̃n[1 : NG − 1, :])− υ abs(ΛnX̃n[2 : NG, :]− ΛnX̃n[1 : NG − 1, :]))
)
, (8)

MFRReg
(
f, {Gn}NS

n=1, {Gn}NT
n=1

)
=

∑
D∈{S,T}

1

ND

ND∑
n=1

sum
(
ReLU(abs(Z̃n)− υ abs(X̃n))

)
,

(9)

where X[m,n] denotes matrix indexing, sum is the matrix summation, ReLU and abs are pointwise
rectifier and absolute functions, respectively, and υ is the threshold value tuned over {0.1, 1, 10, 100,
1000} through validation. An overview of the implementation is depicted in Figure 1. Analysis on
complexity of spectral regularization (with eigendecomposition) is presented in Appendix H.

How could theory further drive practice? We also notice that in special scenarios, either of the
two regularizations (SS and MFR) can be favored than the other. (i) Node transfer: When the
node features preserve (mostly) the invariant label-related information, while edges are less label-
relevant (noisy) and distribute highly distinctly across source and target domains, we would have
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large K1, ε in Lemma 2 that CλK1 + εK2 > |S(λ∗)|. Thus regularizing SS leads to the decreased
domain-divergence term (Cf decreases) and the less increased discriminability term w.r.t. node
features (GNN is sensitive enough to label-preserving node features as shown in Lemma 1). (ii) Link
transfer: Oppositely, when edges are invariantly label-preserving across source and target domains
whereas node features are relatively noisy, regularizing MFR is more desired. This provides us with
the guidance to select the regularization in practical applications with domain knowledge.

4.3 EXTENSION TO THE SEMI-SUPERVISED SETTING

Results so far do not assume the access to target labels, which is in the unsupervised setting. In
this section, we show that our analysis also applies in the semi-supervised setting, where the more
challenging conditional shift is considered—PS(Y |G) ̸= PT(Y |G)—in addition to the access to a
small amount of target labelled data (Li et al., 2021a; Zhao et al., 2019). We provide a finite-sample
semi-supervised OT-based GDA bound in the following lemma.

□ Lemma 3. Under the assumption of Corollary 1, we further assume that there exists a small
amount of i.i.d. samples with labels {(Gn, Yn)}

N ′
T

n=1 from the target distribution PT(G, Y ) (N ′
T ≪

NS) and bring in the conditional shift assumption that domains have different labeling function
ĥS ̸= ĥT and maxG1,G2

|ĥD(G1)−ĥD(G2)|
η(G1,G2)

= Ch ≤ CfCg (D ∈ {S,T}) for some constant Ch and
distance measure η. Let H := {h : G → Y} be the set of bounded real-valued functions with the
pseudo-dimension Pdim(H) = d, with probability at least 1− δ the following inequality holds:

ϵT(h, ĥT) ≤
N ′

T

NS +N ′
T

ϵ̂T(h, ĥT) +
NS

NS +N ′
T

ϵ̂S(h, ĥS) +
NS

NS +N ′
T

(( 8d

N ′
T

log(
eN ′

T

d
) +

2

N ′
T

log(
1

δ
)

+
8d

NS
log(

eNS

d
) +

2

NS
log(

1

δ
)
) 1

2

+ 2CfCgW1(PS(G),PT(G)) + ω

)
, (10)

where ω = min
(
|ϵS(h, ĥS)− ϵS(h, ĥT)|, |ϵT(h, ĥS)− ϵT(h, ĥT)|

)
.

Proof. See Appendix C.

Since the main form of inequality (10) is consistent with inequality (4), similar discussion can be
made following the thoughts in Section 4.2, to demonstrate that we can properly regularize the spec-
tral properties of GNNs (SS and MFR) to tighten the target risk and seek a sweet spot between the
domain-divergence and discriminability. Following optimization (7), the semi-supervised training
procedure is implemented as:

min
f,∥g∥Lip≤Cg

1

NS

NS∑
n=1

ℓ(g ◦ f(Gn), Yn) +
1

N ′
T

N ′
T∑

n=1

ℓ(g ◦ f(Gn), Yn) + γŴ1

(
PS(f(G)),PT(f(G))

)
+ γ′SpecReg

(
f, {Gn}NS

n=1, {Gn}NT
n=1

)
. (11)

5 EXPERIMENTS
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We evaluate our proposed algorithms, SSReg and MFRReg, in two
real-world applications of graph transfer learning : (i) link prediction
of protein-protein interactions (PPIs) across different species (Szklar-
czyk et al., 2021), and (ii) node classification of paper topics across
different time periods (Wu et al., 2020; Hu et al., 2020).

5.1 PREDICTING
PROTEIN-PROTEIN INTERACTIONS IN VARIOUS SPECIES

Datasets. PPI networks have proven important to understand func-
tional genomics and analyze biological pathways (Sharan et al., 2007;
Navlakha & Kingsford, 2010). But in most species the coverage of
experimental PPI data remains low (Sledzieski et al., 2021). We uti-
lize protein sequences together with freely accessible computational
PPIs via whole-genome comparisons (Szklarczyk et al., 2021) to pre-
dict experimental PPIs, i.e. the graph is built with nodes represented as
protein sequences and edges as computational PPIs. We collect PPIs
of species from the STRING database (Szklarczyk et al., 2021) where
PPIs in the neighborhood, fusion and co-occurrence channels are defined computational, and in the
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Table 1: Unsupervised transfer of cross-species protein-protein co-expression interaction prediction. Numbers
in red are the top-2 AUROC (AUPRC) (mean±std%). DA-C, DA-W denotes domain-invariant representation
learning with domain classifiers (Ganin et al., 2016) and guided by Wasserstein distance as in optimization (3)
(Redko et al., 2017; Shen et al., 2018), respectively.

Methods Co-expression: Link transfer ⇒ MFRReg
Mouse Zebrafish Fruit fly Yeast Mean↑ Rank↓

Mashup 48.98±2.34 51.63±1.81 50.28±2.20 46.31±0.63 43.90 9.0(5.49±0.32) (5.37±0.33) (5.51±0.17) (4.96±0.05) (5.33)

D-SCRIPT 54.48±3.27 61.18±1.05 66.63±1.41 58.88±0.80 60.29 7.5(6.01±0.63) (8.12±1.77) (9.78±0.25) (7.53±0.11) (7.86)

GraphCL 73.09±1.56 74.19±0.50 66.80±2.55 62.41±1.12 69.12 5.2(14.98±2.18) (18.76±2.11) (12.12±2.00) (11.32±2.86) (14.29)

Transformer 69.55±0.41 69.63±0.84 57.38±1.77 63.01±1.45 64.89 5.8(18.06±0.13) (27.44±1.21) (10.13±1.02) (11.25±1.58) (16.72)
Transformer

+GIN
76.35±0.38 79.29±2.78 66.54±1.11 63.91±1.55 71.52 4.0(21.91±1.60) (28.07±4.71) (13.48±0.71) (11.15±1.11) (18.65)

Transformer
+GIN+DA-C

78.56±1.55 79.46±2.97 64.78±1.23 60.65±3.85 70.86 4.8(22.76±4.42) (27.10±3.10) (11.61±2.08) (10.72±2.44) (18.04)
Transformer

+GIN+DA-W
77.38±2.54 79.22±0.89 67.78±0.40 62.43±2.62 71.70 3.6(23.03±2.98) (26.90±2.03) (13.78±0.94) (11.59±1.98) (18.82)

Transformer+GIN
+DA-W+SSReg

77.57±1.14 79.44±1.21 65.27±1.49 62.28±1.71 71.14 3.6(23.13±0.64) (28.97±2.22) (11.88±0.89) (13.24±2.49) (19.30)
Transformer+GIN
+DA-W+MFRReg

77.63±1.00 80.81±1.27 68.56±0.88 63.74±0.27 72.68 1.2(23.83±2.75) (29.04±0.62) (13.94±0.47) (16.80±2.34) (20.90)

Table 2: Unsupervised transfer of cross-species protein-protein physical interaction prediction.

Methods Physical: Node transfer ⇒ SSReg
Mouse Zebrafish Fruit fly Yeast Mean↑ Rank↓

Mashup 51.54±3.82 37.82±3.43 46.88±6.87 57.99±2.28 48.55 9.0(5.58±0.35) (3.98±0.12) (7.19±3.93) (6.78±0.92) (5.88)

D-SCRIPT 58.22±6.97 49.58±1.12 62.97±0.78 62.43±0.59 58.30 8.0(7.03±1.09) (5.02±0.76) (9.61±0.21) (8.56±0.15) (7.55)

GraphCL 76.88±0.42 79.11±1.14 81.02±0.98 71.03±0.30 77.01 6.0(31.16±1.43) (41.80±3.20) (38.63±2.30) (14.58±1.16) (31.54)

Transformer 77.65±0.84 75.61±1.86 76.90±1.64 67.86±0.61 74.50 5.6(35.05±0.92) (45.13±3.15) (32.72±2.34) (12.46±1.08) (31.34)
Transformer

+GIN
79.77±0.92 80.85±2.41 82.38±1.13 71.54±0.36 78.63 4.3(31.23±1.94) (34.29±12.42) (42.40±2.04) (15.73±0.79) (30.91)

Transformer
+GIN+DA-C

80.14±1.86 83.58±1.15 81.49±1.27 71.30±0.61 79.12 3.3(34.29±4.12) (44.01±4.00) (38.94±2.36) (16.80±0.65) (33.51)
Transformer

+GIN+DA-W
80.18±1.38 80.88±3.08 81.51±0.36 72.66±0.36 78.80 3.6(34.14±0.85) (41.88±2.15) (42.02±0.69) (16.18±2.67) (33.55)

Transformer+GIN
+DA-W+SSReg

81.20±0.25 81.69±1.55 81.79±0.74 73.07±0.30 79.43 1.3(35.99±1.51) (45.15±2.07) (43.44±1.16) (17.39±1.01) (35.49)
Transformer+GIN
+DA-W+MFRReg

80.93±1.11 81.95±1.77 80.15±1.07 72.22±0.67 78.81 3.6(34.63±3.71) (43.09±4.19) (35.43±1.60) (16.40±1.12) (32.38)

co-expression and experiments (we refer to it as physical to prevent confusion) channels (to be pre-
dicted) are experimental which deals with expensive functional genomics experiments (Parkinson
et al., 2009) or direct lab assays (Brückner et al., 2009). More details of PPI data are shown in
Appendix D, and ablations in Appendix G.

Configurations. We train models on PPIs of Homo Sapiens (human) which contain abundant
PPI evidences (Ewing et al., 2007) and evaluate the models in four other species: Mus Muscu-
lus (mouse), Danio Rerio (zebrafish), Drosophila Melanogaster (fruit fly) and Saccharomyces Cere-
visiae (yeast), which are repeated for three times for statistical significance. In evaluation, we follow
(Cho et al., 2016) to perform negative sampling for experimental PPIs, to ensure that the known inter-
actions compose only 5%. We adopt Transformer (Tay et al., 2020) (v.s. HRNN (Karimi et al., 2019;
2020a)) to embed protein sequences and then GIN (Xu et al., 2018) (v.s. GAT (Veličković et al.,
2017)) to perform message passing, with comparisons in Appendix E. The compared state-of-the-art
(SOTA) approaches are Mashup (Cho et al., 2016) and D-SCRIPT (Sledzieski et al., 2021) designed
for PPI prediction as well as GraphCL (You et al., 2020a) for general graph (self-supervised) repre-
sentation learning. See Appendix E for details.

Hypotheses. We hypothesize that co-expression interactions are more associated with links (than
physical interactions do, link transfer), based upon the existing findings that two genes are poten-
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tially similar in expression profiles if they are with similar promoter regions (might indicate locating
in the neighborhood) (Park et al., 2002), involved in fusion events (Fernebro et al., 2006), or sharing
co-occurrence patterns (Larmuseau et al., 2019). For physical interactions, we hypothesize that they
rely more on node features (sequences, node transfer) considering the recent breakthrough that
protein structure information (and ultimately physical interactions and functions) can be recovered
from sequences with high accuracy (Jumper et al., 2021). We calculate the homophily ratios (Zhu
et al., 2020a; Pei et al., 2020) of 3 out of 4 species in Figure 2 as numerical evidence to support the
hypotheses (see Appendix F for the computing procedure, where zebrafish is excluded due to the
overly sparse (<200) physical interactions as shown in Appendix D).
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Figure 3: Spectral regularization performance of different
threshold values υ in co-expression and physical interaction
prediction (with trade-off factors γ′ selected via validation).

Results. The results of unsupervised
transfer are shown in Table 1 and 2. We
put semi-supervised results in Appendix
G with the similar findings. Through
comparing between: (i) methods w/o
and w/ DA techniques, (ii) methods w/o
and w/ spectral regularization, and (iii)
our proposed methods and SOTA com-
petitors, we have the following findings.

(i) Vanilla DA in general provides
benefits though occasionally degrades
performance. With the assistance of
domain-invariant representation learn-
ing, GNNs generally lead to a better
performance with exceptions, i.e., with
Wasserstein distance guided DA (DA-
W, as in optimization (3) (Redko et al.,
2017; Shen et al., 2018)), 11 out of
16 metrics turn higher than w/o DA in
the unsupervised setting, and so do 10
out of 16 in semi-supervised. The oc-
casional performance degrade fits our
analysis in Section 4.2, that the opti-
mized source risk and distribution diver-
gence of representations could lead to
either improved or deteriorated perfor-
mances without guarantee.

Similar phenomenon happens to DA
with domain classifiers (DA-C, (Ganin
et al., 2016)). Comparison between DA-
W and DA-C shows that, DA-W performs better than DA-C when transferring to graphs with the
larger domain gap (i.e. from human to fruit fly and yeast, justified by their biological taxonomic
ranks and phylogenetic distances (Alberts et al., 2002), see Appendix D for details).

(ii) In a principled way, spectral regularization further boosts GNN performance with DA-W
and consistently alleviates performance degradation. Under the regularization on GNN spectral
properties, domain-invariant representation learning provides further benefits in a principled way.
Specifically, MFRReg improves 13 out of 16 co-expression interaction prediction versus DA-W,
since it assists GNN to mine from the computational PPIs that co-expression interactions are more
correlated with, as hypothesized in Section 5.1. We show in Figure 3 that it is a consequence of a
better sweet spot when regularizing MFR, which echos our analysis in Section 4.1, that MFRReg
benefits more in the link transfer setting. Moreover, SSReg improves 13 out of 16 physical interac-
tion prediction which reinforces GNN to dig more from protein sequence embeddings that physical
interactions are more relevant to. This echos our analysis that SSReg benefits more in the node
transfer setting, conforming to our theory-grounded regularization design.

Besides, we observe that the improvements are more significant in the unsupervised setting than
semi-supervised. A possible reason is that, under the guidance of certain target labelled data during
transferring, DA-W are less prone to capture superfluous information even without regularization.

8



Published as a conference paper at ICLR 2023

(iii) Integrating protein sequences together with computational PPIs leads to better trans-
fer performance. Comparing with SOTA competitors, we find that utilizing computational PPIs
alone (such as Mashup) or utilizing protein sequences alone (such as D-SCRIPT which heavily
relies on the pre-trained sequence encoder on a tremendous and diverse population of protein se-
quences or even structures (Bepler & Berger, 2019)) leads to less competitive results than integrat-
ing them together when transferring across species. For self-supervised pre-training methods (such
as GraphCL), the existence of domain gap prompts “negative transfer” in the unsupervised setting,
which is alleviated under the guidance of certain target labels in the semi-supervised setting.

5.2 CLASSIFYING PAPER TOPICS OF DIFFERENT TIME PERIODS

Table 3: Unsupervised transfer of paper topic classi-
fication in temporally evolved citation networks. Num-
bers in red are the best accuracies (mean±std%), which
without standard deviation are from (Wu et al., 2020).

Methods Link transfer ⇒ MFRReg
ACM→DBLP DBLP→ACM

DeepWalk 17.98 36.49
LINE 19.72 41.17

GraphSAGE 72.28 69.61
DNN 42.79 59.04
GCN 64.86 69.45

DGRL (Ganin et al., 2016) 43.03 59.47
AdaGCN (Sun et al., 2019) 71.42 70.45
EERM (Wu et al., 2022a) 64.95±1.18 63.65±0.31

UDAGCN (Wu et al., 2020) 80.08±0.88(73.41) 75.55±0.31(76.17)
GNN+DA-W 89.08±0.10 75.82±0.05

GNN+DA-W
+SSReg 90.90±0.08 76.15±0.06

GNN+DA-W
+MFRReg 91.65±0.06 76.26±0.05

Datasets and Configurations. We also con-
duct experiments on the benchmark datasets
provided in ArnetMiner (Tang et al., 2008), to
classify paper topics in the temporally shifting
citation networks. Papers published between
2000 and 2010 are collected from ACM and
those after 2010 are from DBLP, with statistics
shown in Appendix D. The Citation database is
not examined here without processed data pub-
lic. The networks are built with nodes for pa-
pers in six categories (to be predicted) and links
representing citations. Following (Wu et al.,
2020), we train methods on ACM/DBLP and
evaluate them on DBLP/ACM, which are re-
peated for ten times. The compared SOTAs
include graph representation learning w/o and
w/ DA techniques. Our implementation is built
upon UDAGCN (Wu et al., 2020). See Appendix E for more details. We also assay our methods on
the large-scale OGB benchmark (Hu et al., 2020).

Hypothesis. Paper topics are verified to have strong homophily with citations mostly (Zhu et al.,
2020a; Pei et al., 2020) (link transfer), which is adopted as the hypothesis in our study.

Table 4: Paper topic classification on ogbn-arxiv under dif-
ferent label rates. Reported numbers are accuracy (%).

Link transfer ⇒ MFRReg
Label Rate 1% 10% 100%

GNN 61.63±1.19 69.00±0.37 71.85±0.19
GNN+DA-W 63.96±0.61 68.98±0.28 71.93±0.16

GNN+DA-W+SSReg 63.53±0.89 69.18±0.31 71.82±0.28
GNN+DA-W+MFRReg 64.22±0.51 69.21±0.38 72.03±0.23

Results. The results of unsupervised
transfer are shown in Table 3, demon-
strating the applicability of the proposed
spectral regularization in different ap-
plications. Comparing graph represen-
tation learning w/o and w/ DA tech-
niques, domain-invariant representations
generally improve performances. Further
built upon the SOTA UDAGCN, applying DA-W to minimize the domain divergence on represen-
tations benefits the transfer performance from ACM to DBLP while hurting it from DBLP to ACM,
which is consistent with the observation (i). Similar results (also referring to Appendix G, Table 8
for the semi-supervised setting) on the large-scale ogbn-arxiv dataset are shown in Table 3.

Via spectral regularization, specifically MFRReg to exploit the invariant topology information across
domains that is more related to node labels as hypothesized, our methods achieve better performance
than all competitors, which is consistent with the observation (ii) in Section 5.1.

6 CONCLUSIONS

To fulfill the practical demands of transfer learning on graph data, we develop theory-grounded
spectral regularization for GNNs to learn transferable graph representations. We first leverage do-
main adaptation with optimal transport theory to dive into the guaranteed bound for the transfer
performance. This bound reveals that varying the Lipschitz constant of the GNNs could lead to a
tighter bound by balancing domain divergence and GNN power. Building on the graph filter theory,
we next show that one can regularize GNN spectral properties to regularize the Lipschitz constant,
which motivates us to propose spectral regularizations. Numerical results conform to our theoretical
analysis that regularizing SS and MFR brings benefits to the scenarios of node transfer and link
transfer, respectively, in both the unsupervised and supervised settings.
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APPENDIX

A PROOF FOR LEMMA 1

□ Lemma 1. Suppose that G is the set for graphs of the size NG after padding with isolated
nodes, similar to (Zhu et al., 2021). Given ∀G1, G2 ∈ G and A1 = U1Λ1U

T
1 , A2 = U2Λ2U

T
2 , the

eigen decomposition for adjacency matrices A1 and A2 that Λ1 = diag([λ1,1, ..., λ1,NG
]),Λ2 =

diag([λ2,1, ..., λ2,NG
]) (eigen values are sorted in the descending order). A GNN is con-

structed by composing a graph filter and nonlinear mapping that f(G1) = r(σ(S(A1)X1W )) =
r(σ(U1S(Λ1)U

T
1 X1W )) where S is the polynomial function that S(A1) =

∑∞
k=0 skA

k
1 , W ∈

RD×D′
is the learnable weight matrix, r is the mean/sum/max readout function to pool node repre-

sentations, and the pointwise nonlinearity holds as |σ(b) − σ(a)| ≤ |b − a|,∀a, b ∈ R. Assuming
∥X∥op ≤ 1 and ∥W∥op ≤ 1, the following inequality holds:

∥f(G1)− f(G2)∥2 ≤Cλ(1 + τ
√
NG)∥A1 − P ∗A2P

∗T∥F +O(∥A1 − P ∗A2P
∗T∥2F)

+ max
{
|S(Λ2)|

}
∥X1 − P ∗X2∥F,

where τ = (∥U1 − U2∥F + 1)2 − 1 stands for the eigenvector misalignment which can be bounded,
P ∗ = argminP∈Π

{
∥X1 − PX2∥F + ∥A1 − PA2P

T∥F
}

, Π is the set of permutation matrices,
O(∥A1 − P ∗A2P

∗T∥2F) is the remainder term with bounded multipliers defined in (Gama et al.,
2020), and Cλ is the spectral Lipschitz constant that ∀λi, λj , |S(λi)− S(λj)| ≤ Cλ|λi − λj |.
Proof. Denote the optimal permutation matrix for G1, G2 as P ∗, we compute the difference of the
GNN outputs:

∥f(G1)− f(G2)∥2
= ∥r(σ(S(A1)X1W ))− r(σ(S(A2)X2W ))∥2
(a)
= ∥r(σ(S(A1)X1W ))− r(σ(S(P ∗A2P

∗T)P ∗X2W ))∥2
(b)

≤ ∥S(A1)X1W − S(P ∗A2P
∗T)P ∗X2W∥F

(c)

≤ ∥W∥op
(
∥S(A1)X1 − S(P ∗A2P

∗T)X1 + S(P ∗A2P
∗T)X1 − S(P ∗A2P

∗T)P ∗X2∥F
)

(d)

≤ ∥W∥op∥X1∥op∥S(A1)− S(P ∗A2P
∗T)∥F + ∥W∥op∥S(P ∗A2P

∗T)∥op∥X1 − P ∗X2∥F
(e)

≤ ∥S(A1)− S(P ∗A2P
∗T)∥F +max(|S(Λ2)|)∥X1 − P ∗X2∥F

(f)

≤ Cλ(1 + τ
√
NG)∥A1 − P ∗A2P

∗T∥F +O(∥A1 − P ∗A2P
∗T∥2F) + max(|S(Λ2)|)∥X1 − P ∗X2∥F,

where (a) is due to the permutation invariance property of graph filters; (b) is achieved with the
triangle inequality and the assumption |σ(b) − σ(a)| ≤ |b − a|,∀a, b ∈ R; (c) and (d) use the fact
that for any two matrices A,B, ∥AB∥F ≤ min(∥A∥op∥B∥F, ∥A∥F∥B∥op), and (c) further applies
the triangle inequality; (e) adopts the assumption ∥X∥op ≤ 1, ∥W∥op ≤ 1 which in practice can
be guaranteed with normalization, and easily extended to the case with ∥X∥op ≤ K, ∥W∥op ≤
K,∀K > 0, and because S(P ∗A2P

∗T) = (P ∗U2)S(Λ2)(P
∗U2)

T can be diagonalized, its operator
norms equal the spectral radius; (f) is the direct outcome borrowed from (Gama et al., 2020) Theorem
1. We complete the proof.

B PROOF FOR LEMMA 2

□ Lemma 2. Suppose that G is the set for graphs of the size NG after padding with isolated nodes,
similar to (Zhu et al., 2021). Define the matching distance between G1, G2 ∈ G as η(G1, G2) =
minP∈Π

{
∥X1 − PX2∥F + ∥A1 − PA2P

T∥F
}

. Suppose that the edge perturbation is bounded
that ∀G1, G2 ∈ G, ∥A1 − P ∗A2P

∗T∥F ≤ ε with the optimal permutation P ∗, and there exists an
eigenvalue λ∗ ∈ R to achieve the maximum |S(λ∗)| < ∞. We can then calculate the Lipschitz
constant of GNN as:

Cf = max
{
CλK1 + εK2, |S(λ∗)|

}
,
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where K1,K2 is the supremes of (1 + τ
√
NG) and the remainder multiplier in Lemma 1, respec-

tively, following similar philosophies in ((Gama et al., 2020), Theorem 1).

Proof. To calculate the Lipschitz constant Cf w.r.t the matching distance, based upon Lemma 1, we
assure the following inequality:

∥f(G1)− f(G2)∥2 ≤Cλ(1 + τ
√
NG)∥A1 − P ∗A2P

∗T∥F +O(∥A1 − P ∗A2P
∗T∥2F)

+ |S(λ∗)|∥X1 − P ∗X2∥F,
≤Cfη(G1, G2),

the latter inequality of which can be rewritten as:(
Cλ(1 + τ

√
NG)∥A1 − P ∗A2P

∗T∥F +O(∥A1 − P ∗A2P
∗T∥2F)− Cf∥A1 − P ∗A2P

∗T∥F
)

+(|S(λ∗)| − Cf )∥X1 − P ∗X2∥F ≤ 0,

which is necessary for:

Cλ(1 + τ
√

NG)∥A1 − P ∗A2P
∗T∥F +O(∥A1 − P ∗A2P

∗T∥2F)− Cf∥A1 − P ∗A2P
∗T∥F ≤ 0,

(|S(λ∗)| − Cf )∥X1 − P ∗X2∥F ≤ 0,

which is equivalent to:
Cf ≥ CλK1 + εK2,

Cf ≥ |S(λ∗)|.
The bounding of K1,K2 follows (Gama et al., 2020) Theorem 1 and the first minimum solution can
be calculated from the quadratic function w.r.t. the edge matching distance ∥A1−P ∗A2P

∗T∥F. Let
Cf takes the larger value between them, we complete the proof.

C PROOF FOR LEMMA 3

□ Lemma 3. Under the assumption of Corollary 1, we further assume that there exists a small
amount of i.i.d. samples with labels {(Gn, Yn)}

N ′
T

n=1 from the target distribution PT(G, Y ) (N ′
T ≪

NS) and bring in the conditional shift assumption that domains have different labeling function
ĥS ̸= ĥT and maxG1,G2

|ĥD(G1)−ĥD(G2)|
η(G1,G2)

= Ch ≤ CfCg (D ∈ {S,T}) for some constant Ch and
distance measure η. Let H := {h : G → Y} be the set of bounded real-valued functions with the
pseudo-dimension Pdim(H) = d, with probability at least 1− δ the following inequality holds:

ϵT(h, ĥT) ≤
N ′

T

NS +N ′
T

ϵ̂T(h, ĥT) +
NS

NS +N ′
T

ϵ̂S(h, ĥS)

+
NS

NS +N ′
T

(
2CfCgW1(PS(G),PT(G)) + ω

+ [
8d

N ′
T

log(
eN ′

T

d
) +

2

N ′
T

log(
1

δ
) +

8d

NS
log(

eNS

d
) +

2

NS
log(

1

δ
)]

1
2

)
,

where ω = min
(
|ϵS(h, ĥS)− ϵS(h, ĥT)|, |ϵT(h, ĥS)− ϵT(h, ĥT)|

)
.

Proof. Before showing the designated lemma, we first introduce the following inequality to be used
that:

|ϵS(h, ĥS)− ϵT(h, ĥT)|
= |ϵS(h, ĥS)− ϵS(h, ĥT) + ϵS(h, ĥT)− ϵT(h, ĥT)|
≤ |ϵS(h, ĥS)− ϵS(h, ĥT)|+ |ϵS(h, ĥT)− ϵT(h, ĥT)|
(a)

≤ |ϵS(h, ĥS)− ϵS(h, ĥT)|+ 2CfCgW1

(
PS(G),PT(G)

)
,

where (a) results from (Shen et al., 2018) Lemma 1 with the assumption
max(∥h∥Lip,maxG1,G2

|ĥD(G1)−ĥD(G2)|
η(G1,G2)

) ≤ CfCg,D ∈ {S,T}. Similarly, we obtain:

|ϵS(h, ĥS)− ϵT(h, ĥT)| ≤ |ϵT(h, ĥS)− ϵT(h, ĥT)|+ 2CfCgW1

(
PS(G),PT(G)

)
.
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We therefore combine them into:

|ϵS(h, ĥS)− ϵT(h, ĥT)| ≤ 2CfCgW1

(
PS(G),PT(G)

)
+min

(
|ϵS(h, ĥS)− ϵS(h, ĥT)|, |ϵT(h, ĥS)− ϵT(h, ĥT)|

)
,

i.e. the following holds to bound the target risk ϵT(h, ĥT):

ϵT(h, ĥT) ≤ ϵS(h, ĥS) + 2CfCgW1

(
PS(G),PT(G)

)
+min

(
|ϵS(h, ĥS)− ϵS(h, ĥT)|, |ϵT(h, ĥS)− ϵT(h, ĥT)|

)
.

We next link the bound with the empirical risk and labeled sample size by showing, with probability
at least 1− δ that:

ϵT(h, ĥT) ≤ ϵS(h, ĥS) + 2CfCgW1

(
PS(G),PT(G)

)
+min

(
|ϵS(h, ĥS)− ϵS(h, ĥT)|, |ϵT(h, ĥS)− ϵT(h, ĥT)|

)
≤ ϵ̂S(h, ĥS) + 2CfCgW1

(
PS(G),PT(G)

)
+min

(
|ϵS(h, ĥS)− ϵS(h, ĥT)|, |ϵT(h, ĥS)− ϵT(h, ĥT)|

)
+

√
2d

NS
log(

eNS

d
) +

√
1

2NS
log(

1

δ
),

and:

ϵT(h, ĥT) ≤ ϵ̂T(h, ĥT) +

√
2d

N ′
T

log(
eN ′

T

d
) +

√
1

2N ′
T

log(
1

δ
),

which results from (Mohri et al., 2018) Theorem 11.8. Lastly, we combine the above two inequali-
ties, with probability at least 1− δ that:

ϵT(h, ĥT)

(a)

≤ N ′
T

NS +N ′
T

(
ϵ̂T(h, ĥT) +

√
2d

N ′
T

log(
eN ′

T

d
) +

√
1

2N ′
T

log(
1

δ
)
)

+
NS

NS +N ′
T

(
ϵ̂S(h, ĥS) +

√
2d

NS
log(

eNS

d
) +

√
1

2NS
log(

1

δ
)
)

+
NS

NS +N ′
T

(
2CfCgW1(PS(G),PT(G)) + min(|ϵS(h, ĥS)− ϵS(h, ĥT)|, |ϵT(h, ĥS)− ϵT(h, ĥT)|)

)
(b)

≤ N ′
T

NS +N ′
T

(
ϵ̂T(h, ĥT) +

√
4d

N ′
T

log(
eN ′

T

d
) +

1

N ′
T

log(
1

δ
)
)

+
NS

NS +N ′
T

(
ϵ̂S(h, ĥS) +

√
4d

NS
log(

eNS

d
) +

1

NS
log(

1

δ
)
)

+
NS

NS +N ′
T

(
2CfCgW1(PS(G),PT(G)) + min(|ϵS(h, ĥS)− ϵS(h, ĥT)|, |ϵT(h, ĥS)− ϵT(h, ĥT)|)

)
(c)

≤ N ′
T

NS +N ′
T

ϵ̂T(h, ĥT) +
NS

NS +N ′
T

ϵ̂S(h, ĥS)

+
NS

NS +N ′
T

(
2CfCgW1(PS(G),PT(G)) + min(|ϵS(h, ĥS)− ϵS(h, ĥT)|, |ϵT(h, ĥS)− ϵT(h, ĥT)|)

+ [
8d

N ′
T

log(
eN ′

T

d
) +

2

N ′
T

log(
1

δ
) +

8d

NS
log(

eNS

d
) +

2

NS
log(

1

δ
)]

1
2

)
,

where (a) is the outcome of applying the union bound with coefficient N ′
T

NS+N ′
T
, NS

NS+N ′
T

respectively;
(b) and (c) result from the Cauchy-Schwartz inequality and (c) additionally adopt the assumption
N ′

T ≪ NS, following the sleight-of-hand in (Li et al., 2021a) Theorem 3.2.

D DATASET STATISTICS

For PPI data, we construct the graph with nodes as protein sequences (using protein language model-
ing (Tay et al., 2020; Karimi et al., 2019) for node features), and edges as computational interactions
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of neighborhood, fusion and co-occurrence channels (Szklarczyk et al., 2021) (i.e. the edge feature
dimension is 3).

Dataset statistics for PPI and citation networks are shown in Figure 5 and 6, respectively. For
the species involved in PPI networks, we depict their relationship in biological taxonomic ranks in
Figure 4, showing the domain gap between species in concept.

Table 5: Dataset statistics of PPI networks of different species. # denotes “number of”.

Species # Node # Edge # Co-expression # Physical

Human 8,369 201,164 15,344 68,812
Mouse 55,55 55,668 4,490 11,264

Zebrafish 4,625 60,077 16,044 150
Fruit fly 5,503 108,858 25,404 14,694

Yeast 4,286 207,641 39,040 60,716

Animalia

Chordata

Kingdom

Phylum

MammaliaClass

Family: Hominidae 
Genus: Homo 
Species: Homo

sapiens

PrimatesOrder Rodentia

Family: Muridae 
Genus: Mus 

Species: Mus
musculus

Actinopterygii

Cypriniformes

Family: Cyprinidae 
Genus: Danio 

Species: Danio rerio

Insecta

Family: Drosophilidae 
Genus: Drosophila 

Species: Drosophila
melanogaster

Arthropoda

Diptera

Fungi

Ascomycota

Hemiascomycetes

Saccharomycetales

Family: Saccharomycetaceae 
Genus: Saccharomyces 

Species: Saccharomyces
cerevisiae

Human Mouse Zebrafish YeastFruit fly

Figure 4: The relationship among species in biological taxonomic ranks.

Table 6: Dataset statistics of citation networks from different sources (in different time periods). # denotes
“number of”.

Sources (periods) # Node # Edge # Feature # Class

DBLP (2000–2010) 5,578 7,341 7,537 6
ACM (2010– ) 7,410 11,135 7,537 6

E DETAILED CONFIGURATIONS

The assayed data are released under the MIT license, and to our best knowledge, contain no privacy-
infringing contents. Experiments are distributed on computer clusters with Tesla K80 GPU (11 GB
memory) and NVIDIA A100 GPU (40 GB memory).

E.1 WASSERSTEIN-1 DISTANCE ESTIMATION

We follow the most routine procedure (Shen et al., 2018) to estimate Wasserstein-1 distance of graph
representations between distributions in adversarial training (3). Specifically, given the encoder f
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and source and target data distributions PS(G),PT(G), we estimate the distance as:

Ŵ1

(
PS(G),PT(G)

)
= max

∥f̂∥≤1
EPS(G)f̂(f(G))− EPT(G)f̂(f(G)),

where the critic function f̂ is instantiated with a multilayer perceptron and satisfies ∥f̂∥ =

sup ∥f̂(x)−f̂(y)∥2

∥x−y∥2
≤ 1, which is achieved by enforcing the gradient penalty (∥∇xf̂(x)∥2 − 1)2.

The final estimation is thus implemented as:

Ŵ1

(
PS(G),PT(G)

)
= max

f̂
EPS(G)f̂(f(G))− EPT(G)f̂(f(G))− γ̂(∥∇xf̂(x)∥2 − 1)2,

where we follow (Shen et al., 2018; Gulrajani et al., 2017) to set γ̂ = 10 by default.

E.2 PREDICTING PROTEIN-PROTEIN INTERACTIONS ACROSS VARIOUS SPECIES

During collecting PPI data from the STRING database (Szklarczyk et al., 2021), we abandon
the interactions in channels of neighborhood transferred, coexpression transferred, and experi-
ments transferred to prevent information leakage across species (especially from supervisions of
co-expression and physical interaction prediction). For co-expression and physical interactions, we
use the high-quality threshold of 0.7 (Szklarczyk et al., 2021) to convert them into binary labels.

We use Sinkhorn Transformer (Tay et al., 2020) (a variant of Transformer with sparse attention) with
depth 4, attention head 4 and bucket size 32 to embed protein sequences, and further adopt GIN (Xu
et al., 2018) with depth 3 and MLP depth 2 to perform message passing across proteins. We also try
HRNN (Karimi et al., 2019; 2020a) with k-mer 75 to embed protein sequence and GAT (Veličković
et al., 2017) with depth 3 and attention head 8 to perform message passing, with comparison on
human to yeast transfer shown in Table 7, which states in our case that, (Sinkhorn) Transformer
and GIN outperform HRNN and GAT, respectively. In training, we hold out 20% of human PPIs
for validation. For the semi-supervised setting, 0.1% of experimental PPIs are in addition available
during training. We train with convergence assured for 500 epochs with learning rate 0.0001, hidden
dimension 256 and batch size 128 which is sampled by random walk, optimized by Adam optimizer.
For domain-invariant representation learning guided by Wasserstein distance (as described in opti-
mization (3)) please refer to (Shen et al., 2018) for implementation, and see (Ganin et al., 2016) for
one with domain classifiers. We selected the trade-off factor γ in optimization (3) from {1e-1, 1e-2,
1e-3, 1e-4, 1e-5, 1e-6} through validation. In evaluation, we follow (Cho et al., 2016) to perform
negative sampling for experimental PPIs, to ensure that the known interactions compose only 5%,
with the assumption the number of unobserved interactions is only a small fraction.

Table 7: Comparisons between different protein sequence encoders and GNNs in the human to yeast transfer
setting.

Methods Co-expression Physical
AUORC (%) AUPRC (%) AUORC (%) AUPRC (%)

HRNN 61.55±1.55 8.91±1.37 65.24±1.17 9.71±0.86
Transformer 60.66±1.11 9.11±1.42 66.65±2.28 11.75±1.46

Transformer+GAT 60.85±1.98 9.00±1.55 70.51±1.31 14.53±2.27
Transformer+GIN 61.18±2.63 10.90±1.40 71.15±1.44 15.02±1.79

On baseline implementation, for Mashup (Cho et al., 2016), we apply the official MATLAB code
to extract protein representation w.r.t. computational PPIs in the neighborhood, fusion and co-
occurrence channels, on top of which we apply a two-layer MLP to train with labels; for D-SCRIPT
(Sledzieski et al., 2021), we apply the official PyTorch APIs to perform the sequence embedding
projection, inter-protein residue contact and interaction modeling, where we use the same Sinkhorn
Transformer as in our methods to generate sequence embeddings rather than the large model pre-
trained on additional data of protein sequences with structures, for fair comparison and also com-
plexity consideration; for GraphCL (You et al., 2020a), we follow the main idea and implement
it with the node masking augmentation, where we randomly replace 20% of animo acids in each
protein sequences with mask tokens.
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E.3 CLASSIFYING PAPER TOPICS OF DIFFERENT TIME PERIODS

We follow the same experiment setting as in UDAGCN (Wu et al., 2020), which we implement
DA-W and spectral regularization on. The compared SOTAs without DA techniques are DeepWalk
(Perozzi et al., 2014), LINE (Tang et al., 2015), GraphSAGE (Hamilton et al., 2017), DNN (MLP
on node features alone), and GCN (Kipf & Welling, 2016), and ones with DA techniques are DGRL
(Ganin et al., 2016), AdaGCN (Dai et al., 2019), and UDAGCN (Wu et al., 2020). We notice that
the reported results in (Wu et al., 2020) are not directly comparable with (Mao et al., 2021) due to
different experimental configurations (e.g. validation partition). By applying DA-W, we replace the
domain classifier with the Wasserstein distance critic (Shen et al., 2018) to learn domain-invariant
representations, and further implement our proposed spectral regularization.

F HOMOPHILY RATIO COMPUTATION PROCEDURE

Given a graph G = {V,E} with the set of nodes V and edges E as described in Section 2. Denote
the labeled edge set as E′, to quantify the association between E and E′, we borrow the idea from
(Zhu et al., 2020a; Pei et al., 2020) to calculate the homophily ratio as:

Hom =
1

|V |
∑
v∈V

|{(v, w) : w ∈ N (v) and (v, w) ∈ E′}|
|N (v)|

,

where N (v) is the set of neighbor nodes of v determined by E. In cross-species PPI prediction, E′

is the experimental (co-expression or physical) PPIs. To measure the association between compu-
tational and experimental PPIs, we define E as the set of edges if there is any computational PPI
(neighborhood, fusion or co-occurrence) value greater than the medium threshold of 0.4 (Szklarczyk
et al., 2021). To measure the association between protein sequences and experimental PPIs, we first
calculate the sequence identity (Karimi et al., 2020b) between all protein pairs, and define E as the
set of edges if the sequence identity is greater than 0.3 (Pearson, 2013).

G MORE EXPERIMENTAL RESULTS

Results of semi-supervised cross-species protein-protein interaction prediction are shown in Tables
8, 9; semi-supervised paper topic classification in Table 10; ablation studies of model architectures
and adversarial training strategies in Tables 11, 12.

Table 8: Semi-supervised transfer of cross-species protein-protein co-expression interaction prediction. Num-
bers in red are the top-2 AUROC (AUPRC) (mean±std%). DA-C, DA-W denotes domain-invariant representa-
tion learning with domain classifiers (Ganin et al., 2016) and guided by Wasserstein distance as in optimization
(3) (Redko et al., 2017; Shen et al., 2018), respectively.

Methods Co-expression: Link transfer ⇒ MFRReg
Mouse Zebrafish Fruit fly Yeast Mean↑ Rank↓

Mashup 49.06±6.33 51.80±5.64 53.86±2.04 48.79±5.36 50.87 9.0(5.66±0.73) (5.64±0.61) (5.86±0.27) (5.18±0.64) (5.58)

D-SCRIPT 52.85±0.45 61.76±3.45 61.01±1.14 56.52±0.71 58.03 7.7(6.07±0.10) (11.12±1.94) (8.59±0.20) (7.64±0.15) (8.35)

GraphCL 74.62±2.75 75.26±0.64 64.55±1.70 70.15±0.97 71.14 4.8(17.54±4.70) (22.93±2.42) (11.26±0.98) (20.75±3.84) (18.12)

Transformer 71.57±1.51 69.87±0.52 61.76±2.71 67.01±0.70 67.55 6.2(20.39±0.90) (26.09±1.58) (12.14±1.60) (14.11±1.24) (18.18)
Transformer

+GIN
77.86±3.13 80.39±3.79 66.92±1.65 67.07±0.71 73.06 3.5(22.17±7.86) (30.15±5.26) (8.04±0.53) (14.43±1.92) (18.69)

Transformer
+GIN+DA-C

75.13±3.22 79.01±0.96 66.02±1.19 68.12±0.96 72.07 4.8(17.71±1.39) (28.54±1.88) (8.34±0.41) (17.65±1.69) (18.06)
Transformer

+GIN+DA-W
77.06±0.74 79.48±1.39 71.11±2.11 67.60±2.78 73.81 3.0(20.63±1.81) (28.96±2.75) (16.04±0.94) (15.14±2.09) (20.19)

Transformer+GIN
+DA-W+SSReg

76.65±1.44 80.19±0.74 69.36±2.25 67.58±2.56 73.44 3.2(20.66±4.17) (27.23±0.75) (13.56±2.54) (18.46±2.22) (19.97)
Transformer+GIN
+DA-W+MFRReg

77.26±0.91 79.19±1.24 66.58±1.24 68.90±1.13 72.98 2.5(24.16±0.95) (30.02±0.29) (12.33±0.73) (20.10±3.28) (21.65)
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Table 9: Semi-supervised transfer of cross-species protein-protein physical interaction prediction.

Methods Physical: Node transfer ⇒ SSReg
Mouse Zebrafish Fruit fly Yeast Mean↑ Rank↓

Mashup 57.90±3.07 63.88±7.27 46.84±6.61 51.68±5.48 55.07 8.7(9.23±4.18) (7.63±1.36) (5.93±1.32) (5.89±1.22) (7.17)

D-SCRIPT 49.34±0.67 68.61±3.47 69.79±1.79 59.66±1.02 61.85 8.2(5.87±0.09) (19.36±4.99) (20.25±0.78) (7.46±0.15) (13.23)

GraphCL 79.08±0.63 82.61±1.41 81.04±0.62 70.06±3.10 78.19 4.6(34.96±1.31) (49.81±2.91) (38.65±1.40) (13.33±3.69) (34.18)

Transformer 77.44±0.84 77.50±1.20 78.14±0.29 69.15±1.00 75.55 6.0(34.63±0.77) (46.49±2.33) (34.56±1.54) (14.64±1.88) (32.58)
Transformer

+GIN
79.76±2.26 81.09±1.46 82.41±0.96 72.59±1.08 78.96 4.1(34.58±1.90) (41.46±4.02) (40.14±5.24) (16.76±1.45) (33.23)

Transformer
+GIN+DA-C

80.47±0.60 79.88±1.01 81.09±1.02 71.42±0.67 78.21 4.5(35.62±0.43) (42.28±2.92) (37.37±1.59) (15.62±2.01) (32.72)
Transformer

+GIN+DA-W
79.72±1.13 83.45±3.44 82.36±1.21 73.33±1.84 79.71 2.6(35.47±2.79) (45.05±2.37) (44.07±3.42) (18.78±5.12) (35.84)

Transformer+GIN
+DA-W+SSReg

80.69±0.40 84.69±2.29 81.92±0.81 73.01±0.98 80.07 1.8(36.40±1.34) (45.93±3.64) (41.73±2.55) (19.08±1.63) (35.78)
Transformer+GIN
+DA-W+MFRReg

79.73±0.86 81.69±1.08 79.54±1.20 72.64±0.85 78.40 4.2(31.98±1.54) (42.36±0.38) (38.97±1.57) (19.42±1.29) (33.18)

Table 10: Paper topic semi-supervised classification on ogbn-arxiv under different label rates. Reported num-
bers are accuracy (%).

Link transfer ⇒ MFRReg
Label Rate 1% 10% 100%

GNN 66.64±0.64 69.35±0.52 71.96±0.29
GNN+DA-W 67.53±0.58 68.82±0.43 71.98±0.21

GNN+DA-W+SSReg 67.71±0.43 69.92±0.28 72.04±0.17
GNN+DA-W+MFRReg 67.73±0.42 69.99±0.37 72.06±0.29

Table 11: Unsupervised transfer of cross-species (human to yeast) protein-protein co-expression interaction
prediction. Numbers in red are the best performance among the sub-row.

Methods Co-expression: Link transfer ⇒ MFRReg Physical: Node transfer ⇒ SSReg
AUROC (%) AUPRC (%) AUROC (%) AUPRC (%)

Transformer+GIN 63.91±1.55 11.15±1.11 71.54±0.36 15.73±0.79
Transformer+GIN+SSReg 61.63±0.41 13.62±1.79 71.89±0.78 17.80±1.58

Transformer+GIN+MFRReg 63.01±3.05 15.32±1.84 71.83±1.17 17.01±2.09

Transformer+GIN+DA-C 60.65±3.85 10.72±2.44 71.30±0.61 16.80±0.65
Transformer+GIN+DA-C+SSReg 61.28±2.79 12.39±3.33 73.07±0.85 18.13±2.39

Transformer+GIN+DA-C+MFRReg 66.03±0.85 14.51±2.90 71.61±0.70 16.01±1.42

Table 12: Unsupervised transfer of cross-species (human to fruit fly) protein-protein co-expression interaction
prediction..

Methods Co-expression: Link transfer ⇒ MFRReg Physical: Node transfer ⇒ SSReg
AUROC (%) AUPRC (%) AUROC (%) AUPRC (%)

Transformer+GIN 66.54±1.11 13.48±0.71 82.38±1.13 42.40±2.04
Transformer+GIN+SSReg 63.12±0.77 8.91±1.44 82.50±0.54 40.90±2.92

Transformer+GIN+MFRReg 66.18±1.94 14.14±2.41 81.76±0.71 38.15±2.79

Transformer+GIN+DA-C 64.78±1.23 11.61±2.08 81.49±1.27 38.94±2.36
Transformer+GIN+DA-C+SSReg 66.30±1.51 13.10±1.41 82.32±0.70 38.87±1.82

Transformer+GIN+DA-C+MFRReg 66.92±1.26 11.45±2.55 82.28±0.68 41.29±1.76

H COMPLEXITY ANALYSIS OF SPECTRAL REGULARIZATION

Time. Let’s consider a graph of N nodes. The spectral regularization is composed of two steps:
extracting spectral signals (with eigenvalue decomposition (EVD) involved, complexity O(N3))
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and neural network propagation (complexity O(N) (You et al., 2020c)). Thus, in theory, the former
step dominates the time complexity.

In practice, when training on large networks, mini-batch training is commonly adopted (Hamilton
et al., 2017; Zeng et al., 2019) to avoid computational burden and empirically for better generaliz-
ability (Hamilton et al., 2017), where the node number in each batch is restricted to be much smaller
than the whole network. In our experiments, batch size is set as 128, with ≤ 3 seconds cost brought
for each epoch (see Table 13), which is five times less than the cost brought by adversarial training
(20 seconds, see Table 13). We also provide the time consumption for the full training in Table
15, including the best-performed SOTA GraphCL, where the time consumption for GraphCL was
around 2 times higher in pretraining and 2 times lower in finetuning compared with training from
scratch. Nevertheless, training from scratch did not take longer than 10 hours. We further provide
Table 14 to demonstrate the numerical running time of EVD is acceptable as we see in Table 14,
with batch size ≤ 2048.

Nevertheless, if it is believed that there are indispensable benefits from the full-batch training, we
can always perform the full-batch EVD for only once before training, for the repetitive usage later.

Moreover, we would like to clarify that the spectral properties of graph filters in theory do not have
to depend on inputs (sampled graphs or not, an analog is in signal processing, a low-pass system,
here “low-pass” is the spectral property, would suppress high frequencies for any input signal).

In details, suppose that the graph filter function S(·) with a certain domain D1 (which is a polyno-
mial function resided in a GNN, see Lemma 1) is constructed (or regularized) to be Cλ-Lipschitz
and bounded by B (i.e. ∀x ∈ D, |S(x)| ≤ B), then for an arbitrary graph with the adjacency matrix
A = UΛUT with all eigenvalues range in D2 (i.e. ∀λ ∈ λ, λ ∈ D2), the following applies. If
D2 ⊆ D1, the graph filter S(A) = US(Λ)UT (Ortega et al., 2018) preserves the properties of (i)
spectral smoothness (SS) with Cλ that ∀λi, λj ,

|S(λi)−S(λj)|
|λi−λj | ≤ Cλ, and (ii) maximum frequency

response (MFR) B that max |S(λ)| ≤ B. We can see from the above statement that, spectral prop-
erties of SS and MFR are formulated on eigenvalues but not eigenvectors.

In practice, the spectral regularization is performed in the spectra of sampled networks (with eigen-
values in ΛB range in DB) and the readers might concern whether the regularized properties in
DB still hold in the spectra of ego-graphs of nodes (with eigenvalues in ΛE range in DE) since
whether DE ⊆ DB is unclear. According to the eigenvalue interlacing theorem (Haemers, 1995),
since adjacency matrices of ego-graphs are principal submatrices of sampled networks, we have
min(ΛB) ≤ min(ΛE) ≤ max(ΛE) ≤ max(ΛB) that essentially leads to DE ⊆ DB . Therefore,
regularized spectral properties on spectra DE (in practice) should be preserved on spectra DB (in
theory).

Memory. Beyond time complexity, memory consumption results from data processing (while
all compared methods use the same amount of data) and model propagation. Compared to
the best-performed SOTA GraphCL, memory consumption was similar between GraphCL and
Transformer+GIN(+DA-W+SpecReg), since GraphCL also uses the same Transformer+GIN back-
bone architecture to extract protein representations (Transformer to embed protein sequences as
vertex features, and then GIN to conduct message passing along topology, please refer to Appendix
E for details). GPU memory taken by Transformer+GIN was around 24GB which is within the
capacity of the conventional NVIDIA A100 GPU (40 GB memory).

The improving AUPRC of PPI prediction with regard to such affordable computational resources
is significant. The computational resource is usually not the bottleneck for in-silico methods (in
our case, an NVIDIA A100 GPU + less than 10 hours), while detecting PPI (usually highly imbal-
anced Rao et al. (2014)) via wet laboratories is very costly with expensive reagents for weeks or
months. For instance, the routine yeast two-hybrid system requires steps including building vec-
tors, transforming plasmids, cell culture, luciferase assay, etc Brückner et al. (2009), where accurate
predictions could play a critical role in accelerating the process.

I LEMMA 4: LIPSCHITZ CONSTANT OF TWO-LAYER GNN

□ Lemma 4. Suppose that G is the set for graphs of the size the size NG after padding with isolated
nodes, similar to (Zhu et al., 2021). Following the setting in Lemma 1 and 2, a GNN layer is
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Table 13: Running time for one epoch training in unsupervised cross-species (human to yeast) protein-protein
interaction prediction.

Transformer
+GIN

Transformer
+GIN+DA-W

Transformer+GIN
+DA-W+SSReg

Transformer+GIN
+DA-W+MFRReg

Time 45s 65s 68s 66s

Table 14: Running time for eigenvalue decomposition under different batch sizes in unsupervised cross-species
(human to yeast) protein-protein interaction prediction.

Batch size 32 128 512 2048

Time 0.005s 0.01s 0.08s 3.63s

Table 15: Running time for full training in unsupervised cross-species (human to yeast) protein-protein inter-
action prediction.

GraphCL
Pretraining

GraphCL
Finetuning

GraphCL
Pretraining+Finetuning

Transformer
+GIN

Transformer
+GIN+DA-W

Transformer+GIN
+DA-W+SSReg

Transformer+GIN
+DA-W+MFRReg

Time 12.22h 3.75h 15.97h 6.25h 9.02h 9.44h 9.16h

constructed as f (·)(G) = σ(S(·)(A)XW (·)), and a two-layer GNN as f(G) = r ◦ f (2) ◦ f (1)(G),
where r is the mean/sum/max readout function to pool node representations. Denote the SS and
MFR terms of f (l) as t

(l)
SS = C

(l)
λ K1 + εK2, t

(l)
MFR = |S(l)(λ∗)| that C(l)

f = max{t(l)SS , t
(l)
MFR}, l ∈

{1, 2} per Lemma 2, we can then calculate the Lipschitz constant of GNN as:

Cf = max
{
t
(2)
SS + t

(2)
MFRt

(1)
SS , t

(2)
MFRt

(1)
MFR

}
.

Proof. The key step is to recognize that the input of the 2nd GNN layer is actually a graph with the
same adjacency matrix A, but a different node feature matrix X(1) = f (1)(G). Denote the optimal
permutation matrix for G1, G2 as P ∗, we thus compute the difference of the GNN outputs:

∥f(G1)− f(G2)∥2
= ∥(r ◦ f (2)) ◦ f (1)(G1)− (r ◦ f (2)) ◦ f (1)(G2)∥2
(a)

≤ C
(2)
λ (1 + τ

√
NG)∥A1 − P ∗A2P

∗T∥F +O(∥A1 − P ∗A2P
∗T∥2F) + max(|S(2)(Λ2)|)∥X(1)

1 − P ∗X
(1)
2 ∥F

(b)

≤ C
(2)
λ (1 + τ

√
NG)∥A1 − P ∗A2P

∗T∥F +O(∥A1 − P ∗A2P
∗T∥2F)

+ max(|S(2)(Λ2)|)
(
C

(1)
λ (1 + τ

√
NG)∥A1 − P ∗A2P

∗T∥F +O(∥A1 − P ∗A2P
∗T∥2F)

+ max(|S(1)(Λ2)|)∥X1 − P ∗X2∥F
)

=
(
C

(2)
λ (1 + τ

√
NG) + max(|S(2)(Λ2)|)C(1)

λ (1 + τ
√

NG)
)
∥A1 − P ∗A2P

∗T∥F

+
(
1 + max(|S(2)(Λ2)|)

)
O(∥A1 − P ∗A2P

∗T∥2F) + max(|S(2)(Λ2)|)max(|S(1)(Λ2)|)∥X1 − P ∗X2∥F,

where (a), (b) are due to the reuse the inequalities (a)-(f) in Lemma 1. Next, following the same
spirit in Lemma 2, to calculate the Lipschitz constant of f , we assure the inequality:(
C

(2)
λ (1 + τ

√
NG) + |S(2)(λ∗)|C(1)

λ (1 + τ
√
NG)

)
∥A1 − P ∗A2P

∗T∥F

+
(
1 + |S(2)(λ∗)|

)
O(∥A1 − P ∗A2P

∗T∥2F) + |S(2)(λ∗)S(1)(λ∗)|∥X1 − P ∗X2∥F ≤ Cfη(G1, G2),

that is:(
C

(2)
λ (1 + τ

√
NG) + |S(2)(λ∗)|C(1)

λ (1 + τ
√
NG)− Cf

)
∥A1 − P ∗A2P

∗T∥F

+
(
1 + |S(2)(λ∗)|

)
O(∥A1 − P ∗A2P

∗T∥2F) +
(
|S(2)(λ∗)S(1)(λ∗)| − Cf

)
∥X1 − P ∗X2∥F ≤ 0,
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which is necessary for:(
C

(2)
λ (1 + τ

√
NG) + |S(2)(λ∗)|C(1)

λ (1 + τ
√
NG)− Cf

)
∥A1 − P ∗A2P

∗T∥F

+
(
1 + |S(2)(λ∗)|

)
O(∥A1 − P ∗A2P

∗T∥2F) ≤ 0,(
|S(2)(λ∗)S(1)(λ∗)| − Cf

)
∥X1 − P ∗X2∥F ≤ 0,

which is equivalent to:

Cf ≥ (C
(2)
λ K1 + εK2) + |S(2)(λ∗)|(C(1)

λ K1 + εK2),

Cf ≥ |S(2)(λ∗)S(1)(λ∗)|.
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