
Published in Transactions on Machine Learning Research (05/2025)

Policy Optimization via Adv2:
Adversarial Learning on Advantage Functions

Matthieu Jonckheere matthieu.jonckheere@laas.fr
LAAS, Université de Toulouse, CNRS, Toulouse, France

Chiara Mignacco chiara.mignacco@universite-paris-saclay.fr
Université Paris-Saclay, CNRS, Inria, Laboratoire de mathématiques d’Orsay, 91405, Orsay, France

Gilles Stoltz gilles.stoltz@universite-paris-saclay.fr
Université Paris-Saclay, CNRS, Inria, Laboratoire de mathématiques d’Orsay, 91405, Orsay, France

Reviewed on OpenReview: https: // openreview. net/ forum? id= Oyueig10Ed

Abstract

We revisit the reduction of learning in adversarial Markov decision processes [MDPs] to
adversarial learning based on Q–values; this reduction has been considered in a number of
recent articles as one building block to perform policy optimization. Namely, we first con-
sider and extend this reduction in an ideal setting where an oracle provides value functions:
it may involve any adversarial learning strategy (not just exponential weights) and it may
be based indifferently on Q–values or on advantage functions. We then present two exten-
sions: on the one hand, convergence of the last iterate for a vast class of adversarial learning
strategies (again, not just exponential weights), satisfying a property called monotonicity of
weights; on the other hand, stronger regret criteria for learning in MDPs, inherited from the
stronger regret criteria of adversarial learning called strongly adaptive regret and tracking
regret. Third, we demonstrate how adversarial learning, also referred to as aggregation of
experts, relates to aggregation (orchestration) of expert policies: we obtain stronger forms
of performance guarantees in this setting than existing ones, via yet another, simple re-
duction. Finally, we discuss the impact of the reduction of learning in adversarial MDPs
to adversarial learning in the practical scenarios where transition kernels are unknown and
value functions must be learned. In particular, we review the literature and note that many
strategies for policy optimization feature a policy-improvement step based on exponential
weights with estimated Q–values. Our main message is that this step may be replaced by
the application of any adversarial learning strategy on estimated Q–values or on estimated
advantage functions. We leave the empirical evaluation of these twists for future research.

1 Introduction

In this article, we revisit a specific approach in policy optimization for adversarial Markov decision processes
[MDPs] in the episodic setting, namely, the closed-form design of policies selected over time (which change
incrementally) based on estimated value functions. In virtually all previous work, these policies are computed
via the same adversarial-learning strategy, referred to under possibly different names: exponential weights,
weighted majority, Boltzmann reweighting, or online mirror descent, to name a few. It turns out that
different adversarial-learning strategies may be used, which may have important consequences in practice.

Put differently, this article aims to formally establish the mathematical consistency between the study of
adversarial MDPs and (plain) adversarial learning, and to effectively bridge these two important areas of
learning theory.

1

https://openreview.net/forum?id=Oyueig10Ed


Published in Transactions on Machine Learning Research (05/2025)

1.1 Brief literature review

Before reviewing in detail our contributions, we first provide a concise overview of the related literature and
justify some claims contained in the previous paragraph.

Adversarial MDPs / Reduction to adversarial learning. The setting of adversarial MDPs was
introduced by Even-Dar et al. (2009) and Yu et al. (2009). As in the standard episodic setup, the transition
kernels dictating the evolution of the states are unknown and constant over time. However, the reward
functions vary over time and may be chosen by some adversary; they are possibly revealed at the end of an
episode. Both references were also the first ones to introduce a reduction of the control of adversarial MDPs
to standard adversarial learning (a setting also called expert prediction; see Cesa-Bianchi & Lugosi, 2006
for an overview thereof). In this article, we will be interested in closed-form policy optimization, and not
in approaches relying on so-called occupancy measures (introduced by Zimin & Neu, 2013), which solve a
complex convex optimization problem at each episode, without resulting in closed-form expressions for the
output policies (see, e.g., Rosenberg & Mansour, 2019).

Policy optimization. Policy optimization refers to designing policies to be used at each episode, often
obtained by sequential incremental updates, and may be opposed to value-based learning in MDPs, which
focuses on estimating and improving value functions rather than directly constructing policies. Several
approaches were considered in policy optimization, for instance, (natural) policy gradient (Sutton et al.,
2000, Kakade & Langford, 2002), and variants like Trust Region Policy Optimization or Proximal Policy
Optimization (TRPO and PPO, respectively; see Schulman et al., 2015, Schulman et al., 2017). We will
rather be interested in the closed-form policy design relying on estimates of Q–value functions. This vein of
research includes the works by Shani et al. (2020), Cai et al. (2020), He et al. (2022), Zhao et al. (2023),
Tiapkin et al. (2025) to name a few representative contributions (see also Abbasi-Yadkori et al., 2019).
The settings differ in these articles depending, among others, on the feedback on the reward functions (full
monitoring or bandit feedback) and on the structural assumptions, or lack thereof, on the transition kernels.

However, all cited references have one thing in common: they rely on the same adversarial-learning strategy
to process the estimated Q–value functions (except Tiapkin et al., 2025, which builds on the present work).

A single adversarial-learning strategy, based on exponential weights. This same adversarial-
learning strategy is known under different names and relies on exponential weights; for instance, Agarwal
et al. (2021, Section 5.3) refers to it as multiplicative weights updates, Abbasi-Yadkori et al. (2019), as the
Boltzmann policy1, Shani et al. (2020) and Zhao et al. (2023), as online mirror descent (with a Kullback-
Leibler regularization). Cai et al. (2020) and He et al. (2022) do not write any explicit strategy name
for the corresponding step of their policy-optimization approach, but refer to the same closed-form update
considered by earlier references; they obtain it by resorting to some follow-the-regularized-leader approach
with an entropic regularization (known to lead to exponential weights, see Freund et al., 1997, Kivinen &
Warmuth, 1999, Audibert, 2009).

Interestingly, this strategy based on exponential weights aligns with the concept of natural policy gradient
for non-adversarial MDPs when the policy parametrization is softmax: both approaches involve the same
update rule on the weights (this explicit update rule was, for instance, derived in Agarwal et al., 2021,
Section 5.3, see also Kakade, 2001). This specific case, as the intersection of two optimisation paradigms,
leads to remarkable theoretical guarantees in non-adversarial MDPs; see, in particular, the recent work by
Müller & Montúfar (2024) and references therein.

Two exceptions to the use of the exponential-weight strategy are provided by Even-Dar et al. (2009) and Yu
et al. (2009), which resort to a strategy called follow-the-perturbed-leader (Kalai & Vempala, 2005); but
their setting and objectives are somewhat different from those considered in this article and the previous
references.

1Abbasi-Yadkori et al. (2019) even states that “the choice of the Boltzmann policy is not arbitrary”, but one of the points
of the present article is to actually show the contrary: many other choices of adversarial-learning strategies are suitable.

2



Published in Transactions on Machine Learning Research (05/2025)

Previous reductions of learning in MDPs to adversarial learning. We provide a specific analysis of
the strategy based on exponential weights in Section 6, obtaining improved regret bounds compared to the
analyses provided in the mentioned references. These analyses range from a few-line-long proof performing
a direct reduction to adversarial learning in Shani et al. (2020) (a proof that we copy in Section 3.2 but that
can be improved in the specific case of exponential weights), to longer proofs (possibly several pages, see,
e.g., Zhao et al., 2023, Appendix A.1). The typical proofs are between these two extremes. In particular, to
the best of our knowledge, no other proof than the one by Shani et al. (2020) clearly identifies a reduction,
and all other proofs rather mimic and adapt2 the analysis of exponential weights in adversarial learning, as
in Agarwal et al. (2021, Section 5.3) or Cai et al. (2020). We note that the cited references actually run the
exponential-weight strategy on estimated Q–values: more details are provided in Section 8.

In a nutshell, among all cited references, Shani et al. (2020) already clearly identified how to reduce learning
in MDPs to adversarial learning, but only leveraged this fact for one specific adversarial learning strategy.

1.2 Contributions and outline of this article

In Section 2, we formally define the setting of episodic adversarial MDPs and state our objective: the
minimization of a cumulative regret, defined as the sum of the differences between the value functions of the
best stationary policy and of the output policies.

Section 3 recalls the reduction of learning in MDPs to adversarial learning as clearly stated in the course
of a proof by Shani et al. (2020). We state the reduction in the ideal setting where an oracle provides,
at the end of each episode, the value functions corresponding to the policy played—a restriction that we
discuss and mitigate later in Section 8. We essentially replicate the proof by Shani et al. (2020), based on the
performance difference lemma, and actually generalize it by considering a broad family of possible adversarial
learning strategies, not just exponential weights with a constant learning rate. For instance, the ML-Prod and
ML-Poly strategies (Gaillard et al., 2014, Gaillard et al., 2021) are suitable adversarial-learning strategies
that exhibit in general much better empirical performance than exponential weights. Another observation
is that the theoretical guarantees hold when adversarial-learning strategies are fed with advantage functions
instead of Q–functions, which constitutes a second possible source of improved empirical performance.

We then discuss three extensions (convergence of the last iterate, stronger forms of regret, aggregation of
policies) and present two twists: a special-case analysis for exponential weights with improved bounds, and
how to use the general theory developed in practical scenarios where advantage functions must be estimated
(in particular due to the transition kernels being unknown).

Extension 1: convergence of the last iterate. In the case where reward functions are constant over
time, Section 4 focuses on a regret called simple regret, which measures the difference in performance between
the best stationary policy and the last policy selected. Agarwal et al. (2021, Section 5.3) controlled this
quantity for exponential weights with a constant learning rate (in the discounted setting). We show how
to extend their argument to a large class of adversarial strategies satisfying a natural property that we call
“monotonicity of weights”.

Extension 2: Stronger forms of regret. Section 5 shows that the general reduction studied in Section 3
also works for a stronger notion of regret called strongly adaptive regret and consisting of studying the sums
of differences in value functions over sub-intervals of time. As a consequence, the so-called tracking regret
may also be controlled: therein, the comparison is made not to the best stationary policy, but to the best
sequence of policies with few shifts. To the best of our knowledge, the control of such improved forms of
regret for MDPs is an original contribution.

The special case of exponential weights. Section 6 leverages elements from Extensions 1 and 2 to show
that when the adversarial learning strategy consists in using exponential weights with a constant learning

2Typical proofs usually consider the analysis of exponential weights based on telescoping Kullback-Leibler terms (as in
Freund & Schapire, 1999), but we note that shorter analyses exist, e.g., based on Hoeffding’s lemma (see Cesa-Bianchi &
Lugosi, 2006, Section 2.2).

3



Published in Transactions on Machine Learning Research (05/2025)

rate, the (cumulative) regret may be bounded by the number of shifts in the reward sequence. This provides
yet another generalization of the results of Agarwal et al. (2021, Section 5.3). In addition, the proof technique
by Agarwal et al. (2021, Section 5.3) seemed highly specific to the discounted setting: we provide instead a
treatment for the episodic setting.

Extension 3: Aggregation (orchestration) of expert policies. Adversarial learning is sometimes
called prediction with experts (see Cesa-Bianchi & Lugosi, 2006). Section 7 considers the case where policies
selected over time are no longer learned in a direct tabular setting, but are obtained by (state-by-state and
stage-by-stage) convex combinations of some expert policies. The aim is to mimic the performance of the
overall best such convex combination. This methodology, which we call aggregation (or orchestration) of
expert policies, is also referred to as learning from multiple oracles (which may be understood as a specific
paradigm in the vast imitation-learning literature); see, for instance, Cheng et al., 2020 and Liu et al., 2023.
We show that to address this problem, it suffices to consider expert policies as actions in a lifted MDP and
apply all results described earlier in this article. We obtain stronger performance guarantees than in the
cited references.

Empirical impacts as future research directions. Section 8 puts into perspective the design of policies
studied in this article: in practice, advantage functions are unknown but may be estimated, so that the
strategies studied earlier in this article should be run on these estimates. We review the literature of
policy optimization to explain how and why the strategies proposed in the literature may be modified:
their policy-improvement step, stated with exponential weights, may in fact rely on many other adversarial-
learning strategies. This modification has no impact on the theoretical guarantees but could be impactful
on the practical performance. We however leave the assessment of that potential practical impact for future
research.

2 Setting and aims

Notation. We denote by P(X ) the set of probability distributions over some set X , either finite or given
by an interval of R in the sequel. For an integer n ⩾ 1, let [n] = {1, . . . , n} denote the set of the first n
integers.

Setting. We consider an H–episodic and (obliviously) adversarial Markov decision process [MDP] with
finite state and action spaces S and A, of respective cardinalities S and A: each episode t ⩾ 1 is of length
H ⩾ 1 and is governed by transition kernels T = (Th)h∈[H−1], where Th : S × A → P(S), and by reward
functions Rt = (Rt,h)h∈[H], where Rt,h : S × A → P

(
[0, 1]

)
. The transition kernels are constant across

episodes, while the reward functions Rt vary between episodes; they may actually be picked by an adversary
in an oblivious manner, i.e., the entire sequence (Rt)t⩾1 is determined by the adversary before the first
episode takes place.

We denote by rt,h : S × A → [0, 1] the mean-payoff function associated with Rt,h, i.e., rt,h(s, a) is the
expectation of the distribution Rt,h(s, a), for each s ∈ S and a ∈ A.

A (stationary, or one-shot) policy π = (πh)h∈[H] is a sequence of mappings πh : S → P(A); we denote by
πh( · |s) the probability distribution over actions that the policy uses in stage h and state s. The learner
should determine a policy πt at the beginning of each episode t ⩾ 1, based on the information gained
from rounds τ ⩽ t − 1; that information includes at least the states observed and actions played therein,
as well as the rewards obtained. In some scenarios, additional observations may be performed, which we
will explicitly detail; for instance, the learning system may observe, among other things, the mean-payoff
functions rτ = (rτ,h)h∈[H] at the end of episode τ .

At the beginning of each episode t ⩾ 1, the same initial state st,1 = s1 is set. Then, at each stage
h ∈ [H − 1], the learning system draws an action at,h ∼ πt,h( · |st,h), after which it obtains and observes
a stochastic reward drawn independently from Rt,h(st,h, at,h), while the environment moves to a new state
drawn as st,h+1 ∼ Th( · |st,h, at,h). In the final stage, only an action at,H ∼ πt,H( · |st,H) is drawn, and a
reward drawn independently from Rt,H(st,H , at,H) is obtained and observed. We do not introduce pieces of

4



Published in Transactions on Machine Learning Research (05/2025)

Box A: Policy optimization, for direct tabular learning

MDP parameters: state space S, action space A, initial state s1 ∈ S, transition kernels T

Initialization: The environment picks a sequence (Rt)t⩾1 of reward functions

For episodes t = 1, 2, . . .:
1. The initial state is set to st,1 = s1

2. For stages h = 1, . . . , H:
(a) The learner picks a policy πt,h : S → P(A)
(b) and draws an action at,h ∼ πt,h( · |st,h)

3. The learner receives and observes a reward drawn independently from Rt,h(st,h, at,h), with
conditional expectation rt,h(st,h, at,h)

4. If h ⩽ H − 1, the next state st,h+1 ∼ Th( · |st,h, at,h) is drawn

Goal: Minimize the regret RT = max
π

T∑
t=1

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)

notation for the rewards actually obtained as all arguments in this article will be based on value functions,
which, by the tower rule, only depend on the mean-payoff functions.

More precisely, by the tower rule, the value function V π,Rt

h of a given stationary policy π = (πj)j∈[H] at
episode t ⩾ 1 and started at stage h ∈ [H] equals, for all s ∈ S,

V π,Rt

h (s) = Eπ,T

 H∑
j=h

rt,j(sj , aj)
∣∣∣∣ sh = s

 , (1)

where the piece of notation Eπ,T indicates that actions ah and states sh in the expectation are governed by
the policy π and the transition kernels T , as described above.

2.1 First aim: direct tabular learning

We evaluate the policies πt picked over time in terms of their value functions and are interested in mimicking
the performance of the best stationary policy in hindsight. More precisely, the learning system aims to control

∀T ⩾ 1, RT = max
π

T∑
t=1

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)

, (2)

where the maximum is over all stationary policies π. We write “∀T ⩾ 1” to indicate that either the time
horizon T is unknown or the regret should be controlled for all time horizons. The regret RT involves a sum
essentially because the reward functions Rt evolve over time in a possibly adversarial way; when they are
constant over time, then convergence of the last iterate (i.e., of the T–th term in the sum above) may be
achieved, see Section 4.

The aim described above is called direct tabular learning as policies πt are picked by determining, for each
stage h and state s, the entire probability distribution πt,h( · |s). The terminology is borrowed from Agarwal
et al., 2021, Section 3.

The setting above is summarized in Box A.

Alternative aim in Section 7. The aim described in Box A may be difficult to complete when the
number A of actions is large. In addition, the learning system may sometimes have some prior information

5



Published in Transactions on Machine Learning Research (05/2025)

given by a finite set of expert policies among which some policies could perform well (the subsets of these
good-performing policies could possibly depend on the state). We therefore introduce an alternative aim
in Section 7 called aggregation (or orchestration) of expert policies, but actually show that resolving this
objective is equivalent in some sense to the aim described in Box A.

2.2 Additional notation

For later use, we define Q–values and advantage functions, and use the same notation as in (1) to that end.
For any pair of stationary policy π and reward functions R, we define its Q–value function at episode t ∈ [T ],
and started from stage h ∈ [H], as

Qπ,Rt

h : (s, a) ∈ S × A 7−→ Eπ,T

 H∑
j=h

rt,j(sj , aj)
∣∣∣∣ sh = s, ah = a

 ,

and its advantage function as

Aπ,Rt

h : (s, a) ∈ S × A 7−→ Qπ,Rt

h (s, a) − V π,Rt

h (s) . (3)

We only keep in the notation Vh, Qh, and Ah the parameters π and Rt that vary, and omit the transition
kernels T . We use the short-hand notation

Aπ,Rt

h (s, · ) =
(
Aπ,Rt

h (s, a)
)

a∈A (4)

to denote the vector of advantages of a stationary policy π for a given episode t and a given stage h.

3 Methodology and core result: adversarial learning on advantage functions

Contributions of this section. We recall how strategies designed to control the regret in the so-called
adversarial setting, i.e., satisfying guarantees as described in Definition 1 below, may be used to construct
policies so as to control the regret in terms of value functions. This observation was essentially already made
in the literature, at least for exponential weights; see, for instance, how Shani et al. (2020, Section 6) handles
the quantity called term (ii) in their proof.

Before formally stating our main result, we briefly recall what the adversarial setting consists in, mostly to set
our notation. We assume that the reader is familiar with the fundamental concepts and results of adversarial
learning and refer to the monograph by Cesa-Bianchi & Lugosi (2006) for a more detailed exposition.

3.1 Reminder on adversarial learning

We provide a description where K ⩾ 2 refers to the number of options that the learning strategy has (the
number of experts with the classic terminology of adversarial learning). In Section 3.2, we will identify this
set [K] of options with the set of actions A.

At each round t ⩾ 1, based on the information collected during past rounds, a learning strategy picks a convex
combination wt = (wt,1, . . . , wt,K) ∈ P

(
[K]
)

while an opponent player simultaneously picks, possibly at
random, a vector gt = (gt,1, . . . , gt,K) of signed rewards. Both wt and gt are revealed at the end of the round.
More formally, we mean that a learning strategy is a sequence φ = (φt)t⩾1 of functions φt : RK(t−1) → P

(
[K]
)

and that wt = φt

(
(gτ )τ⩽t−1

)
for t ⩾ 1. This formula means in particular that the initial vector w1 = φ1(∅)

is constant.
Definition 1 (adversarial-learning regret bound). A sequential strategy controls the regret in the adversarial
setting with rewards bounded by M > 0 if there exists a sequence (BT,K)T⩾1 of positive numbers with
BT,K/T → 0 and such that, against all opponent players sequentially picking reward vectors in [−M, M ]K ,

∀T ⩾ 1, max
k∈[K]

T∑
t=1

gt,k −
T∑

t=1

∑
j∈[K]

wt,j gt,j ⩽ 2M BT,K .

6



Published in Transactions on Machine Learning Research (05/2025)

The optimal orders of magnitude of BT,K are
√

T ln K (see Cesa-Bianchi & Lugosi, 2006). In Definition 1,
the strategy may know M and rely on its value. On the contrary, the number T of rounds is unknown and in
fact, for the sake of exposition, Definition 1 requires a control of the adversarial regret for all T ⩾ 1, which
imposes a mild restriction.

Two simple examples of strategies abiding by the constraints of Definition 1 are instances of the potential-
based strategies by Cesa-Bianchi & Lugosi (2003). They are defined based on a sequence of non-decreasing
functions Φt : R → [0, +∞); they resort to w1,k = 1/K and

∀t ⩾ 2, wt,k = vt,k∑
j∈[K]

vt,j

, where vt,k = Φt

t−1∑
τ=1

gτ,k −
t−1∑
τ=1

∑
j∈[K]

wτ,jgτ,j

 . (5)

Example 1. Cesa-Bianchi & Lugosi (2003, Section 2) show that the strategy based on the constant polyno-
mial potentials Φt ≡ Φ : x 7→

(
max{x, 0}

)2 ln K provides the control BT,K =
√

6T ln K for the regret in the
adversarial setting.
Example 2. Auer et al. (2002) studied exponential potentials Φt(x) = exp(ηtx) with time-varying learn-
ing rates ηt = (1/M)

√
(ln K)/t. This sequential strategy controls the regret with BT,K =

√
T ln K in the

adversarial setting.

A third example is of a different, not potential-based, nature.
Example 3. The greedy projection algorithm of Zinkevich (2003) relies on a sequence (ηt)t⩾1 of positive
step sizes and sets wt+1 = proj(wt + ηt gt) for t ⩾ 1, where w1 = (1/K, . . . , 1/K) and where proj is the
convex projection onto P

(
[K]
)

in the Euclidean norm. For the choices ηt = (1/M)
√

1/(2Kt), this strategy
controls the regret in the adversarial setting with BT,K =

√
2KT .

Dozens of strategies satisfying the guarantees of Definition 1 exist.

3.2 Policy optimization via adversarial learning on advantage functions

This section presents rather standard material and must be read accordingly. Indeed, what follows is a
reduction that was essentially known, though it has previously been applied only with exponential weights and
on Q–values rather than advantage functions. The proof follows the one by Shani et al. (2020, Section 6)—see
also Agarwal et al. (2021, proof of Theorem 16)—, i.e., is based on the performance difference lemma.

We present the reduction in the ideal setting, where an oracle provides at the end of each episode t the
value functions of the policy πt and of the reward function Rt selected by the learning system and the
environment, respectively. (The reward function Rt does not need to directly be revealed, though, but only
indirectly through the value functions.) We consider this ideal setting throughout this article, except in
Section 8, where we explain how to leverage in practice the results developed in the ideal setting.
Oracle 1. At the end of each episode t ⩾ 1, an oracle provides, for each h ∈ [H], the value functions

Qπt,Rt

h : S ×A → [0, H −h+1] , V πt,Rt

h : S → [0, H −h+1] , Aπt,Rt

h : S ×A →
[
−(H − h + 1), H −h+1

]
of the policy πt and of the reward function Rt selected by the learning system and the environment, respec-
tively.

For each stage h ∈ [H], we fix a sequential strategy φh = (φt,h)t⩾1 in the adversarial setting, relying on
reward vectors bounded by Mh = H − h + 1 and of dimension K = A, i.e., indexed by A. We run these
strategies on the advantage functions, in a stage-by-stage and state-by-state manner, as follows: for all t ⩾ 1,

∀h ∈ [H], ∀s ∈ S, πt,h( · |s) = φt,h

((
Aπτ ,Rτ

h (s, · )
)

τ⩽t−1

)
, (6)

where we used the notation defined in (4). We refer to this strategy as (φh)h∈[H]–Adv2, for (φh)h∈[H]–
adversarial learning on advantage functions.

7



Published in Transactions on Machine Learning Research (05/2025)

It constitutes a “theoretical” strategy, as it relies on the oracle knowledge of the advantage functions—an
issue that we discuss and mitigate later in Section 8. The strategy could be run instead on Q–values, see
Remark 1 below.
Theorem 1. In the setting of Section 2 where rewards lie in [0, 1], if, for all h ∈ [H], the sequential
strategies φh control the regret in the adversarial setting (Definition 1) by BT,A for A–dimensional reward
vectors bounded by H − h + 1, then the (φh)h∈[H]–Adv2 strategy defined in (6) controls the regret as:

∀T ⩾ 1, max
π

T∑
t=1

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)
⩽ H(H + 1) BT,A .

As indicated above, following Shani et al. (2020, Section 6), the (short) proof of Theorem 1 relies on the
so-called performance difference lemma, which we recall next. For the sake of completeness, references for
this lemma and a proof thereof are provided in Appendix B.
Lemma 1 (Performance difference lemma). Let µs1,π,T

h′ be the distribution of the state sh′ of the h′–th stage,
starting from the state s1 in the first stage, following the stationary policy π and the transition kernels T .
In a MDP with transition kernels T , for all pairs π, π′ of stationary policies, for all reward functions R,
and for all stages h ∈ [H],∑

s∈S
µs1,π,T

h (s)
(

V π,R
h (s) − V π′,R

h (s)
)

=
H∑

h′=h

∑
s∈S

µs1,π,T
h′ (s)

∑
a∈A

πh′(a|s) Aπ′,R
h′ (s, a) .

In particular, for h = 1,

V π,R
1 (s1) − V π′,R

1 (s1) =
H∑

h′=1

∑
s∈S

µs1,π,T
h′ (s)

∑
a∈A

πh′(a|s) Aπ′,R
h′ (s, a) .

Proof of Theorem 1. We fix a stationary policy π throughout the proof and control the regret with respect
to this π.

The first part consists of applying the adversarial-learning regret upper bound for each h ∈ [H]. As the
rewards take values in [0, 1], we have that

∣∣Aπτ ,Rτ

h (s, a)
∣∣ ⩽ H − h + 1 for all τ, s, a. By the definition of

advantage functions (for the equality to 0) and by Definition 1 and the design of the (φh)h∈[H]–Adv2 strategy
(for the upper bound), we have, for all s ∈ S,

max
a∈A

T∑
t=1

Aπt,Rt

h (s, a) −
T∑

t=1

= 0︷ ︸︸ ︷∑
a∈A

πt,h(a|s) Aπt,Rt

h (s, a) ⩽ 2(H − h + 1) BT,A . (7)

The second part consists of applying the performance difference lemma, i.e., Lemma 1 above with h = 1,
which guarantees that

V π,Rt

1 (s1) − V πt,Rt

1 (s1) =
H∑

h=1

∑
s∈S

µs1,π,T
h (s)

∑
a∈A

πh(a|s) Aπt,Rt

h (s, a) .

Summing this equality over t and rearranging, we get
T∑

t=1

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)

=
H∑

h=1

∑
s∈S

µs1,π,T
h (s)

∑
a∈A

πh(a|s)
T∑

t=1
Aπt,Rt

h (s, a)

⩽
H∑

h=1

∑
s∈S

µs1,π,T
h (s) max

a∈A

T∑
t=1

Aπt,Rt

h (s, a)︸ ︷︷ ︸
⩽2(H−h+1) BT,A

⩽ 2
H∑

h=1
(H − h + 1)︸ ︷︷ ︸

=H(H+1)

BT,A , (8)

where we substituted (7). Here, we crucially used that the weights µs1,π,T
h (s) are independent of t as they

only depend on the fixed benchmark policy π, on the common transition kernels T , and on the initial state s1
(identical for all t).

8



Published in Transactions on Machine Learning Research (05/2025)

3.3 Comments

In this section, we comment and discuss the Adv2 strategy (6) and its bound.

We first note that the regret bound of Theorem 1 is independent of the size S of the state space; it only
depends on the size A of the action space, on the number T of episodes, and on the length H of the episodes.
Given that adversarial-learning strategies have a per-round computational complexity typically proportional
to K (with the notation of Section 3.1), the per-round computational complexity of the Adv2 strategies (6)
are typically proportional to SAH as far as the weight updates are concerned. The main computational
issue lies in computing (or estimating, see Section 8) the advantage functions Aπτ ,Rτ

h .

Second, for potential-based strategies (5), we note that the original definition (6) of Adv2 and the alternative
definition based on Q–values,

πt,h( · |s) = φt,h

((
Qπτ ,Rτ

h (s, · )
)

τ⩽t−1

)
, (9)

lead to the exact same strategies. This may be shown by induction, based on the fact that for all h ∈ [H]
and (s, a) ∈ S × A, as in (7) for the first equality and due to the definitions of value functions for the second
equality,

t−1∑
τ=1

Aπτ ,Rτ

h (s, a) −
t−1∑
τ=1

=0︷ ︸︸ ︷∑
a∈A

πτ,h(a|s) Aπτ ,Rτ

h (s, a) =
t−1∑
τ=1

Aπτ ,Rτ

h (s, a)

and
t−1∑
τ=1

Qπτ ,Rτ

h (s, a) −
t−1∑
τ=1

∑
a∈A

πτ,h(a|s) Qπτ ,Rτ

h (s, a)︸ ︷︷ ︸
=V πτ ,Rτ

h
(s)

=
t−1∑
τ=1

Aπτ ,Rτ

h (s, a) .

For general adversarial-learning strategies, the induced strategies (6) and (9) may differ, though they achieve
the same regret guarantees, as detailed by the following remark.
Remark 1. An inspection of the proof of Theorem 1 shows that it would also work for the strategies of the
form (9). Indeed, the inequality (7) therein would be replaced equivalently by

2(H − h + 1) BT,A ⩾ max
a∈A

T∑
t=1

Qπt,Rt

h (s, a) −
T∑

t=1

=V
πt,Rt

h
(s)︷ ︸︸ ︷∑

a∈A
πt,h(a|s) Qπt,Rt

h (s, a) = max
a∈A

T∑
t=1

Aπt,Rt

h (s, a) ,

while the rest of the proof would be unaffected. However, using the advantage functions is preferred in
practice, as it provides a greater numerical stability, as well as a possibly lower variance when the value
function are estimated (see Section 8).

4 Extension 1:
Convergence of the last iterate for some adversarial learning strategies

Contributions of this section. We generalize an argument of Agarwal et al. (2021, Section 5.3), which
was provided for exponential weights only (in the discounted setting): the aim is to control the convergence of
the last iterate, i.e., to upper bound max

π
V π,R

1 (s1) − V πT ,R
1 (s1), when (mean) rewards functions are constant

over time.
To do so, we introduce a concept of independent interest: monotonicity of weights for adversarial-learning
strategies.

More precisely, for adversarial-learning strategies φ satisfying this property of monotonicity of weights, and
in case reward functions do not vary over time (or even just mean reward functions do not vary over time,
see Remark 2) the result of Theorem 1 may be strengthened into a convergence result of the last iterate, at
a rate faster by a factor of 1/T compared to the convergence of the cumulative regret (2).

9



Published in Transactions on Machine Learning Research (05/2025)

Definition 2 (monotonicity of weights). A sequential strategy φ = (φt)t⩾1 in the adversarial setting satisfies
monotonicity of weights if against all opponent players sequentially picking K–dimensional reward vectors
gτ = (gτ,k)k∈[K], the convex weights output by φ are such that

∀t ⩾ 1,
∑

k∈[K]

wt+1,k

gt,k −
∑

j∈[K]

wt,jgt,j

 ⩾ 0 ,

where we recall the notation (wt,k)k∈[K] = φt(g1, . . . , gt−1) and (wt+1,k)k∈[K] = φt(g1, . . . , gt−1, gt).

The proof of Lemma 2 below explains why the property of Definition 2 is termed monotonicity of weights,
and why it is a natural property of an adversarial learning strategy: indeed, the property is satisfied as
soon as weights for components k associated with a good (respectively, bad) reward gt,k in the previous
round increase (respectively, decrease), where good or bad is determined by the sign of what is called the
instantaneous regret with respect to component k in round t:

gt,k −
∑

j∈[K]

wt,jgt,j .

Lemma 2. The potential-based strategies (5) of Cesa-Bianchi & Lugosi (2003) with constant, non-decreasing
potential functions Φt ≡ Φ (like in Example 1) and the greedy projection algorithm (Example 3) of Zinkevich
(2003) satisfy monotonicity of weights.

Proof. We start with the potential-based strategies (5), in case of a constant, non-decreasing potential
function Φt ≡ Φ, and use the notation defined therein. For each t ⩾ 1, since Φ is non-decreasing, we have,
for all k ∈ [K],

vt+1,k ⩾ vt,k ⇐⇒ gt,k −
∑

j∈[K]

wt,jgt,j ⩾ 0 , thus (vt+1,k − vt,k)

gt,k −
∑

j∈[K]

wt,jgt,j

 ⩾ 0

in all cases. Therefore,

∑
k∈[K]

vt+1,k

gt,k −
∑

j∈[K]

wt,jgt,j

 ⩾
∑

k∈[K]

vt,k

gt,k −
∑

j∈[K]

wt,jgt,j

 = 0 ,

where the equality to 0 and the final result of Definition 2 are obtained, respectively, by normalizing the
vt+1,k and vt,k into wt+1,k and wt,k.

For the greedy projection algorithm (Example 3) of Zinkevich (2003), we note that by a property of Euclidean
projections onto a convex set (here, wt+1 is the projection of wt + ηt gt onto the simplex, and wt also belongs
to the simplex), the following Euclidean inner product is non-positive:

0 ⩾
〈
wt − wt+1, (wt + ηt gt) − wt+1

〉
= ∥wt − wt+1∥2 + ηt⟨wt − wt+1, gt⟩ ,

so that ⟨wt+1 − wt, gt⟩ ⩾ 0, which is exactly monotonicity of weights.

We are now ready to state our result of convergence of the last iterate, which generalizes an argument of
Agarwal et al. (2021, Section 5.3).
Theorem 2. Assume reward functions do not vary over time and are all equal to some R. If, for all
h ∈ [H], the sequential strategies φh satisfy monotonicity of weights (Definition 2) and control the regret in
the adversarial setting (Definition 1) by BT,A for A–dimensional reward vectors bounded by H − h + 1, then
the last iterate of the (φh)h∈[H]–Adv2 strategy defined in (6) satisfies

∀T ⩾ 1, max
π

V π,R
1 (s1) − V πT ,R

1 (s1) ⩽ H(H + 1) BT,A

T
.

10



Published in Transactions on Machine Learning Research (05/2025)

The bound by Agarwal et al. (2021, Section 5.3), where the exponential weights with a constant learning
rate are considered, corresponds to this theorem but is stated separately in Corollary 2, for reasons that will
be made clear in Section 6. As the proof of Theorem 2 is concise, we provide it in the main body of this
article.

Proof. Given the definition (6), the monotonicity of weights (Definition 2), and the definition of advantage
functions, we have that, for all t ⩾ 1, for all h ∈ [H], and s ∈ S,∑

a∈A
πt+1,h(a|s) Aπt,R

h (s, a) ⩾
∑
a∈A

πt,h(a|s) Aπt,R
h (s, a) = 0 .

Therefore, the performance difference lemma, i.e., Lemma 1 above with h = 1, shows that

V
πt+1,R

1 (s1) − V πt,R
1 (s1) =

H∑
h=1

∑
s∈S

µ
s1,πt+1,T
h (s)

∑
a∈A

πt+1,h(a|s) Aπt,R
h (s, a)︸ ︷︷ ︸

⩾ 0

⩾ 0 .

(This is the part of the proof where we crucially use that reward functions do not vary over time.) Thus,

max
π

V π,R
1 (s1) − V πT ,R

1 (s1) ⩽ max
π

V π,R
1 (s1) − 1

T

T∑
t=1

V πt,R
1 (s1) ⩽ H(H + 1) BT,A

T
,

where we applied Theorem 1 for the final bound.

Remark 2. An inspection of the proof above shows that what actually matters is only that mean reward
functions rt = (rt,h)h∈[H] be constant over time. Indeed, the value and advantage functions only depend on
the Rt through the rt; this fact is also illustrated in the proof of the performance difference lemma which
only requires identical mean reward functions, not the identity of reward functions.

5 Extension 2: Stronger forms of regret

Contributions of this section. We push the logic of the reduction of the control of MDPs to adversarial
learning, and leverage stronger forms of regret in adversarial learning. This section thus presents new regret
criteria for learning MDPs.

Definition 1 considers the simplest definition of adversarial regret. However, several stronger notions of
regrets were proposed in the literature. The proof of Theorem 1 shows that the vanilla notion of adversarial
regret of Definition 1 may be transferred into the vanilla regret (2) in terms of value functions. Actually, this
proof may be mimicked to transfer stronger notions of adversarial regret. We illustrate this possibility with
two notions of adversarial regrets that replace the comparison to a single global policy with local comparisons
(strongly adaptive regret) or by global comparisons to sequences of policies (tracking regret).

5.1 Strongly adaptive regret and tracking regret in adversarial learning

We use again the notation for adversarial learning introduced at the beginning of Section 2.1. The first
extended notion of regret, called strongly adaptive regret, measures performance simultaneously over each
given sub-interval of time with respect to the best component over that sub-interval. It was introduced
by Daniely et al. (2015), based on the concept of adaptive regret from Hazan & Seshadhri (2009), itself
based on the work by Littlestone & Warmuth (1994).
Definition 3 (strongly adaptive regret in adversarial learning). A sequential strategy controls the strongly
adaptive regret in the adversarial setting with rewards bounded by M > 0 if there exist positive numbers
BT,K,τ , where T ⩾ 1 and τ ∈ [T ], such that, against all opponent players sequentially picking reward vectors
in [−M, M ]K ,

∀T ⩾ 1, ∀τ ∈ [T ], max
t0∈[T −τ+1]

max
k∈[K]

t0+τ−1∑
t=t0

gt,k −
t0+τ−1∑

t=t0

∑
j∈[K]

wt,j gt,j

 ⩽ 2M BT,K,τ ,

11



Published in Transactions on Machine Learning Research (05/2025)

and sup
τ∈[T ]

BT,K,τ

T
→ 0 as T → ∞.

It follows from Daniely et al. (2015, Theorem 1) that the strongly adaptive regret can be controlled with
bounds BT,K,τ of order

√
τ up to logarithmic factors.

A closely related notion is the tracking regret, introduced by Herbster & Warmuth (1998) (see also Cesa-
Bianchi & Lugosi, 2006, Chapter 5.2), where the comparison is taken over all time steps but against sequences
k1:T = (k1, k2, . . . , kT ) with values in [K], and containing at most C shifts (i.e., C time steps such that
kt ̸= kt−1). The tracking regret involves

T∑
t=1

gt,kt −
T∑

t=1

∑
j∈[K]

wt,j gt,j .

There are strong links between strongly adaptive and tracking regret, see Adamskiy et al. (2016). In partic-
ular, we explain, in the context of regret with value functions, how strongly adaptive regret with BT,K,τ of
order

√
τ up to logarithmic factors entails tracking regret of order

√
CT ; see Corollary 1.

5.2 Transfer of strongly adaptive regret bounds

Based on Definition 3, we obtain the following regret bound in terms of value functions and policies.
Theorem 3. In the setting of Section 2 where rewards lie in [0, 1], if, for all h ∈ [H], the sequential strategies
φh control the strongly adaptive regret in the adversarial setting (Definition 3) by BT,A,τ for A–dimensional
reward vectors bounded by H − h + 1, then the (φh)h∈[H]–Adv2 strategy defined in (6) ensures that

∀T ⩾ 1, ∀τ ∈ [T ], max
t0∈[T −τ+1]

{
max

π

t0+τ−1∑
t=t0

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)}

⩽ H(H + 1) BT,A,τ .

The proof of Theorem 3 is obtained by a direct adaptation of the proof of Theorem 1, which basically consists
of considering sums over sub-intervals only instead of sums over all time periods. Again, since the proof is
concise, we provide it here.

Proof of Theorem 3. We fix a stationary policy π throughout the proof and control some adaptive regret
with respect to this π. By the design (6) of the Adv2 strategy, which operates stage by stage and state by
state, we have that for all h ∈ [H] and s ∈ S, the following holds, by Definition 3: for all T ⩾ 1 and τ ∈ [T ],

max
t0∈[T −τ+1]

max
a∈A

t0+τ−1∑
t=t0

Aπt,Rt

h (s, a) −
t0+τ−1∑

t=t0

= 0︷ ︸︸ ︷∑
a∈A

πt,h(a|s) Aπt,Rt

h (s, a)

 ⩽ 2(H − h + 1) BT,A,τ .

The same application of the performance difference lemma as in the proof of Theorem 1 entails that for all
T ⩾ 1, τ ∈ [T ], and t0 ∈ [T − τ + 1],

t0+τ−1∑
t=t0

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)

=
H∑

h=1

∑
s∈S

µs1,π,T
h (s)

∑
a∈A

πh(a|s)
t0+τ−1∑

t=t0

Aπt,Rt

h (s, a)

⩽
H∑

h=1

∑
s∈S

µs1,π,T
h (s) max

a∈A

t0+τ−1∑
t=t0

Aπt,Rt

h (s, a)︸ ︷︷ ︸
⩽2(H−h+1) BT,A,τ

⩽ H(H + 1) BT,A,τ .

Here again, we crucially used that the weights µs1,π,T
h (s) are independent of t. The claimed bound follows

by taking the maximum over π and over t0 ∈ [T − τ + 1].

12



Published in Transactions on Machine Learning Research (05/2025)

5.3 Tracking regret bounds

We detail a consequence of the bound of Theorem 3 in terms of tracking regret.

We now consider sequences π(1:T ) =
(
π(1), π(2), . . . , π(T )) of stationary policies as comparison points,

instead of a single stationary policy. We define the number of shifts c
(
π(1:T )) of such a sequence as follows:

the smallest integer c′ such that there exist c′ − 1 integers τ2, . . . , τc′ with values in [T ] such that, denoting
τ1 = 1 and τc′+1 = T + 1,

∀i ∈ {2, . . . , c′ + 1}, ∀t ∈ {τi−1, . . . , τi − 1}, π(t) = π(τi−1) . (10)

The tracking regret against sequences π(1:T ) of stationary policies with at most C shifts is defined as

max
π(1:T ) such that

c(π(1:T ))⩽C

T∑
t=1

V π(t),Rt

1 (s1) −
T∑

t=1
V πt,Rt

1 (s1) .

We fix 1 ⩽ C ⩽ T and a sequence π(1:T ) of stationary policies, with at most C shifts, occurring at episodes
1 = τ1 ⩽ τ2 ⩽ . . . ⩽ τC . (The inequalities are strict if there are exactly C shifts.) We introduce τC+1 = T +1
and partition time into the C intervals [τi, τi+1 − 1], for i ∈ [C]. The values successively taken by the
sequence π(1:T ) consist of the π(τi), where i ∈ [C]. By applying the bound of Theorem 3 on each of the C
intervals [τi, τi+1 − 1], we obtain the following corollary.
Corollary 1. Under the assumptions of Theorem 3, the (φh)h∈[H]–Adv2 strategy defined in (6) also ensures
that ∀T ⩾ 1, ∀C ∈ [T ],

max
π(1:T ) such that

c(π(1:T ))⩽C

T∑
t=1

V π(t),Rt

1 (s1) −
T∑

t=1
V πt,Rt

1 (s1) ⩽ H(H + 1) max
1=τ1⩽τ2⩽...

⩽τC⩽τC+1=T +1

C∑
i=1

BT,A,τi+1−τi .

In particular, if BT,A,τ ⩽ ℓ(T, K)
√

τ , where ℓ(T, K) is logarithmic in T and K, which is a standard bound,
then by Jensen’s inequality for

√
· ,

max
1=τ1⩽τ2⩽...

⩽τC⩽τC+1=T +1

C∑
i=1

BT,A,τi+1−τi
⩽ ℓ(T, K) max

1=τ1⩽τ2⩽...
⩽τC⩽τC+1=T +1

C∑
i=1

√
τi+1 − τi︸ ︷︷ ︸

⩽
√

C(τC+1−τ1)=
√

CT

⩽ ℓ(T, K)
√

CT .

6 The special case of exponential weights: improved regret bounds

Contributions of this section. The literature (see Section 1.1) essentially focuses on the adversarial
learning strategy given by exponential weights with a constant learning rate η. It turns out that this strategy
does not satisfy the requirement of Definition 1 because of a tuning issue: the adversarial regret bound is of the
form ln N/η + ηMT/2 (see, e.g., Cesa-Bianchi & Lugosi, 2006, Theorem 2.2) and cannot be simultaneously
optimized for all values of T . The literature typically assumes that T is known and obtains a

√
T regret

bound for MDPs by taking η of order 1/
√

T ; see, for instance, among many others, Cai et al. (2020) and
Shani et al. (2020). A notable exception, in the discounted setting and for a constant reward function, can
be extracted from the proof of Agarwal et al. (2021, Section 5.3)—they handle convergence of the last iterate
but their proof technique also applies to cumulative regret. We extend their result to the episodic setting and
show that it is not essential that the reward functions be constant over time: we provide an upper bound in
terms of the numbers of shifts in the sequence of reward functions.

We study in this section the strategy (6) of Section 3.2 where the adversarial learning strategies are given
by the strategy (5) based on a constant exponential potential Φt ≡ Φ : x 7→ exp(ηx). This strategy takes

13



Published in Transactions on Machine Learning Research (05/2025)

the following simple form: for all t ⩾ 1,

∀h ∈ [H], ∀s ∈ S, ∀a ∈ A, πt,h(a|s) =
exp
(

η

t−1∑
τ=1

Aπτ ,Rτ

h (s, a)
)

∑
a′∈A

exp
(

η

t−1∑
τ=1

Aπτ ,Rτ

h (s, a′)
) , (11)

with the understanding that a sum over no term is null, i.e., π1,h(a|s) = 1/A.

Agarwal et al. (2021, Section 5.3) showed that the strategy above corresponds to the natural policy gradient
[NPG] strategy based on a softmax parametrization. They proposed a direct analysis (in the discounted
setting) with reward functions constant over time. We adapt and extend this analysis to (obliviously)
adversarial sequences of reward functions. We also claim a more transparent proof scheme, consisting of
a suitable adversarial bound (finer than the uniform bounds considered in Definition 1, which in this case
would be linear in T , as recalled in the introduction of this section) applied to policy learning along the lines
of the proof of Theorem 1.

Our result is stated in terms of the number R of regimes shifts in the sequence R1, . . . , RT of payoff functions.
More formally, R is the smallest integer such that there exist R − 1 integers τ2, . . . , τR with values in [T ]
such that, denoting τ1 = 1 and τR+1 = T + 1,

∀k ∈ {2, . . . , R + 1}, ∀t ∈ {τk−1, . . . , τk − 1}, Rt = Rτk−1 . (12)

(The case R = 1 corresponds to a single regime, i.e., the reward functions Rt are independent of time.)

The proof of Theorem 4 below may be found in Appendix A. It is more complex than the proof by Agarwal
et al. (2021, Section 5.3), which could use a simple argument specific to the discounted setting, with discount
factor γ: that distributions over states induced by a starting state s0, a policy, and a transition function,
put a probability mass at least 1 − γ on s0, no matter the policy and the transition function. See Remark 6
for more details.
Theorem 4. In the setting of Section 2 where rewards lie in [0, 1], the policy learning strategy (11) controls
the regret as

max
π

T∑
t=1

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)
⩽

H ln A

η
+ R

H(H + 1)
2 ,

where R is the number of regime shifts in the sequence R1, . . . , RT of payoff functions.

The bound of Theorem 4 has a smaller order of magnitude than the one of Theorem 1, which is typically
of order

√
T , as soon as the number of regime shifts satisfies R ≪

√
T . (In general, up to T − 1 regime

shifts may occur.) In particular, the regret upper bound of Theorem 4 is smaller than a constant when the
reward functions do not vary over time. Of course, as already mentioned at the beginning of Section 3.2,
this observation is somewhat secondary in the absence of an oracle for value functions, when value functions
have to be estimated and when these estimation errors are the main contributors to the regret bounds; see
Section 8.

By Lemma 2 and (the proof of) Theorem 2, we have the following corollary to Theorem 4, in case of a
constant sequence of payoff functions. It corresponds to the bound of Agarwal et al. (2021, Section 5.3) with
H playing the role of 1/(1 − γ) therein.
Corollary 2. In the setting of Section 2 where rewards lie in [0, 1], if the reward functions do not vary over
time and are all equal to some R, then the last iterate of the policy learning strategy (11) satisfies

max
π

V π,R
1 (s1) − V πT ,R

1 (s1) ⩽ H ln A

ηT
+ H(H + 1)

2T
.

As in Agarwal et al. (2021, Section 5.3), the bounds obtained in Theorem 4 and Corollary 2 suggest choosing
η as large as possible. While this is the choice recommended by theory, practical performance may be
affected: in Section 8, we recommend to conduct empirical evaluations to investigate this issue.

14



Published in Transactions on Machine Learning Research (05/2025)

7 Extension 3:
Aggregation (orchestration) of expert policies

Contributions of this section. Adversarial learning is sometimes called prediction with experts (see
Cesa-Bianchi & Lugosi, 2006). We further pursue the idea of the reduction of the control of MDPs to
adversarial learning and now rather aggregate expert policies. The aim is to mimic the performance of the
overall best convex combination of expert policies (which is, in particular, better than the performance of
the best policy taken in isolation), which corresponds to an aggregation (or orchestration) of expert policies.
This setting was also termed learning from multiple oracles (which may be understood as a specific paradigm
in the vast imitation-learning literature) by Cheng et al. (2020) and Liu et al. (2023). We obtain stronger
forms of performance guarantees than in the latter references, see Remark 3. We do so via some reduction
to the standard tabular case for a lifted MDP.

We return to the considerations of Section 2.1 and consider a finite number K of stationary policies. We
denote by Π = {π1, . . . , πK} the set of these policies and refer to them as expert policies. Furthermore, for
a given stage h ∈ [H], we denote by Πh = {π1,h, . . . , πK,h} the set of the corresponding policies.

We combine expert policies over time through state-stage-dependent weights pt = (pt,h)h∈[H] ∈ P
(
[K]
)[H]×S ,

where pt,h( · |s) ∈ P
(
[K]
)

may be interpreted either as a probability distribution over the policies in Πh or
as providing convex weights for the aggregation of the policies in Πh. More precisely, for each episode t ⩾ 1,
we denote by ptΠ = (pt,hΠh)h∈[H] the stationary policy such that, for all stages h ∈ [H],

pt,hΠh : s ∈ S 7−→ pt,hΠh( · |s) =
∑

k∈[K]

pt,h(k|s) πk,h( · |s) ∈ P(A) . (13)

Picking an action a′ according to pt,hΠh( · |s) amounts to performing a two-stage randomization: first,
drawing a policy index k′ ∼ pt,h( · |s), then drawing a′ ∼ πk′,h( · |s). This remark is important in the cases
where it is difficult or computationally complex to explicitly write the πk,h( · |s), but where it is easy to
simulate them.

As indicated above, the set of all possible state-stage-dependent weights q corresponds to P
(
[K]
)[H]×S . We

consider the class C(Π) of all possible stationary policies defined according to (13):

C(Π) =
{

qΠ, q ∈ P
(
[K]
)[H]×S

}
,

and aim to learn a good policy in this class. To do so, the learning strategies pick weights pt ∈ P
(
[K]
)[H]×S

over time and output πt = ptΠ. We will minimize the corresponding regret criterion:

∀T ⩾ 1, RΠ
T = max

q

T∑
t=1

(
V qΠ,Rt

1 (s1) − V
ptΠ,Rt

1 (s1)
)

.

Remark 3. To the best of our understanding, the recent contributions by Cheng et al. (2020) and Liu et al.
(2023) mentioned above consider a more restrictive setting with a constant reward function and, in addition,
target a weaker notion of regret, corresponding to

max
k∈[K]

V δkΠ,R
1 (s1) − max

t∈[T ]
V

ptΠ,R
1 (s1) ,

where each δk is a collection of state-stage-dependent weights that are all given by Dirac masses on expert k;
i.e., V δkΠ,R

1 = V πk,R
1 .

Actually, the total regret RT defined in Section 2.1 may be decomposed into some approximation error, i.e.,
how good the policies in C(Π) are in terms of values, plus the regret with respect to C(Π):

RT = max
π

T∑
t=1

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)

= max
π

T∑
t=1

V π,Rt

1 (s1) − max
q

T∑
t=1

V qΠ,Rt

1 (s1)︸ ︷︷ ︸
approximation error

+ RΠ
T .

15



Published in Transactions on Machine Learning Research (05/2025)

In this section, we aim to control RΠ
T only and will assume that the approximation error is small due to a

proper choice of Π. This situation is expected to arise frequently, as explained in the following remark.
Remark 4. Denote by π⋆ a stationary policy achieving the maximum in the definition of RT . Given that
expert policies are combined through state-stage-dependent weights, the approximation error defined above is
null as soon as

∀h ∈ [H], ∀s ∈ S, ∃qh( · |s) ∈ P
(
[K]
)

s.t. π⋆
h( · |s) =

∑
k∈[K]

qh(k|s) πk,h( · |s) .

In particular, it suffices that there exists j⋆
h,s ∈ [K] such that π⋆

h( · |s) = πj⋆
h,s

,h( · |s). Put differently, it
suffices that at each stage h ∈ [H] and for each state s ∈ S, one of the expert policies (but not necessarily
always the same) coincides with an optimal policy. This observation motivates the use of expert policies in
the cases where finitely many easy-to-identify distributions are candidates to be optimal distributions for each
given stage-state pair (h, s).

Summary. We provide in Box B a summary of the settings and aims considered, here in Section 7 and
earlier in Section 2.1 (the left-hand side of Box B corresponds to Box A of Section 2.1).

7.1 Equivalence between direct tabular learning and aggregation of expert policies

We now explain why any learning scheme minimizing the standard regret RT induces a learning scheme
minimizing the regret RΠ

T with respect to a finite set Π of expert policies, and vice versa. In a nutshell, the
equivalence stems from considering the indexes k ∈ [K] of expert policies as meta-actions, i.e., actions in a
sequence of lifted MDPs.

As a consequence, for the sake of clarity and completeness, we will re-state the counterpart of our main
result, Theorem 1, in the setting of policy orchestration: see Section 7.2. For now, we prove the claimed
equivalence.

Direct tabular learning as aggregation of expert policies. We set K = A and take as expert
policies the Dirac masses on the arms; more precisely, for each a ∈ A, and for all h ∈ [H] and s ∈ S, we set
πa,h( · |s) = δa, the Dirac mass at a. This defines the expert policy ∆a. We consider

∆ = {∆a : a ∈ A} and C(∆) =
{

p∆, p ∈ P(A)[H]×S} ;

C(∆) is the set of all stationary policies, stated in their direct tabular form.

From direct tabular learning to aggregation of expert policies. Conversely, we note that aggre-
gation of expert policies in Π amounts to performing direct tabular learning in the following sequence of
(lifted) MDPs: the action space is A = [K], the state space is S = S, the transition kernels T and the
reward functions Rt are defined, for all t ⩾ 1 and h ∈ [H], by

T h : (s, k) ∈ S × [K] 7−→
∑
a∈A

πk,h(a|s) Th( · |s, a)

and Rt,h : (s, k) ∈ S × [K] 7−→
∑
a∈A

πk,h(a|s) Rt,h(s, a) .

Direct tabular learning on the sequence of lifted MDPs defined above provides policies πt which correspond
to the convex weights pt discussed above: for all t ⩾ 1, h ∈ [H], and s ∈ S, we use pt,h( · |s) = πt,h( · |s)
to aggregate expert policies in the original MDP. Denoting by RT the regret suffered with direct tabular
learning in the lifted MDP, we have: RΠ

T = RT .
Remark 5. In the final part of the proof of Theorem 1, we critically used that the transition kernels T do
not depend on time. The expression above for T is indeed independent on time, which would not be the case
if the expert policies were evolving over time. This explains why we restricted our attention to stationary
expert policies.

16



Published in Transactions on Machine Learning Research (05/2025)

Box B: Policy optimization, possibly based on expert policies

Direct tabular learning (Section 2.1) Aggregation of expert policies (Section 7)

MDP parameters: state space S, action space A, initial state s1 ∈ S,
transition kernels T

(No additional parameters) Set Π of K expert policies

The environment picks a sequence (Rt)t⩾1 of reward functions

For episodes t = 1, 2, . . .:
1. The initial state is set to st,1 = s1

2. For stages h = 1, . . . , H:

(a) The learner picks a policy πt,h : S → P(A)
(b) and draws an action at,h ∼ πt,h( · |st,h)

(a) The learner picks weights pt,h ∈ P
(
[K]
)S ,

(b) draws kt,h ∼ pt,h( · |st,h), the index of the
expert policy,

(c) and draws an action at,h ∼ πkt,h,h( · |st)
according to expert policy kt,h

4. The learner receives and observes a reward drawn independently
from Rt,h(st,h, at,h), with conditional expectation rt,h(st,h, at,h)

5. If h ⩽ H − 1, the next state st,h+1 ∼ Th( · |st,h, at,h) is drawn

Goal: Minimize the regret

RT = max
π

T∑
t=1

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)

RΠ
T = max

q

T∑
t=1

(
V qΠ,Rt

1 (s1) − V
ptΠ,Rt

1 (s1)
)

7.2 Adversarial learning on advantage functions for aggregation of expert policies

The counterpart for aggregation of expert policies of the strategy defined in Section 3.2 is defined as follows,
given the equivalence stated above.

For each stage h ∈ [H], we fix a sequential strategy φh = (φt,h)t⩾1 in the adversarial setting, relying on
reward vectors bounded by Mh = H − h + 1 and of dimension K.

We run these strategies on the advantage functions of the lifted MDPs described above: for all t ⩾ 1, h ∈ [H],
and s ∈ S,

A
pt,Rt

h (s, · ) =
(

A
pt,Rt

h (s, k)
)

k∈[K]
, where A

pt,Rt

h (s, k) =
∑
a∈A

πk,h(a|s) A
ptΠ,Rt

h (s, a) . (14)

More precisely, we run the strategies (φh)h∈[H] in the following stage-by-stage and state-by-state manner:
for all t ⩾ 1,

pt,h( · |s) = φt,h

((
A

pτ ,Rτ

h (s, · )
)

τ⩽t−1

)
. (15)

17



Published in Transactions on Machine Learning Research (05/2025)

We refer to this strategy as (φh)h∈[H]–Adv2-Aggr, for (φh)h∈[H]–adversarial learning on advantage functions
for aggregation of expert policies.

Theorem 1 immediately entails the following performance guarantee, given the equivalence proved in Sec-
tion 7.1.
Corollary 3. In the setting of Section 7 where rewards lie in [0, 1], if, for all h ∈ [H], the sequential
strategies φh control the regret in the adversarial setting (Definition 1) by BT,K for K–dimensional reward
vectors bounded by H − h + 1, then the (φh)h∈[H]–Adv2-Aggr strategy defined in (15) over the set Π of K
expert policies controls the regret with respect to C(Π) as:

∀T ⩾ 1, RΠ
T = max

q

T∑
t=1

(
V qΠ,Rt

1 (s1) − V
ptΠ,Rt

1 (s1)
)
⩽ H(H + 1) BT,K .

8 Empirical impacts as future research directions

Contributions of this section. We review in greater detail how the literature resorted or should resort to
adversarial learning strategies in practice: value functions are typically not observed and must be estimated.
These considerations call for future empirical research.

This final section relaxes the assumption of an oracle providing value functions, as stated at the beginning of
Section 3.2, and first recalls how the literature (see, e.g., Abbasi-Yadkori et al., 2019, Shani et al., 2020, Cai
et al., 2020, He et al., 2022, Zhao et al., 2023) typically performs the policy-improvement step for learning
adversarial MDPs: by resorting to the exponential-weight strategy of Section 6 based on estimated Q–values.
We provide a concrete example in Figure 1.

More precisely, the most popular approach is to build optimistic estimates Q̂t
h of the true Q–value functions

Qπt,Rt

h , i.e., estimates that upper bound the true values with high probability. The main issue in doing
so is that the transition kernels T are unknown; whether the reward functions Rt are fully revealed (full-
information feedback) or not (bandit feedback, where only actual rewards are observed) at the end of an
episode may be handled (see, among others, Shani et al., 2020). Also, these optimistic estimates Q̂t

h may
or may not rely on structural assumptions (e.g., Cai et al., 2020 and He et al., 2022 assume some linear
representation of the transition kernels) and are specific to each article mentioned.

However, what is common to these articles, is the way the policy-improvement step is performed based on
these estimated Q–values; this way is illustrated in Figure 1. Abbasi-Yadkori et al. (2019) even states that
“the choice of the Boltzmann policy is not arbitrary” in this step (where “Boltzmann policy” is a synonym
for the exponential-weight strategy).

The point of the present article is exactly to question this common practice and show that other choices are
possible (as detailed in Section 8.1), with no impact on the theoretical guarantees proved in these articles (see
Section 8.2). These observations call for future empirical research (see Section 8.3).

8.1 Other choices for the policy-improvement step typically considered in the literature

As stated above and illustrated in Figure 1, the literature on adversarial MDPs (see, e.g., Abbasi-Yadkori
et al., 2019, Shani et al., 2020, Cai et al., 2020, He et al., 2022, Zhao et al., 2023) typically considers
policy-improvement steps of the form, for some η > 0,

∀t ⩾ 1, ∀h ∈ [H], ∀s ∈ S, ∀a ∈ A,

πt+1,h(a|s) =
πt,h(a|s) exp

(
η Q̂t

h(s, a)
)∑

a′∈A
πt,h(a′|s) exp

(
η Q̂t

h(s, a′)
) =

exp
(

η

t∑
τ=1

Q̂τ
h(s, a)

)
∑

a′∈A
exp
(

η

t∑
τ=1

Q̂τ
h(s, a′)

) . (16)

18



Published in Transactions on Machine Learning Research (05/2025)

Strategy by Shani et al. (2020) Alternative formulations

Algorithm 2 Optimistic POMD for Stochastic MDPs
Require: tK , π1 is the uniform policy.

for k = 1, ...,K do
Rollout a trajectory by acting πk
# Policy Evaluation
∀s ∈ S, V kH+1(s) = 0
for ∀h = H, .., 1 do

for ∀s, a ∈ S ×A do
ĉk−1
h (s, a) = c̄k−1

h (s, a)− bk−1
h (s, a), Eq. (6.1)

Qkh(s, a)= ĉk−1
h (s, a)+p̄k−1

h (·|s, a)V kh+1

Qkh(s, a) = max
{
Qkh(s, a), 0

}

end for
for ∀s ∈ S do
V kh (s) = 〈Qkh(s, ·), πkh(· | s)〉

end for
end for
# Policy Improvement
for ∀h, s, a ∈ [H]× S ×A do

πk+1
h (a|s)=

πkh(a|s) exp(−tKQkh(s,a))∑
a′ π

k
h(a′|s) exp(−tKQkh(s,a′))

end for
Update counters and empirical model, nk, c̄k, p̄k

end for

−→

for all (h, s) ∈ [H] × S do

πk+1
h ( · |s) = φk+1,h

((
−Qτ

h(s, · )
)

τ⩽k

)
or, based on estimated advantage functions
defined as in Assumption 1:

πk+1
h ( · |s) = φk+1,h

((
−Aτ

h(s, · )
)

τ⩽k

)
end for

Figure 1: The strategy considered and studied by Shani et al. (2020), as stated therein (left part): our results
focus on considering alternative formulations of the policy-improvement step, based on other adversarial-
learning strategies than exponential weights, and possibly based on estimated advantage functions rather
than estimated Q–values (right part). Shani et al. (2020) considers costs instead of rewards, hence the
negative signs appearing when feeding adversarial learning strategies φ designed for rewards.

We propose alternative formulations, based on advantage functions obtained from the Q–values as described
by Assumption 1. This assumption is satisfied as soon as value functions are also obtained by the same
convex combinations, which is the case in all references mentioned above, but would not be the case for
other approaches, for instance, for Q–learning or similar methods that would define V̂ t

h(s) as max
a′∈A

Q̂t
h(s, a′).

Assumption 1 also imposes boundedness of the estimated value functions, as this is key for the theoretical
analysis of performance (and is coherent with the fact that the true value functions are also bounded, by
known bounds).
Assumption 1. The estimates Ât

h are defined based on estimates Q̂t
h of Q–value functions, using the policy

πt selected: for all s ∈ S and a ∈ A,

V̂ t
h(s) def=

∑
a′∈A

πt,h(a′|s) Q̂t
h(s, a′) and Ât

h(s, a) def= Q̂t
h(s, a) − V̂ t

h(s) .

In addition, the estimates Q̂t
h and Ât

h are bounded, i.e., 0 ⩽ Q̂t
h ⩽ MH and

∣∣Ât
h

∣∣ ⩽ MH for some quantity
MH (typically depending on H).

Formally, we propose to replace updates of the form (16) with the updates based on the strategy Adv2 as
stated in (6), or its variant based on Q–values stated in (9):

∀t ⩾ 1, ∀h ∈ [H], ∀s ∈ S, πt,h( · |s) = φt,h

((
Âτ

h(s, · )
)

τ⩽t−1

)
or ∀t ⩾ 1, ∀h ∈ [H], ∀s ∈ S, πt,h( · |s) = φt,h

((
Q̂τ

h(s, · )
)

τ⩽t−1

)
.

19



Published in Transactions on Machine Learning Research (05/2025)

Empirically, updates based on estimated advantage functions should perform better.

8.2 Preserved theoretical guarantees with these alternative choices

When the sequential strategies φh control the regret in the adversarial setting (Definition 1) by BT,A for
A–dimensional reward vectors, the same argument as in (7), together with Assumption 1 for the equality
to 0, shows that the strategies defined above satisfy: for all h ∈ [H] and s ∈ S,

max
a∈A

T∑
t=1

Ât
h(s, a) −

T∑
t=1

= 0︷ ︸︸ ︷∑
a∈A

πt,h(a|s) Ât
h(s, a) ⩽ 2MH BT,A ,

thus, for all h ∈ [H] and s ∈ S,

R̂T
def= max

π

H∑
h=1

∑
s∈S

µs1,π,T
h (s)

∑
a∈A

πh(a|s)
T∑

t=1
Ât

h(s, a) ⩽ 2MH BT,A . (17)

Specific arguments (see detail below) then relate the quantity above to the target quantity, stated as in (8):

RT = max
π

T∑
t=1

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)

= max
π

H∑
h=1

∑
s∈S

µs1,π,T
h (s)

∑
a∈A

πh(a|s)
T∑

t=1
Aπt,Rt

h (s, a) . (18)

Typical examples. For instance, in the theoretical analysis by Shani et al. (2020, Section 6), the total
regret RT is decomposed as a sum of three terms, where term (ii) therein is exactly (17) but terms (i)
and (iii) are bounded in some specific way.

The same may be mentioned for the other references, where the total regret RT is also decomposed into
three terms, with R̂T being one of the three terms: in Cai et al. (2020), term (i); in He et al. (2022), term I1;
in Zhao et al. (2023), the “OMD regret term”.

Again, the adversarial-learning strategy (φh)h∈[H] considered in all these references is the exponential po-
tential with a constant learning rate (see Section 6), possibly seen as an instance of online mirror descent,
and bounds of typical order

√
T ln A are achieved on the term corresponding to R̂T . Thus, considering other

adversarial-learning strategies, in the forms described in Section 8.1, would not hurt the final regret bounds
achieved on RT , as the errors stemming from the control of R̂T are not the main contributors to the final
regret bounds achieved in these articles.

An exception. In general, R̂T is not equal to a sum of differences of value functions. An exception is to
be found in Tiapkin et al. (2025): they obtain the estimates Q̂t

h as the exact Q–value functions (obtained by
dynamic programming) corresponding to the policies πt, to some reward functions R′

t (based on the actual
reward function Rt revealed at the end of the episode plus some bonus function), and to some estimated
transition kernels T̂ t (that are constant over subintervals of episodes and are only updated from time to
time). Tiapkin et al. (2025) decompose the total regret in four terms, where term (B) corresponds to R̂T .

Note that Tiapkin et al. (2025) refers to the present work and is therefore able to present the analysis in a
more modular way than many of the references mentioned above (some of them re-deriving regret guarantees
in terms of Q–value functions by mimicking proofs of adversarial regret bounds for exponential weights, as
reviewed in Section 1.1).

8.3 Future research: evaluation of the empirical impacts of these alternative choices

We explained in Section 8.2 that the modifications proposed in Section 8.1 for the policy-improvement step
preserve the theoretical guarantees (essentially because this policy-improvement step is not at all the main
blocking point in the analysis).

20



Published in Transactions on Machine Learning Research (05/2025)

Yet, a different formulation of this policy-improvement step may dramatically affect the practical perfor-
mance obtained by these strategies. Many adversarial-learning strategies exist, and exponential-weight
strategies are often not the best-performing ones. The R package Opera by Gaillard et al. (2021) implements
several adversarial-learning strategies, some of which (for instance, ML-Prod and ML-Poly, introduced by
Gaillard et al., 2014) often achieving superior empirical performance compared to exponential weights (see
the empirical studies in Gaillard, 2015).

Therefore, in our opinion, an interesting avenue of empirical research would be the following. Consider the
experimental designs provided by, or create experimental designs corresponding to, the settings of Abbasi-
Yadkori et al. (2019), Shani et al. (2020), Cai et al. (2020), He et al. (2022), Zhao et al. (2023). Compare
the performance of the strategies introduced therein (with their original policy-improvement steps, based on
exponential weights) to alternative strategies differing only in their policy-improvement steps (based on the
adversarial-learning strategies implemented in the Opera package, used either with estimated Q–values or
with estimated advantage functions). Also, for exponential weights, as mentioned after Corollary 2, it would
be interesting to see the effect of the learning rate η on the empirical performance. We leave these studies
for future research.

References
Y. Abbasi-Yadkori, P. Bartlett, K. Bhatia, N. Lazic, C. Szepesvari, and G. Weisz. POLITEX: Regret bounds

for policy iteration using expert prediction. In Proceedings of the Thirty-Sixth International Conference
on Machine Learning (ICML’19), volume 97 of PMLR, pp. 3692–3702, 2019.

D. Adamskiy, W.K. Koolen, A. Chernov, and V. Vovk. A closer look at adaptive regret. Journal of Machine
Learning Research, 17(23):1–21, 2016.

A. Agarwal, S.M. Kakade, J.D. Lee, and G. Mahajan. On the theory of policy gradient methods: Optimality,
approximation, and distribution shift. Journal of Machine Learning Research, 22(98):1–76, 2021.

J.-Y. Audibert. Fast learning rates in statistical inference through aggregation. Annals of Statistics, 37(4):
1591–1646, 2009.

P. Auer, N. Cesa-Bianchi, and C. Gentile. Adaptive and self-confident on-line learning algorithms. Journal
of Computer and System Sciences, 64(1):48–75, 2002.

Q. Cai, Z. Yang, C. Jin, and Z. Wang. Provably efficient exploration in policy optimization. In Proceedings
of the Thirty-Seventh International Conference on Machine Learning (ICML’20), volume 119 of PMLR,
pp. 1283–1294, 2020.

N. Cesa-Bianchi and G. Lugosi. Potential-based algorithms in on-line prediction and game theory. Machine
Learning, 51:239–261, 2003.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press, 2006.

C.-A. Cheng, A. Kolobov, and A. Agarwal. Policy improvement via imitation of multiple oracles. In Advances
in Neural Information Processing Systems (Neurips’20), volume 33, pp. 5587–5598, 2020.

A. Daniely, A. Gonen, and S. Shalev-Shwartz. Strongly adaptive online learning. In Proceedings of the
Thirty-Second International Conference on Machine Learning (ICML’15), pp. 1405–1411, 2015.

Steven de Rooij, Tim van Erven, Peter D. Grünwald, and Wouter M. Koolen. Follow the leader if you can,
hedge if you must. Journal of Machine Learning Research, 15(37):1281–1316, 2014.

E. Even-Dar, S.M. Kakade, and Y. Mansour. Online Markov decision processes. Mathematics of Operations
Research, 34(3):726–736, 2009.

Y. Freund and R.E. Schapire. Adaptive game playing using multiplicative weights. Games and Economic
Behavior, 29(1):79–103, 1999.

21



Published in Transactions on Machine Learning Research (05/2025)

Y. Freund, R.E Schapire, Y. Singer, and M.K. Warmuth. Using and combining predictors that specialize.
In Proceedings of the Twenty-Ninth ACM Symposium on Theory of Computing (STOC’97), pp. 334–343,
1997.

P. Gaillard. Contributions to online robust aggregation: work on the approximation error and on probabilistic
forecasting. Applications to forecasting for energy markets. PhD thesis, Université Paris-Sud, 2015. URL
https://theses.hal.science/tel-01250027.

P. Gaillard, G. Stoltz, and T. van Erven. A second-order bound with excess losses. In Proceedings of
the Twenty-Seventh Conference on Learning Theory (COLT’14), volume 35 of Proceedings of Machine
Learning Research, pp. 176–196, 2014.

P. Gaillard, Y. Goude, L. Plagne, T. Dubois, and B. Thieurmel. opera: Online Prediction by Expert Aggre-
gation, 2021. URL https://CRAN.R-project.org/package=opera. R package version 1.2.0.

E. Hazan and C. Seshadhri. Efficient learning algorithms for changing environments. In Proceedings of the
Twenty-Sicth Annual International Conference on Machine Learning (ICML’09), pp. 393–400, 2009.

J. He, D. Zhou, and Q. Gu. Near-optimal policy optimization algorithms for learning adversarial linear
mixture MDPs. In Proceedings of Twenty-Fifth International Conference on Artificial Intelligence and
Statistics (AIStats’22), volume 151 of PMLR, pp. 4259–4280, 2022.

M. Herbster and M.K. Warmuth. Tracking the best expert. Machine Learning, 32:151–178, 1998.

S. Kakade. A natural policy gradient. In Advances in Neural Information Processing Systems, volume 14,
pp. 1531–1538, 2001.

S. Kakade and J. Langford. Approximately optimal approximate reinforcement learning. In Proceedings of
the Nineteenth International Conference on Machine Learning (ICML’02), pp. 267–274, 2002.

A. Kalai and S. Vempala. Efficient algorithms for online decision problems. Journal of Computer and System
Sciences, 71(3):291–307, 2005.

J. Kivinen and M.K. Warmuth. Averaging expert predictions. In Proceedings of the Fourth European
Conference on Computational Learning Theory (EuroCOLT’99), pp. 153–167, 1999.

N. Littlestone and M.K. Warmuth. The weighted majority algorithm. Information and Computation, 108:
212–261, 1994.

X. Liu, T. Yoneda, C. Wang, M. Walter, and Y. Chen. Active policy improvement from multiple black-box
oracles. In Proceedings of the Fourtieth International Conference on Machine Learning (ICML’23), volume
202 of PMLR, pp. 22320–22337, 2023.

J. Müller and G. Montúfar. Geometry and convergence of natural policy gradient methods. Information
Geometry, 7(1):485–523, 2024.

A. Rosenberg and Y. Mansour. Online convex optimization in adversarial Markov decision processes. In
Proceedings of the Thirty-Sixth International Conference on Machine Learning (ICML’19), volume 97 of
PMLR, pp. 5478–5486, 2019.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization. In Proceedings
of the Thirty-First International Conference on Machine Learning (ICML’15), pp. 1889–1897, 2015.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms,
2017. Preprint, arXiv:1707.06347.

L. Shani, Y. Efroni, A. Rosenberg, and S. Mannor. Optimistic policy optimization with bandit feedback. In
Proceedings of the Thirty-Seventh International Conference on Machine Learning (ICML’20), volume 119
of PMLR, pp. 8604–8613, 2020.

22

https://theses.hal.science/tel-01250027
https://CRAN.R-project.org/package=opera


Published in Transactions on Machine Learning Research (05/2025)

R.S. Sutton, D.A. McAllester, S.P. Singh, and Y. Mansour. Policy gradient methods for reinforcement
learning with function approximation. In Advances in Neural Information Processing Systems, volume 13,
pp. 1057–1063, 2000.

D. Tiapkin, E. Chzhen, and G. Stoltz. Narrowing the gap between adversarial and stochastic MDPs via
policy optimization. In Proceedings of Twenty-Eighth International Conference on Artificial Intelligence
and Statistics (AIStats’25), volume 258 of PMLR, 2025.

J.Y. Yu, S. Mannor, and N. Shimkin. Markov decision processes with arbitrary reward processes. Mathe-
matics of Operations Research, 34(3):737–757, 2009.

C. Zhao, R. Yang, B. Wang, X. Zhang, and S. Li. Learning adversarial low-rank Markov decision processes
with unknown transition and full-information feedback. In Advances in Neural Information Processing
Systems (Neurips’23), volume 36, pp. 59107–59123, 2023.

A. Zimin and G. Neu. Online learning in episodic Markovian decision processes by relative entropy policy
search. In Advances in Neural Information Processing Systems, volume 26, pp. 1583–1591, 2013.

M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proceedings of
the Twentieth International Conference on Machine Learning (ICML’03), pp. 928–936, 2003.

Appendix. The appendix provides proofs omitted from the main body of the article.

A Proof of Theorem 4 (analysis of NPG with softmax parametrization)

For the convenience of the reader, we restate the result to be proved.
Theorem 4. In the setting of Section 2 where rewards lie in [0, 1], the policy learning strategy (11) controls
the regret as

max
π

T∑
t=1

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)
⩽

H ln A

η
+ R

H(H + 1)
2 ,

where R is the number of regime shifts in the sequence R1, . . . , RT of payoff functions.

As indicated in Section 6, the proof below is based on the analysis of the natural policy gradient [NPG]
with softmax parametrization proposed by Agarwal et al. (2021, Section 5.3) in the discounted setting with
reward functions constant over time. See Remark 6 for an explanation of why the proof in the discounted
setting is significantly simpler than the proof in the episodic setting.

We extend the proof of Agarwal et al. (2021, Section 5.3) to the episodic setting and to (obliviously)
adversarial sequences of reward functions. We also claim a more transparent proof scheme, consisting of an
ad hoc adversarial bound (Lemma 3) which is then applied to policy learning along the lines of the proof of
Theorem 1.

More precisely, the first piece of the proof of Theorem 4 is to replace the uniform regret bounds considered
in Definition 1 with some ad hoc, data-based, bound (of the same flavor as the bounds by de Rooij et al.,
2014, Section 2 in terms of so-called mixability gaps). Indeed, the uniform regret bound that could be
proved (see, e.g., Cesa-Bianchi & Lugosi, 2006, Theorem 2.2) for the adversarial strategy of Lemma 3 is
BT,K = ln K/η + ηT/8, which is not sublinear.
Lemma 3. The strategy (5) based on a constant exponential potential Φt ≡ Φ : x 7→ exp(ηx), i.e., picking
weights

∀t ⩾ 1, wt,k = vt,k∑
j∈[K]

vt,j

, where vt,k = exp
(

η

t−1∑
τ=1

gτ,k

)
,

23



Published in Transactions on Machine Learning Research (05/2025)

with the convention that v1,k = 1 and w1,k = 1/K, satisfies the following bound: against all opponents
sequentially picking reward vectors in RK ,

∀T ⩾ 1, max
k∈[K]

T∑
t=1

gt,k ⩽
ln K

η
+

T∑
t=1

∑
j∈[K]

wt+1,j gt,j .

This lemma is proved at the end of this section and we now apply it to prove Theorem 4.

Proof of Theorem 4. We adapt the proof of Theorem 1 by replacing (7) by the ad hoc bound stemming from
Lemma 3; we obtain:

∀h ∈ [H], ∀s ∈ S, max
a∈A

T∑
t=1

Aπt,Rt

h (s, a) ⩽ ln A

η
+

T∑
t=1

∑
a∈A

πt+1,h(a|s) Aπt,Rt

h (s, a) . (19)

We fix a comparator policy π. The combination of the obtained inequality (19) with the application (8) of
the performance difference lemma yields

T∑
t=1

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)
⩽

H∑
h=1

∑
s∈S

µs1,π,T
h (s) max

a∈A

T∑
t=1

Aπt,Rt

h (s, a)

⩽
H ln A

η
+

T∑
t=1

H∑
h=1

∑
s∈S

µs1,π,T
h (s)

∑
a∈A

πt+1,h(a|s) Aπt,Rt

h (s, a)︸ ︷︷ ︸
to be bounded

. (20)

We fix t ∈ [T ] and h ∈ [H] and define a new one-shot policy π̃h
t+1 =

(
π̃h

t+1,h′

)
h′∈[H] as follows:

π̃h
t+1,h′ =

{
πh′ if h′ ⩽ h − 1,
πt+1,h′ if h′ ⩾ h.

As π and π̃h
t+1 coincide in the first h − 1 stages, we have µs1,π,T

h (s) = µ
s1,π̃h

t+1,T
h (s). In addition, the

definition of π̃h
t+1, the definition of the strategy, Lemma 2, and the definition of advantage functions entail

that for all s ∈ S and all h′ ⩾ h,∑
a∈A

π̃h
t+1,h′(a|s) Aπt,Rt

h′ (s, a) =
∑
a∈A

πt+1,h′(a|s) Aπt,Rt

h′ (s, a) ⩾
∑
a∈A

πt,h′(a|s) Aπt,Rt

h′ (s, a) = 0 .

Therefore, the sum marked as “to be bounded” in (20) can be controlled as∑
s∈S

µs1,π,T
h (s)

∑
a∈A

πt+1,h(a|s) Aπt,Rt

h (s, a) =
∑
s∈S

µ
s1,π̃h

t+1,T
h (s)

∑
a∈A

π̃h
t+1,h(a|s) Aπt,Rt

h (s, a)

⩽
H∑

h′=h

∑
s∈S

µ
s1,π̃h

t+1,T
h′ (s)

∑
a∈A

π̃h
t+1,h′(a|s) Aπt,Rt

h′ (s, a)

=
∑
s∈S

µs1,π,T
h (s)

(
V

π̃h
t+1,Rt

h (s) − V πt,Rt

h (s)
)

, (21)

where the final equality (21) follows from the equality of distributions µs1,π,T
h = µ

s1,π̃h
t+1,T

h at stage h (which
holds because π and π̃h

t+1 coincide in the first h − 1 stages) together with an application of the performance
difference lemma (Lemma 1).

As π̃h
t+1 and πt+1 coincide in the last h stages, we have V

π̃h
t+1,Rt

h (s) = V
πt+1,Rt

h (s) for all s ∈ S. This
observation, combined with (21), entails∑

s∈S
µs1,π,T

h (s)
∑
a∈A

πt+1,h(a|s) Aπt,Rt

h (s, a) ⩽
∑
s∈S

µs1,π,T
h (s)

(
V

πt+1,Rt

h (s) − V πt,Rt

h (s)
)

,

24



Published in Transactions on Machine Learning Research (05/2025)

and we thus get, after substitution into (20),

T∑
t=1

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)
⩽

H ln A

η
+

H∑
h=1

∑
s∈S

µs1,π,T
h (s)

T∑
t=1

(
V

πt+1,Rt

h (s) − V πt,Rt

h (s)
)

. (22)

We obtain telescoping sums on regimes of payoffs. More precisely, with the notation (12),

∀k ∈ {2, . . . , R + 1},

τk−1∑
t=τk−1

(
V

πt+1,Rt

h (s) − V πt,Rt

h (s)
)

= V
πτk

,Rτk−1
h (s) − V

πτk−1 ,Rτk−1
h (s) ⩽ H − h + 1 ,

where the upper bound follows from the boundedness of rewards in [0, 1]. Together with (22), we finally
obtain

T∑
t=1

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)
⩽

H ln A

η
+

H∑
h=1

∑
s∈S

µs1,π,T
h (s)

R+1∑
k=2

(H − h + 1) = H ln A

η
+ RH(H + 1)

2 ,

which leads to the claimed regret upper bound after taking the maximum over all policies π.

Remark 6. The arguments between (20) and (22) may be bypassed in the discounted setting with discount
factor γ; see Agarwal et al. (2021, Section 5.3). More precisely, (with obvious notation, for value functions
defined in the standard way for discounted rewards, and for a constant reward function), for each s ∈ S,

max
a∈A

T∑
t=1

Aπt(s, a) ⩽ ln A

η
+

T∑
t=1

⩾0︷ ︸︸ ︷∑
a∈A

πt+1(a|s) Aπt(s, a)

⩽
ln A

η
+

T∑
t=1

1
1 − γ

∑
s′∈S

µs,πt+1(s′)
∑
a∈A

πt+1(a|s′) Aπt(s′, a)︸ ︷︷ ︸
=V πt+1 (s)−V πt (s)

= ln A

η
+ V πT +1(s) − V π1(s)︸ ︷︷ ︸

⩽1/(1−γ)

,

where the first inequality is by Lemma 3, where the non-negativity is guaranteed by monotonicity of weights
(see Lemma 2), where the second inequality comes from the fact that distributions induced by a starting
state s, a given policy, and a given transition function put a probability mass at least 1 − γ on s, no matter
the policy and transition function (this is the property extremely specific to the discounted setting), where
the equality to V πt+1(s) − V πt(s) is by the performance difference lemma, and where the final equality is by
telescoping. The inequality obtained above is the key; the rest of the proof merely consists of yet another
(now standard) application of the performance difference lemma:

T∑
t=1

(
V π(s1) − V πt(s1)

)
=

T∑
t=1

1
1 − γ

∑
s∈S

µs1,π(s)
∑
a∈A

π(a|s) Aπt(s, a) ⩽ 1
1 − γ

∑
s∈S

µs1,π(s) max
a∈A

T∑
t=1

Aπt(s, a)︸ ︷︷ ︸
⩽(ln A)/η+1/(1−γ)

,

which is the bound claimed by Agarwal et al. (2021, Section 5.3).

We conclude this section with a proof of Lemma 3.

Proof of Lemma 3. First, a bound “à la Pisier” yields that for all sequences of payoffs gt,j , possibly signed
and unbounded:

max
k∈[K]

T∑
t=1

gt,k = 1
η

ln
(

max
j∈[K]

exp
(

η

T∑
t=1

gt,j

))

⩽
1
η

ln

∑
j∈[K]

exp
(

η

T∑
t=1

gt,j

) = ln K

η
+ 1

η

T∑
t=1

ln

∑
j∈[K]

wt,j exp(ηgt,j)

 ,

25



Published in Transactions on Machine Learning Research (05/2025)

where the equality follows by telescoping: indeed, by definition of the weights,

∑
j∈[K]

exp
(

η

T∑
t=1

gt,j

)
︸ ︷︷ ︸

=vT +1,j

= K

T∏
t=1

∑
j∈[K]

vt+1,j∑
j∈[K]

vt,j

= K

T∏
t=1

∑
j∈[K]

vt,j exp(ηgt,j)

∑
j∈[K]

vt,j

= K

T∏
t=1

wt,j exp(ηgt,j) .

Second, by the application of Jensen’s inequality to the convex function x 7→ x ln x,∑
j∈[K]

wt,j exp(ηgt,j)

 ln

∑
j∈[K]

wt,j exp(ηgt,j)

 ⩽
∑

j∈[K]

wt,j exp(ηgt,j) ln
(
exp(ηgt,j)

)
,

that is, after rearranging and given the definition of the weights wj,t+1,

ln

∑
j∈[K]

wt,j exp(ηgt,j)

 ⩽ η
∑

j∈[K]

wt+1,j gt,j .

The claimed bound follows from combining the two inequalities obtained.

B Proof of the performance difference lemma

One of the first references stating the performance difference lemma (in the discounted setting) is Kakade &
Langford (2002). Statements (possibly of generalizations) of this lemma for H–episodic MDPs are ubiquitous
in the literature (see, e.g., Cai et al., 2020, Lemma 3.2 for a simple statement, and Shani et al., 2020,
Lemma 1 for an extension to approximated advantage functions). We state yet another, straightforward,
generalization, in terms of advantage and value functions starting at a given stage h; this generalization is
useful in the proof of Theorem 4 in Appendix A.
Lemma 1 (Performance difference lemma). Let µs1,π,T

h′ be the distribution of the state sh′ of the h′–th stage,
starting from the state s1 in the first stage, following the stationary policy π and the transition kernels T .
In a MDP with transition kernels T , for all pairs π, π′ of stationary policies, for all reward functions R,
and for all stages h ∈ [H],

∑
s∈S

µs1,π,T
h (s)

(
V π,R

h (s) − V π′,R
h (s)

)
=

H∑
h′=h

∑
s∈S

µs1,π,T
h′ (s)

∑
a∈A

πh′(a|s) Aπ′,R
h′ (s, a) .

In particular, for h = 1,

V π,R
1 (s1) − V π′,R

1 (s1) =
H∑

h′=1

∑
s∈S

µs1,π,T
h′ (s)

∑
a∈A

πh′(a|s) Aπ′,R
h′ (s, a) .

Proof. We denote by Ps1,π,T the probability distribution underlying the H–episodic MDP (s1, a1, . . . , sH , aH)
starting at s1, drawing actions according to π, and subject to the transition kernels T . In particular, by
definition, for any function f : S × A → R and all h′ ∈ [H],∑

s∈S
µs1,π,T

h′ (s)
∑
a∈A

πh′(a|s) f(s, a) = Es1,π,T [f(sh′ , ah′)
]

.

Letting successively f be Aπ′,R
h′ for h ⩽ h′ ⩽ H and using the definition Aπ′,R

h′ = Qπ′,R
h′ − V π′,R

h′ ,

H∑
h′=h

∑
s∈S

µs1,π,T
h′ (s)

∑
a∈A

πh′(a|s) Aπ′,R
h′ (s, a) = Es1,π,T

[
H∑

h′=h

(
Qπ′,R

h′ (sh′ , ah′) − V π′,R
h′ (sh′)

)]
. (23)

26



Published in Transactions on Machine Learning Research (05/2025)

Now, by definition of the Q–values, recalling that r denotes the mean-payoff functions associated with R,
we have, for h′ ⩽ H − 1,

∀(s, a) ∈ S × A, Qπ′,R
h′ (s, a) = rh′(s, a) +

∑
s′∈S

Th′(s′ | s, a) V π′,R
h′+1 (s′) . (24)

By definition of the MDP, for any function g : S → R,

Es1,π,T

[∑
s′∈S

Th′(s′ | sh′ , ah′) g(s′)
]

= Es1,π,T [g(sh′+1)
]

.

Thus, letting s = sh′ and a = ah′ in (24) and taking expectations yields

Es1,π,T [Qπ′,R
h′ (sh′ , ah′)

]
= Es1,π,T [rh′(sh′ , ah′)

]
+ Es1,π,T [V π′,R

h′+1 (sh′+1)
]

.

For h′ = H, we have Qπ′,R
H (s, a) = rH(s, a). As a consequence of the equalities above, a telescoping sum

appears in the right-hand side of (23):

Es1,π,T

[
H∑

h′=h

(
Qπ′,R

h′ (sh′ , ah′) − V π′,R
h′ (sh′)

)]

= Es1,π,T

[
rh′(sH , aH) +

H−1∑
h′=h

(
rh′(sh′ , ah′) + V π′,R

h′+1 (sh′+1)
)

−
H∑

h′=h

V π′,R
h′ (sh′)

]

= Es1,π,T

[
H∑

h′=h

rh′(sh′ , ah′)
]

− Es1,π,T [V π′,R
1 (sh)

]
.

Finally, the tower rule shows that

Es1,π,T

[
H∑

h′=h

rh′(sh′ , ah′)
]

= Es1,π,T [V π,R
1 (sh)

]
.

The proof is concluded by collecting all the bounds.

27


	Introduction
	Brief literature review
	Contributions and outline of this article

	Setting and aims
	First aim: direct tabular learning
	Additional notation

	Methodology and core result: adversarial learning on advantage functions
	Reminder on adversarial learning
	Policy optimization via adversarial learning on advantage functions
	Comments

	Extension 1:      Convergence of the last iterate for some adversarial learning strategies
	Extension 2: Stronger forms of regret
	Strongly adaptive regret and tracking regret in adversarial learning
	Transfer of strongly adaptive regret bounds
	Tracking regret bounds

	The special case of exponential weights: improved regret bounds
	Extension 3:      Aggregation (orchestration) of expert policies
	Equivalence between direct tabular learning and aggregation of expert policies
	Adversarial learning on advantage functions for aggregation of expert policies

	Empirical impacts as future research directions
	Other choices for the policy-improvement step typically considered in the literature
	Preserved theoretical guarantees with these alternative choices
	Future research: evaluation of the empirical impacts of these alternative choices

	Proof of Theorem 4 (analysis of NPG with softmax parametrization)
	Proof of the performance difference lemma

