
Under review as a conference paper at ICLR 2023

MEGRAPH: GRAPH REPRESENTATION LEARNING ON
CONNECTED MULTI-SCALE GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present MeGraph, a novel network architecture for graph-structured data.
Given any input graph, we create multi-scale graphs using graph pooling. Then,
we connect them into a mega graph by bridging inter-graph edges according to the
graph pooling results. Instead of universally stacking graph convolutions over the
mega graph, we apply general graph convolutions over intra-graph edges, while
the convolutions over inter-graph edges follow a bidirectional pathway to deliver
the information along the hierarchy for one turn. Graph convolution and graph
pooling are two core elementary operations of MeGraph. In our implementation,
we adopt the graph full network (GFuN) and propose the stridden edge contrac-
tion pooling (S-EdgePool) with adjustable pooling ratio, which are extended from
conventional graph convolution and edge contraction pooling. The MeGraph
model enables information exchange across multi-scale graphs, repeatedly, for
deeper understanding of wide range correlations in graphs. This distinguishes
MeGraph from many recent hierarchical graph neural networks like Graph U-
Nets. We conduct comprehensive empirical studies on tens of public datasets, in
which we observe consistent performance gains comparing to baselines. Specif-
ically, we establish 5 new graph theory benchmark tasks that require long-term
inference and deduction to solve, where MeGraph demonstrates dominated per-
formance compared with popular graph neural networks.

1 INTRODUCTION

In real-world applications, many types of data can be naturally organized as graphs, such as social
networks, traffic networks and biological data. Recent advances in graph neural networks (GNNs)
have inherited the great success of convolutional neural networks (CNNs) from images to deal with
graph-structured data. Popular methods include the GCN (Kipf & Welling, 2016), GIN (Xu et al.,
2018), GAT (Vaswani et al., 2017) and Graph U-Nets (Gao & Ji, 2019), etc.

Generally, the development of both CNNs and GNNs is co-evolved, and most effective experiences
identified in CNNs are also helpful for GNNs. For example, we have witnessed coupled networks
for image and graph data, like CNN vs. GCN, attentional CNN vs. GAT (Vaswani et al., 2017), and
U-Net (Ronneberger et al., 2015) vs. Graph U-Net (Gao & Ji, 2019), etc.

Instead of directly transferring advances in CNNs to GNNs, we investigate inherent characteristics
in graphs and design a new architecture accordingly. We use the following example to motivate the
story. Consider the problem of identifying the shortest path in a chain graph. Using normal graph
convolutions, we have to stack multiple graph convolutional layers to enlarge the receptive field to
cover the source and the destination nodes. However, if the architecture could infer from a larger
scope, e.g., constructing multi-scale graphs in a hierarchy, the shortest path is easier to be estimated
by aggregating and delivering information from multi-level scopes. In addition, a single turn of
information aggregation or delivery over the hierarchical structure might not be sufficient, because
estimation should be refined and deduced over and over again to achieve sure conclusions. That
is, the architecture has to repeat the information exchange across the hierarchy multiple times to
identify the shortest path for sure. This example will be investigated in our experiment in Section 4.
In fact, there have been several recent GNNs working on a hierarchical graph structure. The Graph
U-Nets (Gao & Ji, 2019) forms a hierarchy by downsampling the graph with iterative convolutions
and top-k pooling, and then upsampling the pooled graph with iterative convolutions and unpool-
ing operators. However, the U-shaped net only propagates the information for a single turn. The
GraphFPN (Zhao et al., 2021) builds mappings between the image and graph feature pyramids ac-
cording to the superpixel hierarchy, and it applies GNN layers on the hierarchical graph to exchange

1

Under review as a conference paper at ICLR 2023

Figure 1: Illustration for comparing the graph pyramid and the mega graph. The graph pyramid is formed
with iterative graph pooling. Different shapes represent the nodes in different scales (heights). The inter-graph
edges generated during graph pooling connect the graph pyramid into a complete mega graph.

information within the graph pyramid; while the flow of inference still propagates for a single pass
over a fixed contextual-hierarchical-contextual structure, as shown in Fig. 1 of (Zhao et al., 2021).

In this paper, we provide a novel perspective for hierarchical graph representation learning. We
use differentiable graph pooling methods to create mult-scale graphs, which were also referred to
as the graph pyramid in previous methods (Zhao et al., 2021). Conditioning on the graph pooling
results, we explicitly connect multi-scale graphs into a mega graph according to how the nodes are
pooled together (illustrated in Fig. 1). A straightforward way to learn on the mega graph is to adopt
the naive message-passing strategy, which abandons the hierarchical prior knowledge. Instead, we
convolve the intra-graph edges and inter-graph edges separately. That is, we stack general graph
convolutions over intra-graph edges, while convolutions over inter-graph edges follow a bidirec-
tional pathway to deliver the information along the hierarchy top-down and then reverse back. This
process will be repeated multiple times according to two dimensions, i.e., the height of the graph
hierarchy and the depth of stacked layers. To realize the above scheme, we adopt two core elemen-
tary operations, graph full network (GFuN) and stridden edge contraction pooling (S-EdgePool),
which are extended from conventional graph convolution and edge contraction pooling. We conduct
comprehensive experiments on tens of public datasets, in which we observe consistent performance
gains compared to baselines. Specifically, we establish five new graph theory benchmark datasets
that require long-term inference and deduction to solve. In these tasks, MeGraph demonstrates
dominated performance compared with popular graph neural networks.

Our contributions can be summarized as follows. 1) We propose a novel mega graph structure with
general usage for graph neural networks. Given the mega graph, we propose a specific network
module to enable repeated information exchange across multi-scale graphs. 2) To control the scale
of pooled graphs, we design the S-EdgePool operator, which allows variable pooling stride and
pooling ratio. 3) We create five new graph theory benchmark tasks, including problems of shortest
path, maximum connected component, graph diameter, etc. The MeGraph model achieves obvious
improvement on most of the benchmarks compared to popular GNNs.

2 NOTATIONS, BACKGROUNDS AND PRELIMINARIES

Let G = (V, E) be a graph with node set V (of cardinality Nv) and edge set E (of cardinality
Ne). The edge set can be represented as E = {(sk, tk)}k=1:Ne , where sk and tk are the indices
of the source and target nodes connected by edge k. We define XG as features of graph G, which
is a combination of global (graph-level) features uG , node features VG , and edge features EG .
Accordingly, we use VGi to represent the features of a specific node vi, and EGk denotes the features
of a specific edge (sk, tk). We may abuse the notations by omitting the superscript G when there is
no ambiguity from the contexts.

2.1 GRAPH NETWORK (GN) BLOCK

We follow the graph networks (GN) framework in (Battaglia et al., 2018). Using our notations, a
GN block takes a graph G and features X = (u,V,E) as inputs, and the block outputs new features
X′ = (u′,V′,E′). A full GN block (Battaglia et al., 2018) contains the following computational
steps (where ϕ in each step below indicates an update function that is usually a neural network):

1. Update edge features: E′k = ϕe(Ek,Vsk ,Vtk ,u),∀k ∈ [1 . . . Ne].
2. Update node features: V′i = ϕv(ρe→v({E′k}k∈[1...Ne],tk=i),Vi,u),∀i ∈ [1 . . . Nv], where

ρe→v is an edge-to-node aggregation function taking the features of incoming edges as inputs.

2

Under review as a conference paper at ICLR 2023

Figure 2: Illustration of graph pooling with SELECT, CONNECT and REDUCE steps. The SELECT function
groups subset of nodes in the input graph to form a new node and connect the subset of nodes with the new node
via inter-edges. The CONNECT function maps the edges of the input graph to new edges in the pooled graph.
The REDUCE function aggregates features of the input graph according to the inter-graph. We only illustrate
the reduction of node features for simplicity.

3. Update global features: u′ = ϕu(ρe→u(E′), ρv→u(V′),u), where ρe→u and ρv→u are two
global aggregation functions over edge and node features.

Given a fixed graph structure G and the consistent input and output formats defined above, GN
blocks can be easily applied to compose deep graph networks. A common encode-process-decode
architecture design adopted in typical graph networks (Battaglia et al., 2018; Hamrick et al., 2018)
is applying the encoding GN block (GNenc), multiple core GN blocks (GNcore) and the decoding
GN block (GNdec) sequentially on inputs Xinput to obtain the outputs Xoutput.

2.2 GRAPH POOLING

Similar to the concept of pooling in CNNs, graph pooling downsamples the graph structure and
reduces the corresponding features, while preserving both structural and semantic graphical infor-
mation. Following (Grattarola et al., 2022), we define graph pooling as a class of functions POOL
that maps a graph G = (V, E) with Nv nodes and features XG to a reduced graph G̃ = (Ṽ, Ẽ) with
N ṽ nodes and new features XG̃ , where N ṽ ≤ Nv and (G̃,XG̃) = POOL(G,XG).
The POOL function consists of the following steps SELECT, CONNECT and REDUCE:

(Ĝ,XĜ) = SELECT(G,XG); G̃ = CONNECT(G, Ĝ,XĜ); XG̃ = REDUCE(XG , Ĝ,XĜ). (1)

The SELECT function maps the nodes in the input graph to the nodes in the pooled graph. Specifi-
cally, it creates N ṽ nodes for the pooled graph and connects each node ṽ to a subset of nodes Sṽ ⊆ V
in the input graph. This forms an undirected bipartite graph Ĝ = (V̂, Ê), where V̂ = V ∪ Ṽ and
(v, ṽ) ∈ Ê if and only if v ∈ Sṽ . We call this graph Ĝ the inter-graph, which is a larger graph
connecting the nodes in the input graph G and the nodes in the pooled graph G̃. The SELECT func-
tion can generalize to introduce inter-graph features X̂Ĝ . For example, we can introduce some edge
weights for some edge (ŝk, t̂k) in graph Ĝ to measure the importance that the node ŝk from the input
graph contributes to the node t̂k in the pooled graph. The CONNECT function rebuilds the edge set
Ẽ between the nodes in Ṽ of the pooled graph G̃ according to the original edges in E and the inter-
graph edges in Ê . The REDUCE function computes the graph features XG̃ of graph G̃ by aggregating
input graph features XG according to both the inter-graph Ĝ and features XĜ .

In contrast to the REDUCE function, we further define the EXPAND function in the reversed direction:
XG = EXPAND(XG̃ , Ĝ,XĜ). Note that the inter-graph Ĝ and features XĜ can be reused when
applying REDUCE or EXPAND to any features of graph G or G̃.

By extending the general SELECT-REDUCE-CONNECT framework (Grattarola et al., 2022), our
formulation of the POOL function covers most of the current graph pooling methods, including the
recent node clustering pooling and node drop pooling methods (Liu et al., 2022). For example, we
will explain EdgePool (Diehl et al., 2019) under the scope of this formulation in Section 3.3.

3 METHODS

The main idea in our approach is that we explicitly connect multi-scale graphs into a mega graph.
We then apply graph neural networks over the mega graph to enable repeated information exchange
across multi-scale graphs. In this section, we first introduce how we obtain and connect the multi-
scale graphs using graph pooling methods (Section 3.1). Then, we introduce the MeGraph model,
which learns hierarchical graph representation on the mega graph through repeated cross-scale infor-
mation exchange (Section 3.2), followed by specific choices of core modules and innovations made
therein (Section 3.3). At last, we analyse the computational complexity of MeGraph (Section 3.4).

3

Under review as a conference paper at ICLR 2023

Figure 3: Illustration of the MeGraph model where n− means n − 1. The blue and green circles represent
features of intra- and inter-graphs, respectively. The mega graph is built using graph pooling during the encode
stage. The Mee layer with bidirectional pathways crossing multiple scales is stacked n times during the process
stage. There are residual links within the i-th Mee layer for both intra- and inter-graph features from Xi−1

j to
Xi

j (blue ones) and from X̂i−1
j to X̂i

j (green ones) for all height j. The multi-scale features are read out during
the decode stage. The golden inter GN blocks forms bidirectional pathways across multi-scale features.

3.1 CONNECTING MULTI-SCALE GRAPHS INTO A MEGA GRAPH

Similar to the image pyramid (Adelson et al., 1984), a graph pyramid is piled up by multi-scale
graphs obtained through iteratively downsampling the smallest one using graph pooling. Formally,
according to the image feature pyramid (Lin et al., 2017), we define a graph feature pyramid as a
set of graphs G1:h := {Gi}i=1,··· ,h and features XG1:h := {XGi}i=1,··· ,h, where G1 indicates the
original graph, XG1 denotes the initial features, h is the height of the graph feature pyramid and
(Gi,XGi) = POOL(Gi−1,XGi−1) for i > 1.

By iteratively applying the POOL function, we collect the inter-graphs Ĝ1:h := {Ĝi}i=1,··· ,h−1 and
features XĜ1:h := {XĜi}i=1,··· ,h−1 (since the highest inter-graph for height h is Gh−1 instead of
Gh), where (Ĝi,XĜi) = SELECT(Gi,XGi) for i < h. Recalling that SELECT is the first step of
the POOL function, the bipartite inter-graph Ĝ and features XĜ essentially reveals the relationships
between the graphs before and after pooling (see also Section 2.2).

Finally, we wire the graph pyramid G1:h using the edges in the bipartite graphs Ĝ1:h, resulting in
a mega graph MG = (MV,ME), where MV =

⋃h
i=1 Vi and ME =

⋃h
i=1 Ei ∪

⋃h−1
i=1 Êi. We

denoteMGintra =
⋃h

i=1 Gi as the intra-graph ofMG and name the edges therein as the intra-edges.
Accordingly, MGinter =

⋃h−1
i=1 Ĝi is referred to as the inter-graph of MG and the corresponding

edges are called inter-edges. The features XMG of mega graphMG is a combination of intra-graph
features XG1:h and inter-graph features XĜ1:h .

3.2 THE MEGRAPH MODEL

The most straightforward way to use the mega graph MG is treating it as an ordinary graph and
universally applying graph neural networks like GCNs (Kipf & Welling, 2016) on it. However, our
intuition in proposing the mega graph structure is to facilitate the information exchange across multi-
scale graphs, while the above method suffers from long-distance message propagation by ignoring
the inherent structure of the mega graph. For example, by applying normal GCNs over the mega
graph, the features of the original graph G1 have to be convolved at least h − 1 times to reach the
features of the smallest graph Gh, and vice versa. This is similar to stacking CNNs on a large image,
where the pixels at the upper-left corner and the bottom-right corner are receptive in one kernel only
at very deep layers.

To overcome this, we propose the MeGraph network. The overall architecture of MeGraph is il-
lustrated in Fig. 3. As we can observe, the MeGraph network follows the common encode-process-
decode architecture design and uses GNs (see Section 2.1) as elementary building blocks. In the
encode stage, the feature embedding is fed into an intra-graph GN block, followed by a series of
graph pooling operators to construct the mega graph MG and features (X0)MG . In the process
stage, an elementary component is a layer shaped like a mirrored E, which is referred to as the Mee

4

Under review as a conference paper at ICLR 2023

𝑋1
𝑖−

𝑋2
𝑖−

𝑋3
𝑖− 𝑋3

′

𝑋4
𝑖− 𝑋4

′

𝑋1
′′

𝑋2
′′

𝑋3
′′

𝑋4
′′

Inter GN

Intra GN

Residual

Same

Inputs OutputsVertical Updates

𝑋𝑗+

𝑋𝑗 𝑋𝑗
′

𝑋𝑗+
′

Cross Update

𝑋1
′

𝑋2
′

𝑋𝑗
𝑖 Graph

Features

𝒉

1

2

3

4

… … ……

𝑋1
𝑖

𝑋2
𝑖

𝑋3
𝑖

𝑋4
𝑖

……

……

𝑋1
𝑖− 𝑋1

′ 𝑋1
𝑖

𝑋𝑗
′

𝑋2
𝑖−

𝑋3
𝑖−

𝑋2
𝑖

𝑋3
𝑖

𝑋𝑗
𝑖

Step 1 Step 2 Step 3

𝑋1

𝑋2
′𝑋2

𝑋1
′′𝑋1

′

𝑋𝑗

𝑋3
′𝑋3

𝑋2
′′𝑋2

𝑋3
′′𝑋3

′

Pathway

Figure 4: Illustration of the Mee layer, where i− means i− 1 and j+ means j +1. The blue and green circles
represent features of intra- and inter-graphs, respectively. The grey and golden arrows indicate the intra and
inter GN blocks, respectively. The cross update exchanges information between consecutive heights using inter
GN blocks, detailed in the main text. There are three steps of updates, where the first step updates intra-graph
features. The second step sequentially applies cross updates from lower to higher levels. The information is
accumulated along the pathway and passes to higher levels. The procedure is reversed in the third step.

layer. The process module is composed by stacking the Mee layers for n times. The i-th Mee layer
takes the features (Xi−1)MG as inputs and outputs (Xi)MG (with residual links (He et al., 2016)) by
applying GN blocks in a designated order. In the decode stage, the features (Xn)MG are aggregated
to task-dependent representations using readout functions.

Mee Layer. As we can observe in Fig. 3, the Mee layer contains horizontal flows at each height and
vertical bidirectional pathways across multiple scaled graphs. A zoom-in structure of the Mee layer
is depicted in Fig. 4. At each Mee layer, the messages are passed through one step horizontal flow,
i.e., the features of intra-graphs are fed into a GN block at each height as shown in Step 1. Then,
the messages propagate from height 1 to height h and reverse back, where the features are updated
through the intra-edges according to the arrows (called the cross update or XUPD) in Step 2 (height
1 to height h) and Step 3 (reverse back). Within a single Mee layer, the information can be efficiently
exchanged across multiple scaled graphs. By stacking the Mee layer into a deeper architecture, the
information exchange is repeated for n times where n is the number of stacked Mee layers.

Formally, let (Xi−1)MG = {(Xi−1)G1:h , (Xi−1)Ĝ1:h} be the inputs of the i-th Mee layer. For
simplicity, we omit the superscript of graph identities and rewrite the features of intra- and inter-
graphs as {Xi−1

j }j=1,··· ,h := (Xi−1)G1:h and {X̂i−1
j }j=1,··· ,h−1 := (Xi−1)Ĝ1:h . Then, the updates

in Step 1 can be written as X′j = GNi,j
intra(Gj ,X

i−1
j), where X′j is the updated features of intra-

graph Gj . For the vertical updates in Steps 2 and 3, we define the cross update between consecutive
heights j and j + 1 to be a function (X′j , X̂

′
j ,X

′
j+1) = XUPD(j,Xj , X̂j ,Xj+1). This function

is realized by first merging Xj (node-wisely) with X̂j as X̄j , applying GN blocks on inter-graph
Ĝj by X̄′j = GNi,j

inter(Ĝj , X̄j), and finally retrieving X′j ,X
′
j+1 and X̂′j from X̄′j . We denote this

default realization as X-Conv. The cross update function can also be realized using the REDUCE
and EXPAND operation of POOL (see Section 2.2) by X′j+1 = REDUCE(Ĝj , X̂0

j ,Xj) and X′j =

EXPAND(Ĝj , X̂0
j ,Xj+1), where Ĝj is the j-th inter-graph. We denote such realization as X-Pool,

which is standard for most pooling methods. The intra and inter GN blocks can share parameters
among all j’s that generalize to different heights, or among all i’s that generalize to different depths.

The outputs of the process stage are the updated features {Xi
j}j=1,··· ,h and {X̂i

j}j=1,··· ,h−1. In our
implementation, we add residual links from Xi−1

j to Xi
j and from X̂i−1

j to X̂i
j to provide shortcuts

bypassing the entire Mee layer.

3.3 MODULE CHOICE AND INNOVATION

In MeGraph, there are two elementary modules, i.e., the graph pooling operator and the GN block.
The MeGraph architecture can adopt any graph pooling method as long as it belongs to the POOL
function family introduced in Section 2.2). Also, the choice of the GN block is not limited to the
graph convolution layer as used in standard GCN, GIN or GAT.
Graph Pooling. There are a number of commonly used graph pooling methods, including Diff-
Pool (Ying et al., 2018), TopKPool (Gao & Ji, 2019), EdgePool (Diehl et al., 2019), etc. Among

5

Under review as a conference paper at ICLR 2023

those, EdgePool is a promising method because it is trainable, sparse, and adaptable, according to
the taxonomy proposed in Grattarola et al. (2022). It also preserves the connectivity in graphs, i.e.,
if two subsets of nodes S1 and S2 are connected in the input graph, the reduced nodes ṽ1 and ṽ2 are
still connected in the pooled graph. However, the pooling ratio (the number of nodes after pooling
over the number of nodes before pooling) for applying one EdgePool operator is lower bounded by
50% and not adjustable since EdgePool seeks to only contract edges without overlapping connected
nodes. This is inflexible when the original graph (of N nodes) is extremely large, with at least
log2 N pooling operations to reduce to a single node. In this paper, we extend the EdgePool method
to deal with arbitrary pooling ratios. We propose the Stridden EdgePool (S-EdgePool) with a vari-
able pooling stride within the framework of the POOL function family introduced in Section 2.2.
Moreover, we propose an efficient implementation of S-EdgePool (containing EdgePool as a special
case) using the disjoint-set data structure (Galler & Fisher, 1964) below.

In the SELECT step, S-EdgePool shares the same computations as in EdgePool to generate learnable
edge scores, as detailed in Appendix C.1.1. Then, we propose a clustering procedure to determine
the subset of nodes to be reduced. Let Iv be the identifier of the cluster containing a set of nodes
v. Initially, we let v = {v} for every single node v. A contraction of an edge merges a pair of
nodes (v, v′) connected by this edge (where v ∈ v, v′ ∈ v′ and v ̸= v′), and thus unifies the
cluster identifiers, i.e., Iv = Iv′ = Ivmerge and vmerge = v ∪ v′. That is, once an edge connecting
any pair of nodes from two distinct clusters is contracted, we merge the two clusters and unify their
identifiers. Edges are visited sequentially by a decreasing order on the edge scores, and contractions
are implemented if valid. We set the maximum size of the node clusters to be a parameter τc, where
τc = 2 degenerates to the case of EdgePool (Diehl et al., 2019). We further introduce the pooling
ratio ηv to control the minimal number of remaining clusters after edge contractions to be Nv ∗ ηv .
Contractions that violate the above two constraints are invalid and will be skipped. Both parameters
control the number of nodes in the pooled graph. In our implementation, the cluster of nodes is
dynamically maintained using the disjoint-set data structure (Galler & Fisher, 1964). The detailed
procedures of CONNECT, REDUCE and EXPAND functions are provided in Appendix C.1.2. The
pseudocode of the entire algorithm is given in Algorithm 2 of Appendix C.1.3.
GN block. In this paper, we realize the full GN block (introduced in Section 2.1) as a graph full
network (GFuN) layer. A practical difference from the full GN block in (Battaglia et al., 2018)
is that we deactivate some links in the full GN block to reduce the computational complexity and
the number of parameters. More details are available in Appendix C.2. We use GFuN as the basic
component because of its excellent flexibility. We compare it with GCN in Appendix E.2.
Encoder and decoder. The MeGraphmodel can choose most input embedding methods (including
positional encodings) and readout functions used in GNNs. Details are in Appendix C.3.

3.4 COMPUTATIONAL COMPLEXITY

The overall complexity of the MeGraph model depends on the height h, the number of Mee layers
n, and the choices of the modules, as well as the corresponding hyper-parameters.

Let D be the embedding size, V be the number of nodes, and E be the number of edges in the
input graph G. The time complexity of S-Edgepool is O(ED+E logE), where O(ED) is the
complexity of computing edge scores and O(E logE) comes from sorting the edge scores. The
dynamic node clustering using disjoint-set is of O(Eα(E)) complexity where α(E) is a function
that grows slower than log(E) (Tarjan & Van Leeuwen, 1984). The time complexity of a GFuN
layer is O(V D2+ED). For simplicity, we assume both the pooling ratios of nodes and edges are
η. Then, the total time complexity to build the mega graphMG is O((ED + E logE)/(1 − η)),
where

∑h−1
i=0 ηi < 1/(1 − η). Similarly, the total time complexity of an Mee layer is O((V D2 +

ED)/(1− η)), which is the same as a normal GNN layer if we regard 1/(1− η) as a constant (e.g.,
it is a constant of 2 when η = 0.5). In practice, we introduce some variants of MeGraph to further
reduce the time complexity in Appendix C.4.

4 EXPERIMENTS

We conduct comprehensive experiments on both node and graph prediction tasks across a large
variety of synthetic and real-world datasets to show the superior performance of the MeGraph
model. We also demonstrate the importance of introducing S-EdgePool by ablation studies. Due
to space limitations, statistics of the datasets are provided in Appendix B.1, and the training and
implementation details are reported in Appendix D.

6

Under review as a conference paper at ICLR 2023

1 2 3 4 5 6 7 8 9 10
Num Layer

0.80

0.84

0.88

0.92

0.96

1.00

Ac
cu

ra
cy

TreeCycle

height=1
height=2

3
4

5
6

1 2 3 4 5 6 7 8 9 10
Num Layer

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

TreeGrid

height=1
height=2

3
4

5
6

Figure 5: Node classification accuracy (averaged over 10 random repetitions) for MeGraph on TreeCycle
(left) and TreeGrid (right) datasets by varying the height h and the number of Mee layers n. Clear gaps can be
observed among heights 1, 2, and ≥ 3. Detailed numbers can be found in Table 10 of Appendix E.3.

4.1 BASELINES

The height h is the key parameter determining the overall architecture of the MeGraph model.
When we set h = 1, the MeGraph model reduces to a normal GNN over the original graph, which
will be treated as a reliable baseline. To show the importance of repeated multi-scale information
exchange, we also compare with the baseline method by setting the number of Mee layers n = 1.
We also compare with the Graph U-Nets (Gao & Ji, 2019), which is approximately equivalent to a
U-Shaped variant under the MeGraph architecture. We use the GFuN layer as the core GN block
in these models.

4.2 SYNTHETIC DATASETS

We first study the effect of the max height h and the number of Mee layers n on 4 synthetic datasets
introduced by Ying et al. (2019), including the BAShape, BACommunity, TreeCycle and TreeGrid.
Each dataset contains one graph formed by attaching multiple motifs to a base graph. The motif
can be a ‘house’-shaped network (BAShape, BACommunity), six-node cycle (TreeCycle), or 3-by-3
grid (TreeGrid). The task is to identify the nodes of the motifs in the fused graph.

The results of TreeCycle and TreeGrid are shown in Fig. 5. We can observe clear gaps among
curves of h = 1, h = 2 and h ≥ 3 for all values of n. This indicates that h is crucially important for
recognizing the motifs. Similar conclusions can also be drawn in the easier datasets BAShape and
BACommunity (Fig. 6 in Appendix E.3).

4.3 GRAPH THEORY BENCHMARK

An important benefit of the MeGraph architecture is that it facilitates long-distance inference over
graphs. To verify this, we create a graph theory benchmark containing 3 graph regression tasks
and 2 node regression tasks, for solving which long-distance inference is necessary. The graph
regression tasks include Single Source Single Destination Shortest Path (SPsssd), Maximum Con-
nected Component of the same color (MCC) and Graph Diameter (Diameter). The node regression
tasks are Single Source Shortest Path (SPss) and Eccentricity of nodes (ECC). All these problems
are based on artificially generated graphs. Following Corso et al. (2020), we use their methods to
generate undirected and unweighted graphs randomly. In addition, we propose three new methods:
cycle, pesudotree and geographic threshold graphs. We create a dataset for each task and each graph
generation method, resulting in a total of 55 datasets after filtering out the trivial cases. The de-
tails of those tasks and dataset generation can be found in Appendix B.2. As shown in Table 1,
the MeGraph model achieves significantly smaller regression loss compared with all the baselines
(h = 1, n = 1 and U-Shaped net), even when the baseline methods take more GNN layers.

Ablation Studies. We first vary the node pooling ratio ηv and the maximum cluster size τc of S-
EdgePool to evaluate the performance. The advantage of a flexible pooling stride is shown in the
lower part of Table 1, where the best one achieves almost 4x smaller error ([ηv = 0.3, τc = 4] 0.624
vs. [τc = 2] 2.337). We further experiment with the X-Pool (see the definition of XUPD in Sec 3.2)
variation. The dropped performance ([X-Pool] 1.165 vs. [X-Conv] 0.624) indicates the importance
of using GN block for inter-graph updates.

4.4 REAL WORLD DATASETS

Experimental Protocol. In this subsection, we evaluate MeGraph on public real-world graph
benchmarks. To fairly compare MeGraph with the baselines, we use the following experimental
protocols. We first report the public baseline results and our reproduced standard GCN’s results. We

7

Under review as a conference paper at ICLR 2023

Table 1: Results on Graph Theory Benchmark. For each task, we report the MSE regression loss on test set,
averaged over different graph generation methods. Darker blue cells denote better performance. We refer more
details to Appendix E.4.

Category Model SPsssd MCC Diameter SPss ECC Average

Baselines
(h=1)

n=1 12.188 1.377 12.654 25.159 21.522 13.680
n=5 4.246 1.093 6.048 13.715 20.287 8.821
n=10 2.488 1.119 5.812 7.819 20.201 7.481

MeGraph
EdgePool

(h=5, τc=2)

n=9 (U-Shaped) 2.683 1.144 5.680 2.801 20.102 6.656
n=1 1.856 0.772 4.801 6.110 14.920 5.662
n=5 0.817 0.616 2.196 0.785 6.892 2.337

MeGraph
S-EdgePool

Ablation
(h=5, n=5)

τc=3 0.648 0.600 0.575 0.501 0.856 0.644
ηv=0.3 2.331 0.583 0.964 3.984 2.021 1.840
ηv=0.3, τc=4 0.584 0.565 0.517 0.475 0.925 0.624
ηv=0.5, τc=4 1.103 0.600 0.835 1.331 2.016 1.163
ηv=0.3, τc=4 (X-Pool) 0.935 0.619 0.734 1.618 2.014 1.165

Table 2: Results on GNN benchmark. † denotes the results are reported in (Dwivedi et al., 2020). Regression
tasks are colored with blue. ↓ indicates that smaller numbers are better. Results of classification tasks are
colored with green. ↑ indicates that larger numbers are better. Darker colors indicate better performance.

Model ZINC ↓ AQSOL ↓ MNIST ↑ CIFAR10 ↑ PATTERN ↑ CLUSTER ↑
GCN† 0.416 ±0.006 1.372 ±0.020 90.120 ±0.145 54.142 ±0.394 85.498 ±0.045 47.828 ±1.510
GIN† 0.387 ±0.015 1.894 ±0.024 96.485 ±0.252 55.255 ±1.527 85.590 ±0.011 58.384 ±0.236
GAT† 0.475 ±0.007 1.441 ±0.023 95.535 ±0.205 64.223 ±0.455 75.824 ±1.823 57.732 ±0.323
GatedGCN† 0.435 ±0.011 1.352 ±0.034 97.340 ±0.143 67.312 ±0.311 84.480 ±0.122 60.404 ±0.419

GCN 0.426 ±0.015 1.397 ±0.029 90.140 ±0.140 51.050 ±0.390 84.672 ±0.054 47.541 ±0.940
MeGraph (h=1) 0.323 ±0.002 1.075 ±0.007 97.570 ±0.168 69.890 ±0.209 84.845 ±0.021 58.178 ±0.079
MeGraph (n=1) 0.310 ±0.005 1.038 ±0.018 96.867 ±0.167 68.522 ±0.239 85.507 ±0.402 50.396 ±0.082
MeGraph 0.260 ±0.005 1.002 ±0.021 97.860 ±0.098 69.925 ±0.631 86.507 ±0.067 68.603 ±0.101
MeGraphbest 0.202 ±0.007 1.002 ±0.021 97.860 ±0.098 69.925 ±0.631 86.732 ±0.023 68.610 ±0.164

then replace GCN layers with GFuN layers (which is equivalent to MeGraph (h = 1)) to serve as
another baseline. We tune the hyper-parameters (such as learning rate, dropout rate and the readout
global pooling method, etc.) of MeGraph (h = 1) and choose the best configurations. We then run
other diversely configured MeGraph candidates by tuning other hyper-parameters that only matters
for h > 1, and these hyper-parameters are referred to as the MeGraph hyper-parameters. MeGraph
(n = 1) also serves as a baseline method, which does not enables repeated information exchange.
The standard MeGraph uses an uniform hyper-parameter setting for all the datasets. We also report
the best performance of MeGraphwith specifically tuned hyper-parameters in each dataset, denoted
as MeGraphbest. Detailed configurations are put in Table 5 in the Appendix.
GNN Benchmark (Dwivedi et al., 2020). We experiment on three types of GNN benchmark
datasets, which are chemical data (ZINC and AQSOL), image data (MNIST and CIFAR10) and
social network data (PATTERN and CLUSTER). The tasks are regressing certain properties of
molecule graphs (graph regression), classifying the super-pixel graphs (graph classification), and
recognizing the patterns of nodes or clustering nodes (node classification), respectively. More de-
tails can be found in their original works. As shown in Table 2, Megraph outperforms the public
results reported in (Dwivedi et al., 2020) and our two baselines.
Open Graph Benchmark (OGB) (Hu et al., 2020). We choose 10 datasets related to molecular
graphs from the graph prediction tasks of OGB, 7 out of which are classification tasks (molhiv, mol-
bace, molbbbp, molclintox, molsider, moltox21 and moltoxcast) and the others are regression tasks
(molesol, molfreesolv and mollipo). For all datasets, each graph represents a molecular compound.
The node features are properties of atoms and the edge features are properties of bonds between
atoms. The task of all datasets is to predict some properties of molecule graphs based on their chem-
ical structures. As shown in Table 3, Megraph achieves 1% to 3% absolute gains on classification
tasks, and about 10% relative gains on regression tasks compared to the baseline MeGraph (h = 1).
TU Datasets (Morris et al., 2020). The results of 10 popular TU datasets are put in Appendix E.1.

5 RELATED WORKS

Feature Pyramids and Multi-Scale Feature Fusion. Multi-scale feature fusion methods on image
feature pyramids have been widely studied in computer vision literature, including the U-Net (Ron-
neberger et al., 2015), FPN (Lin et al., 2017), UNet++ (Zhou et al., 2018), and some recent ap-

8

Under review as a conference paper at ICLR 2023

Table 3: Results on OGB-G. † indicates that the results are reported in (Hu et al., 2020).
Model molhiv ↑ molbace ↑ molbbbp ↑ molclintox ↑ molsider ↑

GCN† 76.06 ±0.97 79.15 ±1.44 68.87 ±1.51 91.30 ±1.73 59.60 ±1.77
GIN† 75.58 ±1.40 72.97 ±4.00 68.17 ±1.48 88.14 ±2.51 57.60 ±1.40

GCN 75.40 ±1.29 76.01 ±3.31 67.35 ±0.96 89.62 ±2.27 58.08 ±0.78
MeGraph (h=1) 78.54 ±1.14 71.77 ±2.15 67.56 ±1.11 89.77 ±3.48 58.28 ±0.51
MeGraph (n=1) 78.56 ±1.02 79.72 ±1.24 67.34 ±0.98 91.07 ±2.21 58.08 ±0.59
MeGraph 77.20 ±0.88 78.52 ±2.51 69.57 ±2.33 92.04 ±2.19 59.01 ±1.45
MeGraphbest 79.20 ±1.80 83.52 ±0.47 69.57 ±2.33 92.06 ±1.32 63.43 ±1.10

Model moltox21 ↑ moltoxcast ↑ molesol ↓ molfreesolv ↓ mollipo ↓

GCN† 75.29 ±0.69 63.54 ±0.42 1.114 ±0.03 2.640 ±0.23 0.797 ±0.02
GIN† 74.91 ±0.51 63.41 ±0.74 1.173 ±0.05 2.755 ±0.34 0.757 ±0.01

GCN 75.11 ±0.41 64.13 ±0.52 1.141 ±0.02 2.407 ±0.15 0.788 ±0.01
MeGraph (h=1) 75.89 ±0.45 64.49 ±0.46 1.079 ±0.02 2.017 ±0.08 0.768 ±0.00
MeGraph (n=1) 77.01 ±0.93 66.89 ±1.21 0.896 ±0.04 1.892 ±0.06 0.730 ±0.01
MeGraph 78.11 ±0.47 67.67 ±0.53 0.886 ±0.02 1.876 ±0.05 0.726 ±0.00
MeGraphbest 78.11 ±0.47 67.90 ±0.19 0.867 ±0.02 1.876 ±0.05 0.688 ±0.01

proaches (Yu et al., 2018; Liu et al., 2018; Lin et al., 2019; Li et al., 2020). HRNet (Wang et al.,
2020) is a similar method compared to MeGraph. HRNet alternates between multi-resolution con-
volutions and multi-resolution fusion by stridden convolutions. However, the above methods are
developed for image data, and key differences compared to these approaches is that the multi-scale
feature fusion in MeGraph is incorporated with the inter-graphs generated by graph pooling, and the
fusion process is repeated for multiple times. For graph networks, the GraphFPN (Zhao et al., 2021)
builds mappings between the image and graph feature pyramids according to the superpixel hierar-
chy, and it applies GNN layers on the hierarchical graph to exchange information within the graph
pyramid. However, the flow of inference still propagates for a single pass over a fixed contextual-
hierarchical-contextual structure (see Fig. 1 of (Zhao et al., 2021)). Gao & Ji (2019) and Fey et al.
(2020) have also explored similar ideas in graph structured data. Our approach shares the general
idea of multi-scale information fusion, but it is the first method that builds a mega architecture with
graph pooling and GN blocks that achieve efficient multi-scale information exchange in the domain
of graph representation learning.

Graph Pooling Methods. Graph pooling is an important part in hierarchical graph representation
learning. There have been some traditional graph pooling methods like METIS (Karypis & Kumar,
1998) in early literature. Recently, many learning based graph pooling methods have been proposed,
including the DiffPool (Ying et al., 2018), TopKPool (Gao & Ji, 2019), SAG pool (Lee et al., 2019),
EdgePool (Diehl et al., 2019), MinCutPool (Bianchi et al., 2020), and MEWISPool (Nouranizadeh
et al., 2021), etc. In MeGraph, we generalize the EdgePool method as S-EdgePool to build the
mega graph, while this operator can be switched to any one of the above mentioned pooling method.

Graph Neural Network (GNN) Layers. The GNN layer is the core module of graph representation
learning models. Typical GNNs include the GCN (Kipf & Welling, 2016), GraphSage (Hamilton
et al., 2017), GAT (Veličković et al., 2018; Brody et al., 2021), GIN (Xu et al., 2018), PNA (Corso
et al., 2020). MeGraph adopts the full GN block (Battaglia et al., 2018) by removing part of links
in the module as an elementary block, and similarly this can be replaced by any one of the popular
GNN blocks.

6 LIMITATIONS AND FUTURE WORK

The MeGraph model suffers from some limitations. The introduced mega graph architecture in-
evitably increases both the number of trainable parameters and tuneable hyper-parameters. The
flexible choices of many modules in MeGraph post burdens on tuning the architecture on specific
datasets. For future research, MeGraph encourages new graph pooling methods to yield edge fea-
tures in addition to node features, when mapping the input graph to the pooled graph. It is also
possible to improve MeGraph using adaptive computational steps (Tang et al., 2020). Another
direction is to apply some expressive models like Transformers (Vaswani et al., 2017) and Neural
Logic Machines (Dong et al., 2018; Xiao et al., 2022) (only) over the pooled small-sized graphs,
since these models are computational expensive.

9

Under review as a conference paper at ICLR 2023

7 REPRODUCIBILITY STATEMENT

We will post an anonymous code repository link in an official comment on Openreview. We set the
random seed as 2022 for all experiments to enable reproducible results. We provide dataset statistics
in Table 4 and details for the proposed graph theory benchmark in Appendix B.2. All details of the
hyper-parameters are reported in Table 5. Configuration of all hyper-parameters and the command
lines to reproduce the experiments will be included in the code repository.

REFERENCES

Edward H Adelson, Charles H Anderson, James R Bergen, Peter J Burt, and Joan M Ogden. Pyramid
methods in image processing. RCA engineer, 29(6):33–41, 1984.

Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of
modern physics, 74(1):47, 2002.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph neural
networks for graph pooling. In International Conference on Machine Learning, pp. 874–883.
PMLR, 2020.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In Interna-
tional Conference on Learning Representations, 2021.

Ting Chen, Song Bian, and Yizhou Sun. Are powerful graph neural nets necessary? a dissection on
graph classification. arXiv preprint arXiv:1905.04579, 2019.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
33:13260–13271, 2020.

Frederik Diehl, Thomas Brunner, Michael Truong Le, and Alois Knoll. Towards graph pooling by
edge contraction. In ICML 2019 workshop on learning and reasoning with graph-structured data,
2019.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic
machines. In International Conference on Learning Representations, 2018.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations, 2021.

Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.
Sci, 5(1):17–60, 1960.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

Matthias Fey, Jan-Gin Yuen, and Frank Weichert. Hierarchical inter-message passing for learning
on molecular graphs. arXiv preprint arXiv:2006.12179, 2020.

Bernard A Galler and Michael J Fisher. An improved equivalence algorithm. Communications of
the ACM, 7(5):301–303, 1964.

10

Under review as a conference paper at ICLR 2023

Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning,
pp. 2083–2092. PMLR, 2019.

Daniele Grattarola, Daniele Zambon, Filippo Maria Bianchi, and Cesare Alippi. Understanding
pooling in graph neural networks. IEEE Transactions on Neural Networks and Learning Systems,
2022.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Jessica B Hamrick, Kelsey R Allen, Victor Bapst, Tina Zhu, Kevin R McKee, Joshua B Tenen-
baum, and Peter W Battaglia. Relational inductive bias for physical construction in humans and
machines. arXiv preprint arXiv:1806.01203, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand. Taichi: a
language for high-performance computation on spatially sparse data structures. ACM Transac-
tions on Graphics (TOG), 38(6):201, 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irreg-
ular graphs. SIAM Journal on scientific Computing, 20(1):359–392, 1998.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR (Poster),
2015. URL http://arxiv.org/abs/1412.6980.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. 2016.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International confer-
ence on machine learning, pp. 3734–3743. PMLR, 2019.

Xiangtai Li, Houlong Zhao, Lei Han, Yunhai Tong, Shaohua Tan, and Kuiyuan Yang. Gated fully fu-
sion for semantic segmentation. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 11418–11425, 2020.

Di Lin, Dingguo Shen, Siting Shen, Yuanfeng Ji, Dani Lischinski, Daniel Cohen-Or, and Hui Huang.
Zigzagnet: Fusing top-down and bottom-up context for object segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7490–7499, 2019.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 2117–2125, 2017.

Chuang Liu, Yibing Zhan, Chang Li, Bo Du, Jia Wu, Wenbin Hu, Tongliang Liu, and Dacheng Tao.
Graph pooling for graph neural networks: Progress, challenges, and opportunities. arXiv preprint
arXiv:2204.07321, 2022.

Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path aggregation network for instance
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 8759–8768, 2018.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

11

http://arxiv.org/abs/1412.6980

Under review as a conference paper at ICLR 2023

Amirhossein Nouranizadeh, Mohammadjavad Matinkia, Mohammad Rahmati, and Reza
Safabakhsh. Maximum entropy weighted independent set pooling for graph neural networks.
arXiv preprint arXiv:2107.01410, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Hao Tang, Zhiao Huang, Jiayuan Gu, Bao-Liang Lu, and Hao Su. Towards scale-invariant graph-
related problem solving by iterative homogeneous gnns. Advances in Neural Information Pro-
cessing Systems, 33:15811–15822, 2020.

Robert E Tarjan and Jan Van Leeuwen. Worst-case analysis of set union algorithms. Journal of the
ACM (JACM), 31(2):245–281, 1984.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu,
Yadong Mu, Mingkui Tan, Xinggang Wang, et al. Deep high-resolution representation learn-
ing for visual recognition. IEEE transactions on pattern analysis and machine intelligence, 43
(10):3349–3364, 2020.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv
preprint arXiv:1909.01315, 2019.

Duncan J WATTS. Networks, dynamics and the small world phenomenon. American Journal of
Sociology, 105(2):50–59, 2003.

Guangxuan Xiao, Leslie Pack Kaelbling, Jiajun Wu, and Jiayuan Mao. Efficient training and infer-
ence of hypergraph reasoning networks, 2022. URL https://openreview.net/forum?
id=WKWAkkXGpWN.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
archical graph representation learning with differentiable pooling. Advances in neural information
processing systems, 31, 2018.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. Advances in neural information processing
systems, 32, 2019.

Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. Deep layer aggregation. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pp. 2403–2412,
2018.

Gangming Zhao, Weifeng Ge, and Yizhou Yu. Graphfpn: Graph feature pyramid network for object
detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
2763–2772, 2021.

Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang. Unet++:
A nested u-net architecture for medical image segmentation. In Deep learning in medical image
analysis and multimodal learning for clinical decision support, pp. 3–11. Springer, 2018.

12

https://openreview.net/forum?id=WKWAkkXGpWN
https://openreview.net/forum?id=WKWAkkXGpWN

Under review as a conference paper at ICLR 2023

A SUMMARY OF APPENDIX

We present dataset details in Section B, method details in Section C, implementation and training
details in Section D and extra experiment results in Section E.

B DATASET DETAILS

B.1 DATASET STATISTICS AND METRICS

We provide the statistics of all datasets used in our experiments in Table 4 and introduce the evalua-
tion metrics for each dataset.

For Synthetic datasets, we use classification accuracy (ACC) as the evaluation metric. We use Mean
Square Error (MSE) as the evaluation metric for all datasets in our Graph Theory Benchmark. For
GNN Benchmark, we follow the original work (Dwivedi et al., 2020) for evaluation, i.e., Mean
Absolute Error (MAE) for ZINC and AQSOL, classification accuracy for MNIST and CIFAR10, and
balanced classification accuracy for PATTERN and CLUSTER. For OGB Benchmark, we follow the
original work (Hu et al., 2020) and use the ROC-AUC for classification tasks and Root Mean Square
Error (RMSE) for regression tasks. For TU datasets, we follow the setting used by (Chen et al.,
2019) and use classification accuracy as the evaluation metric.

B.2 GRAPH THEORY BENCHMARK

In this section, we provide the details about the tasks and how the graph features and the labels are
generated given a base graph G = (V, E):

• Single source single destination shortest path (SPsssd): a source node s ∈ V and a destina-
tion node t ∈ V are selected uniform randomly. The feature of each node v contains three
numbers: (1, whether the node v is s, whether the node v is t). The label of a graph is the
length of the shortest path from s to t.

• A maximum connected component of the same color (MCC): each node of the graph is
colored with one of three colors. The feature for each node is the one-hot representation
of its color. The label of graph is the size of the largest connected component of the same
color for each color.

• Graph diameter (Diameter): the label of the graph is the diameter of the graph. The diam-
eter of a graph G is the maximum of the set of shortest path distances between all pairs of
nodes in the graph. The feature of each node is a uniform number 1.

• Single source shortest path (SPss): a source node s is selected uniformly randomly. The
feature of each node contains two numbers: (1, whether the node is s). The label of each
node is the length of the shortest path from s to this node.

• Graph eccentricity (ECC): the label of each node v is node’s eccentricity in the graph,
which is the maximum distance from v to the other nodes. The feature of each node is a
uniform number 1.

For each task and graph generation method, We generate the dataset by the following steps:

• Sample N (number of nodes) from [20, 50], totally 300 graphs. These numbers can be
configured.

• Use the graph generation method to generate a graph of N nodes.
• Create graph features and labels according to the task.

We then provide the details about the random graph generation methods we used to create our Graph
Theory datasets.

Following Corso et al. (2020), we continue to use undirected and unweighted graphs from a wide
variety of types. We inherit their 10 random graph generation methods and quote their descriptions
here for completeness (the percentage after the name is the approximate proportion of such graphs
in the mixture setting).

13

Under review as a conference paper at ICLR 2023

Table 4: The statistics of the datasets used in experiments. Some statistics (like the average number
of edges) of the Graph Theory datasets may vary depending on different random graph generation
methods. The regression tasks are marked with ✓ in a separate column. The tasks of 4 synthetic
datasets are transductive, where the same graph is used for both training and testing. We do not use
the node labels as features during the training time. The train-val-test split is over nodes. All other
datasets in the table are inductive, where the testing graphs do not occur during training, and the
train-val-test split is over graphs.

Collection Dataset #
Graphs

Avg
#

Nodes

Avg
#

Edges

#
Node
Feat

#
Edge
Feat

#
Classes Task Reg.

Synthetic BaShape 1 700 1761 1 - 4 Trans-Node
Synthetic BaCommunity 1 1400 3872 10 - 8 Trans-Node
Synthetic TreeCycle 1 871 970 1 - 2 Trans-Node
Synthetic TreeGrid 1 1231 1705 1 - 2 Trans-Node

GraphTheory SPsssd 300 35.0 - 3 - - Graph ✓
GraphTheory Diameter 300 35.0 - 1 - - Graph ✓
GraphTheory MCC 300 35.0 - 3 - - Graph ✓
GraphTheory SPss 300 35.0 - 2 - - Node ✓
GraphTheory ECC 300 35.0 - 1 - - Node ✓

GNNBenchmark ZINC 12000 23.16 49.83 28 4 2 Graph ✓
GNNBenchmark AQSOL 9823 17.57 35.76 65 5 2 Graph ✓
GNNBenchmark MNIST 70000 70.57 564.53 3 1 10 Graph
GNNBenchmark CIFAR10 60000 117.63 941.07 5 1 10 Graph
GNNBenchmark PATTERN 14000 118.89 6078.57 3 - 2 Node
GNNBenchmark CLUSTER 12000 117.20 4301.72 7 - 6 Node

OGB Graph molhiv 41127 25.51 80.45 9 3 2 Graph
OGB Graph molbace 1513 34.09 107.81 9 3 2 Graph
OGB Graph molbbbp 2039 24.06 75.97 9 3 2 Graph
OGB Graph molclintox 1477 26.16 81.93 9 3 2 Graph
OGB Graph molsider 1427 33.64 104.36 9 3 2 Graph
OGB Graph moltox21 7831 18.57 57.16 9 3 2 Graph
OGB Graph moltoxcast 8576 18.78 57.30 9 3 2 Graph
OGB Graph molesol 1128 13.29 40.64 9 3 - Graph ✓
OGB Graph molfreesolv 642 8.7 25.50 9 3 - Graph ✓
OGB Graph mollipo 4200 27.04 86.04 9 3 - Graph ✓

TU MUTAG 188 17.93 19.79 7 - 3 Graph
TU NCI1 4110 29.87 32.30 37 - 2 Graph
TU PROTEINS 1113 39.06 72.82 4 - 2 Graph
TU D&D 1178 284.32 715.66 89 - 2 Graph
TU ENZYMES 600 32.63 62.14 21 - 6 Graph
TU IMDB-B 1000 19.77 96.53 10 - 2 Graph
TU IMDB-M 1500 13.00 65.94 10 - 3 Graph
TU RE-B 2000 429.63 497.75 10 - 2 Graph
TU RE-M5K 4999 508.52 594.87 10 - 5 Graph
TU RE-M12K 11929 391.41 456.89 10 - 11 Graph

14

Under review as a conference paper at ICLR 2023

• Erdös-Rényi (ER) (20%) (Erdős et al., 1960): with a probability of presence for each edge
equal to p, where p is independently generated for each graph from U [0, 1]

• Barabási-Albert (BA) (20%) (Albert & Barabási, 2002): the number of edges for a new
node is k, which is taken randomly from {1, 2, . . . , N − 1} for each graph

• Grid (5%): m× k 2d grid graph with N = mk and m and k as close as possible

• Caveman (5%) (WATTS, 2003): with m cliques of size k, with m and k as close as possible

• Tree (15%): generated with a power-law degree distribution with exponent 3

• Ladder graphs (5%)

• Line graphs (5%)

• Star graphs (5%)

• Caterpillar graphs (10%): with a backbone of size b (drawn from U [1, N)), and N − b
pendent vertices uniformly connected to the backbone

• Lobster graphs (10%): with a backbone of size b (drawn from U [1, N)), p (drawn from
U [1, N−b]) pendent vertices uniformly connected to the backbone, and additional N−b−p
pendent vertices uniformly connected to the previous pendent vertices.

Additional, we add three more graph generation methods:

• Cycle graphs

• Pseudotree graphs: A tree graph plus an additional edge. The graph is generated by first
generating a cycle graph of size m = sample(0.3N, 0.6N). Then n−m remaining nodes
are sampled to m parts, where i-th part represents the size of the tree hanging on the i-th
node on the cycle. The trees are randomly generated with the given size.

• Geographic (Geo) graphs: geographic threshold graphs, but with added edges via a min-
imum spanning tree algorithm, to ensure all nodes are connected. This graph generation
method is introduced by Battaglia et al. (2018) in their codebase 1. We use the geographic
threshold θ = 200 instead of the default value θ = 1000.

Note that we do not have randomization after the graph generation as in Corso et al. (2020). There-
fore, very long diameter is preserved for some type of graphs.

C METHOD DETAILS

C.1 S-EDGEPOOL

C.1.1 EDGE SCORE GENERATION

Both S-EdgePool and EdgePool methods compute a raw edge score rk for each edge k using a linear
layer:

rk = W · (Vsk ||Vtk ||Ek) + b

where sk and tk are the source and target nodes of edge k, V is node features, E is edge features,
W and b are learned parameters. The raw edge scores are further normalized by a local softmax
function over all edges of a node:

wk = exp(rk)/
∑

k′,tk′=tk

exp(rk′),

and biased by a constant 0.5 (Diehl et al., 2019).

1https://github.com/deepmind/graph nets, the shortest path demo

15

Under review as a conference paper at ICLR 2023

C.1.2 CONNECT, REDUCE AND EXPAND

In this subsection, we give the details of CONNECT, REDUCE and EXPAND functions of S-EdgePool.

The CONNECT function rebuilds the edge set Ẽ between the nodes in Ṽ . As aforementioned, we
build the pooled graph’s nodes according to node clusters. We call this mapping function from node
clusters to new nodes n. After that, we build the pooled graph’s edges following three steps: First,
for all edges in the original graph, we find out the corresponding node cluster(s) of its two endpoints
(using a disjoint-set’s find index operation). Then, we find out the corresponding new nodes by
using the mapping function n. Last, we add a new edge between the new nodes.

In our experiments, the REDUCE and EXPAND we used are generalized from the method mentioned
in Diehl et al. (2019). The REDUCE function computes new node features and edge features We
follow their method to compute new node features by taking the sum of the node features and
multiplying it by the edge score. Specifically, we generalize the computation between two nodes
to a node cluster. The node clusters are maintained with a disjoint-set data structure. A cluster is
consist of |Sṽ| nodes. We define Edsṽ as a set of |Sṽ| − 1 edges, where the edges are the selected
edges to be contracted in SELECT function and they connecting all nodes in a node cluster Sṽ .

cṽ =
1 +

∑
ek∈Edsṽ

wk

|Sṽ|
Vṽ = cṽ

∑
v∈Sṽ

Vv

To integrate the edge features between two node clusters, we first find all the connected edges be-
tween the two node clusters (the edges between node clusters are edges that connect two nodes from
different node clusters). Then, we use the sum of all the connected edges’ features between the two
node clusters as the new edge’s features.

The term EXPAND we used refers an unpooling operation. When unpooling, we create an inverse
mapping of pooled nodes to unpooled nodes.

V =
Ṽv

wavg

C.1.3 PSEUDO CODE

The pseudo-code includes two parts, where Algorithm 1 describes how to maintain the clusters using
a disjoint-set data structure, and Algorithm 2 describes the procedure of S-EdgePool that generates
a pooled graph G̃ with configurable node pooling ratio ηv and maximum of cluster sizes τc.

C.2 GFUN

We first realize the ϕe, ϕv , ϕu functions in the full GN block (Sec 2.1 and (Battaglia et al., 2018))
as neural networks:

E′k = NNe(Ek,Vsk ,Vtk ,u), (2)
V′i = NNv(Ē

′
i,Vi,u), (3)

u′ = NNu(Ē
′, V̄′,u), (4)

respectively, where
Ē′i = ρe→v({E′k}k∈[1...Ne],tk=i), (5)

Ē′ = ρe→u(E′), (6)
V̄′ = ρv→u(V′). (7)

We further decompose the neural networks according to the features in the function:
NNe(Ek,Vsk ,Vtk ,u) = NNe←e(Ek) + NNe←vs(Vsk) + NNe←vt

(Vtk) + NNe←u(u),(8)
NNv(Ē

′
i,Vi,u) = NNv←e(Ē

′
i) + NNv←v(Vi) + NNv←u(u), (9)

NNu(Ē
′, V̄′,u) = NNu←e(Ē

′) + NNu←v(V̄
′) + NNu←u(u) (10)

16

Under review as a conference paper at ICLR 2023

Algorithm 1 Get Cluster Index And Cluster Size of a Node (Using disjoint-set data structure)
function INITIALIZE DISJOINT SET(graph G(V, E))

for v ∈ V do
index[v] = v ▷ the identifier of the cluster the node v belongs to
size[v] = 1

end for
end function
function FIND INDEX(node v)

if index[v] = v then
return v

else
index[v]←FIND INDEX(index[v])
return index[v]

end if
end function
function FIND INDEX AND SIZE(node v)

i←FIND INDEX(v)
s← size[i]
return i, s

end function
function MERGE(cluster index x and cluster index y)

size[y]← size[x] + size[y]
index[x]← index[y]

end function

However, such GN block uses 10 times number of parameters as the standard GCN (Kipf & Welling,
2016) layer when the node, edge and global embedding dimensions are all equivalent. In practice,
we disable all computations related to global features u, as well as the neural networks NNe←e and
NNe←vt . We also set NNv←e to be Identity.

In practice, we use summation function as the aggregator function ρe→v by default. But other
choices like MEAN, MAX, gated summation, attention or their combinations can also be used.

Overall, we call such GN block as graph full network (GFuN) and use the practical setting in our
experiments.

C.3 ENCORDER AND DECODER

Encoder. For input embedding, we use Linear layer or Embedding layer to embed input features.
For example, we follow Dwivedi et al. (2020) and use Linear layer on MNIST and CIFAR10
datasets, use Embedding layer on ZINC and AQSOL datasets. For molecular graph in OGB, we
use the same embedding method as in the original work (Hu et al., 2020). Besides, we can adopt po-
sitional encoding methods like Laplacian (Dwivedi et al., 2020) and Random Walk (Dwivedi et al.,
2021) to further embed global and local graph structure information. The embedding of positional
encoding can be combined into (like concatenation, addition, etc.) input features and form new
embeddings .

Decoder. We can freely choose from the multi-scale features computed during the process stage as
inputs to the decoder module.

Empirically, we use the features on the original graph for prediction in all experiments. For node
level tasks, we apply a last GNN layer on the original graph to get logits for every node. For graph
level tasks, we first use global pooling functions to aggregate features. We can use common global
pooling methods like SUM, MEAN, MAX or their combination. After global pool, we use MLP
layer(s) to generate the prediction.

17

Under review as a conference paper at ICLR 2023

Algorithm 2 Strided EdgePool
Input: graph G = (V, E), edge scores w, node pooling ratio ηv , maximum cluster sizes τc.
Output: pooled graph G̃ = (Ṽ, Ẽ) and inter graph Ĝ = (V̂, Ê)
INITIALIZE DISJOINT SET(G)
remains← Nv ▷ Nv is the number of nodes in graph G
Ē ← Sort the edges E according to the edge scores w decreasingly.
for e ∈ Ē do

x, y ← the two endpoints of the edge e
rx, sx← FIND INDEX AND SIZE(x)
ry, sy ← FIND INDEX AND SIZE(y)
if rx ̸= ry and (sx+ sy ≤ τc) then

MERGE(x, y)
remains← remains− 1
if remains ≤ Nv ∗ ηv then

break
end if

end if
end for
Ṽ, Ẽ , V̂, Ê ← {}, {}, {}, {}
create empty mapping n from cluster index to nodes
for v ∈ V do

if FIND INDEX(v) = v then
create new node ṽ
n[v] = ṽ

Ṽ ← Ṽ ∪ {ṽ}
end if

end for
for e ∈ E do

x, y ← the two endpoints of the edge e
x̃← n[FIND INDEX(x)]
ỹ ← n[FIND INDEX(y)]

Ẽ ← Ẽ ∪ {(x̃, ỹ)}
end for
for v ∈ V do

ṽ ← n[FIND INDEX(v)]

Ê ← Ê ∪ {(v, ṽ)}
end for
V̂ ← V ∪ Ṽ

18

Under review as a conference paper at ICLR 2023

C.4 ARCHITECTURE VARIANTS

We can replace some GN blocks within Mee layers as an Identity block to reduce the time com-
plexity. We call the height j is reserved if the intra GN block of height j is not replaced by an
Identity block. We prefer to reserve a interval of consecutive heights for the Mee layers. (The inter
GN blocks between these heights are remained unchanged while others are replaced as identities)
By varying the heights reserved in each Mee layers, we can create a large amount of variants of
MeGraph model including U-Shaped, Bridge-Shaped and Staircase-Shaped.

U-Shaped. This variant is similar to Graph U-Net (Gao & Ji, 2019). In this U-Shaped variant, the
relationship between the number of layers n and height h is n = 2h + 1, and there is only one GN
block in each layer. We keep the GN block at height j = i for each layer i at fist half layers, and
keep the GN block at height j = n − i + 1 for each layer i at later half layers. In the middle layer,
only the last height j = h = (n− 1)/2 has a GN block.

Bridge-Shaped. In this variant, all GN blocks are combined like a arch bridge. Describe in detail,
in the first and last layers, there are GN blocks in each height. In other layers, there are GN blocks
at height of 1 to j (where 1 < j < h).

Staircase-Shaped. There are four forms in this variant, and the number of layers n is equal to the
height h in all forms. The first from is like the ‘downward’ staircase. In each layer i of this forms,
there are GN blocks at height of j to h (where j = i). The second form is the inverted first form. In
each layer i of this second forms, there are GN blocks at height of 1 to h− i+1 (where j = i). The
last two forms are the mirror of the first and second forms.

D IMPLEMENTATION AND TRAINING DETAILS

We use PyTorch (Paszke et al., 2019) and Deep Graph Library (DGL) (Wang et al., 2019) to imple-
ment our method.

We implement S-EdgePool using DGL, extending from the original implementation of EdgePool
in the Pytorch Geometric library (PYG) (Fey & Lenssen, 2019). We did Constant optimization
over the implementation to speed up the training and inference of the pooling. We further use
Taichi-Lang (Hu et al., 2019) to speed up the dynamic node clustering process of S-EdgePool. The
practical running time of MeGraph model with height h > 1 after optimization is about 2h times
as the h = 1 baseline. This is still slower than the theoretical computational complexity due to
the constant in the implementation and the difficulty of paralleling the sequential visitation of edges
(according to their scores) in the EdgePool and S-EdgePool.

We run all our experiments on V100 GPUs and M40 GPUs. For training the neural networks, we
use Adam (Kingma & Ba, 2015) as the optimizer. We report the hyper-parameters of the Megraph
in Table 5.

For models using GFuN layer as the core GN block, we find it benefits from using layer norms (Ba
et al., 2016). However, for models using GCN layer as the core GN block, we find it performs best
when using batch norms (Ioffe & Szegedy, 2015).

The code will be made public, along with the configuration of hyper-parameters to reproduce our
experiments.

E ADDITIONAL EXPERIMENT RESULTS

E.1 TU DATASETS

TU DATASETS consists of over 120 datasets of varying sizes from a wide range of applications.
We choose 10 datasets, 5 of which are molecule datasets (MUTAG, NCI1, PROTEINS, D&D and
ENZYMES) and the other 5 are social networks (IMDB-B, IMDB-M, REDDIT-BINARY, REDDIT-
MULTI-5K and REDDIT-MULTI-12K). They are all graph classification tasks. For more details of
each dataset, please refer to the original work (Morris et al., 2020).

19

Under review as a conference paper at ICLR 2023

Table 5: Hyper-parameters of the standard version of MeGraph for each dataset. It is worth noting
that the total number of GNN layers is equals to one plus the number of Mee layers as n+ 1.

Hyper-parameters Synthetic
Datasets

Graph
Theory

Benchmark

GNN
Benchmark

OGB
Benchmark

TU
Datasets

Repeated Runs 10 5 4 5 1 for each fold

Epochs per run 200 for BA*
500 for Tree*

300
(200 for MCC)

200
(100 for
MNIST,

CIFRA10)

100
100

(200 for
ENZYMES)

Learning rate 0.002 0.002
(0.005 for MCC) 0.001 0.001 0.002

Weight decay 0.0005 0.0005 0 0.0005 0.0005

Node hidden dim 64 128 144 300 128

Edge hidden dim
(for GFuN) 64 128 144 300 128

Num Mee
layers n - - 3 4 2

Height h - - 5 5 3 or 5

Batch size 32 32 128 32 128

Input embedding False True True True True

Global pooling Mean Mean
Max Mean Mean

Mean
Max
Sum

Dataset split
(train:val:test) 8:1:1 8:1:1 Original

split
Original

split
10-fold cross

validation

Our Megraph uses the same network structure and hyper-parameters for the same type of dataset.
As shown in Table 6, our Megraph achieves about 1% absolute gain than the h=1 Baselines.

Table 6: Tu Dataset Results Part 1. † means the results taken from Chen et al. (2019) (*: The result
of GCN on ENZYMES is 100 epoch).

Model MUTAG ↑ NCI1 ↑ PROTEINS ↑ D&D ↑ ENZYMES ↑ Average

GCN† 87.20 ±5.11 83.65 ±1.69 75.65 ±3.24 79.12 ±3.07 66.50 ±6.91* 78.42
GIN† 89.40 ±5.60 82.70 ±1.70 76.20 ±2.80 - - -

GCN 92.46 ±6.55 82.55 ±0.99 77.82 ±4.52 80.56 ±2.40 74.17 ±5.59 81.51
MeGraph (h=1) 93.01 ±6.83 82.53 ±1.89 81.32 ±4.08 81.32 ±3.17 74.83 ±3.20 82.60
MeGraph 93.07 ±6.71 83.99 ±0.98 81.41 ±3.10 81.24 ±2.39 75.17 ±4.86 82.98
MeGraphbest 94.12 ±5.02 84.40 ±1.11 81.68 ±3.40 82.00 ±2.86 75.17 ±4.86 83.47

Model IMDB-B ↑ IMDB-M ↑ RE-B ↑ RE-M5K ↑ RE-M12K ↑ Average

GCN 76.00 ±3.44 50.33 ±1.89 91.15 ±1.63 56.47 ±1.54 48.71 ±0.88 64.53
MeGraph (h=1) 68.60 ±3.53 51.33 ±2.23 93.10 ±1.16 57.47 ±2.31 51.56 ±1.06 64.41
MeGraph 72.40 ±2.80 51.27 ±2.71 93.75 ±1.25 57.69 ±2.22 52.03 ±0.86 65.43
MeGraphbest 74.30 ±2.97 52.00 ±2.49 93.75 ±1.25 58.45 ±2.22 52.13 ±1.01 66.13

20

Under review as a conference paper at ICLR 2023

Table 7: Comparison between GCN and GFuN on GNN benchmark.

Model ZINC ↓ AQSOL ↓ MNIST ↑ CIFAR10 ↑ PATTERN ↑ CLUSTER ↑

GCN 0.426 ±0.015 1.397 ±0.029 90.140 ±0.140 51.050 ±0.390 84.672 ±0.054 47.541 ±0.940
GFuN 0.364 ±0.003 1.386 ±0.024 95.560 ±0.190 61.060 ±0.500 84.845 ±0.021 58.178 ±0.079

Table 8: Comparison between GCN and GFuN on OGB-G.

Model molhiv ↑ molbace ↑ molbbbp ↑ molclintox ↑ molsider ↑

GCN 75.40 ±1.29 76.01 ±3.31 67.35 ±0.96 89.62 ±2.27 58.08 ±0.78
GFuN 78.54 ±1.14 71.77 ±2.15 67.56 ±1.11 89.77 ±3.48 58.28 ±0.51

Model moltox21 ↑ moltoxcast ↑ molesol ↓ molfreesolv ↓ mollipo ↓

GCN 75.11 ±0.41 64.13 ±0.52 1.141 ±0.02 2.407 ±0.15 0.788 ±0.01
GFuN 75.89 ±0.45 64.49 ±0.46 1.079 ±0.02 2.017 ±0.08 0.768 ±0.00

E.2 GFUN

We show our GFuN results on real-world datasets compared to our reproduced GCN in Table 7, 8
and 9. Both GCN and GFuN have the same hyper-parameters except the batch norm for GCN and
layer norm for GFuN as stated in Appendix D.

E.3 SYNTHETIC DATASETS

Figure 6 shows the influence of the height h and the number of Mee layers n for MeGraph model
on the BAShape and BACommunity datasets. The trend on these easier datasets is similar to that on
TreeCycle and TreeGrid but less significant.

E.4 GRAPH THEORY DATASET

We provide a list of tables (from Table 12 to 22) showing the individual results of Table 1 for each
possible graph generation method. Each table contains a list of variants of models and 5 tasks. Some
graph generation methods and task combinations are trivial so we filter them out.

Table 9: Comparison between GCN and GFuN on Tu Dataset.

Model MUTAG ↑ NCI1 ↑ PROTEINS ↑ D&D ↑ ENZYMES ↑ Average

GCN 92.46 ±6.55 82.55 ±0.99 77.82 ±4.52 80.56 ±2.40 74.17 ±5.59 81.51
GFuN 93.01 ±7.96 82.80 ±1.30 80.60 ±3.83 82.43 ±2.60 73.00 ±5.31 82.37

Model IMDB-B ↑ IMDB-M ↑ RE-B ↑ RE-M5K ↑ RE-M12K ↑ Average

GCN 76.00 ±3.44 50.33 ±1.89 91.15 ±1.63 56.47 ±1.54 48.71 ±0.88 64.53
GFuN 68.90 ±3.42 51.27 ±3.22 92.25 ±1.12 57.53 ±1.31 51.54 ±1.19 64.30

21

Under review as a conference paper at ICLR 2023

1 2 3 4 5 6 7 8 9 10
Num Layer

0.980

0.984

0.988

0.992

0.996

1.000

Ac
cu

ra
cy

BAShape

height=1
height=2

3
4

5
6

1 2 3 4 5 6 7 8 9 10
Num Layer

0.95

0.96

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

BACommunity

height=1
height=2

3
4

5
6

Figure 6: Node Classification accuracy for MeGraph model on BAShape (left) and BACommunity (right)
datasets, varying the height h and the number of Mee layers n. A clear gap can be observed between heights 1
and ≥ 2. The concrete number of accuracy can be found in Table 11.

Table 10: Node Classification accuracy for MeGraph model on TreeCycle (above) and TreeGrid (below).

layer
height 1 2 3 4 5 6

1 61.48 ±6.04 76.59 ±4.41 91.48 ±2.70 98.52 ±1.69 97.95 ±2.32 98.52 ±1.35
2 67.27 ±6.91 81.59 ±4.03 97.39 ±1.25 98.98 ±0.94 98.75 ±1.29 98.86 ±1.14
3 74.43 ±3.60 90.80 ±2.61 98.64 ±1.11 99.09 ±1.11 98.75 ±1.56 99.09 ±0.85
4 79.55 ±4.34 93.41 ±2.82 99.20 ±0.73 99.20 ±0.89 99.66 ±0.73 99.20 ±1.69
5 82.73 ±4.06 93.41 ±1.89 99.43 ±1.05 99.20 ±1.35 99.32 ±1.16 99.32 ±0.56
6 83.18 ±3.51 94.09 ±2.02 99.43 ±0.76 99.09 ±0.85 99.20 ±1.69 99.20 ±0.89
7 84.43 ±3.74 94.43 ±2.24 99.89 ±0.34 99.20 ±1.02 99.20 ±0.89 99.66 ±0.73
8 84.20 ±3.82 94.20 ±2.00 98.98 ±1.19 99.32 ±0.75 99.66 ±0.52 99.20 ±0.73
9 84.43 ±3.87 94.20 ±2.06 99.77 ±0.45 99.20 ±1.02 98.98 ±1.07 99.32 ±0.75

10 84.77 ±3.98 94.43 ±2.18 99.32 ±0.75 98.86 ±1.14 99.09 ±1.67 99.66 ±0.52

layer
height 1 2 3 4 5 6

1 79.11 ±3.07 91.13 ±2.01 96.85 ±1.11 97.18 ±1.31 97.10 ±1.45 97.42 ±1.34
2 89.68 ±1.76 93.55 ±1.53 98.31 ±0.76 97.82 ±1.14 97.42 ±1.24 97.98 ±0.74
3 90.81 ±1.36 96.13 ±1.48 97.66 ±1.22 98.23 ±0.94 98.87 ±0.82 98.39 ±0.62
4 91.53 ±1.04 96.69 ±1.05 98.06 ±1.03 98.55 ±1.01 98.63 ±1.08 97.98 ±1.15
5 93.95 ±1.58 96.13 ±1.76 98.47 ±1.17 98.47 ±0.92 98.31 ±0.84 97.90 ±0.65
6 94.35 ±1.25 96.69 ±1.46 98.06 ±1.03 98.31 ±1.05 98.15 ±1.20 98.39 ±1.20
7 94.76 ±1.10 97.02 ±1.44 98.47 ±0.84 98.47 ±1.05 98.71 ±0.74 98.87 ±0.90
8 95.08 ±0.76 97.02 ±1.20 98.55 ±1.24 98.87 ±0.82 98.47 ±0.92 98.71 ±1.15
9 94.68 ±1.09 96.94 ±1.19 98.47 ±0.43 98.15 ±1.20 98.15 ±0.89 98.39 ±1.08

10 94.84 ±1.21 96.77 ±1.20 98.47 ±0.92 97.98 ±1.50 98.15 ±1.02 98.23 ±1.19

22

Under review as a conference paper at ICLR 2023

Table 11: Node Classification accuracy for MeGraph model on BAShape (above) and BACommunity (be-
low).

layer
height 1 2 3 4 5 6

1 98.71 ±1.00 99.14 ±1.14 99.86 ±0.43 99.43 ±0.70 99.43 ±0.95 99.57 ±0.91
2 98.71 ±1.00 99.29 ±0.96 99.57 ±0.91 99.71 ±0.57 99.57 ±0.91 99.57 ±0.91
3 99.00 ±0.91 99.43 ±0.95 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43
4 99.00 ±0.91 99.71 ±0.57 99.86 ±0.43 99.86 ±0.43 99.43 ±0.95 99.71 ±0.57
5 99.00 ±0.91 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.43 ±0.95
6 99.00 ±0.91 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43
7 99.00 ±0.91 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43
8 99.00 ±0.91 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.71 ±0.57 99.57 ±0.65
9 99.00 ±0.91 99.86 ±0.43 99.57 ±0.91 99.57 ±0.91 99.57 ±0.91 99.57 ±0.91

10 99.00 ±0.91 99.71 ±0.57 99.57 ±0.91 99.71 ±0.57 99.86 ±0.43 99.43 ±0.95

layer
height 1 2 3 4 5 6

1 94.93 ±1.30 97.00 ±1.80 96.93 ±1.60 97.00 ±1.88 97.21 ±1.70 96.86 ±1.67
2 97.93 ±0.87 98.36 ±0.72 98.79 ±0.46 98.79 ±0.46 98.57 ±0.55 98.50 ±1.03
3 98.07 ±0.91 98.64 ±0.87 98.86 ±0.91 98.86 ±0.80 98.50 ±0.98 98.93 ±0.80
4 98.21 ±0.97 98.86 ±0.65 98.86 ±0.80 98.79 ±0.64 99.00 ±0.73 99.07 ±0.64
5 98.50 ±0.87 98.86 ±0.91 99.07 ±0.64 99.21 ±0.67 99.14 ±0.70 99.00 ±0.73
6 98.71 ±0.83 98.64 ±0.87 99.07 ±0.64 99.14 ±0.70 99.07 ±0.85 99.14 ±0.70
7 98.29 ±0.91 98.86 ±0.65 99.07 ±0.56 98.79 ±0.56 98.79 ±0.72 98.86 ±0.57
8 98.43 ±0.77 99.00 ±0.47 99.14 ±0.53 98.93 ±0.58 99.14 ±0.29 99.14 ±0.43
9 98.79 ±0.79 99.07 ±0.56 99.21 ±0.50 99.00 ±0.73 99.29 ±0.45 99.36 ±0.50

10 98.86 ±0.73 98.93 ±0.80 99.21 ±0.87 99.14 ±0.70 99.00 ±0.73 99.29 ±0.64

Table 12: Graph Theory Benchmark results on Grid graphs, all results are obtained using our codebase.
Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 6.60 ±0.541 1.50 ±0.050 22.49 ±1.36 26.74 ±0.347 20.99 ±0.232
n=5 4.18 ±0.737 1.29 ±0.124 5.04 ±1.26 15.54 ±0.155 20.32 ±0.326
n=10 3.70 ±0.422 1.33 ±0.100 0.737 ±0.116 7.24 ±0.243 20.32 ±0.422

MeGraph
EdgePool

(h=5, τc=2)

n=9 (U-Shaped) 2.12 ±1.07 2.04 ±0.206 2.14 ±0.991 2.01 ±0.212 19.39 ±0.996
n=1 1.19 ±0.486 1.24 ±0.154 6.78 ±1.95 5.34 ±0.265 18.00 ±0.910
n=5 0.738 ±0.322 1.11 ±0.043 0.616 ±0.310 0.617 ±0.099 13.3 ±3.31

MeGraph
S-EdgePool

Ablation
(h=5, n=5)

τc=3 0.361 ±0.182 1.24 ±0.113 0.382 ±0.120 0.442 ±0.130 0.918 ±0.220
ηv=0.3 4.77 ±2.50 1.33 ±0.161 0.349 ±0.074 5.40 ±0.954 3.59 ±0.354
ηv=0.3, τc=4 0.745 ±0.316 1.35 ±0.168 0.385 ±0.180 0.552 ±0.113 0.622 ±0.100
ηv=0.5, τc=4 1.61 ±0.394 1.28 ±0.138 0.458 ±0.220 1.71 ±0.535 1.48 ±0.283
ηv=0.3, τc=4 (X-Pool) 1.03 ±0.365 1.50 ±0.142 0.626 ±0.216 1.70 ±0.185 3.44 ±0.991

Table 13: Graph Theory Benchmark results on Tree graphs. All results are obtained using our codebase.
Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 5.21 ±0.209 1.28 ±0.050 3.77 ±1.22 17.16 ±0.168 24.63 ±0.427
n=5 3.34 ±0.375 0.405 ±0.089 0.504 ±0.109 7.66 ±0.325 18.11 ±1.85
n=10 3.16 ±0.252 0.338 ±0.046 0.100 ±0.059 2.28 ±0.209 14.93 ±0.800

MeGraph
EdgePool

(h=5, τc=2)

n=9 (U-Shaped) 3.73 ±1.01 1.30 ±0.092 1.36 ±0.623 4.21 ±0.440 25.53 ±5.43
n=1 1.62 ±0.314 0.846 ±0.071 0.725 ±0.249 6.99 ±0.610 12.27 ±0.843
n=5 0.83 ±0.667 0.490 ±0.118 0.084 ±0.030 1.27 ±0.442 2.87 ±0.420

MeGraph
S-EdgePool

Ablation
(h=5, n=5)

τc=3 0.599 ±0.200 0.483 ±0.081 0.075 ±0.012 0.497 ±0.121 0.429 ±0.105
ηv=0.3 0.868 ±0.230 0.413 ±0.054 0.142 ±0.047 0.789 ±0.092 0.534 ±0.074
ηv=0.3, τc=4 0.615 ±0.209 0.418 ±0.024 0.081 ±0.017 0.440 ±0.106 0.436 ±0.097
ηv=0.5, τc=4 1.06 ±0.327 0.424 ±0.042 0.214 ±0.018 1.20 ±0.128 2.03 ±0.507
ηv=0.3, τc=4 (X-Pool) 0.666 ±0.118 0.596 ±0.067 0.182 ±0.057 1.22 ±0.281 1.11 ±0.122

23

Under review as a conference paper at ICLR 2023

Table 14: Graph Theory Benchmark results on Ladder graphs, all results are obtained using our codebase.
Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 5.06 ±0.330 1.73 ±0.249 1.17 ±0.149 13.20 ±0.126 20.10 ±0.583
n=5 0.692 ±0.204 0.734 ±0.106 1.39 ±0.078 5.02 ±0.876 19.81 ±0.669
n=10 0.257 ±0.078 0.691 ±0.119 1.55 ±0.069 1.60 ±0.194 20.40 ±0.995

MeGraph
EdgePool

(h=5, τc=2)

n=9 (U-Shaped) 1.03 ±0.177 1.54 ±0.242 0.529 ±0.265 1.07 ±0.075 17.95 ±6.49
n=1 0.662 ±0.165 0.866 ±0.071 1.57 ±0.992 2.18 ±0.181 6.61 ±1.32
n=5 0.251 ±0.108 0.753 ±0.091 0.175 ±0.169 0.321 ±0.058 1.18 ±0.746

MeGraph
S-EdgePool

Ablation
(h=5, n=5)

τc=3 0.296 ±0.070 0.754 ±0.086 0.226 ±0.069 0.228 ±0.021 0.285 ±0.069
ηv=0.3 0.507 ±0.204 0.768 ±0.050 0.156 ±0.053 0.969 ±0.148 0.787 ±0.059
ηv=0.3, τc=4 0.297 ±0.113 0.712 ±0.059 0.095 ±0.046 0.180 ±0.026 0.225 ±0.043
ηv=0.5, τc=4 0.375 ±0.196 0.656 ±0.064 0.058 ±0.019 0.612 ±0.191 0.464 ±0.121
ηv=0.3, τc=4 (X-Pool) 0.442 ±0.108 0.742 ±0.047 0.158 ±0.074 0.710 ±0.076 0.765 ±0.089

Table 15: Graph Theory Benchmark results on Line graphs, all results are obtained using our codebase.
Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 30.37 ±1.41 0.458 ±0.035 21.49 ±8.84 68.99 ±0.247 75.46 ±1.86
n=5 10.55 ±2.40 0.019 ±0.004 9.97 ±10.85 46.39 ±3.09 78.49 ±4.38
n=10 3.29 ±0.813 0.012 ±0.003 10.18 ±10.59 35.07 ±2.71 77.23 ±3.42

MeGraph
EdgePool

(h=5, τc=2)

n=9 (U-Shaped) 1.95 ±1.11 0.355 ±0.080 5.79 ±2.22 2.68 ±1.12 74.39 ±14.30
n=1 1.45 ±0.598 0.056 ±0.014 7.62 ±4.43 10.13 ±2.33 45.19 ±8.64
n=5 0.536 ±0.149 0.016 ±0.007 0.611 ±0.238 1.06 ±0.341 14.12 ±13.82

MeGraph
S-EdgePool

Ablation
(h=5, n=5)

τc=3 0.349 ±0.206 0.013 ±0.003 0.724 ±0.479 0.339 ±0.102 1.15 ±0.267
ηv=0.3 3.65 ±2.13 0.017 ±0.005 1.75 ±1.63 13.99 ±2.09 7.45 ±0.989
ηv=0.3, τc=4 0.283 ±0.072 0.019 ±0.006 0.584 ±0.337 0.515 ±0.044 1.27 ±1.08
ηv=0.5, τc=4 1.81 ±0.121 0.022 ±0.006 0.711 ±0.213 2.64 ±0.047 3.77 ±0.763
ηv=0.3, τc=4 (X-Pool) 1.06 ±0.510 0.101 ±0.016 0.767 ±0.522 2.29 ±0.472 3.89 ±1.02

Table 16: Graph Theory Benchmark results on Caterpillar graphs, all results are obtained using our codebase.
Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 24.24 ±1.57 1.25 ±0.082 28.62 ±2.55 19.08 ±0.208 35.32 ±0.462
n=5 8.32 ±2.10 0.561 ±0.070 4.59 ±0.346 9.62 ±0.357 37.01 ±1.48
n=10 6.40 ±0.652 0.630 ±0.127 5.06 ±0.499 4.06 ±0.297 37.87 ±3.22

MeGraph
EdgePool

(h=5, τc=2)

n=9 (U-Shaped) 6.66 ±1.25 1.39 ±0.098 8.64 ±3.46 2.63 ±0.211 32.18 ±4.30
n=1 5.04 ±1.03 0.685 ±0.077 6.08 ±1.40 5.40 ±0.843 28.52 ±2.16
n=5 3.44 ±1.13 0.533 ±0.064 2.00 ±1.28 0.921 ±0.149 5.20 ±1.57

MeGraph
S-EdgePool

Ablation
(h=5, n=5)

τc=3 2.47 ±0.529 0.607 ±0.081 0.591 ±0.172 0.574 ±0.073 1.21 ±0.148
ηv=0.3 3.61 ±1.36 0.582 ±0.052 0.578 ±0.231 1.69 ±0.572 1.95 ±0.322
ηv=0.3, τc=4 1.59 ±0.444 0.535 ±0.091 0.317 ±0.104 0.474 ±0.170 1.32 ±0.272
ηv=0.5, τc=4 2.00 ±0.648 0.514 ±0.040 1.10 ±0.288 0.986 ±0.130 2.11 ±0.766
ηv=0.3, τc=4 (X-Pool) 1.39 ±0.478 0.602 ±0.110 0.736 ±0.230 1.78 ±0.254 3.36 ±0.873

Table 17: Graph Theory Benchmark results on Lobster graphs, all results are obtained using our codebase.
Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 23.92 ±0.319 1.06 ±0.166 11.93 ±1.32 38.44 ±0.065 40.46 ±0.350
n=5 10.89 ±1.47 0.544 ±0.067 3.66 ±0.424 20.12 ±0.105 28.81 ±1.14
n=10 7.35 ±2.50 0.631 ±0.067 2.59 ±0.517 10.52 ±0.619 28.47 ±1.65

MeGraph
EdgePool

(h=5, τc=2)

n=9 (U-Shaped) 6.20 ±1.13 1.56 ±0.217 5.65 ±1.17 7.06 ±0.671 29.07 ±2.59
n=1 6.00 ±1.82 0.785 ±0.062 4.35 ±1.51 13.75 ±0.675 30.49 ±2.18
n=5 1.93 ±0.861 0.543 ±0.073 1.07 ±0.114 2.05 ±0.393 11.39 ±5.43

MeGraph
S-EdgePool

Ablation
(h=5, n=5)

τc=3 2.02 ±0.791 0.447 ±0.123 0.705 ±0.133 1.66 ±0.270 2.23 ±0.378
ηv=0.3 6.01 ±1.52 0.521 ±0.028 0.707 ±0.202 3.04 ±0.250 2.70 ±0.212
ηv=0.3, τc=4 1.90 ±0.449 0.489 ±0.069 0.671 ±0.165 1.30 ±0.106 2.62 ±0.849
ηv=0.5, τc=4 3.27 ±0.716 0.451 ±0.090 0.941 ±0.324 2.82 ±0.803 4.04 ±0.527
ηv=0.3, τc=4 (X-Pool) 2.67 ±0.486 0.494 ±0.109 1.01 ±0.194 2.79 ±0.343 4.16 ±0.886

24

Under review as a conference paper at ICLR 2023

Table 18: Graph Theory Benchmark results on Cycle graphs, all results are obtained using our codebase.
Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 18.75 ±0.066 0.534 ±0.022 22.35 ±0.149 24.07 ±0.009 21.47 ±0.060
n=5 3.39 ±0.304 0.027 ±0.001 25.11 ±0.325 12.44 ±1.05 21.81 ±0.102
n=10 0.352 ±0.060 0.011 ±0.003 26.54 ±1.16 8.65 ±1.02 24.09 ±0.360

MeGraph
EdgePool

(h=5, τc=2)

n=9 (U-Shaped) 0.964 ±0.742 0.251 ±0.073 22.27 ±3.71 0.910 ±0.121 25.32 ±3.98
n=1 0.594 ±0.212 0.074 ±0.029 9.11 ±1.88 4.07 ±0.364 21.53 ±0.070
n=5 0.060 ±0.032 0.014 ±0.003 13.44 ±6.40 0.103 ±0.016 24.05 ±0.204

MeGraph
S-EdgePool

Ablation
(h=5, n=5)

τc=3 0.066 ±0.036 0.015 ±0.006 0.241 ±0.049 0.090 ±0.037 0.342 ±0.186
ηv=0.3 2.45 ±0.873 0.015 ±0.001 0.709 ±0.226 8.36 ±0.261 0.488 ±0.267
ηv=0.3, τc=4 0.060 ±0.030 0.019 ±0.003 0.312 ±0.236 0.226 ±0.050 0.562 ±0.209
ηv=0.5, τc=4 0.451 ±0.203 0.014 ±0.004 0.252 ±0.124 1.05 ±0.524 4.30 ±1.90
ηv=0.3, τc=4 (X-Pool) 0.494 ±0.292 0.096 ±0.028 0.468 ±0.220 1.08 ±0.130 0.860 ±0.292

Table 19: Graph Theory Benchmark results on Pseudotree graphs, all results are obtained using our codebase.
Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 1.93 ±0.239 1.71 ±0.281 2.78 ±0.098 6.27 ±0.004 4.23 ±0.034
n=5 0.061 ±0.024 0.942 ±0.094 1.74 ±0.299 1.54 ±0.006 4.15 ±0.086
n=10 0.037 ±0.022 0.775 ±0.094 1.84 ±0.260 0.126 ±0.038 4.06 ±0.037

MeGraph
EdgePool

(h=5, τc=2)

n=9 (U-Shaped) 1.12 ±0.229 2.55 ±0.148 2.53 ±0.425 1.26 ±0.129 4.14 ±0.135
n=1 0.404 ±0.096 1.75 ±0.133 1.50 ±0.494 2.25 ±0.280 3.97 ±0.270
n=5 0.141 ±0.022 0.999 ±0.054 1.16 ±0.069 0.148 ±0.034 3.12 ±0.202

MeGraph
S-EdgePool

Ablation
(h=5, n=5)

τc=3 0.130 ±0.069 0.912 ±0.073 0.669 ±0.080 0.115 ±0.015 0.797 ±0.079
ηv=0.3 0.048 ±0.030 0.839 ±0.077 0.758 ±0.134 0.246 ±0.021 0.838 ±0.023
ηv=0.3, τc=4 0.106 ±0.054 0.814 ±0.092 0.663 ±0.076 0.133 ±0.028 0.845 ±0.101
ηv=0.5, τc=4 0.071 ±0.048 1.03 ±0.186 0.583 ±0.065 0.171 ±0.038 0.868 ±0.034
ηv=0.3, τc=4 (X-Pool) 0.564 ±0.155 0.966 ±0.172 0.977 ±0.054 0.611 ±0.065 1.10 ±0.036

Table 20: Graph Theory Benchmark results on Geo graphs, all results are obtained using our codebase.
Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 5.79 ±0.630 0.424 ±0.023 11.85 ±0.391 12.49 ±0.035 14.82 ±0.056
n=5 1.02 ±0.772 0.407 ±0.040 8.37 ±0.468 5.10 ±0.435 14.33 ±0.079
n=10 0.304 ±0.125 0.404 ±0.061 9.41 ±0.759 0.803 ±0.162 14.33 ±0.136

MeGraph
EdgePool

(h=5, τc=2)

n=9 (U-Shaped) 2.99 ±0.373 0.549 ±0.114 7.66 ±1.61 3.38 ±0.557 12.67 ±0.699
n=1 1.60 ±0.880 0.347 ±0.033 10.17 ±2.04 4.87 ±0.777 11.91 ±0.451
n=5 0.232 ±0.061 0.273 ±0.018 2.70 ±0.288 0.575 ±0.127 6.92 ±2.36

MeGraph
S-EdgePool

Ablation
(h=5, n=5)

τc=3 0.188 ±0.100 0.288 ±0.020 2.04 ±0.225 0.562 ±0.186 2.42 ±0.333
ηv=0.3 1.38 ±0.617 0.330 ±0.025 4.40 ±1.15 1.37 ±0.083 5.45 ±0.465
ηv=0.3, τc=4 0.230 ±0.070 0.231 ±0.034 1.99 ±0.549 0.454 ±0.057 2.69 ±0.369
ηv=0.5, τc=4 0.374 ±0.148 0.368 ±0.043 3.95 ±0.319 0.777 ±0.122 4.61 ±0.717
ηv=0.3, τc=4 (X-Pool) 1.04 ±0.502 0.362 ±0.031 2.32 ±0.440 2.37 ±0.260 5.08 ±0.737

Table 21: Graph Theory Benchmark results on BA graphs, all results are obtained using our codebase.
Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 0.004 ±0.001 2.81 ±0.142 0.092 ±0.021 − 0.128 ±0.006
n=5 0.007 ±0.002 3.65 ±0.660 0.098 ±0.014 − 0.091 ±0.011
n=10 0.011 ±0.006 3.72 ±0.376 0.122 ±0.038 − 0.080 ±0.004

MeGraph
EdgePool

(h=5, τc=2)

n=9 (U-shape) 0.060 ±0.021 1.61 ±0.233 0.219 ±0.055 − 0.115 ±0.030
n=1 0.006 ±0.004 2.00 ±0.380 0.101 ±0.020 − 0.084 ±0.017
n=5 0.003 ±0.001 2.00 ±0.240 0.104 ±0.011 − 0.052 ±0.010

MeGraph
S-EdgePool

Ablation
(h=5, n=5)

τc=3 0.007 ±0.003 1.77 ±0.403 0.089 ±0.008 − 0.126 ±0.027
ηv=0.3 0.013 ±0.004 1.67 ±0.333 0.084 ±0.008 − 0.086 ±0.005
ηv=0.3, τc=4 0.011 ±0.005 1.42 ±0.252 0.073 ±0.015 − 0.163 ±0.007
ηv=0.5, τc=4 0.008 ±0.004 1.71 ±0.403 0.074 ±0.009 − 0.156 ±0.021
ηv=0.3, τc=4 (X-Pool) 0.009 ±0.003 1.22 ±0.242 0.088 ±0.021 − 0.076 ±0.006

25

Under review as a conference paper at ICLR 2023

Table 22: Graph Theory Benchmark results on mixed, ER, Caveman and Star graphs, all results are obtained
using our codebase.

Category Model MCC ECC

mix ER Caveman Star mix ER

Baselines
(h=1)

n=1 3.46 ±0.211 2.91 ±0.206 0.015 ±0.004 0.144 ±0.031 0.316 ±0.003 0.346 ±0.006
n=5 3.29 ±0.261 3.35 ±0.205 0.014 ±0.003 0.078 ±0.021 0.228 ±0.008 0.289 ±0.008
n=10 3.51 ±0.323 3.53 ±0.375 0.018 ±0.006 0.065 ±0.005 0.212 ±0.008 0.414 ±0.102

MeGraph
EdgePool

(h=5, τc=2)

n=9 (U-Shaped) 1.63 ±0.078 1.02 ±0.128 0.091 ±0.026 0.125 ±0.032 0.200 ±0.013 0.272 ±0.008
n=1 1.25 ±0.167 0.749 ±0.058 0.018 ±0.005 0.135 ±0.055 0.150 ±0.011 0.320 ±0.071
n=5 1.11 ±0.143 0.723 ±0.073 0.017 ±0.005 0.052 ±0.017 0.125 ±0.010 0.345 ±0.064

MeGraph
S-EdgePool

Ablation
(h=5, n=5)

τc=3 1.07 ±0.034 0.714 ±0.039 0.017 ±0.002 0.072 ±0.016 0.137 ±0.013 0.232 ±0.035
ηv=0.3 0.908 ±0.153 0.627 ±0.090 0.026 ±0.007 0.125 ±0.026 0.128 ±0.014 0.248 ±0.012
ηv=0.3, τc=4 1.10 ±0.085 0.709 ±0.092 0.019 ±0.004 0.073 ±0.012 0.129 ±0.009 0.224 ±0.053
ηv=0.5, τc=4 1.12 ±0.219 0.722 ±0.128 0.026 ±0.008 0.058 ±0.010 0.147 ±0.017 0.219 ±0.042
ηv=0.3, τc=4 (X-Pool) 1.01 ±0.166 0.838 ±0.078 0.029 ±0.007 0.107 ±0.021 0.119 ±0.008 0.213 ±0.027

26

	Introduction
	Notations, Backgrounds and Preliminaries
	Graph Network (GN) Block
	Graph Pooling

	Methods
	Connecting multi-scale graphs into a mega graph
	The MeGraph Model
	Module Choice and Innovation
	Computational Complexity

	Experiments
	Baselines
	Synthetic Datasets
	Graph Theory Benchmark
	Real World Datasets

	Related Works
	Limitations and Future Work
	Reproducibility Statement
	Summary of Appendix
	Dataset Details
	Dataset Statistics and Metrics
	Graph Theory Benchmark

	Method Details
	S-EdgePool
	Edge Score Generation
	Connect, Reduce and Expand
	Pseudo Code

	GFuN
	Encorder and Decoder
	Architecture Variants

	Implementation and Training Details
	Additional Experiment Results
	TU Datasets
	GFuN
	synthetic datasets
	Graph Theory Dataset

