

000 DRPAD: A DYNAMIC-AWARE AND ROBUST PARADIGM FOR 001 TIME SERIES ANOMALY DETECTION 002

003 **Anonymous authors**
004
005 Paper under double-blind review
006

007 008 ABSTRACT 009

010
011 Forecasting-based methods dominate unsupervised time series anomaly detection but primarily
012 emphasize feature extraction and prediction accuracy. In real-world applications, however, the
013 distinctiveness of anomalies depends on additional critical factors. We identify three major chal-
014 lenges: (1) anomaly propagation, (2) distribution shifts, and (3) univariate anomalies—common
015 phenomena that are often overlooked. To address these issues, we propose DRPAD (Dynamic-
016 Aware and Robust Paradigm for Time Series Anomaly Detection), introducing three novel
017 components: Dynamic Prediction Replacement, Segmentation-Based Normalization, and a Mean
018 & Dimension Dual-Check Strategy. Extensive experiments on nine benchmark datasets demon-
019 strate that DRPAD can significantly enhance the performance of a wide range of forecasting-
020 based methods, achieving state-of-the-art results. The source code is publicly available at
021 <https://anonymous.4open.science/r/DRPAD-BEC8/>.
022

023 1 INTRODUCTION

024 In the field of time series anomaly detection, prediction-based approaches have been widely adopted due to their
025 simplicity and effectiveness. Specifically, given a historical window of a time series as $x_{1:t} \in R^{N \times t}$ and the
026 observation at time $t+1$ as $x_{t+1} \in R^N$, where N denotes the number of dimensions. a forecasting model $f(\cdot)$ is
027 employed to predict the next value \hat{x}_{t+1} . An anomaly is subsequently detected by comparing the predicted value
028 \hat{x}_{t+1} with the actual observation x_{t+1} , based on the assumption that anomalies induce larger prediction errors and
029 thus can be identified as outliers.

030 This paradigm has motivated extensive research into prediction-based anomaly detection methods, which predomi-
031 nantly focus on extracting features from input sequences and modeling normal patterns with high accuracy Chen
032 et al. (2021); Zhao et al. (2020); Zhang et al. (2022); Deng & Hooi (2021b). While the core idea is closely aligned
033 with traditional time series forecasting, we argue that, in the context of anomaly detection, enhancing forecasting
034 accuracy alone is insufficient to ensure robust detection performance. Instead, the effectiveness of these methods is
035 influenced by several critical factors, as discussed below.

036 1. **Anomaly Propagation.** Historical anomalies within the input window may propagate their influence into future
037 predictions, thereby degrading detection performance Shen et al. (2024).

038 2. **Distribution Shift.** In many real-world time series, changes in environment, machine operating conditions, or
039 user behavior can lead to rapid shifts in the underlying data distribution. Such distribution shifts induce substantial
040 variations in statistical properties and sequence patterns across different temporal segments. Consequently, predic-
041 tion errors are highly sensitive to the statistical scale of the input window (e.g., mean and variance). In low-variance
042 segments, anomalies become harder to detect, whereas in high-variance segments, normal points may be falsely
043 flagged as anomalies. This statistical heterogeneity increases both false positives and false negatives, undermining
044 model Kim et al. (2021); Liu et al. (2022c); Shen et al. (2024).

045 3. **Univariate Anomalies.** Another underexplored challenge arises from univariate anomalies—abnormal deviations
046 that occur in only a single feature dimension while the others remain normal. Such anomalies often exhibit relatively
047 small magnitudes and can be masked by the overall statistical characteristics of the multivariate sequence, thereby
048 increasing the risk of missed detections.

049 **Related Work** (a) Most existing studies on anomaly contamination have primarily focused on the training phase,
050 addressing issues such as label noise or corrupted training samples, which can impair model learning. However, in
051 prediction-based anomaly detection methods, anomalies in the test sequence can also degrade detection performance
052 by contaminating subsequent predictions. This phenomenon has received little explicit attention in the literature.
053 To our knowledge, the only work that explicitly attempts to address this issue is the AFMF framework Shen et al.
054 (2024), which introduces Progressive Adjacent Masking (PAM). PAM alleviates anomaly propagation via mean
055 substitution, but it rests on strong assumptions—namely, that anomalies always amplify prediction errors and that
056 mean substitution necessarily improves performance. Furthermore, its masking strategy is restricted to the tail of the
057 input sequence, rendering it ineffective for anomalies occurring at arbitrary positions or for more complex structural
anomalies. This leaves open the need for a more general and effective solution to the anomaly propagation problem.

(b) RevIN Kim et al. (2021) is a popular normalization method in time series forecasting community to solve distribution shift problems. However, if directly introducing it to anomaly detection, the inverse transformation (denormalization) of it will revive the problem of scale disparity. The AFMF framework Shen et al. (2024) addresses this issue via Local Instance Normalization (LIN), which performs normalization independently within each fixed-length window and alleviates scale inconsistency across adjacent windows. However, when a window simultaneously contains both high-magnitude and low-magnitude segments, the normalization is dominated by the larger values, thereby suppressing small-scale anomalies and causing detection performance to degrade significantly, even to the point of failure. The more introduction of related work can see Appendix F.

We propose **DRPAD**, a **Dynamic-aware Robust Paeadigm** for Time Series Anomaly Detection, explicitly designed to address the aforementioned challenges through three dedicated components. (a) **Dynamic Prediction Replacement (DPR)**: Unlike PAM’s mean substitution strategy, DPR does not rely on the assumption that “anomalies necessarily amplify errors and mean substitution necessarily improves detection.” PAM often fails in the presence of periodic or structural anomalies and is further restricted to handling anomalies only at the sequence tail. In contrast, DPR leverages context-aware predictions to dynamically replace anomalies at arbitrary positions, aligning more closely with the intrinsic temporal dependencies of the data and thereby suppressing anomaly propagation more comprehensively and effectively. (b) **Segmentation-Based Normalization via Change Point Detection(SN)** : Under LIN’s fixed-window normalization, if a window contains both high- and low-magnitude segments, the normalization scale is dominated by the larger values, effectively masking small-scale anomalies and severely compromising detection. SN addresses this limitation by applying change point detection to partition the sequence into segments with comparable statistical scales and normalizing each segment independently. This design fundamentally eliminates the “window mixing failure” scenario and ensures stable detection performance under heterogeneous distributions. (c) **Mean & Dimension Dual-Check Strategy(MDDC)** : To improve the detection of univariate anomalies, we develop a hybrid thresholding approach based on multidimensional sensitivity. This strategy combines global statistical indicators with per-dimension checks to better capture subtle and localized deviations. Our contributions are threefold:

- We identify and systematically analyze key limitations of prediction-based anomaly detection methods, including *anomaly propagation*, *distribution shifts*, and *univariate anomalies*, moving beyond the conventional focus on forecasting accuracy.
- We propose **DRPAD**, a novel and model-agnostic anomaly detection paradigm, which integrates three innovative components: (a) Dynamic Prediction Replacement (DPR), (b) Segmentation-Based Normalization via Change Point Detection (SN), and (c) a Mean & Dimension Dual-Check Strategy (MDDC).
- We provide a theoretical analysis of the proposed Dynamic Prediction Replacement mechanism, offering insights into its effectiveness in mitigating the influence of anomalous inputs and improving prediction stability.
- We conduct extensive experiments on ten benchmark datasets, demonstrating that DRPAD significantly improves anomaly detection performance across various backbone predictors, including CNN-, RNN-, Transformer-, MLP-, and GNN-based architectures.

2 METHOD

The overall framework of DRPAD is illustrated in Figure 1. We first introduce the three key components of DRPAD and the specific problems each is designed to address. The important notations utilized throughout this paper are summarized in Table 6 in Appendix C.

2.1 DYNAMIC PREDICTION REPLACEMENT

Algorithm. Traditional time series anomaly detection methods typically rely on historical observations for prediction. However, when the input window contains anomalous values, these outliers can propagate errors to subsequent predictions through autoregressive mechanisms. To mitigate this issue, we propose a novel method called **Dynamic Prediction Replacement (DPR)**. The core procedure is detailed in Algorithm 1. DPR comprises two main phases:

Threshold Initialization (Lines 1–6): The model first performs global prediction over the entire sequence using the base predictor. For each time step, the mean squared error (MSE) of the prediction is computed. The global anomaly threshold α is then determined based on the $r - th$ quantile of the MSE distribution.

Dynamic Replacement Prediction (Lines 7–30): Starting from $t = L + 1$, DPR dynamically updates the input window. If the current MSE exceeds α , corresponding observation is considered anomalous. If the number of consecutive anomalies does not exceed δ , the observed value is replaced by its predicted counterpart to prevent contamination of subsequent inputs. If the consecutive anomaly count exceeds δ , the input window is reset to the original observations, and the prediction is recomputed for the current step.

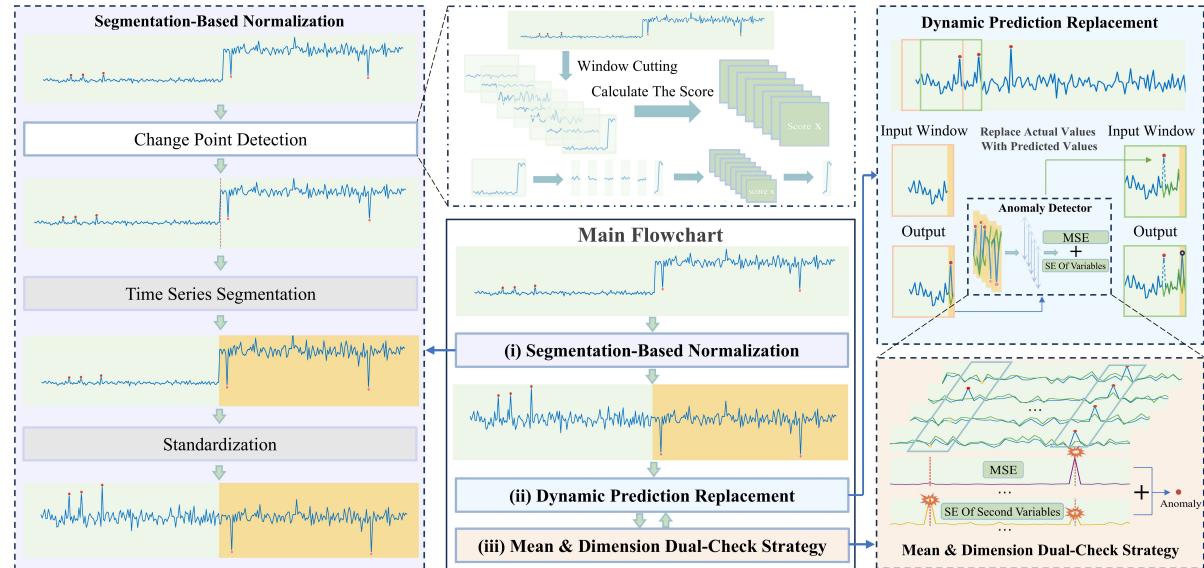


Figure 1: Overview of the DRPAD framework. It consists of three core components: (i) Segmentation-Based Normalization performs change point detection and piecewise standardization; (ii) Dynamic Prediction Replacement mitigates anomaly contamination in forecasting inputs; (iii) Mean & Dimension Dual-Check Strategy detects anomalies by thresholding either mean squared error (MSE) or the standard error of variables.

This replacement strategy effectively prevents the propagation of anomalous values while maintaining a robust and consistent input history. It ensures that only genuinely deviant observations are substituted, while the reset condition prevents long-term prediction drift caused by the accumulation of replaced values.

Theoretical Analysis We provide a theoretical analysis of the dynamic replacement strategy, with detailed mathematical proofs included in the Appendix D. This section presents the main conclusions.

We adopt a fully connected neural network as the base forecasting model. The training set is constructed using a sine function, while the test set is generated by adding Gaussian noise to the standard time series. The sine wave is selected due to its representativeness and analytical tractability. Although the analysis is based on a linear model, the Appendix D.10 demonstrates that the proposed dynamic replacement strategy is also effective in nonlinear models (e.g., fully connected networks with ReLU activation), validating its generality.

To construct the test set, we add Gaussian noise to the standard time series in order to simulate realistic noise perturbations. The noisy test sequence is defined as: $x_t = f(t) + \varepsilon_t$, $\varepsilon_t \sim \mathcal{N}(0, \sigma^2)$, where ε_t is Gaussian noise. To introduce anomalies, we inject a bias Δ_i at a random time i , where $\Delta_i \sim \mathcal{D}$ with mean μ_Δ and variance σ_Δ^2 . The corresponding anomalous point becomes: $x_i = f(i) + \varepsilon_i + \Delta_i$.

We use a single-layer fully connected network to predict the next value based on the past L observations: $\hat{x}_t = \sum_{j=1}^L w_j x_{t-j} + b$. And we compare two settings:

Baseline Group: Standard Forecasting without Correction. The baseline group employs a traditional forecasting approach, in which modeling and prediction are directly performed on the entire time series without any correction for the detected anomalies. Specifically, the model takes raw observations as input, potentially contaminated by anomalies, and generates predictions for the next time step based on these inputs. Since anomalous points can cause prediction errors to accumulate, the performance of the baseline group serves as a benchmark to assess the impact of anomalous data on prediction accuracy.

Suppose at time t , the input window contains an anomalous value at time step $t - i$ (i.e., a randomly occurring anomaly at time k), modeled as $x_{t-i} = f(t - i) + \varepsilon_{t-i} + \Delta$. The predicted value at time t is:

$$\hat{x}_t = \sum_{j=1}^L w_j f(t - j) + \varepsilon_{t-j} + b + w_i f(t - i) + \varepsilon_{t-i} + \Delta,$$

where w_i is the weight associated with the anomalous input. Substituting into the prediction error expression yields:

$$e_t = \hat{x}_t - (f(t) + \varepsilon_t) = \sum_{j=1}^L w_j \varepsilon_{t-j} - \varepsilon_t + w_i \Delta.$$

174 **Algorithm 1** Dynamic Prediction Replacement (DPR)

175 **Input:** Observation sequence $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_T]$; Base prediction model $\mathbf{f}_\theta(\cdot)$; Window length L ;176 Quantile parameter r ; Number of features N ; Anomaly reset threshold δ 177 **Output:** Corrected predictions $\hat{\mathbf{X}}$, anomaly indicators \mathbf{A} 178 1: **Phase 1: Threshold Initialization**179 2: **for** $t = L + 1$ to T **do**180 3: $\hat{x}_t \leftarrow \mathbf{f}_\theta([\mathbf{x}_{t-L}, \dots, \mathbf{x}_{t-1}])$ 181 4: $e_t \leftarrow \frac{1}{N} \sum_{j=1}^N (\hat{x}_t^{(j)} - x_t^{(j)})^2$ 182 5: **end for**183 6: $\alpha \leftarrow \text{Quantile}(\{e_t\}, r)$ 184 7: **Phase 2: Dynamic Replacement Prediction**185 8: Initialize sliding window $\mathbf{H}_t \leftarrow [\mathbf{x}_L, \dots, \mathbf{x}_{t-1}]$ 186 9: Initialize anomaly counter $c \leftarrow 0$ 187 10: **for** $t = L + 1$ to T **do**188 11: $\hat{x}_t \leftarrow \mathbf{f}_\theta(\mathbf{H}_t)$ 189 12: $A_t \leftarrow \mathbb{I}(|\hat{x}_t - \mathbf{x}_t| > \alpha)$ 190 13: **if** $A_t = 1$ **then**191 14: $c \leftarrow c + 1$ 192 15: **if** $c \leq \delta$ **then**193 16: $\mathbf{H}_{t+1} \leftarrow [\mathbf{H}_t[2:L], \hat{x}_t]$ 194 17: **else**195 18: **Reset window:** $\mathbf{H}_t \leftarrow [\mathbf{x}_{t-L}, \dots, \mathbf{x}_{t-1}]$ 196 19: $\hat{x}_t \leftarrow \mathbf{f}_\theta(\mathbf{H}_t)$ 200 20: $A_t \leftarrow \mathbb{I}(|\hat{x}_t - \mathbf{x}_t| > \alpha)$ 201 21: **if** $A_t = 0$ **then**202 22: $c \leftarrow 0$ 203 23: **end if**204 24: $\mathbf{H}_{t+1} \leftarrow [\mathbf{H}_t[2:L], \mathbf{x}_t]$ 205 25: **end if**206 26: **else**207 27: $c \leftarrow 0$ 208 28: $\mathbf{H}_{t+1} \leftarrow [\mathbf{H}_t[2:L], \mathbf{x}_t]$ 209 29: **end if**210 30: **end for**211 The mean squared error (MSE) is defined as $\text{MSE} = \mathbb{E}[e_t^2]$. Expanding e_t^2 gives:

212
$$e_t^2 = \left(\sum_{j=1}^L w_j \varepsilon_{t-j} - \varepsilon_t \right)^2 + 2 \left(\sum_{j=1}^L w_j \varepsilon_{t-j} - \varepsilon_t \right) (w_i \Delta) + (w_i \Delta)^2.$$
 213
214

215 Taking expectation over noise and anomaly distributions, we obtain:

216
$$\text{MSE}_{\text{Baseline}} = \mathbb{E} \left[\left(\sum_{j=1}^L w_j \varepsilon_{t-j} - \varepsilon_t \right)^2 \right] + w_i^2 \sigma_\Delta^2 + w_i^2 \mu_\Delta^2 = \sigma^2 \left(1 + \sum_{j=1}^L w_j^2 \right) + w_i^2 (\sigma_\Delta^2 + \mu_\Delta^2),$$
 217
218
219

220 where σ^2 is the variance of noise, and $\sigma_\Delta^2, \mu_\Delta^2$ denote the variance and mean of the anomaly magnitude Δ .
221222 **Experimental Group: Dynamic Prediction Replacement (DPR).** The experimental group adopts a dynamic
223 replacement strategy, in which the detected anomalous value is substituted with the prediction value of the model,
224 and then the modified sequence is used for future forecasting. The core idea is to mitigate the influence of anomalies
225 on subsequent predictions, thereby enhancing overall accuracy.226 In the case where the input window contains a single anomalous point x_{t-i} , we replace it with the prediction value
227 of the model at that time step, i.e., \hat{x}_{t-i} . The replaced input becomes:

228
$$x'_{t-i} = \hat{x}_{t-i} = f(t-i) + \varepsilon_{t-i} + e_{t-i},$$
 229
230

231 where $e_{t-i} = \hat{x}_{t-i} - (f(t-i) + \varepsilon_{t-i})$ is the historical prediction error. As proven in Appendix D.11, the
232 expectation satisfies $\mathbb{E}[e_{t-i}] = 0$, and we denote its variance by $\text{Var}(e_{t-i}) = \sigma_e^2$.

232 Under this replacement, the predicted value at time t is denoted by \hat{x}'_t , with error:

$$233 \quad e'_t = \hat{x}'_t - (f(t) + \varepsilon_t) = \sum_{j=1}^L w_j \varepsilon_{t-j} - \varepsilon_t + w_i e_{t-i}.$$

234 Substituting into the MSE expression:

$$235 \quad (e'_t)^2 = \underbrace{\left(\sum_{j=1}^L w_j \varepsilon_{t-j} - \varepsilon_t \right)^2}_A + 2 \underbrace{\left(\sum_{j=1}^L w_j \varepsilon_{t-j} - \varepsilon_t \right)}_B (w_i e_{t-i}) + \underbrace{(w_i e_{t-i})^2}_C.$$

236 Taking expectations, we analyze the three terms separately: Term **A** and term **C** follow the same derivation as in the
237 baseline group. Specifically, term **A** involves only noise terms and can be treated as independent under standard
238 assumptions, while term **C** consists solely of the past error term and is unaffected by noise. Their expectations can
239 therefore be directly computed in the same manner as before.

240 In contrast, term **B** involves the interaction between the noise term ε_{t-j} and the past error term e_{t-i} , which are
241 not strictly independent due to overlapping time indices (see Appendix D.3.3). This dependence complicates
242 the expectation computation and requires a more refined analysis. By carefully expanding and evaluating the
243 cross-terms, we obtain the following expression for the mean squared error under the DPR strategy:

$$244 \quad \text{MSE}_{\text{DPR}} = \sigma^2 \left(1 + \sum_{j=1}^L w_j^2 \right) + w_i^2 \sigma_e^2 + 2w_i \sigma^2 \left(\sum_{k=1}^{L-i} w_{i+k} w_k - w_i \right).$$

245 The difference in mean squared error between the control and experimental groups is:

$$246 \quad \text{MSE}_{\text{Baseline}} - \text{MSE}_{\text{DPR}} = w_i^2 (\sigma_\Delta^2 + \mu_\Delta^2 - \sigma_e^2) - 2w_i \sigma^2 \left(\sum_{k=1}^{L-i} w_{i+k} w_k - w_i \right).$$

247 Thus, DPR improves prediction performance when the second-order moment of anomaly deviation satisfies:

$$248 \quad \mathbb{E}[\Delta^2] = \sigma_\Delta^2 + \mu_\Delta^2 > \sigma_e^2 + 2\sigma^2 \left(\frac{\sum_{k=1}^{L-i} w_{i+k} w_k}{w_i} - 1 \right). \quad (1)$$

249 where $\sigma_\Delta^2 + \mu_\Delta^2$ denotes the second-order moment of the anomaly signal. To rigorously assess the practical
250 reliability of the inequality, we conducted a comprehensive numerical simulation study on time series data satisfying
251 the Lipschitz smoothness condition to provide robust empirical evidence. Specifically, for each sequence of length
252 $n + L$, we constructed a lagged feature matrix $X \in \mathbb{R}^{n \times L}$ and target vector $y \in \mathbb{R}^n$, fitting a ridge regression
253 model to obtain weights $w \in \mathbb{R}^L$.

254 To ensure robustness, we performed a grid search over sample sizes $n \in \{200, 500, 1000, 5000\}$ and lag windows
255 $L \in \{10, 20, 50, 100\}$, yielding 16 configurations, each evaluated through 100 independent experiments with
256 distinct random seeds. The heatmap demonstrates that the inequality was satisfied with a probability of $99.98\% \pm$
257 0.35% across 1600 experiments, thereby substantiating the reliability of the proposed method. Detailed experimental
258 settings are provided in Appendix D.5.

259 While these simulations establish strong empirical evidence, the lack of a closed-form characterization limits
260 deeper theoretical understanding. The presence of the regression weight w_i in the denominator, which depends on
261 data-driven estimates, renders a closed-form analytical guarantee for equation 1 intractable. To complement these
262 findings with analytical intuition and enable tractable analysis of the upper bound on Z , we consider a simplified
263 but representative data-generating process. Specifically, we substitute a sine function for the underlying signal, i.e.,
264 let $x_t = \sin(t)$, which preserves the structure of the derivation and leads to the same inequality condition while
265 enabling tractable analysis.

266 Under this specialization, we use the following assumptions. When the weight reaches the local optimal value,
267 the partial derivative of the loss function for each weight w_j can be considered to be zero, that is $\frac{\partial \mathcal{L}}{\partial w_j} = 0, \forall j =$
268 $1, 2, \dots, L$, and derive the following equation:

$$269 \quad \sum_{i=1}^L w_i \cos(i-j) = \cos(j), \quad \forall j = 1, 2, \dots, L.$$

270 Solving this (derivation in Appendix D.12), for a sine time series input, the optimal weights are: $w_j = \frac{2}{L} \cos(j)$.

271 Using this weight formula, we compute an upper bound of $\sigma_e^2 + 2\sigma^2 \left(\frac{\sum_{k=1}^{L-i} w_{i+k} w_k}{w_i} - 1 \right)$ at the 95% confidence
272 level. We thus conclude that, under 95% confidence, DPR reduces prediction error when:

$$273 \quad \mathbb{E}[\Delta^2] = \sigma_\Delta^2 + \mu_\Delta^2 > \left(\frac{4.312}{L} + 1 \right) \sigma^2$$

274 The detailed mathematical derivations can be found in Appendix D.

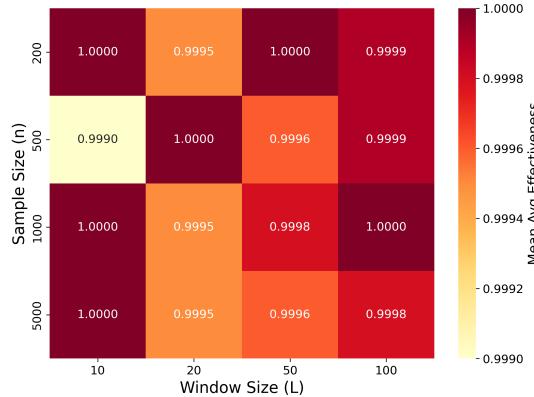


Figure 2: Heatmap of Mean Average Effectiveness Across Sample and Window Sizes. Each cell represents the average effectiveness probability from 100 independent experiments. The color gradient, from light yellow (lower effectiveness) to dark red (higher effectiveness). Most configurations achieve probabilities near or at 1.0000.

2.2 SEGMENTATION-BASED NORMALIZATION VIA CHANGE POINT DETECTION

Scale variation in time series is fundamentally caused by *distributional shift* Kim et al. (2021), which reflect dynamic changes in statistical properties across different local windows. Consequently, the prediction error at a given time point depends not only on the presence of anomalies but also on the statistical characteristics of the input window. Without ensuring comparable statistical properties across windows, prediction errors cannot serve as reliable indicators for anomaly detection.

To mitigate detection bias introduced by global normalization, we propose a **segment-wise normalization method based on change point detection (SN)**. Specifically, the time series is first segmented into statistically independent intervals using change point detection, each segment is independently normalized, and the full sequence is then reconstructed for downstream anomaly detection.

The process begins with the detection of coarse change points using the Pruned Exact Linear Time (PELT) algorithm Killick et al. (2012). In real-world applications involving large-scale datasets, directly applying PELT with fine granularity across the entire sequence can incur substantial computational costs—our empirical analysis shows that its time complexity reaches the order of $O(n^2)$. To balance detection accuracy and computational efficiency, we adopt a sliding window-based refinement strategy. For each preliminary change point detected by PELT, denoted as $\mathcal{C}_1 = \{c_1, c_2, \dots, c_m\}$, we perform localized discrepancy analysis within the neighborhood region $[c_i - R, c_i + R]$ for each c_i , using a two-window difference function (see Truong et al. (2020)) to identify the most significant local change points. As proven in the appendix E, this optimization strategy reduces the complexity from $O(n^2)$ to $O(n)$, making it more suitable for large-scale time series.

By partitioning the sequence at adjacent refined change points, a set of contiguous subsequences $\{\mathbf{S}_j\}$ is obtained, where each segment $\mathbf{S}_j \in \mathbb{R}^{T_j \times N}$ (T_j is the time step length of the temporal segment) represents a multivariate block to be normalized independently. Specifically, each \mathbf{S}_j corresponds to a continuous segment of the original sequence, defined as $\mathbf{S}_j = [\mathbf{x}_{\tau_1}, \dots, \mathbf{x}_{\tau_1+T_j-1}]$, where $\mathbf{x}_t \in \mathbb{R}^N$ denotes a multivariate observation at time t . Each segment \mathbf{S}_j is then independently normalized:

$$\tilde{\mathbf{S}}_j = (\mathbf{S}_j - \mu_j)/\sigma_j, \quad \mu_j = \frac{1}{T_j} \sum_k \mathbf{S}_{j,k}, \quad \sigma_j = \sqrt{\frac{1}{T_j} \sum_k (\mathbf{S}_{j,k} - \mu_j)^2}, \quad (2)$$

where μ_j and σ_j are the mean and variance of each segment. Finally, segments are concatenated $\tilde{\mathbf{S}} = [\tilde{\mathbf{S}}_1, \dots, \tilde{\mathbf{S}}_k]$ for downstream anomaly scoring. This pipeline—offloading change-point estimation to established libraries—ensures efficiency while focusing our contribution on the subsequent distribution-adaptive normalization.

Due to space limitations, a detailed visualization of anomaly detection results using segmentation-based normalization on real-world sequences is provided in Appendix B.

2.3 MEAN & DIMENSION DUAL-CHECK STRATEGY

To mitigate the limitations of dimension-view evaluations, we introduce **Mean & Dimension Dual-Check (MDDC)** strategy, combining global error evaluation with dimension-wise assessment for comprehensive anomaly detection.

348 Given ground-truth $X_t \in \mathbb{R}^d$ and prediction \hat{x}_t , the global error is defined as
 349

$$350 \quad 351 \quad 352 \quad \mathcal{E}_t^{\text{global}} = \frac{1}{d} \sum_{i=1}^d (X_t^{(i)} - \hat{x}_t^{(i)})^2,$$

353 with threshold $\tau^{\text{global}} = Q_p(\{\mathcal{E}_t^{\text{global}}\}_{t \in \mathcal{D}_{\text{val}}})$. To capture dimension-specific anomalies, a simple yet effective
 354 **Dimension-wise Alarm (DA)** module is employed, applying adaptive thresholds to each dimension.

355 The squared error is defined as $\mathcal{E}_t^{(i)} = (X_t^{(i)} - \hat{x}_t^{(i)})^2$. For each dimension i , we compute the expected error
 356 $\mu^{(i)} = \mathbb{E}[\mathcal{E}^{(i)}]$ and standard deviation $\sigma^{(i)} = \sqrt{\text{Var}[\mathcal{E}^{(i)}]}$, both estimated over the validation set. The adaptive
 357 threshold is given by $\tau_t^{(i)} = \mu^{(i)} + \varphi \cdot \sigma^{(i)}$.

358 An anomaly is flagged if at least one dimension satisfies $\mathcal{E}_t^{(i)} > \tau_t^{(i)}$. The final decision rule is:
 359

$$360 \quad 361 \quad 362 \quad \text{Anomaly}(t) = \mathbb{I}(\mathcal{E}_t^{\text{global}} > \tau^{\text{global}}) \vee \mathbb{I}\left(\sum_{i=1}^d \mathbb{I}(\mathcal{E}_t^{(i)} > \tau_t^{(i)}) \geq 1\right), \quad (3)$$

363 where $\mathbb{I}(\cdot)$ denotes the indicator function, and the symbol \vee represents the logical OR, meaning that an anomaly is
 364 flagged if either the global deviation or at least one dimension-wise deviation exceeds its threshold. This dual-check
 365 mechanism ensures sensitivity to both global and localized deviations. In addition, this study incorporates the
 366 Lopsided Forecasting module (LF) proposed in AFMF Shen et al. (2024) as part of the DRPAD implementation. The
 367 module processes discrete and continuous variables separately. Both types are used as input, and only continuous
 368 variables are retained in the output.
 369

370 3 EXPERIMENT

371 3.1 DATASET

372 We evaluate DRPAD on ten real-world time series anomaly detection benchmarks, including SMD Su et al. (2019),
 373 PSM Abdulaal et al. (2021), MSL Hundman et al. (2018a), SMAP Hundman et al. (2018a), SWaT Mathur &
 374 Tippenhauer (2016), WADI Ahmed et al. (2017), MBA Moody & Mark (2001), NAB Ahmad et al. (2017), and
 375 MSDS Nedelkoski et al. (2020). Each dataset is divided into training and testing subsets. Within the training subset,
 376 80% of the data is used for training and 20% for validation. Anomalies are annotated exclusively in the testset.
 377 Detailed descriptions of each dataset are provided in the Appendix.
 378

379 3.2 BASELINES

380 To comprehensively evaluate the performance of DRPAD, we selected a range of state-of-the-art baselines representing
 381 various technical paradigms. These include a density estimation-based approach (DAGMM Zong et al. (2018)),
 382 reconstruction-based methods (CAE-M Zhang et al. (2021a), MEMTO Song et al. (2023)), and prediction-based
 383 detectors (GDN Deng & Hooi (2021a), GTA Chen et al. (2021)).
 384

385 For DRPAD, we incorporated six representative time series forecasting models from different architectural families
 386 as base predictors, including RTNet Shen et al. (2022) (CNN-based), DeepAR Zhou et al. (2023b) (RNN-based),
 387 Autoformer Wu et al. (2021) and FEDformer (Transformer-based) Zhou et al. (2022), DLinear Zeng et al. (2023)
 388 (MLP-based), and GTA Chen et al. (2021) (GNN-based). Among them, GTA is a prediction-based anomaly
 389 detection method, while the others are pure forecasting models.

390 3.3 SETTINGS

391 Anomaly scores at each timestamp are computed using MSE, defined as $MSE = \frac{1}{N} \sum_{n=1}^N (\hat{x}_t^n - x_t^n)^2$, and a
 392 point is flagged as anomalous if its score exceeds a threshold δ . Following Xu et al. (2021), δ is set by assuming the
 393 top $r\%$ of the test data are anomalies.
 394

395 Unlike methods that apply post-processing techniques such as anomaly range adjustment strategy Shen et al. (2020);
 396 Xu et al. (2018), we adopt a strict **point-wise evaluation** protocol for three reasons: (1) **Practical relevance** —
 397 accurately identifying the onset of failures is crucial in industrial diagnostics, while range adjustment may obscure
 398 early indications; (2) **Model fidelity** — anomaly range adjustment can inflate performance and obscure the true
 399 detection ability of model; (3) **Comparative fairness** — evaluation without auxiliary enhancements ensures a fair
 400 comparison across methods.

401 All methods use the same data preprocessing pipeline as AFMF Shen et al. (2024). Hyperparameters follow the
 402 original settings (see Appendix G). DRPAD is trained using the AdamW optimizer with a OneCycle learning rate
 403 scheduler. Results are averaged over five independent runs. The batch size is set to 128 for all models. The initial
 404 learning rate is 1×10^{-4} .

405 To ensure a fair comparison under point-wise evaluation metrics, we unify threshold selection across all methods
 406 by fixing δ at the top $r\%$ of test anomaly scores, avoiding biases introduced by range-based tuning. Unless stated

otherwise, the best results are highlighted in **bold** and the second-best results are underlined. The sensitivity of the dimension-wise anomaly detection threshold φ is set with 6. The values of the anomaly detection threshold r and the maximum allowed consecutive anomalies δ are summarized in Table 10. Full hyperparameters are provided in Appendix G. Evaluation metrics include Precision ($P = \frac{TP}{TP+FP}$), Recall ($R = \frac{TP}{TP+FN}$), and F1-score ($F1 = \frac{2 \times P \times R}{P+R}$).

Table 1: Performance comparison of different methods across various datasets

Categorization	Baselines	SMD			MSL			PSM		
		P	R	F1	P	R	F1	P	R	F1
Density Estimation	DAGMM Zong et al. (2018)	12.34%	0.31%	0.60%	26.47%	2.90%	5.23%	67.37%	0.04%	6.91%
Reconstruction	MEMTO Song et al. (2023)	12.21%	1.76%	3.07%	11.00%	1.44%	2.55%	29.64%	1.81%	3.41%
	CAE-M Zhang et al. (2021a)	9.46%	0.50%	0.95%	5.88%	0.65%	1.16%	27.76%	1.50%	2.85%
	uFedHy-DisMTSADD Hao et al. (2025)	15.63%	1.88%	3.36%	27.82%	3.95%	6.92%	29.78%	3.50%	6.26%
Prediction	GDN Deng & Hooi (2021a)	16.25%	1.04%	1.95%	29.41%	3.23%	5.81%	34.53%	3.06%	5.62%
	GTA Chen et al. (2021)	16.90%	2.03%	3.63%	47.83%	6.81%	<u>11.93%</u>	71.66%	3.84%	7.29%
	FEDformer Zhou et al. (2022)	32.43%	3.89%	<u>6.95%</u>	32.65%	4.65%	8.14%	55.30%	2.96%	5.62%
	FEDformer_w_AFMF Shen et al. (2024)	30.80%	3.60%	6.45%	13.71%	1.34%	2.44%	53.37%	2.27%	4.35%
	FEDformer_w_DRPAD(our)	41.39%	12.77%	19.50%	26.71%	14.57%	18.84%	46.83%	22.14%	29.66%
Categorization	Baselines	SMAP			MSDS			NAB		
		P	R	F1	P	R	F1	P	R	F1
Density Estimation	DAGMM Zong et al. (2018)	6.32%	0.43%	0.80%	1.93%	1.50%	1.69%	38.10%	33.33%	35.56%
Reconstruction	MEMTO Song et al. (2023)	16.97%	2.64%	<u>4.57%</u>	2.51%	3.85%	3.04%	25.00%	7.06%	11.02%
	CAE-M Zhang et al. (2021a)	8.68%	0.91%	1.65%	3.24%	2.50%	2.82%	16.01%	15.21%	15.60%
	uFedHy-DisMTSADD Hao et al. (2025)	7.76%	2.90%	4.22%	7.83%	3.64%	4.97%	2.59%	9.52%	4.07%
Prediction	GDN Deng & Hooi (2021a)	8.05%	0.94%	1.69%	1.93%	1.50%	1.69%	38.10%	33.33%	35.56%
	GTA Chen et al. (2021)	15.79%	1.85%	3.31%	18.43%	13.55%	15.62%	47.37%	37.50%	41.86%
	FEDformer Zhou et al. (2022)	13.21%	1.54%	2.77%	31.74%	23.33%	26.89%	46.31%	36.67%	40.93%
	FEDformer_w_AFMF Shen et al. (2024)	15.02%	1.52%	2.76%	51.61%	34.74%	<u>41.42%</u>	25.59%	22.00%	23.65%
	FEDformer_w_DRPAD(our)	17.36%	6.87%	8.87%	50.61%	49.06%	49.75%	59.00%	39.17%	46.82%
Categorization	Baselines	MBA			WADI			SWaT		
		P	R	F1	P	R	F1	P	R	F1
Density Estimation	DAGMM Zong et al. (2018)	100.00%	5.92%	<u>11.18%</u>	1.97%	2.35%	2.14%	74.04%	3.05%	5.86%
Reconstruction	MEMTO Song et al. (2023)	68.14%	2.99%	5.73%	4.27%	40.54%	7.72%	18.54%	2.46%	4.34%
	CAE-M Zhang et al. (2021a)	33.85%	2.00%	3.79%	6.27%	7.55%	6.85%	74.49%	3.07%	5.90%
	uFedHy-DisMTSADD Hao et al. (2025)	37.87%	6.21%	10.67%	8.31%	7.41%	<u>7.83%</u>	27.83%	3.95%	6.92%
Prediction	GDN Deng & Hooi (2021a)	93.46%	5.92%	11.13%	4.27%	0.54%	2.72%	27.80%	3.99%	6.98%
	GTA Chen et al. (2021)	97.63%	5.80%	10.94%	34.84%	3.02%	<u>5.55%</u>	92.16%	3.79%	7.28%
	FEDformer Zhou et al. (2022)	92.23%	5.47%	10.34%	25.97%	2.25%	4.14%	62.88%	5.18%	<u>9.56%</u>
	FEDformer_w_AFMF Shen et al. (2024)	98.32%	3.76%	7.24%	8.41%	0.65%	1.21%	28.07%	0.74%	1.44%
	FEDformer_w_DRPAD(our)	81.53%	11.46%	20.09%	36.65%	48.31%	12.98%	22.64%	6.48%	10.04%

3.4 MAIN EXPERIMENTAL RESULTS

We conduct a comprehensive evaluation of the proposed **DRPAD** framework on nine publicly available datasets, comparing its performance against several representative baseline methods. As shown in Table 1, the FEDformer model augmented with DRPAD (*FEDformer_w_DRPAD*) consistently achieves the highest F1-scores across all nine datasets, indicating substantial improvements over the baselines. On average, our framework yields an F1-score improvement of approximately 91.32% compared to the best-performing baseline method for each dataset.

Specifically, compared with the anomaly detection framework AFMF, which is also based on prediction methods, after combining FEDformer (*FEDformer_w_AFMF*), our method still performs well on all datasets, with an average F1 score improvement of 393.66%. These results highlight the robustness and effectiveness of DRPAD in diverse scenarios.

Furthermore, to evaluate the generalizability and performance benefits of the DRPAD framework across different forecasting architectures, we integrate it into six widely used time series forecasting models. As shown in Table 2, all models demonstrate performance improvements across the majority of datasets after being augmented with DRPAD. For instance, in terms of F1-score, the average improvement across all models and datasets is 561.89%. This enhancement is observed in 49 out of 54 model-dataset combinations (approximately 90.7%), underscoring the broad applicability of DRPAD. Nevertheless, a few exceptions are noted. On the SWaT dataset, four models—DeepAR, GTA, RTNet, and FEDformer—exhibit slight declines in F1-score. This may be due to the relatively minor distributional shifts and the lower prevalence of single-dimensional anomalies within the SWaT dataset. Additionally, DRPAD significantly improves recall across several models, suggesting enhanced sensitivity to subtle or hard-to-detect anomaly patterns.

Importantly, DRPAD achieves these performance gains without any modification to the underlying model architectures, affirming its potential as a model-agnostic plug-in module for enhancing anomaly detection in existing systems.

In addition, we conduct an ablation study within the FEDformer backbone, as presented in Table 3. PAM and LIN, originally proposed in the AFMF framework Shen et al. (2024), are functionally replaced in DRPAD by our DPR (Dynamic Prediction Replacement) and SN (Segment-wise Normalization) modules. The ablation results demonstrate that they are less useful than DRPAD components. Besides, The full DRPAD configuration achieves the highest F1 score on 7 of 9 datasets, demonstrating the effectiveness of combining all three components.

To ensure a comprehensive assessment, our framework is further evaluated under the *advanced adjustment strategy* proposed in Kim et al. (2022), where a predicted anomalous segment is considered correct if at least 20% of its timestamps overlap with the ground truth (see Appendix A.2 for details).

Table 2: Performance comparison of models with and without DRPAD framework across multiple datasets

Model	MBA			MSDS			MSL		
	P	R	F1	P	R	F1	P	R	F1
Autoformer-wo-DRPAD	82.37%	4.89%	9.23%	39.19%	28.80%	33.20%	32.77%	4.67%	8.17%
Autoformer-w-DRPAD	67.33%	9.28%	16.08% \uparrow 74.21%	54.13%	41.15%	46.76% \uparrow 40.84%	23.11%	5.73%	9.06% \uparrow 10.89%
DLinear-wo-DRPAD	99.34%	5.90%	11.14%	59.13%	43.46%	50.10%	39.17%	5.58%	9.77%
DLinear-w-DRPAD	98.45%	7.44%	13.83% \uparrow 24.15%	47.75%	50.60%	49.13% \downarrow 1.94%	29.22%	14.00%	18.89% \uparrow 93.35%
DeepAR-wo-DRPAD	93.29%	5.54%	10.46%	28.72%	21.11%	24.33%	42.98%	6.12%	10.72%
DeepAR-w-DRPAD	58.73%	27.48%	35.80% \uparrow 242.26%	49.06%	48.80%	48.88% \uparrow 100.90%	32.33%	12.15%	17.60% \uparrow 64.18%
GTA-wo-DRPAD	97.63%	5.80%	10.94%	18.43%	13.55%	15.62%	47.83%	6.81%	11.93%
GTA-w-DRPAD	96.28%	6.83%	12.74% \uparrow 16.45%	47.85%	38.29%	41.95% \uparrow 168.50%	30.11%	13.07%	17.95% \uparrow 50.46%
RTNet-wo-DRPAD	96.58%	2.87%	5.57%	43.60%	32.05%	36.95%	37.67%	5.36%	9.39%
RTNet-w-DRPAD	80.36%	12.97%	22.33% \uparrow 300.90%	45.64%	59.44%	51.57% \uparrow 39.57%	30.97%	16.43%	21.36% \uparrow 127.48%
FEDformer-wo-DRPAD	92.24%	5.48%	10.34%	56.86%	41.79%	48.18%	32.66%	4.65%	8.14%
FEDformer-w-DRPAD	81.53%	11.46%	20.09% \uparrow 94.29%	50.61%	49.06%	49.75% \uparrow 3.26%	26.71%	14.57%	18.84% \uparrow 131.45%
Model	NAB			PSM			SMAP		
	P	R	F1	P	R	F1	P	R	F1
Autoformer-wo-DRPAD	49.47%	39.17%	43.72%	65.11%	3.49%	6.63%	10.28%	1.21%	2.16%
Autoformer-w-DRPAD	52.86%	40.83%	46.02% \uparrow 5.26%	42.37%	13.24%	20.17% \uparrow 204.22%	8.93%	6.12%	6.62% \uparrow 206.48%
DLinear-wo-DRPAD	46.32%	36.67%	40.93%	58.32%	3.13%	5.93%	10.10%	1.18%	2.12%
DLinear-w-DRPAD	52.56%	38.33%	44.27% \uparrow 8.16%	42.37%	13.24%	20.17% \uparrow 240.14%	8.43%	2.59%	3.97% \uparrow 87.26%
DeepAR-wo-DRPAD	48.42%	38.33%	42.79%	71.66%	3.84%	7.29%	11.75%	1.38%	2.47%
DeepAR-w-DRPAD	53.34%	41.67%	46.75% \uparrow 9.25%	31.87%	25.43%	28.29% \uparrow 288.07%	7.26%	3.38%	4.59% \uparrow 85.83%
GTA-wo-DRPAD	47.37%	37.50%	41.86%	67.38%	3.61%	6.86%	15.79%	1.85%	3.31%
GTA-w-DRPAD	48.42%	38.33%	42.78% \uparrow 2.20%	50.93%	6.92%	12.16% \uparrow 77.26%	9.42%	4.65%	6.22% \uparrow 87.92%
RTNet-wo-DRPAD	50.53%	40.00%	44.65%	65.62%	3.52%	6.68%	13.15%	1.54%	2.76%
RTNet-w-DRPAD	68.21%	35.83%	46.97% \uparrow 5.20%	42.67%	13.94%	21.02% \uparrow 214.67%	8.15%	2.73%	4.08% \uparrow 47.83%
FEDformer-wo-DRPAD	46.32%	36.67%	40.93%	55.30%	2.96%	5.63%	13.21%	1.55%	2.77%
FEDformer-w-DRPAD	59.00%	39.17%	46.82% \uparrow 14.39%	46.83%	22.14%	29.66% \uparrow 426.82%	12.78%	6.87%	8.87% \uparrow 220.22%
Model	SMD			SWaT			WADI		
	P	R	F1	P	R	F1	P	R	F1
Autoformer-wo-DRPAD	37.98%	4.57%	8.15%	70.37%	2.90%	5.56%	2.31%	0.20%	0.37%
Autoformer-w-DRPAD	20.94%	19.81%	13.02% \uparrow 59.75%	15.94%	21.52%	13.77% \uparrow 147.66%	6.65%	32.76%	10.96% \uparrow 2862.16%
DLinear-wo-DRPAD	41.38%	4.97%	8.88%	15.33%	0.63%	1.21%	4.24%	0.37%	0.68%
DLinear-w-DRPAD	39.09%	12.33%	18.75% \uparrow 111.15%	16.60%	11.05%	13.27% \uparrow 996.69%	7.21%	41.75%	12.30% \uparrow 1708.82%
DeepAR-wo-DRPAD	20.81%	2.50%	4.47%	82.60%	3.40%	6.53%	0.47%	0.04%	0.07%
DeepAR-w-DRPAD	40.38%	11.96%	18.44% \uparrow 312.53%	22.07%	3.20%	5.58% \uparrow 14.55%	7.41%	38.72%	12.30% \uparrow 17471.43%
GTA-wo-DRPAD	16.90%	2.03%	3.63%	92.16%	3.79%	7.28%	34.84%	3.02%	5.55%
GTA-w-DRPAD	41.91%	11.62%	18.19% \uparrow 401.10%	32.57%	2.63%	4.83% \uparrow 33.65%	9.33%	16.54%	11.91% \uparrow 114.59%
RTNet-wo-DRPAD	35.37%	4.25%	7.59%	88.47%	3.64%	6.99%	3.77%	0.33%	0.60%
RTNet-w-DRPAD	40.15%	13.24%	19.92% \uparrow 162.45%	16.32%	4.12%	6.57% \downarrow 6.01%	7.60%	26.07%	11.76% \uparrow 1860.00%
FEDformer-wo-DRPAD	31.53%	3.79%	6.77%	64.65%	5.32%	9.83%	25.97%	2.25%	4.14%
FEDformer-w-DRPAD	43.13%	12.56%	19.45% \uparrow 187.30%	26.32%	4.65%	7.90% \downarrow 19.63%	8.43%	26.40%	12.75% \uparrow 207.97%

4 CONCLUSION

In this paper, we propose **DRPAD**, a dynamic-aware and robust paradigm for time series anomaly detection, specifically designed to address three fundamental challenges: anomaly propagation, distribution shifts, and univariate anomalies. To this end, DRPAD integrates three complementary components—**Dynamic Prediction Replacement (DPR)**, **Segmentation-Based Normalization (SN)**, and a **Mean & Dimension Dual-Check (MDDC)** strategy—into a unified, model-agnostic framework that can be seamlessly combined with a variety of forecasting-based methods. We provide theoretical analysis showing that DPR reduces prediction errors by suppressing the impact of anomalous inputs, though this analysis is currently grounded on synthetic sine-based data for analytical tractability. Extensive experiments on ten real-world benchmarks demonstrate that DRPAD consistently improves performance across diverse model architectures. We believe DRPAD provides a principled and extensible foundation for advancing anomaly detection in complex time series scenarios.

522 ETHICS STATEMENT
523524 This work adheres to the ICLR Code of Ethics. Our study does not involve human subjects, personal data, or
525 sensitive attributes, and all datasets used are publicly available benchmark datasets that have been widely adopted in
526 prior research. We followed standard practices for data processing as described in Appendix G, and no proprietary
527 or confidential data were used. The proposed methodology is intended solely for academic research on anomaly
528 detection in time series data and does not directly target potentially harmful applications. We are not aware of any
529 conflicts of interest, funding biases, or legal compliance issues arising from this work.
530531 REPRODUCIBILITY STATEMENT
532533 We have made significant efforts to ensure reproducibility of our work. The detailed algorithmic components of
534 DRPAD, including Dynamic Prediction Replacement (DPR), Segment-wise Normalization (SN), and the Mean
535 & Dimension Dual-Check (MDDC), are formally defined in Section 2. Complete mathematical derivations are
536 provided in Appendix D, and proofs of complexity reduction are given in Appendix E. Experimental settings,
537 including datasets, preprocessing steps, and baseline configurations, are described in Section 3 and Appendix G. All
538 datasets employed are publicly available, and the source code is publicly available at <https://anonymous.4open.science/r/DRPAD-BEC8/>.
539540
541 THE USE OF LARGE LANGUAGE MODELS (LLMs)
542543 No large language models (LLMs) were employed in this work.
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579

580 REFERENCES

581 Ahmed Abdulaal, Zhuanghua Liu, and Tomer Lancewicki. Practical approach to asynchronous multivariate time
 582 series anomaly detection and localization. In *Proceedings of the 27th ACM SIGKDD conference on knowledge*
 583 *discovery & data mining*, pp. 2485–2494, 2021.

584 Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. Unsupervised real-time anomaly detection for
 585 streaming data. *Neurocomputing*, 262:134–147, 2017.

586 Chuadhry Mujeeb Ahmed, Venkata Reddy Palleti, and Aditya P Mathur. Wadi: a water distribution testbed for
 587 research in the design of secure cyber physical systems. In *Proceedings of the 3rd international workshop on*
 588 *cyber-physical systems for smart water networks*, pp. 25–28, 2017.

589 Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A Zuluaga. Usad: Unsupervised
 590 anomaly detection on multivariate time series. In *Proceedings of the 26th ACM SIGKDD international conference*
 591 *on knowledge discovery & data mining*, pp. 3395–3404, 2020.

592 Md Abul Bashar and Richi Nayak. Tanogan: Time series anomaly detection with generative adversarial networks.
 593 In *2020 IEEE Symposium Series on Computational Intelligence (SSCI)*, pp. 1778–1785. IEEE, 2020. ISBN
 594 978-1-7281-2547-3.

595 Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof: identifying density-based local
 596 outliers. In *Proceedings of the 2000 ACM SIGMOD international conference on Management of data*, pp.
 597 93–104, 2000.

598 Cristian Challu, Kin G. Olivares, Boris N. Oreshkin, Federico Garza Ramirez, Max Mergenthaler Canseco, and
 599 Artur Dubrawski. Nhits: Neural hierarchical interpolation for time series forecasting. *Proceedings of the AAAI*
 600 *Conference on Artificial Intelligence*, 37(6):6989–6997, 2023.

601 Zekai Chen, Dingshuo Chen, Xiao Zhang, Zixuan Yuan, and Xiuzhen Cheng. Learning graph structures with
 602 transformer for multivariate time-series anomaly detection in iot. *IEEE Internet of Things Journal*, 9(12):
 603 9179–9189, 2021.

604 Ian Cleland, Manhyung Han, Chris Nugent, Hosung Lee, Sally McClean, Shuai Zhang, and Sungyoung Lee.
 605 Evaluation of prompted annotation of activity data recorded from a smart phone. *Sensors*, 14(9):15861–15879,
 606 2014.

607 Enyan Dai and Jie Chen. Graph-augmented normalizing flows for anomaly detection of multiple time series. *arXiv*
 608 preprint [arXiv:2202.07857](https://arxiv.org/abs/2202.07857), 2022.

609 Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multivariate time series. In
 610 *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pp. 4027–4035, 2021a.

611 Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multivariate time series. In
 612 *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pp. 4027–4035, 2021b.

613 Frédéric Desobry, Manuel Davy, and Christian Doncarli. An online kernel change detection algorithm. *IEEE*
 614 *Transactions on Signal Processing*, 53(8):2961–2974, 2005.

615 Kyle D Feuz, Diane J Cook, Cody Rosasco, Kayela Robertson, and Maureen Schmitter-Edgecombe. Automated
 616 detection of activity transitions for prompting. *IEEE transactions on human-machine systems*, 45(5):575–585,
 617 2014.

618 Alexander Geiger, Dongyu Liu, Sarah Alnegheimish, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Tadgan:
 619 Time series anomaly detection using generative adversarial networks. In *2020 IEEE International Conference on*
 620 *Big Data (Big Data)*, pp. 33–43. IEEE, 2020. ISBN 1-7281-6251-3.

621 Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
 622 and Yoshua Bengio. Generative adversarial nets. *Advances in neural information processing systems*, 27, 2014.

623 Haixuan Guo, Shuhan Yuan, and Xintao Wu. Logbert: Log anomaly detection via bert. In *2021 international joint*
 624 *conference on neural networks (IJCNN)*, pp. 1–8. IEEE, 2021.

625 Junfeng Hao, Peng Chen, Juan Chen, and Xi Li. Effectively detecting and diagnosing distributed multivariate
 626 time series anomalies via unsupervised federated hypernetwork. *Information Processing & Management*, 62(4):
 627 104107, 2025.

628 Siyuan Huang and Yepeng Liu. Fl-net: A multi-scale cross-decomposition network with frequency external
 629 attention for long-term time series forecasting. *Knowledge-Based Systems*, 288:111473, 2024.

638 Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soderstrom. Detecting
 639 spacecraft anomalies using lstms and nonparametric dynamic thresholding. In *Proceedings of the 24th ACM*
 640 *SIGKDD international conference on knowledge discovery & data mining*, pp. 387–395, 2018a.

641

642 Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soderstrom. Detecting
 643 spacecraft anomalies using lstms and nonparametric dynamic thresholding. In *Proceedings of the 24th ACM*
 644 *SIGKDD international conference on knowledge discovery & data mining*, pp. 387–395, 2018b.

645 Rebecca Killick, Paul Fearnhead, and Idris A Eckley. Optimal detection of changepoints with a linear computational
 646 cost. *Journal of the American Statistical Association*, 107(500):1590–1598, 2012.

647

648 Siwon Kim, Kukjin Choi, Hyun-Soo Choi, Byunghan Lee, and Sungroh Yoon. Towards a rigorous evaluation of
 649 time-series anomaly detection. *Proceedings of the AAAI Conference on Artificial Intelligence*, 36(7):7194–7201,
 650 2022.

651 Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Reversible instance
 652 normalization for accurate time-series forecasting against distribution shift. In *International conference on*
 653 *learning representations*, 2021.

654

655 Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

656

657 Michael P Knapp. Sines and cosines of angles in arithmetic progression. *Mathematics magazine*, 82(5):371–372,
 658 2009.

659 Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-term temporal patterns
 660 with deep neural networks. In *The 41st International ACM SIGIR Conference on Research & Development in*
 661 *Information Retrieval*, pp. 95–104. ACM, 2018. ISBN 978-1-4503-5657-2.

662

663 Dan Li, Dacheng Chen, Baihong Jin, Lei Shi, Jonathan Goh, and See-Kiong Ng. Mad-gan: Multivariate anomaly
 664 detection for time series data with generative adversarial networks. In Igor V. Tetko, Věra Kůrková, Pavel
 665 Karpov, and Fabian Theis (eds.), *Artificial Neural Networks and Machine Learning – ICANN 2019: Text and*
 666 *Time Series*, volume 11730, pp. 703–716. Springer International Publishing, 2019. ISBN 978-3-030-30489-8
 978-3-030-30490-4.

667

668 Zhihan Li, Youjian Zhao, Jiaqi Han, Ya Su, Rui Jiao, Xidao Wen, and Dan Pei. Multivariate time series anomaly
 669 detection and interpretation using hierarchical inter-metric and temporal embedding. In *Proceedings of the*
 670 *27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining*, pp. 3220–3230. ACM, 2021. ISBN
 978-1-4503-8332-5.

671

672 Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet: Time series
 673 modeling and forecasting with sample convolution and interaction. *Advances in Neural Information Processing*
 674 *Systems*, 35:5816–5828, 2022a.

675

676 Song Liu, Makoto Yamada, Nigel Collier, and Masashi Sugiyama. Change-point detection in time-series data by
 677 relative density-ratio estimation. *Neural Networks*, 43:72–83, 2013.

678

679 Yijing Liu, Qinxian Liu, Jian-Wei Zhang, Haozhe Feng, Zhongwei Wang, Zihan Zhou, and Wei Chen. Multivariate
 680 time-series forecasting with temporal polynomial graph neural networks. *Advances in neural information*
 681 *processing systems*, 35:19414–19426, 2022b.

682

683 Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring the stationarity
 684 in time series forecasting. *Advances in neural information processing systems*, 35:9881–9893, 2022c.

685

686 Donghao Luo and Xue Wang. Moderntcn: A modern pure convolution structure for general time series analysis. In
 687 *The twelfth international conference on learning representations*, pp. 1–43, 2024.

688

689 Aditya P Mathur and Nils Ole Tippenhauer. Swat: A water treatment testbed for research and training on ics
 690 security. In *2016 international workshop on cyber-physical systems for smart water networks (CySWater)*, pp.
 691 31–36. IEEE, 2016.

692

693 George B Moody and Roger G Mark. The impact of the mit-bih arrhythmia database. *IEEE engineering in medicine*
 694 *and biology magazine*, 20(3):45–50, 2001.

695

Sasho Nedelkoski, Jasmin Bogatinovski, Ajay Kumar Mandapati, Soeren Becker, Jorge Cardoso, and Odej Kao.
 Multi-source distributed system data for ai-powered analytics. In *Service-Oriented and Cloud Computing: 8th IFIP WG 2.14 European Conference, ESOCC 2020, Heraklion, Crete, Greece, September 28–30, 2020, Proceedings 8*, pp. 161–176. Springer, 2020.

696 Daehyung Park, Yuuna Hoshi, and Charles C. Kemp. A multimodal anomaly detector for robot-assisted feeding
 697 using an lstm-based variational autoencoder. *IEEE Robotics and Automation Letters*, 3(3):1544–1551, 2018.
 698

699 Sasank Reddy, Min Mun, Jeff Burke, Deborah Estrin, Mark Hansen, and Mani Srivastava. Using mobile phones to
 700 determine transportation modes. *ACM Transactions on Sensor Networks (TOSN)*, 6(2):1–27, 2010.
 701

702 Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander Binder,
 703 Emmanuel Müller, and Marius Kloft. Deep one-class classification. In *International conference on machine
 704 learning*, pp. 4393–4402. PMLR, 2018a.
 705

706 Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander Binder,
 707 Emmanuel Müller, and Marius Kloft. Deep one-class classification. In *International Conference on Machine
 708 Learning*, pp. 4393–4402. PMLR, 2018b. ISBN 2640-3498.
 709

710 Yunus Saatçi, Ryan D Turner, and Carl E Rasmussen. Gaussian process change point models. In *Proceedings of
 711 the 27th International Conference on Machine Learning (ICML-10)*, pp. 927–934, 2010.
 712

713 David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic forecasting with
 714 autoregressive recurrent networks. *International Journal of Forecasting*, 36(3):1181–1191, 2020.
 715

716 Li Shen, Yuning Wei, and Yangzhu Wang. Respecting time series properties makes deep time series forecasting
 717 perfect. *arXiv preprint arXiv:2207.10941*, 2022.
 718

719 Li Shen, Yuning Wei, Yangzhu Wang, and Hongguang Li. Afmf: Time series anomaly detection framework with
 720 modified forecasting. *Knowledge-Based Systems*, 296:111912, 2024.
 721

722 Lifeng Shen, Zhuocong Li, and James Kwok. Timeseries anomaly detection using temporal hierarchical one-class
 723 network. *Advances in neural information processing systems*, 33:13016–13026, 2020.
 724

725 Yunfei Shi, Bin Wang, Yanwei Yu, Xianfeng Tang, Chao Huang, and Junyu Dong. Robust anomaly detection for
 726 multivariate time series through temporal gcns and attention-based vae. *Knowledge-Based Systems*, 275:110725,
 727 2023.
 728

729 Junho Song, Keonwoo Kim, Jeonglyul Oh, and Sungzoon Cho. Memto: Memory-guided transformer for multi-
 730 variate time series anomaly detection. *Advances in Neural Information Processing Systems*, 36:57947–57963,
 731 2023.
 732

733 Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection for multivariate
 734 time series through stochastic recurrent neural network. In *Proceedings of the 25th ACM SIGKDD international
 735 conference on knowledge discovery & data mining*, pp. 2828–2837, 2019.
 736

737 Jian Tang, Zhixiang Chen, Ada Wai-Chee Fu, and David W Cheung. Enhancing effectiveness of outlier detections
 738 for low density patterns. In *Advances in knowledge discovery and data mining: 6th Pacific-Asia conference,
 739 PAKDD 2002 Taipei, Taiwan, May 6–8, 2002 proceedings* 6, pp. 535–548. Springer, 2002.
 740

741 Luan Tran, Min Y. Mun, and Cyrus Shahabi. Real-time distance-based outlier detection in data streams. *Proceedings
 742 of the VLDB Endowment*, 14(2):141–153, 2020.
 743

744 Charles Truong, Laurent Oudre, and Nicolas Vayatis. Selective review of offline change point detection methods.
 745 *Signal Processing*, 167:107299, 2020.
 746

747 Shreshth Tuli, Giuliano Casale, and Nicholas R Jennings. Tranad: Deep transformer networks for anomaly detection
 748 in multivariate time series data. *arXiv preprint arXiv:2201.07284*, 2022.
 749

750 Yijie Wang, Hao Long, Linjiang Zheng, and Jiaxing Shang. Graphformer: Adaptive graph correlation transformer
 751 for multivariate long sequence time series forecasting. *Knowledge-Based Systems*, 285:111321, 2024.
 752

753 Zhiwei Wang, Zhengzhang Chen, Jingchao Ni, Hui Liu, Haifeng Chen, and Jiliang Tang. Multi-scale one-class
 754 recurrent neural networks for discrete event sequence anomaly detection. In *Proceedings of the 27th ACM
 755 SIGKDD conference on knowledge discovery & data mining*, pp. 3726–3734, 2021.
 756

757 Li Wei and Eamonn Keogh. Semi-supervised time series classification. In *Proceedings of the 12th ACM SIGKDD
 758 international conference on Knowledge discovery and data mining*, pp. 748–753, 2006.
 759

760 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers with
 761 auto-correlation for long-term series forecasting. *Advances in neural information processing systems*, 34:
 762 22419–22430, 2021.
 763

764 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Temporal
 765 2d-variation modeling for general time series analysis. *arXiv preprint arXiv:2210.02186*, 2022.
 766

754 Haowen Xu, Yang Feng, Jie Chen, Zhaogang Wang, Honglin Qiao, Wenxiao Chen, Nengwen Zhao, Zeyan Li,
 755 Jiahao Bu, Zhihan Li, Ying Liu, Youjian Zhao, and Dan Pei. Unsupervised anomaly detection via variational
 756 auto-encoder for seasonal kpis in web applications. In *Proceedings of the 2018 World Wide Web Conference on*
 757 *World Wide Web - WWW '18*, pp. 187–196. ACM Press, 2018. ISBN 978-1-4503-5639-8.

758 Hongzuo Xu, Yijie Wang, Songlei Jian, Qing Liao, Yongjun Wang, and Guansong Pang. Calibrated one-class
 759 classification for unsupervised time series anomaly detection. *IEEE Transactions on Knowledge and Data*
 760 *Engineering*, 2024.

761 Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time series anomaly detection
 762 with association discrepancy. *arXiv preprint arXiv:2110.02642*, 2021.

763 Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and Bixiong Xu.
 764 Ts2vec: Towards universal representation of time series. In *Proceedings of the AAAI conference on artificial*
 765 *intelligence*, volume 36, pp. 8980–8987, 2022.

766 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting?, 2022.

767 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting? In
 768 *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp. 11121–11128, 2023.

769 Shengming Zhang, Yanchi Liu, Xuchao Zhang, Wei Cheng, Haifeng Chen, and Hui Xiong. Cat: Beyond efficient
 770 transformer for content-aware anomaly detection in event sequences. In *Proceedings of the 28th ACM SIGKDD*
 771 *conference on knowledge discovery and data mining*, pp. 4541–4550, 2022.

772 Yuxin Zhang, Yiqiang Chen, Jindong Wang, and Zhiwen Pan. Unsupervised deep anomaly detection for multi-sensor
 773 time-series signals. *IEEE Transactions on Knowledge and Data Engineering*, 35(2):2118–2132, 2021a.

774 Yuxin Zhang, Yiqiang Chen, Jindong Wang, and Zhiwen Pan. Unsupervised deep anomaly detection for multi-sensor
 775 time-series signals. *IEEE Transactions on Knowledge and Data Engineering*, 35(2):2118–2132, 2021b.

776 Hang Zhao, Yujing Wang, Juanyong Duan, Congrui Huang, Defu Cao, Yunhai Tong, Bixiong Xu, Jing Bai, Jie
 777 Tong, and Qi Zhang. Multivariate time-series anomaly detection via graph attention network. In *2020 IEEE*
 778 *international conference on data mining (ICDM)*, pp. 841–850. IEEE, 2020.

779 Binggui Zhou, Yunxuan Dong, Guanghua Yang, Fen Hou, Zheng Hu, Suxiu Xu, and Shaodan Ma. A graph-attention
 780 based spatial-temporal learning framework for tourism demand forecasting. *Knowledge-Based Systems*, 263:
 781 110275, 2023a.

782 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency enhanced
 783 decomposed transformer for long-term series forecasting. In *International conference on machine learning*, pp.
 784 27268–27286. PMLR, 2022.

785 Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis by pretrained
 786 lm. *Advances in neural information processing systems*, 36:43322–43355, 2023b.

787 Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis by pretrained
 788 lm. *Advances in neural information processing systems*, 36:43322–43355, 2023c.

789 Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng Chen. Deep
 790 autoencoding gaussian mixture model for unsupervised anomaly detection. In *International conference on*
 791 *learning representations*, 2018.

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812 APPENDIX OVERVIEW
813814 This appendix provides supplementary materials that support the main text, organized as follows:
815816 - **A More Experimental Results** Includes additional ablation studies (Table 3) and evaluations under the advanced
817 adjustment strategy Kim et al. (2022). These results further validate the contributions of each DRPAD component
818 and provide robustness checks under relaxed evaluation criteria.819 - **B Visual Evidence of Segment-wise Normalization** Presents qualitative visualization (Figure 3) comparing
820 global normalization and our proposed segment-wise normalization (SN) on real-world datasets, highlighting how
821 SN effectively mitigates scale disparities.822 - **C Notation Summary** Summarizes the mathematical symbols used throughout the paper for ease of reference.
823824 - **D Detailed Mathematical Proof** Provides the formal derivation and theoretical analysis underpinning the Dynamic
825 Prediction Replacement (DPR) mechanism.826 - **E Proof of Complexity Reduction in the SN Module** This section provides a comprehensive complexity analysis
827 of the SN module, detailing the problem definition, theoretical complexity reduction of the PELT algorithm, and
828 empirical validation through runtime experiments and model fitting.829 - **F Related Works** We review key literature on time series anomaly detection, forecasting, and change point
830 detection. Unsupervised methods are categorized into forecasting-based, reconstruction-based, density estimation,
831 and clustering-based approaches. We also compare forecasting models and change point detection techniques. Our
832 work builds on the AFMF framework, introducing Segment-wise Normalization (SN) and Dynamic Prediction
833 Replacement, which overcome limitations of existing normalization strategies like Local Instance Normalization
834 (LIN) and Progressive Adjacent Masking (PAM) to enhance anomaly detection performance.835 - **G Baselines and Datasets** Describes in detail the benchmark datasets and baseline methods used in this study,
836 with numerical dataset statistics summarized in Table 10.

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870 A MORE EXPERIMENTAL RESULTS

871 A.1 ABLATION STUDY

872 We conduct an ablation study within the FEDformer backbone in Table 3, where “+X”/“-X” indicates the inclusion
 873 or removal of component X. PAM (Progressive Adjacent Masking) and LIN (Local Instance Normalization) are
 874 components originally proposed in the AFMF framework Shen et al. (2024). In DRPAD, they are functionally
 875 replaced by our DPR (Dynamic Prediction Replacement) and SN (Segment-wise Normalization) components,
 876 while the Mean & Dimension Dual-Check (MDDC) strategy serves as an auxiliary detection module additionally
 877 proposed to further enhance the overall performance.

878 The full DRPAD configuration achieves the highest F1 score on 7 of 9 datasets, demonstrating the effectiveness
 879 of combining all three components. Adding DPR (e.g., DRPAD vs. DRPAD-DPR) substantially improves recall
 880 by mitigating anomaly contamination and stabilizing normal pattern learning. SN generally enhances precision
 881 (e.g., DRPAD-SN vs. DRPAD), though minor recall drops may occur. DA consistently boosts recall, with small
 882 precision trade-offs in some cases. Compared to LIN and PAM from AFMF, our SN and DPR modules achieve
 883 better performance in their respective roles.

884 In summary, each DRPAD component contributes independently, and their combination yields a strong synergistic
 885 effect on F1 performance.

886 Table 3: Ablation results of DRPAD on nine datasets. We report Precision (P), Recall (R), and F1 score for each
 887 configuration

912 Framework	MBA			MSDS			MSL		
	P	R	F1	P	R	F1	P	R	F1
DRPAD	80.36	12.30	21.34	51.61	44.44	47.76	32.47	15.55	21.03
DRPAD-SN	85.23	10.82	<u>19.20</u>	18.77	23.50	20.87	32.47	15.55	21.03
DRPAD-SN+LIN	98.03	5.82	10.99	22.19	38.46	28.15	17.37	2.06	3.68
DRPAD-DPR	93.42	5.55	10.47	43.63	32.91	37.52	28.21	4.02	7.03
DRPAD-DPR+PAM	88.00	2.58	5.01	43.47	32.69	37.32	32.57	1.83	3.46
DRPAD-MDDC	80.36	12.30	21.34	51.39	43.38	<u>47.05</u>	32.47	15.55	21.03
DRPAD-DPR-MDDC	93.42	5.55	10.47	42.15	30.98	35.71	28.21	4.02	7.03
DRPAD-SN-MDDC	85.23	10.82	<u>19.20</u>	16.57	23.29	19.36	32.47	15.55	21.03
DRPAD-SN-DPR-MDDC	91.45	5.43	10.25	26.74	19.66	22.66	33.09	4.71	<u>8.25</u>
903 Framework	NAB			PSM			SMAP		
	P	R	F1	P	R	F1	P	R	F1
DRPAD	64.29	37.50	47.37	51.06	29.17	37.13	13.47	8.23	10.22
DRPAD-SN	64.29	37.50	47.37	59.47	10.58	17.96	12.96	7.95	<u>9.86</u>
DRPAD-SN+LIN	47.37	37.50	41.86	54.09	2.90	5.51	15.04	1.41	2.57
DRPAD-DPR	47.37	37.50	41.86	53.94	10.53	17.61	13.45	1.58	2.82
DRPAD-DPR+PAM	31.25	25.00	27.78	54.01	10.89	<u>18.13</u>	16.75	1.17	2.19
DRPAD-MDDC	52.94	37.50	<u>43.90</u>	58.86	6.17	11.17	13.47	8.23	10.22
DRPAD-DPR-MDDC	47.37	37.50	41.86	76.36	4.09	7.77	13.45	1.58	2.82
DRPAD-SN-MDDC	64.29	37.50	47.37	69.55	4.45	8.37	12.96	7.95	<u>9.86</u>
DRPAD-SN-DPR-MDDC	42.11	33.33	37.21	57.15	3.06	5.82	13.67	1.60	2.87
913 Framework	SMD			SWaT			WADI		
	P	R	F1	P	R	F1	P	R	F1
DRPAD	42.94	12.20	<u>19.00</u>	19.24	5.50	8.55	8.04	47.39	13.74
DRPAD-SN	17.07	35.41	23.03	13.48	7.49	9.63	5.86	37.18	10.13
DRPAD-SN+LIN	7.21	4.37	5.44	11.99	4.11	6.12	5.44	31.48	9.27
DRPAD-DPR	45.39	9.86	16.20	39.35	11.27	17.53	11.90	13.60	12.69
DRPAD-DPR+PAM	45.28	9.74	16.04	39.36	11.27	17.53	9.84	19.29	<u>13.03</u>
DRPAD-MDDC	59.01	8.37	14.66	67.13	2.31	4.46	7.17	8.68	7.85
DRPAD-DPR-MDDC	58.10	6.98	12.47	61.15	5.03	9.30	15.74	1.36	2.51
DRPAD-SN-MDDC	33.54	4.36	7.72	39.98	1.38	2.66	11.63	10.51	11.05
DRPAD-SN-DPR-MDDC	32.66	3.93	7.01	64.65	5.32	<u>9.83</u>	25.81	2.24	4.11

928
929
930 Table 4: Performance comparison of different methods across various datasets in $\eta = 20\%$
931
932
933
934
935
936
937

Categorization	Baselines	SMD			MSL			PSM		
		P	R	F1	P	R	F1	P	R	F1
Density Estimation	DAGMM Zong et al. (2018)	14.34%	1.91%	3.37%	29.41%	3.23%	5.81%	68.97%	4.27%	8.04%
Reconstruction	MEMTO Song et al. (2023)	16.08%	2.65%	4.54%	11.09%	1.51%	2.65%	31.58%	1.92%	3.62%
	CAE-M Zhang et al. (2021a)	19.20%	2.47%	4.38%	35.29%	3.87%	6.98%	33.14%	1.85%	3.50%
Prediction	GDN Deng & Hooi (2021a)	16.45%	2.09%	3.70%	29.41%	3.23%	5.81%	38.35%	4.14%	7.47%
	GTA Chen et al. (2021)	27.02%	3.70%	6.50%	57.75%	10.20%	17.34%	74.62%	7.42%	13.02%
	FEDformer Zhou et al. (2022)	43.01%	6.13%	10.73%	44.11%	7.57%	12.92%	63.25%	4.12%	7.74%
	FEDformer_w_AFMF Shen et al. (2024)	41.74%	5.81%	10.20%	13.71%	1.34%	2.44%	65.90%	3.83%	7.25%
	FEDformer_w_DRPAD(our)	56.55%	23.56%	33.23%	44.85%	32.48%	37.66%	60.18%	41.55%	47.40%
Categorization		SMAP			MSDS			NAB		
Density Estimation	Baselines	P	R	F1	P	R	F1	P	R	F1
		9.41%	1.11%	1.98%	4.83%	3.85%	4.28%	56.66%	70.83%	62.96%
Reconstruction	MEMTO Song et al. (2023)	17.77%	3.26%	5.51%	2.79%	4.49%	3.44%	33.33%	7.14%	11.76%
	CAE-M Zhang et al. (2021a)	9.37%	0.93%	1.69%	4.83%	3.85%	4.28%	56.67%	70.83%	62.96%
Prediction	GDN Deng & Hooi (2021a)	11.02%	1.31%	2.34%	35.61%	32.26%	33.86%	64.86%	100.00%	78.69%
	GTA Chen et al. (2021)	22.48%	2.92%	5.16%	25.74%	20.81%	23.02%	62.96%	70.83%	66.67%
	FEDformer Zhou et al. (2022)	28.88%	4.13%	7.23%	54.67%	61.03%	57.64%	62.51%	70.83%	66.41%
	FEDformer_w_AFMF Shen et al. (2024)	15.02%	1.52%	2.76%	71.58%	81.67%	76.04%	47.04%	59.00%	52.12%
	FEDformer_w_DRPAD(our)	27.42%	17.96%	21.50%	59.29%	70.17%	64.07%	74.89%	82.50%	77.76%
Categorization		MBA			WADI			SWaT		
Density Estimation	Baselines	P	R	F1	P	R	F1	P	R	F1
		100.00%	5.92%	11.18%	10.30%	6.84%	8.22%	74.96%	3.20%	6.14%
Reconstruction	MEMTO Song et al. (2023)	71.43%	3.11%	5.95%	4.30%	40.84%	7.77%	23.21%	3.04%	5.38%
	CAE-M Zhang et al. (2021a)	99.35%	5.88%	11.11%	16.70%	7.80%	10.63%	74.52%	3.18%	6.11%
Prediction	GDN Deng & Hooi (2021a)	100.00%	5.95%	11.23%	25.30%	1.84%	3.43%	29.83%	4.22%	7.39%
	GTA Chen et al. (2021)	97.79%	6.05%	11.39%	34.84%	3.02%	5.55%	93.45%	4.59%	8.75%
	FEDformer Zhou et al. (2022)	92.24%	5.48%	10.34%	25.97%	2.25%	4.14%	67.30%	6.30%	11.52%
	FEDformer_w_AFMF Shen et al. (2024)	98.32%	3.76%	7.24%	8.41%	0.65%	1.21%	55.59%	5.02%	9.21%
	FEDformer_w_DRPAD(our)	88.96%	20.91%	33.85%	12.67%	86.45%	22.07%	35.70%	12.19%	18.14%

954
955 A.2 ADVANCED ADJUSTMENT STRATEGY
956

957 To ensure a comprehensive assessment, our work additionally evaluates our method under the *advanced adjustment*
958 strategy proposed in Kim et al. (2022), employing a threshold parameter $\eta = 20\%$. Under this relaxed criterion, an
959 anomalous segment is considered detected if at least 20% of its constituent points are identified. This approach
960 stands in contrast to our primary evaluation protocol, which adopts a stricter *point-wise detection framework*
961 without post-processing adjustments. Therefore, this appendix provides the relaxed results of the two experiments
962 from the main results section, obtained under advanced adjustment strategies, as shown in Tables 4 and 5.

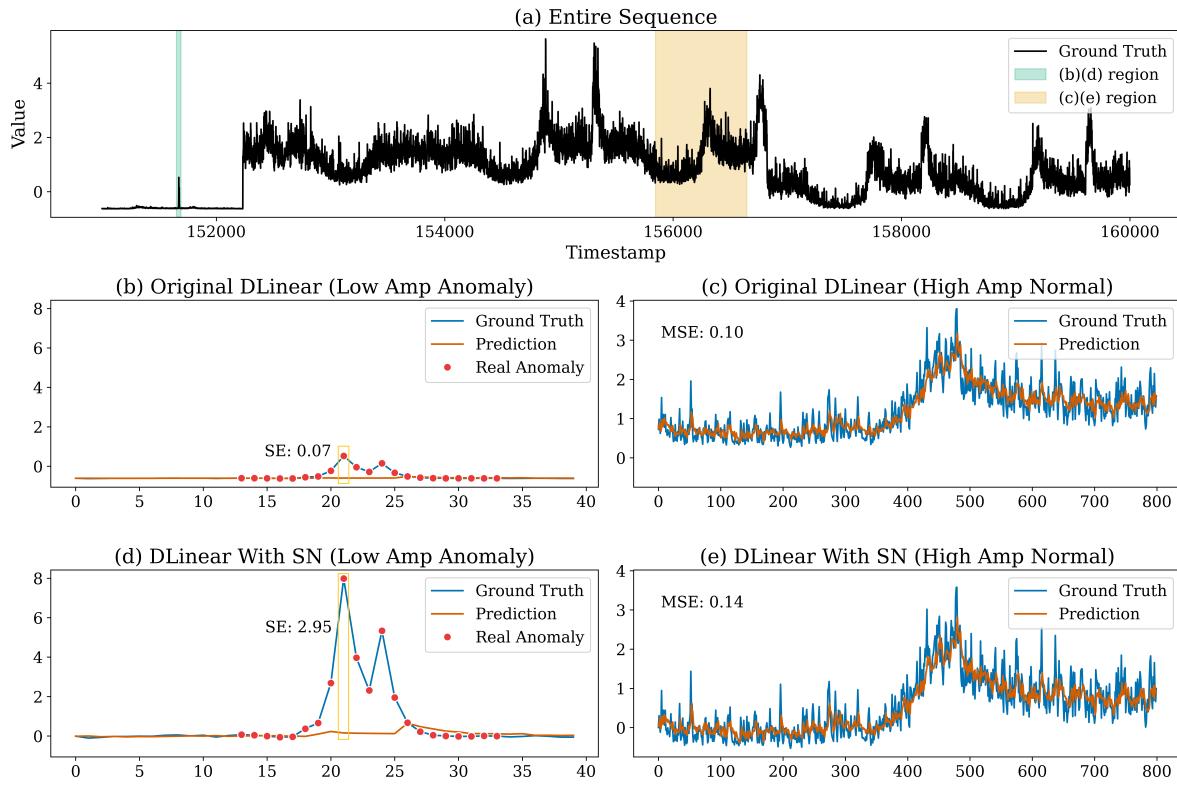
963 Under the relatively lenient high-level detection adjustment strategy, as shown in Table 4, our framework combined
964 with *FedFormer* achieves the best F1 score on 7 out of 9 datasets, with an average improvement of 125.96% over
965 the best-performing baseline. Meanwhile, as presented in Table 5, when comparing the same model with and
966 without the DRPAD framework, enabling DRPAD leads to an average relative improvement of 1084.28% in F1
967 score. These results demonstrate that the DRPAD framework can significantly enhance model performance under
968 both detection strategies in most cases.

986
987
988
989
990
991
992
993
994
995
996
997
998
999

Table 5: Performance comparison of models with and without DRPAD framework across multiple datasets in $\eta = 20\%$

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

Model	MBA			MSDS			MSL		
	P	R	F1	P	R	F1	P	R	F1
Autoformer_wo_DRPAD	82.37%	4.89%	9.23%	53.32%	53.42%	53.32%	43.20%	7.28%	12.46%
Autoformer_w_DRPAD	74.60%	14.23%	23.15% ↑150.67%	63.59%	60.90%	62.21% ↑16.67%	30.37%	8.74%	13.34% ↑6.97%
DLinear_wo_DRPAD	99.34%	5.90%	11.14%	75.61%	93.12%	83.45%	39.82%	5.73%	10.02%
DLinear_w_DRPAD	98.45%	7.44%	13.83% ↑24.21%	54.06%	65.17%	59.10%↓29.23%	47.95%	31.34%	37.82% ↑277.02%
DeepAR_wo_DRPAD	93.56%	5.79%	10.90%	44.96%	42.95%	43.92%	46.55%	7.07%	12.28%
DeepAR_w_DRPAD	76.24%	69.79%	71.73% ↑558.12%	57.36%	68.21%	62.24% ↑41.79%	48.62%	24.15%	32.15% ↑161.90%
FEDformer_wo_DRPAD	92.24%	5.48%	10.34%	54.67%	61.03%	57.64%	44.11%	7.57%	12.92%
FEDformer_w_DRPAD(our)	88.96%	20.91%	33.85% ↑227.49%	59.29%	70.17%	64.07% ↑11.18%	44.85%	32.48%	37.66% ↑191.45%
GTA_wo_DRPAD	97.79%	6.05%	11.39%	25.74%	20.81%	23.02%	57.75%	10.20%	17.34%
GTA_w_DRPAD	96.28%	6.83%	12.74% ↑11.91%	59.04%	60.90%	59.47% ↑158.49%	42.37%	23.85%	30.03% ↑73.22%
RTNet_wo_DRPAD	96.58%	2.87%	5.57%	65.25%	78.55%	71.24%	43.70%	6.89%	11.90%
RTNet_w_DRPAD	88.93%	25.66%	39.71% ↑613.15%	56.50%	92.01%	69.95%↓1.83%	44.83%	29.72%	35.60% ↑198.99%
Model	NAB			PSM			SMAP		
	P	R	F1	P	R	F1	P	R	F1
Autoformer_wo_DRPAD	66.87%	82.50%	73.68%	62.72%	4.08%	7.65%	13.97%	1.72%	3.07%
Autoformer_w_DRPAD	71.86%	94.17%	81.28% ↑10.30%	50.44%	81.00%	62.17% ↑712.82%	17.43%	13.20%	13.64% ↑344.35%
DLinear_wo_DRPAD	65.56%	82.50%	72.85%	67.00%	3.80%	7.19%	13.94%	1.71%	3.05%
DLinear_w_DRPAD	68.52%	76.67%	72.14% ↓0.96%	55.82%	22.75%	32.33% ↑349.55%	12.46%	4.01%	6.06% ↑98.55%
DeepAR_wo_DRPAD	64.92%	76.67%	70.18%	61.60%	3.58%	6.77%	17.35%	2.20%	3.91%
DeepAR_w_DRPAD	73.24%	100.00%	84.53% ↑20.44%	49.60%	55.49%	52.18% ↑671.61%	14.12%	7.13%	9.42% ↑141.07%
FEDformer_wo_DRPAD	62.51%	70.83%	66.41%	63.25%	4.12%	7.74%	28.88%	4.13%	7.23%
FEDformer_w_DRPAD(our)	74.89%	82.50%	77.76% ↑17.09%	60.18%	41.55%	47.40% ↑512.98%	27.42%	17.96%	21.50% ↑197.37%
GTA_wo_DRPAD	62.96%	70.83%	66.67%	74.62%	7.42%	13.02%	22.48%	2.92%	5.16%
GTA_w_DRPAD	64.97%	76.67%	70.15% ↑5.22%	63.15%	11.49%	19.44% ↑49.42%	18.88%	10.40%	13.41% ↑159.70%
RTNet_wo_DRPAD	64.42%	70.83%	67.47%	74.31%	5.06%	9.47%	17.09%	2.11%	3.75%
RTNet_w_DRPAD	80.95%	70.83%	75.56% ↑12.00%	55.12%	23.03%	32.49% ↑242.86%	15.94%	5.93%	8.62% ↑129.93%
Model	SMD			SWaT			WADI		
	P	R	F1	P	R	F1	P	R	F1
Autoformer_wo_DRPAD	47.80%	6.83%	11.95%	80.42%	5.03%	9.47%	2.31%	0.20%	0.37%
Autoformer_w_DRPAD	28.96%	33.21%	21.54% ↑80.20%	27.29%	50.01%	30.04% ↑217.30%	14.89%	78.18%	24.84% ↑6632.57%
DLinear_wo_DRPAD	51.52%	7.49%	13.08%	15.33%	0.63%	1.21%	4.24%	0.37%	0.68%
DLinear_w_DRPAD	55.25%	23.74%	33.20% ↑153.92%	21.75%	15.42%	18.05% ↑1388.41%	15.70%	100.00%	27.14% ↑3914.15%
DeepAR_wo_DRPAD	30.78%	4.23%	7.44%	84.69%	3.80%	7.28%	0.47%	0.04%	0.07%
DeepAR_w_DRPAD	54.43%	21.12%	30.40% ↑308.15%	30.64%	5.11%	8.75% ↑20.18%	14.62%	79.75%	24.52% ↑33118.46%
FEDformer_wo_DRPAD	43.01%	6.13%	10.73%	67.30%	6.30%	11.52%	25.97%	2.25%	4.14%
FEDformer_w_DRPAD(our)	56.55%	23.56%	33.23% ↑209.84%	35.70%	12.19%	18.14% ↑57.43%	12.67%	86.45%	22.07% ↑433.11%
GTA_wo_DRPAD	27.02%	3.70%	6.50%	93.45%	4.59%	8.75%	34.84%	3.02%	5.55%
GTA_w_DRPAD	58.10%	22.35%	32.27% ↑395.92%	47.55%	5.05%	9.06% ↑3.62%	17.29%	34.22%	22.95% ↑313.47%
RTNet_wo_DRPAD	45.65%	6.53%	11.42%	90.13%	4.43%	8.44%	3.77%	0.33%	0.60%
RTNet_w_DRPAD	55.60%	24.73%	34.23% ↑199.70%	23.03%	6.33%	9.92% ↑17.51%	18.26%	71.06%	29.02% ↑4727.82%

1044 **B VISUAL EVIDENCE OF SEGMENT-WISE NORMALIZATION ON REAL-WORLD DATA**
1045
1046
1047

1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

Figure 3: Visualization of Anomaly Detection Performance under Global vs. Segment-wise Normalization. This figure compares the performance of our proposed segment-wise normalization (SN Model) with conventional global normalization (Original DLinear) in time series anomaly detection. The top panel displays the entire sequence with ground truth values, highlighting low-amplitude (left) and high-amplitude (right) regions. The bottom panels illustrate the squared error (SE) for a single dimension in these regions. In the Original DLinear model, the SE of anomalies in the low-amplitude region (b) is overshadowed by the higher MSE of normal values in the high-amplitude region (c), resulting in undetected anomalies. However, with segment-wise normalization (DLinear with SN), the SE in the low-amplitude anomalous region (d) exceeds the MSE in the high-amplitude normal region (e), enabling effective detection. Metrics shown include SE for anomalies and MSE for the segments.

As shown in Figure 3, under the global normalization scheme, statistical properties such as standard deviation are dominated by segments with large fluctuations or extreme outliers. As a result, anomalies occurring in segments with relatively low variance may produce only small standardized errors and thus be overlooked. For instance, in the low-amplitude region, the anomaly under the Original DLinear yields a low SE of only **0.07**, even lower than the MSE of normal fluctuations in the high-amplitude region, which is **0.10**. Consequently, the anomaly in the low-amplitude region is missed.

By contrast, our SN Model applies change point detection to partition the sequence into statistically consistent segments and performs normalization within each segment independently. This allows local anomalies to be evaluated under fairer statistical scales. In the low-amplitude region, the anomaly becomes much more distinguishable under SN normalization, with SE increasing to **2.95**, exceeding the MSE in the high-amplitude region of **0.14**, enabling effective detection.

Note that the error depicted in the left plots represents the squared error (SE) for a single dimension. The MSE shown on the right side refers to the mean squared error averaged across the entire high-amplitude region for that single dimension.

1102 **C NOTATION SUMMARY**1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
Table 6: Notation Summary

Symbol	Description
x_t^n	Time series observation of the n -th dimension at time step t
H_t	Input window at time t
A_t	Anomaly indicator at time step t
c	Continuous anomaly count counter
r	Percentile threshold for anomaly detection
N	Number of data features
δ	Maximum allowed consecutive anomalies
ε_t	Gaussian noise, $\varepsilon_t \sim \mathcal{N}(0, \sigma^2)$
σ^2	Variance of the Gaussian noise
Δ	Anomalous deviation, $\Delta \sim \mathcal{D}$
\mathcal{D}	Distribution of Δ with mean μ_Δ and variance σ_Δ^2
μ_Δ	Mean of the anomalous deviation
σ_Δ^2	Variance of the anomalous deviation
L	Length of the input window for prediction
\hat{x}_t	Model prediction at time step t
w_j	Weight corresponding to the j -th lagged input
b	Bias term of the prediction model
i	Index of the anomaly within the input window
e_{t-i}	Prediction error at time $t-i$
σ_e^2	Variance of historical prediction errors
ε_{\max}	Upper bound of Gaussian noise
$\mathbb{I}(\cdot)$	Indicator function
\mathbf{S}_j	Temporal segments segmented based on change points
μ_j	Variance of each segment.
σ_j	Mean and variance of each segment.
φ	Sensitivity of the dimension-wise anomaly detection threshold
η	Threshold parameter for advanced adjustment strategy

1133 **D DETAILED MATHEMATICAL PROOF**

1135 This paper proposes a dynamic replacement strategy: when an anomaly is detected, the model's prediction is used
 1136 to replace the true value for subsequent forecasting. To verify the effectiveness of this strategy, this section provides
 1137 a step-by-step mathematical proof. The essence of the dynamic replacement strategy is to enhance forecasting
 1138 robustness by iteratively correcting the reliability of the input sequence. We use a linear model as the theoretical
 1139 tool due to its transparency for analyzing anomaly propagation mechanisms. The strategy can be directly extended
 1140 to nonlinear models (see Appendix D.10). Specifically, we derive general conclusions by considering the case
 1141 where the input window contains only a single anomaly.

1142 We assume a single anomaly in the input window. Suppose the anomaly introduces a fixed deviation Δ compared
 1143 to the true value. We first analyze the case where Δ is a deterministic value, and then generalize to the case where
 1144 Δ follows an arbitrary distribution. Based on this, we prove that under certain conditions, the dynamic replacement
 1145 strategy can effectively reduce the impact of anomalies on the prediction results, thereby improving forecasting
 1146 accuracy. The detailed proof is as follows:

1147 **D.1 DATA GENERATION MODEL**

1149 To simulate the normal patterns of time series data in a general manner, we assume an arbitrary underlying function
 1150 $f(t)$ that satisfies the Lipschitz continuity condition, ensuring the sequence is sufficiently smooth. Specifically, $f(t)$
 1151 is Lipschitz continuous if there exists a constant $K > 0$ such that for all t_1, t_2 ,

$$1152 \quad |f(t_1) - f(t_2)| \leq K|t_1 - t_2|.$$

1153 This condition guarantees bounded variation and prevents abrupt changes in the normal data patterns.

1154 We construct the training set standard time series using this function:

$$1155 \quad x_t = f(t).$$

1156 The test set standard time series is constructed by superimposing Gaussian noise on the function:

$$1157 \quad x_t = f(t) + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma^2),$$

1160 where ε_t is Gaussian noise with mean 0 and variance σ^2 . To introduce anomalies, we add a fixed deviation Δ at a
 1161 random time k , generating an anomalous data point as:

$$1163 \quad x_k = f(k) + \varepsilon_k + \Delta.$$

1164 Based on this setup, we use a single-layer fully connected neural network as the prediction model, with the input
 1165 being the past L time steps and the output being the next time step's prediction:

$$1167 \quad \hat{x}_t = \sum_{j=1}^L w_j x_{t-j} + b,$$

1170 where w_j denotes the weight corresponding to x_{t-j} , that is, $[f(t-1), f(t-2), \dots, f(t-L)]$ correspond to
 1171 $[w_1, w_2, \dots, w_L]$. We assume the model has been trained sufficiently on clean data so that the weights w_j and bias
 1172 b have converged to optimal values, allowing the model to accurately predict the underlying signal without noise or
 1173 anomalies:

$$1174 \quad \sum_{j=1}^L w_j f(t-j) + b \approx f(t).$$

1176 This assumption ensures that the network can accurately fit the normal time series in the absence of anomalies, laying
 1177 the foundation for the subsequent analysis of anomaly impact and the effectiveness of the dynamic replacement
 1178 strategy.

1180 In this study, we design a control group and an experimental group to evaluate the effectiveness of the dynamic
 1181 replacement strategy.

1182 The **control group** uses the traditional forecasting method, i.e., modeling and predicting directly on the entire
 1183 time series without correcting the detected anomalies. The input to the model may thus contain anomalies, and
 1184 predictions are made based on these inputs. The results of the control group help measure the degradation of
 1185 predictive performance due to the presence of anomalies.

1186 The **experimental group** uses the dynamic replacement strategy, where detected anomalies are replaced by the
 1187 model's predicted values, and the modified sequence is then used for subsequent predictions. The core idea is to
 1188 weaken the influence of anomalies on future forecasts and improve overall prediction accuracy. The MSE results of
 1189 the experimental group can evaluate the strategy's effectiveness in mitigating anomaly interference.

1190 By comparing the control and experimental groups, we can quantify the advantages of the dynamic replacement
 1191 strategy under different anomaly types and distribution conditions, and further analyze its applicability and
 1192 limitations.

1194 D.2 ERROR ANALYSIS OF CONTROL GROUP (WITHOUT REPLACING ANOMALIES)

1196 Control Group (No Replacement):

1198 Suppose at time t , the input window contains an anomaly at time step $t - i$ (random moment k), where

$$1199 \quad x_{t-i} = f(t-i) + \varepsilon_{t-i} + \Delta.$$

1200 Then the predicted value is:

$$1202 \quad \hat{x}_t = \underbrace{\sum_{j \neq i}^L w_j (f(t-j) + \varepsilon_{t-j}) + b}_{\text{normal prediction terms}} + w_i (f(t-i) + \varepsilon_{t-i} + \Delta).$$

1206 Simplifying:

$$1208 \quad \hat{x}_t = \sum_{j=1}^L w_j f(t-j) + b + \sum_{j=1}^L w_j \varepsilon_{t-j} + w_i \Delta.$$

1210 Given the model assumption:

$$1212 \quad \sum_{j=1}^L w_j f(t-j) + b \approx f(t).$$

1214 the prediction error is:

$$1216 \quad e_t = \hat{x}_t - (f(t) + \varepsilon_t) = \underbrace{\sum_{j=1}^L w_j \varepsilon_{t-j} - \varepsilon_t + w_i \Delta}_{\text{noise error term}}.$$

1218 The mean squared error (MSE) is defined as:
 1219
 1220

$$\text{MSE} = \mathbb{E}[e_t^2].$$

1221 Substituting e_t :

$$1222 \quad e_t^2 = \left(\sum_{j=1}^L w_j \varepsilon_{t-j} - \varepsilon_t + w_i \Delta \right)^2.$$

1225 Expanding the square:
 1226

$$1227 \quad e_t^2 = \left(\sum_{j=1}^L w_j \varepsilon_{t-j} - \varepsilon_t \right)^2 + 2 \left(\sum_{j=1}^L w_j \varepsilon_{t-j} - \varepsilon_t \right) (w_i \Delta) + (w_i \Delta)^2,$$

1231 where: ε_{t-j} and ε_t are Gaussian noises with $\varepsilon_t \sim \mathcal{N}(0, \sigma^2)$ and are assumed to be independent. w_j and w_i are
 1232 constants (model weights).

1233 Since the expectation operator $\mathbb{E}[\cdot]$ is linear: - The second term's expectation is:
 1234

$$1235 \quad \mathbb{E} \left[2 \left(\sum_{j=1}^L w_j \varepsilon_{t-j} - \varepsilon_t \right) (w_i \Delta) \right] = 2w_i \Delta \cdot \mathbb{E} \left[\sum_{j=1}^L w_j \varepsilon_{t-j} - \varepsilon_t \right] = 0.$$

1238 - The third term's expectation is:
 1239

$$\mathbb{E}[(w_i \Delta)^2] = w_i^2 \Delta^2.$$

1241 For the first term:

$$1242 \quad \mathbb{E} \left[\left(\sum_{j=1}^L w_j \varepsilon_{t-j} - \varepsilon_t \right)^2 \right] = \text{Var} \left(\sum_{j=1}^L w_j \varepsilon_{t-j} - \varepsilon_t \right).$$

1246 For a linear combination $X = \sum_k a_k Y_k$, the variance is:
 1247

$$1248 \quad \text{Var} \left(\sum_k a_k Y_k \right) = \sum_k a_k^2 \text{Var}(Y_k) + 2 \sum_{k < l} a_k a_l \text{Cov}(Y_k, Y_l).$$

1250 Since the noises are independent:

$$\text{Cov}(\varepsilon_{t-j}, \varepsilon_t) = 0.$$

1253 Thus:

$$1254 \quad \text{Var} \left(\sum_{j=1}^L w_j \varepsilon_{t-j} - \varepsilon_t \right) = \sum_{j=1}^L w_j^2 \sigma^2 + \sigma^2.$$

1257 Substituting into the MSE expression:

$$1259 \quad \text{MSE}_{\text{control}} = \sigma^2 \left(1 + \sum_{j=1}^L w_j^2 \right) + w_i^2 \Delta^2. \quad (4)$$

1262 When Δ follows an arbitrary distribution \mathcal{D} :

$$\Delta_k \sim \mathcal{D}.$$

1265 with mean μ_Δ and variance σ_Δ^2 . In practical time series anomaly detection, the second moment of anomalies often
 1266 exceeds that of Gaussian noise:

$$1267 \quad \mathbb{E}[\Delta_k^2] = \sigma_\Delta^2 + \mu_\Delta^2 > \sigma^2.$$

1268 The computation for MSE remains consistent, except that:

$$1270 \quad \mathbb{E}[(w_i \Delta)^2] = w_i^2 (\sigma_\Delta^2 + \mu_\Delta^2).$$

1272 Thus, the MSE of the control group under an arbitrary distribution is:

$$1274 \quad \text{MSE}_{\text{control, arbitrary distribution}} = \sigma^2 \left(1 + \sum_{j=1}^L w_j^2 \right) + w_i^2 (\sigma_\Delta^2 + \mu_\Delta^2). \quad (5)$$

1276 D.3 ERROR ANALYSIS FOR EXPERIMENTAL GROUP (DYNAMIC PREDICTION REPLACEMENT)
12771278 The experimental group replaces outliers x_{t-i} with historical predictions \hat{x}_{t-i} . The replacement value is defined as:
1279

1280
$$x'_{t-i} = \hat{x}_{t-i} = f(t-i) + \varepsilon_{t-i} + e_{t-i},$$

1281

1282 where $e_{t-i} \triangleq \hat{x}_{t-i} - [f(t-i) + \varepsilon_{t-i}]$ represents the historical prediction error. From Appendix D.11, we have
1283 established that $\mathbb{E}[e_t] = 0$ for any time t , and let $\text{Var}(e_{t-i}) = \sigma_e^2$.
12841285 PREDICTION ERROR DERIVATION
12861287 Following similar derivation logic as the control group, the prediction becomes:
1288

1289
$$\hat{x}'_t = \underbrace{\sum_{j=1}^L w_j f(t-j) + b + w_i e_{t-i}}_{\text{Normal prediction term}}.$$

1290

1291 The prediction error is then:
1292

1293
$$\begin{aligned} e'_t &= \hat{x}'_t - [f(t) + \varepsilon_t] \\ 1294 &= \left[\sum_{j=1}^L w_j f(t-j) + b + w_i e_{t-i} \right] - [f(t) + \varepsilon_t] \\ 1295 &= \underbrace{\sum_{j=1}^L w_j \varepsilon_{t-j} - \varepsilon_t}_{\text{Noise error term}} + w_i e_{t-i}. \end{aligned} \tag{6}$$

1296

1297 MSE DECOMPOSITION
12981299 The mean squared error (MSE) is given by $\text{MSE} = \mathbb{E}[e'^2]$. Expanding $(e'_t)^2$:
1300

1301
$$(e'_t)^2 = \underbrace{\left(\sum_{j=1}^L w_j \varepsilon_{t-j} - \varepsilon_t \right)^2}_A + 2 \underbrace{\left(\sum_{j=1}^L w_j \varepsilon_{t-j} - \varepsilon_t \right)}_B (w_i e_{t-i}) + \underbrace{(w_i e_{t-i})^2}_C. \tag{7}$$

1302

1303 D.3.1 TERM A ANALYSIS
1304

1305
$$\begin{aligned} \mathbb{E}[A] &= \mathbb{E} \left[\left(\sum_{j=1}^L w_j \varepsilon_{t-j} - \varepsilon_t \right)^2 \right] \\ 1306 &= \sigma^2 \left(1 + \sum_{j=1}^L w_j^2 \right). \end{aligned}$$

1307

1308 This matches the control group's noise error variance derivation.
13091310 D.3.2 TERM C ANALYSIS
1311

1312
$$\mathbb{E}[C] = w_i^2 \text{Var}(e_{t-i}) = w_i^2 \sigma_e^2.$$

1313

1314 D.3.3 TERM B ANALYSIS
13151316 Figure 4 illustrates the temporal structure of the input sequence used for autoregressive prediction, highlighting the
1317 influence of dynamic anomaly replacement on prediction error. The lower two timelines depict how an anomalous
1318 input x_{t-i} (marked in orange) is involved in both the prediction of x_t and the historical prediction of x_{t-i} itself.
1319 The top timeline decomposes the weight allocation into two regions: the first i terms (affected by the anomaly
1320 through e_{t-i}), and the remaining $L - i$ terms, which may share overlapping noise components due to common
1321 history. This overlap results in cross-terms such as $\mathbb{E}[e_{t-i} \varepsilon_{t-j}]$ in the error expansion, breaking independence and
1322 introducing additional variance. Such dependency explains the emergence of the term $2w_i \sigma^2 (\sum_{k=1}^{L-i} w_{i+k} w_k - w_i)$
1323 in the MSE derivation.
1324

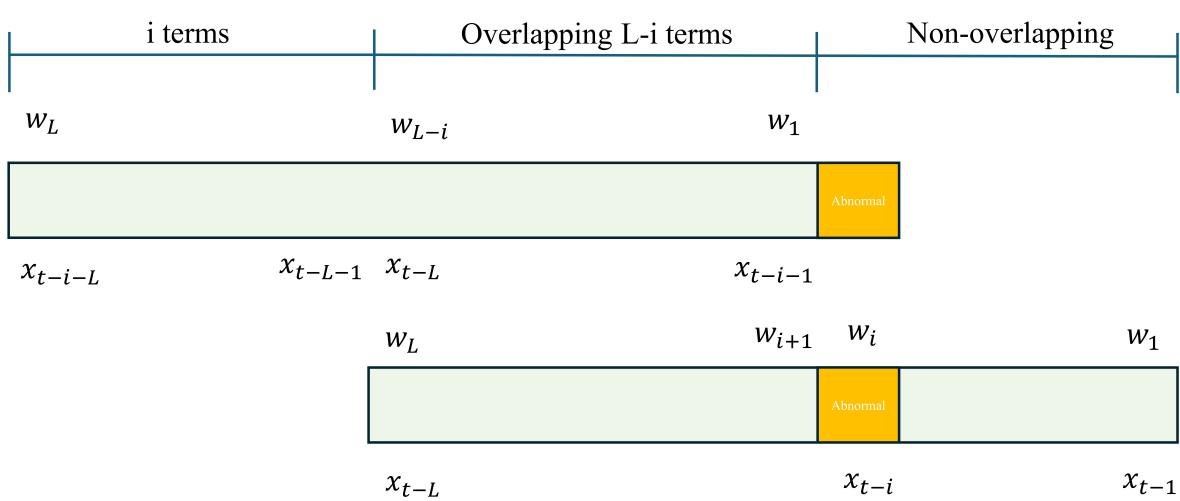


Figure 4: Illustration of Temporal Input Structure and Cross-Term Interference in Dynamic Replacement.

So the cross-term expectation in Equation (7) requires careful analysis.

$$\begin{aligned}\mathbb{E}[B] &= 2w_i \mathbb{E} \left[\left(\sum_{j=1}^L w_j \varepsilon_{t-j} - \varepsilon_t \right) e_{t-i} \right] \\ &= 2w_i \left(\sum_{j=1}^L w_j \mathbb{E}[\varepsilon_{t-j} e_{t-i}] - \underbrace{\mathbb{E}[\varepsilon_t e_{t-i}]}_0 \right),\end{aligned}$$

where $\mathbb{E}[\varepsilon_t e_{t-i}] = 0$ due to temporal independence.

Following the same decomposition as in Equation (6), the historical prediction error e_{t-i} is given by:

$$e_{t-i} = \sum_{k=1}^L w_k \varepsilon_{t-i-k} - \varepsilon_{t-i}. \quad (8)$$

This decomposition comes from the model's training on normal data where $\sum_{k=1}^L w_k f(t - i - k) + b \approx f(t - i)$.

As illustrated in Figure 4, by substituting Equation (8) into the expectation, we obtain:

1392
 1393
 1394
$$\sum_{j=1}^L w_j \mathbb{E}[\varepsilon_{t-j} e_{t-i}] = \sum_{j=1}^L w_j \mathbb{E} \left[\varepsilon_{t-j} \left(\sum_{k=1}^L w_k \varepsilon_{t-i-k} - \varepsilon_{t-i} \right) \right]$$

1395 (Substituting the expression for e_{t-i} from Equation equation 8)

1396
$$= \sum_{j=1}^L \sum_{k=1}^L w_j w_k \mathbb{E}[\varepsilon_{t-j} \varepsilon_{t-i-k}] - \sum_{j=1}^L w_j \mathbb{E}[\varepsilon_{t-j} \varepsilon_{t-i}]$$

1397 (Distributing the expectation and weights)

1398
$$= \sum_{k=1}^L w_k \left(\sum_{j=1}^L w_j \mathbb{E}[\varepsilon_{t-j} \varepsilon_{t-i-k}] \right) - \sum_{j=1}^L w_j \mathbb{E}[\varepsilon_{t-j} \varepsilon_{t-i}]$$

1399 (Reordering summation operations)

1400
$$= \sum_{k=1}^L w_k \left(\sigma^2 \sum_{j=1}^L w_j \delta_{j,i+k} \right) - \sigma^2 \sum_{j=1}^L w_j \delta_{j,i}$$

1401 (Applying i.i.d. noise property: $\mathbb{E}[\varepsilon_a \varepsilon_b] = \sigma^2 \delta_{a,b}$)

1402
$$= \sigma^2 \sum_{k=1}^L w_k w_{i+k} \mathbb{I}(i+k \leq L) - \sigma^2 w_i$$

1403 (Evaluating Kronecker delta $\delta_{j,i+k}$)

1404
$$= \sigma^2 \left(\sum_{k=1}^{L-i} w_k w_{i+k} \right) - \sigma^2 w_i$$

1405 (Truncating sum since $w_{i+k} = 0$ for $i+k > L$)

1406
$$= \sigma^2 \left(\sum_{k=1}^{L-i} w_{i+k} w_k - w_i \right), \quad (9)$$

1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425 where we use the following mathematical constructs:

1426
 1427 • **Kronecker delta:** $\delta_{a,b} = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{otherwise} \end{cases}$

1428
 1429
 1430 • **Indicator function:** $\mathbb{I}(P) = \begin{cases} 1 & \text{if proposition } P \text{ is true} \\ 0 & \text{otherwise} \end{cases}$

1431
 1432
 1433 • **Boundary condition:** $w_m = 0$ for all $m > L$

1434
 1435 The key insight comes from the temporal alignment condition:

1436
 1437
$$\mathbb{E}[\varepsilon_{t-j} \varepsilon_{t-i-k}] = \sigma^2 \delta_{j,i+k} = \begin{cases} \sigma^2, & \text{if } t-j = t-i-k \ (j = i+k), \\ 0, & \text{otherwise.} \end{cases}$$

1438
 1439
 1440 This derivation explicitly shows how the temporal correlations between:

1441
 1442 • Current window's noise terms (ε_{t-j})

1443
 1444 • Historical prediction error components (ε_{t-i-k})

1445
 1446 thus, we generate the weight coupling terms in the final expression:

1447
 1448
$$\mathbb{E}[B] = 2w_i \sigma^2 \left(\sum_{k=1}^{L-i} w_{i+k} w_k - w_i \right).$$

1450 D.4 FINAL MSE EXPRESSION
1451

1452 Combining all components:

1453
1454
$$\text{MSE}_{\text{exp}} = \sigma^2 \left(1 + \sum_{j=1}^L w_j^2 \right) + w_i^2 \sigma_e^2$$

1455
1456
1457
$$+ 2w_i \sigma^2 \left(\sum_{k=1}^{L-i} w_{i+k} w_k - w_i \right).$$

1458
1459

1460 D.4.1 ANALYTICAL EXPRESSION FOR THE MSE DIFFERENCE BETWEEN TWO GROUPS
1461

1462 Summarizing:

1463
1464
$$\text{MSE}_{\text{ctrl}} = \sigma^2 \left(1 + \sum_{j=1}^L w_j^2 \right) + w_i^2 \Delta^2.$$

1465
1466
1467
$$\text{MSE}_{\text{exp}} = \sigma^2 \left(1 + \sum_{j=1}^L w_j^2 \right) + w_i^2 \sigma_e^2 + 2w_i \sigma^2 \left(\sum_{k=1}^{L-i} w_{i+k} w_k - w_i \right).$$

1468
1469

1470 Thus, the difference is:

1471
1472
$$\text{MSE}_{\text{ctrl}} - \text{MSE}_{\text{exp}} = w_i^2 (\Delta^2 - \sigma_e^2) - 2w_i \sigma^2 \left(\sum_{k=1}^{L-i} w_{i+k} w_k - w_i \right).$$

1473
1474

1475 When Δ is extended to a random variable with mean μ_Δ and variance σ_Δ^2 , the difference becomes:

1476
1477
$$\text{MSE}_{\text{ctrl}} - \text{MSE}_{\text{exp}} = w_i^2 (\sigma_\Delta^2 + \mu_\Delta^2 - \sigma_e^2) - 2w_i \sigma^2 \left(\sum_{k=1}^{L-i} w_{i+k} w_k - w_i \right).$$

1478
1479

1480 The experimental group outperforms the control group when:

1481
1482
$$\sigma_\Delta^2 + \mu_\Delta^2 > \sigma_e^2 + 2\sigma^2 \left(\frac{\sum_{k=1}^{L-i} w_{i+k} w_k}{w_i} - 1 \right).$$

1483
1484

1485 where $\sigma_e^2 = \sigma^2 \left(\sum_{i=1}^L w_i^2 + 1 \right)$. Combining terms, the inequality becomes:

1486
1487
1488
$$\sigma_\Delta^2 + \mu_\Delta^2 > \sigma^2 \left(\sum_{i=1}^L w_i^2 + 1 \right) + 2\sigma^2 \left[\frac{\sum_{k=1}^{L-i} w_{i+k} w_k}{w_i} - 1 \right], \quad (10)$$

1489
1490

1491 where $\sigma_\Delta^2 + \mu_\Delta^2$ represents the second moment of the anomaly signal. The presence of the regression weight w_i in
1492 the denominator, which depends on data-driven estimates, renders analytical derivation of a closed-form guarantee
1493 for equation 10 intractable. To address this, we conducted an extensive numerical simulation study to empirically
1494 evaluate the probability that the inequality holds, thereby assessing the practical robustness of the method.1495 D.5 NUMERICAL SIMULATION
14961497 To validate the inequality equation 10, we conducted simulations on time series data satisfying the Lipschitz
1498 smoothness condition, which ensures bounded gradients. We generated sequences using a random walk process
1499 smoothed with a Gaussian filter (sigma = 2.0):

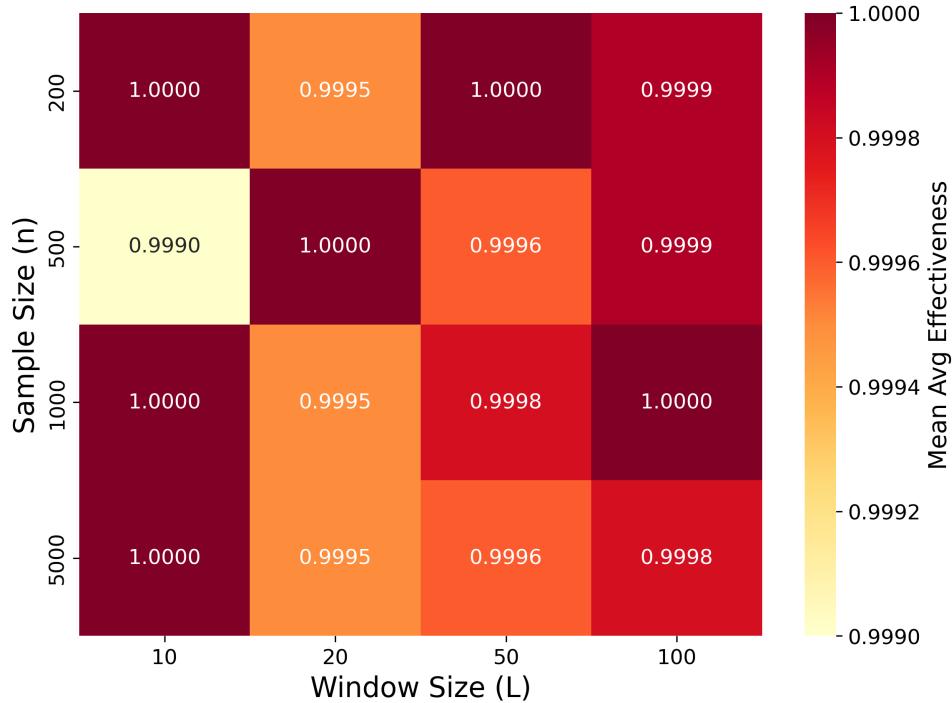
1500
1501
$$x_t = \sum_{s=1}^t \eta_s, \quad \eta_s \sim \mathcal{N}(0, 0.3^2),$$

1502
1503

1504 followed by convolution with a Gaussian kernel to enforce smoothness and the Lipschitz condition while capturing
1505 temporal dependencies and stochastic fluctuations. All sequences were normalized to the unit interval [0, 1], with μ
1506 and σ^2 representing the mean and variance of the normalized sequence.1507 For each sequence of length $n + L$, we constructed a lagged feature matrix $X \in \mathbb{R}^{n \times L}$ and target vector $y \in \mathbb{R}^n$,
1508 fitting a ridge regression (with L2 regularization) to obtain weights $w \in \mathbb{R}^L$. The regularization parameter λ

1508 was adaptively selected based on the condition number of $X^\top X$, ranging from 10^{-6} to 10^{-3} times the average
 1509 eigenvalue to ensure numerical stability. The noise variance σ^2 was estimated from the residuals. The anomaly
 1510 second moment $\mu_\Delta^2 + \sigma_\Delta^2$ was approximated using the derived form $\mu^2 + 8.575\mu\sigma + 20.014\sigma^2$, and the right-hand
 1511 side threshold was computed as $\sigma^2 \left(\sum_{i=1}^L w_i^2 + 1 \right) + 2\sigma^2 (Q_i - 1)$, where $Q_i = \frac{\sum_{k=1}^{L-i} w_{i+k} w_k}{w_i}$. The inequality
 1512 was evaluated for each valid Q_i (where $|w_i| > 10^{-30}$ to avoid division-by-zero errors), yielding the effectiveness
 1513 probability as the proportion of indices i for which the inequality holds.
 1514

1515 To ensure robustness, we performed a grid search over sample sizes $n \in \{200, 500, 1000, 5000\}$ and lag windows
 1516 $L \in \{10, 20, 50, 100\}$, resulting in 16 configurations. Each configuration was tested with 100 independent
 1517 experiments using distinct random seeds. As shown in the figure, across all 1600 experiments, the overall mean
 1518 effectiveness probability was 0.9998 ± 0.0035 , indicating that the inequality holds with approximately 99.98%
 1519 probability and low variability. These results provide strong empirical support for the method's reliability on
 1520 Lipschitz-smooth time series in finite-sample settings.
 1521



1545 Figure 5: Heatmap of Mean Average Effectiveness Across Sample and Window Sizes. Each cell represents
 1546 the average effectiveness probability from 100 independent experiments, with values ranging from 0.9990 to
 1547 1.0000. The color gradient, from light yellow (lower effectiveness) to dark red (higher effectiveness), highlights
 1548 the robustness of the inequality, with most configurations achieving probabilities near or at 1.0000, indicating
 1549 near-certain satisfaction across the tested parameter space. This visual representation complements the numerical
 1550 findings, reinforcing the method's reliability for Lipschitz-smooth time series under varying data conditions.
 1551

1552 D.5.1 SUPPLEMENT: ANALYTICAL DERIVATION OF THE ANOMALY SECOND MOMENT

1553 In the context of anomaly detection, let the original time series random variable X have mean $E[X] = \mu$ and
 1554 variance $\text{Var}[X] = \sigma^2$. Anomalies are introduced by injecting a bias δ at random positions, ensuring detectability
 1555 under the 3-sigma rule. Specifically, the value at an anomaly point is $A = X + \delta$, where δ follows a truncated
 1556 normal distribution $N(\mu_\delta = 4\sigma, \tau^2 = \sigma^2)$ with $\delta \geq 3\sigma$, and X and δ are assumed independent. Our goal is to
 1557 compute the second moment $E[A^2] = \text{Var}[A] + [E[A]]^2$.
 1558

1559 MEAN OF THE ANOMALY: $E[A]$

1560 Since $A = X + \delta$ and X and δ are independent, the mean is:
 1561

$$E[A] = E[X] + E[\delta] = \mu + E[\delta].$$

1562 For $\delta \sim N(\mu_\delta = 4\sigma, \tau^2 = \sigma^2)$ truncated at $\delta \geq 3\sigma$, the conditional expectation of a truncated normal distribution
 1563 is:
 1564

$$E[\delta | \delta \geq 3\sigma] = \mu_\delta + \tau \cdot \frac{\phi\left(\frac{a-\mu_\delta}{\tau}\right)}{1 - \Phi\left(\frac{a-\mu_\delta}{\tau}\right)},$$

1566 where $\phi(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$ is the standard normal probability density function, $\Phi(z) = P(Z \leq z)$ is the cumulative
 1567 distribution function, and the truncation point is $a = 3\sigma$. Let the standardized variable be:
 1568

$$1569 z = \frac{a - \mu_\delta}{\tau} = \frac{3\sigma - 4\sigma}{\sigma} = -1.$$

1570 Using standard normal tables, $\phi(-1) \approx 0.2419707$ and $\Phi(-1) \approx 0.1586553$, so $1 - \Phi(-1) \approx 0.8413447$. Thus:
 1571

$$1572 E[\delta | \delta \geq 3\sigma] = 4\sigma + \sigma \cdot \frac{0.2419707}{0.8413447} \approx 4.2877\sigma.$$

1573 Hence:

$$1574 E[A] = \mu + 4.2877\sigma.$$

1576 VARIANCE OF THE ANOMALY: $\text{Var}[A]$

1578 Since X and δ are independent, the variance is:

$$1579 \text{Var}[A] = \text{Var}[X] + \text{Var}[\delta] = \sigma^2 + \text{Var}[\delta].$$

1580 The variance of the truncated normal distribution is:

$$1581 \text{Var}[\delta | \delta \geq 3\sigma] = \tau^2 \left[1 + \frac{\frac{a - \mu_\delta}{\tau} \phi\left(\frac{a - \mu_\delta}{\tau}\right)}{1 - \Phi\left(\frac{a - \mu_\delta}{\tau}\right)} - \left(\frac{\phi\left(\frac{a - \mu_\delta}{\tau}\right)}{1 - \Phi\left(\frac{a - \mu_\delta}{\tau}\right)} \right)^2 \right].$$

1584 Substituting $\tau = \sigma$, $a = 3\sigma$, $\mu_\delta = 4\sigma$, and $\frac{a - \mu_\delta}{\tau} = -1$, with $\phi(-1) \approx 0.2419707$ and $1 - \Phi(-1) \approx 0.8413447$,
 1585 we compute:

$$1586 \frac{\phi(-1)}{1 - \Phi(-1)} \approx \frac{0.2419707}{0.8413447} \approx 0.2876821,$$

$$1588 \frac{a - \mu_\delta}{\tau} \cdot \frac{\phi\left(\frac{a - \mu_\delta}{\tau}\right)}{1 - \Phi\left(\frac{a - \mu_\delta}{\tau}\right)} = (-1) \cdot 0.2876821 \approx -0.2876821,$$

$$1591 \left(\frac{\phi(-1)}{1 - \Phi(-1)} \right)^2 \approx (0.2876821)^2 \approx 0.0827608.$$

1593 Thus:

$$1594 \text{Var}[\delta] = \sigma^2 [1 - 0.2876821 - 0.0827608] \approx 0.6296\sigma^2.$$

1595 Therefore:

$$1596 \text{Var}[A] = \sigma^2 + 0.6296\sigma^2 \approx 1.6296\sigma^2.$$

1598 SECOND MOMENT: $E[A^2]$

1599 The second moment is given by:

$$1600 E[A^2] = \text{Var}[A] + [E[A]]^2.$$

1601 Substituting $E[A] = \mu + 4.2877\sigma$ and $\text{Var}[A] \approx 1.6296\sigma^2$, we obtain:

$$1602 E[A^2] = 1.6296\sigma^2 + (\mu + 4.2877\sigma)^2 = \mu^2 + 8.5754\mu\sigma + 20.0142\sigma^2.$$

1603 In simulations, we used the approximated coefficients (8.575 and 20.014), which are consistent with the analytical
 1604 result within numerical rounding.

1606 D.6 UPPER BOUND ANALYSIS OF Z UNDER THE SINUSOIDAL MODEL

1608 We aim to derive an upper bound for the right-hand side of the key inequality:

$$1610 \sigma_\Delta^2 + \mu_\Delta^2 > \sigma^2 \left(\sum_{i=1}^L w_i^2 + 1 \right) + 2\sigma^2 \left[\frac{\sum_{k=1}^{L-i} w_{i+k} w_k}{w_i} - 1 \right],$$

1612 We define:

$$1614 Z = \sigma_e^2 + 2\sigma^2 \left(\frac{\sum_{k=1}^{L-i} w_{i+k} w_k}{w_i} - 1 \right).$$

1616 While the numerical simulations provide robust empirical evidence that the inequality holds with high probability
 1617 across a range of practical settings, offering confidence in the method's applicability to general Lipschitz-smooth
 1618 time series, deriving a closed-form analytical guarantee remains challenging due to the data-dependent nature of
 1619 the regression weights. To gain deeper theoretical insights and enable further tractable analysis of the upper bound
 1620 on Z , we now consider a simplified yet representative data generation model. Specifically, we adopt a sinusoidal
 1621 function to model the underlying time series, which captures periodic behaviors commonly observed in real-world
 1622 signals while allowing explicit computation of the weights and bounds. This specialization facilitates the derivation
 1623 of analytical expressions without loss of generality for the core principles, bridging the empirical findings to precise
 theoretical results.

1624 DATA GENERATION MODEL

1625

1626 To simulate normal time series patterns, we substitute a sine function for the arbitrary underlying function $f(t)$
1627 when constructing the standard training time series, defined as:

1628

1629
$$x_t = \sin(t),$$

1630

1631 which preserves the structure of the derivation and leads to the same inequality condition, while enabling tractable
1632 analysis.

1633 The test set standard time series is constructed by superimposing Gaussian noise on the sine function:

1634

1635
$$x_t = \sin(t) + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma^2).$$

1636

1637 where ε_t is Gaussian noise with mean 0 and variance σ^2 . To introduce anomalies, we add a fixed deviation Δ at a
1638 random time k , generating an anomalous data point as:

1639

1640
$$x_k = \sin(k) + \varepsilon_k + \Delta.$$

1641 We begin by analyzing the upper bound of the variance term Z defined as:

1642

1643
1644
1645
1646
1647
$$Z = \sigma_e^2 + 2\sigma^2 \left[\underbrace{\frac{\sum_{k=1}^{L-i} w_{i+k} w_k}{w_i}}_Q - 1 \right]. \quad (11)$$

1648 where σ_e^2 represents the error variance and Q is a correlation term between weight vectors.1649 D.6.1 UPPER BOUND OF σ_e^2

1650 From Appendix D.12, we have the expression for the error variance in Equation (11):

1651

1652
1653
$$\sigma_e^2 = \sigma^2 \left(\sum_{j=1}^L w_j^2 + 1 \right).$$

1654 The weight coefficients w_j are given by the cosine weighting function:

1655

1656
1657
$$w_j = \frac{2}{L} \cos(j).$$

1658 The squared weights therefore satisfy:

1659

1660
1661
1662
$$w_j^2 = \frac{4}{L^2} \cos^2(j).$$

1663 Since $\cos^2(j) \leq 1$ for all j , we can bound the sum of squared weights:

1664

1665
1666
1667
$$\sum_{j=1}^L w_j^2 \leq L \cdot \frac{4}{L^2} = \frac{4}{L}.$$

1668 Substituting this into the error variance expression yields:

1669

1670
1671
1672
$$\sigma_e^2 \leq \sigma^2 \left(\frac{4}{L} + 1 \right).$$

1673 This establishes $\sigma^2 \left(\frac{4}{L} + 1 \right)$ as an upper bound for σ_e^2 .

1674

1682 D.6.2 UPPER BOUND OF D 1683
1684 To proceed, we analyze the term D in Equation (11) more carefully,1685
1686

1687
$$D = \frac{\sum_{k=1}^{L-i} w_{i+k} w_k}{w_i} = \frac{2 \sum_{k=1}^{L-i} \cos(i+k) \cos(k)}{L \cos(i)}.$$

1688

1689
1690 Our goal is to find the maximum possible value D_{\max} at a given confidence level p (e.g., 95%), such that
1691 $P(D \leq D_{\max}) \geq p$.

1692 STEP 1: SIMPLIFICATION USING TRIGONOMETRIC IDENTITIES

1693
1694 Let S denote the summation in the numerator:1695
1696

1697
$$S = \sum_{k=1}^{L-i} \cos(i+k) \cos(k).$$

1698
1699

1700
1701 Using the product-to-sum identity:1702
1703

1704
$$\cos A \cos B = \frac{1}{2} [\cos(A+B) + \cos(A-B)].$$

1705

1706 We set $A = i+k$ and $B = k$ to obtain:1707
1708

1709
$$\cos(i+k) \cos(k) = \frac{1}{2} [\cos(i+2k) + \cos(i)].$$

1710

1711 The summation then decomposes into two parts:

1712
1713

1714
$$S = \frac{1}{2} \sum_{k=1}^{L-i} \cos(i+2k) + \frac{1}{2} \cos(i)(L-i).$$

1715
1716

1717 Substituting back into D :1718
1719

1720
$$D = \frac{2}{L} \cdot \frac{S}{\cos(i)} = \frac{1}{L} \left[\frac{\sum_{k=1}^{L-i} \cos(i+2k)}{\cos(i)} + (L-i) \right].$$

1721
1722

1723 The remaining summation can be evaluated using the trigonometric sum formula Knapp (2009):
1724
1725

1726
$$\sum_{k=1}^N \cos(\theta + \alpha k) = \frac{\sin\left(\frac{N\alpha}{2}\right) \cos\left(\theta + \frac{(N+1)\alpha}{2}\right)}{\sin\left(\frac{\alpha}{2}\right)}.$$

1727
1728
1729

1730 With $\theta = i$ and $\alpha = 2$, we get:
1731
1732

1733
$$\sum_{k=1}^{L-i} \cos(i+2k) = \frac{\sin(L-i) \cos(L+1)}{\sin(1)}.$$

1734
1735

1736 Thus, D simplifies to:
1737
1738

1739
$$D = \frac{\sin(L-i) \cos(L+1)}{L \sin(1) \cos(i)} + \frac{L-i}{L}.$$

1740 STEP 2: ANALYSIS OF THE DISTRIBUTION OF $\cos i$

1741
 1742 Since i is an integer, the values of $\cos i$ are distributed within the interval $[-1, 1]$. To compute the statistical
 1743 properties of A , we need to characterize the distribution pattern of $\cos i$.

1744 By the Equidistribution Theorem, when i is uniformly distributed across the integers, the expression $\cos i = \cos(i)$
 1745 mod 2π) implies that $i \bmod 2\pi$ becomes asymptotically uniformly distributed in $[0, 2\pi)$ as i ranges over large
 1746 integer values. This allows us to approximate the distribution of $i \bmod 2\pi$ as uniform over $[0, 2\pi)$. Consequently,
 1747 the cumulative distribution function (CDF) of $\cos i$ can be derived as:

$$1749 \quad 1750 \quad P(\cos i \leq c) = 1 - \frac{1}{\pi} \arccos c, \quad c \in [-1, 1]. \quad (12)$$

1751
 1752 The derivation of Equation (12) follows from the symmetry of the cosine function. For any $c \in [-1, 1]$, the
 1753 inequality $\cos \theta \leq c$ holds when θ lies in the union of intervals $[\arccos c, 2\pi - \arccos c]$. The probability measure
 1754 of this set is given by the ratio of its length to 2π :

$$1755 \quad 1756 \quad P(\cos \theta \leq c) = \frac{(2\pi - \arccos c) - \arccos c}{2\pi} = 1 - \frac{1}{\pi} \arccos c.$$

1758 In our problem formulation, the condition D requires $\cos(i) > 0$ (as negative values would be meaningless in
 1759 this context). This restriction allows us to focus on the positive half of the cosine distribution. By exploiting the
 1760 symmetry of the cosine function about zero, we can equivalently analyze the distribution of $|\cos i|$, which simplifies
 1761 our calculations. The probability that $|\cos i|$ exceeds a threshold c is:

$$1763 \quad 1764 \quad P(|\cos i| \geq c) = 2 \cdot P(\cos i \geq c) = \frac{2}{\pi} \arccos c.$$

1765 To establish a lower bound with confidence level p , we require:

$$1768 \quad 1769 \quad P(|\cos i| \geq c) \geq p \quad \Rightarrow \quad \frac{2}{\pi} \arccos c \geq p.$$

1770 Solving for c and noting that the arccosine function is monotonically decreasing, we obtain:

$$1772 \quad 1773 \quad \arccos c \geq \frac{\pi}{2}p \quad \Rightarrow \quad c \leq \cos\left(\frac{\pi}{2}p\right).$$

1775 Thus, the lower bound for $|\cos i|$ at confidence level p is:

$$1777 \quad 1778 \quad c_p = \cos\left(\frac{\pi}{2}p\right).$$

1779 For a 95% confidence level ($p = 0.95$), we compute:

$$1782 \quad c_{0.95} = \cos\left(\frac{\pi}{2} \times 0.95\right) \approx 0.0785.$$

1784 This result indicates that with 95% confidence, $|\cos i|$ will be greater than or equal to approximately 0.0785. Only
 1785 5% of cases may fall outside this range, which we consider exceptional.

1786 STEP 3: ESTIMATING THE UPPER BOUND OF D

1788 We begin with the following approximation of the term D :

$$1791 \quad 1792 \quad D \approx \frac{\sin(L-i) \cos(L+1)}{\sin(1) \cdot L \cdot \cos(i)} + \frac{L-i}{L}. \quad (13)$$

1793 To estimate the upper bound of D , we leverage the well-known trigonometric inequalities:

$$1795 \quad |\cos(\theta)| \leq 1, \quad |\sin(\theta)| \leq 1.$$

1796 Thus, the numerator in the first term is bounded as:

$$1797 \quad |\sin(L-i) \cos(L+1)| \leq 1. \quad (14)$$

1798 Next, consider the valid range of i , which satisfies:

$$1800 \quad 1 \leq i \leq L-1 \Rightarrow \frac{L-i}{L} < 1.$$

1801 Combining this with inequalities equation 13 and equation 14, we obtain:

$$1803 \quad D \lesssim \frac{1}{\sin(1) \cdot L \cdot \cos(i)} + 1.$$

1805 To find the worst-case (i.e., maximal) upper bound for D , we consider the scenario where $\cos(i)$ attains its minimum
1806 value in absolute magnitude. For a given confidence level p , we assume:

$$1808 \quad |\cos(i)| \geq c_p,$$

1809 for some constant c_p , leading to the refined upper bound:

$$1810 \quad D \leq \frac{1}{\sin(1) \cdot L \cdot c_p} + 1.$$

1813 Assuming that the cosine bound c_p is derived from quantiles of the standard normal distribution such that:

$$1814 \quad c_p = \cos\left(\frac{\pi}{2}p\right),$$

1816 we arrive at:

$$1817 \quad D \leq \frac{1}{\sin(1) \cdot L \cdot \cos\left(\frac{\pi}{2}p\right)} + 1.$$

1819 In the case where the confidence level $p = 0.95$, we substitute $\sin(1) \approx 0.841$, $\cos\left(\frac{\pi}{2} \cdot 0.95\right) \approx 0.0785$, yielding:

$$1821 \quad D \leq \frac{1}{0.841 \cdot 0.0785 \cdot L} + 1 \approx \frac{1}{15.14 \cdot L} + 1. \quad (15)$$

1823 FINAL UPPER BOUND OF Z

1825 Recall the expression of the error term Z , which involves the estimated error variance σ_e^2 , the noise variance σ^2 ,
1826 and a weighted cross-correlation component:

$$1828 \quad Z = \sigma_e^2 + 2\sigma^2 \underbrace{\left[\frac{\sum_{k=1}^{L-i} w_{i+k} w_k}{w_i} - 1 \right]}_D.$$

1832 We substitute the upper bounds of σ_e^2 and D derived previously. If the upper bound of σ_e^2 is given by:

$$1834 \quad \sigma_e^2 \leq \sigma^2 \left(\frac{4}{L} + 1 \right),$$

1836 and from Eq. equation 15, the upper bound of $D - 1$ is:

$$1837 \quad D - 1 \leq \frac{1}{15.14 \cdot L},$$

1839 then the upper bound of Z becomes:

$$1841 \quad Z \leq \sigma^2 \left(\frac{4}{L} + 1 \right) + 2\sigma^2 \cdot \left(\frac{1}{15.14 \cdot L} \right).$$

1843 Combining the terms yields:

$$1845 \quad Z \leq \sigma^2 \left(\frac{4 + \frac{2}{15.14}}{L} + 1 \right) \approx \sigma^2 \left(\frac{4.132}{L} + 1 \right).$$

1847 D.7 CONCLUSION

1849 At 95% confidence level, the dynamic replacement strategy will effectively reduce prediction error and improve
1850 detection performance when the second moment of anomaly deviation satisfies:

$$1852 \quad \mathbb{E}[\Delta^2] = \sigma_\Delta^2 + \mu_\Delta^2 > \left(\frac{4.312}{L} + 1 \right) \sigma^2. \quad (16)$$

1855 This establishes a quantitative threshold for anomaly detection effectiveness based on window length L and noise
variance σ^2 .

1856 D.8 SPECIAL CASE: NO GAUSSIAN NOISE IN THE TEST SET
18571858 **Control Group (No Replacement of Anomalous Value)** Assume the input window contains an anomaly
1859 $x_{t-i} = \sin(t-i) + \Delta$, then the predicted value is:
1860

1861
$$\hat{x}_t = \sum_{j=1}^L w_j \sin(t-j) + b = \sin(t) + w_i \Delta$$

1862
1863

1864 where $\sum_{j=1}^L w_j \sin(t-j) + b = \sin(t)$ is the normal prediction term and $w_i \Delta$ is the contribution of the anomaly.
18651866 The prediction error is:
1867

1868
$$e_t = \hat{x}_t - \sin(t) = w_i \Delta$$

1869

1870 The mean squared error (MSE) is:
1871

1872
$$\text{MSE}_{\text{Control}} = (w_i \Delta)^2$$

1873

1874 **Experimental Group (Dynamic Replacement of Anomalous Value)** Replace the anomalous input $x_{t-i} = \sin(t-i) + \Delta$ with the predicted value $\hat{x}_{t-i} = \sin(t-i)$, so that the input window is free of anomalies. Then the predicted value becomes:
1875

1876
$$\hat{x}'_t = \sum_{j=1}^L w_j \sin(t-j) + b = \sin(t)$$

1877

1878 The prediction error is:
1879

1880
$$e'_t = \hat{x}'_t - \sin(t) = 0$$

1881

1882 The MSE is:
1883

1884
$$\text{MSE}_{\text{Experimental}} = 0$$

1885

1886 Since the test set contains no noise, the experimental group's MSE is strictly zero, while the control group's MSE is
1887 $(w_i \Delta)^2$. Therefore:
1888

1889
$$\text{MSE}_{\text{Experimental}} = 0 < \text{MSE}_{\text{Control}} = (w_i \Delta)^2$$

1890

1891 This inequality strictly holds, indicating that the dynamic replacement strategy is effective in this special case.
18921893 D.9 DYNAMIC PREDICTION REPLACEMENT EXPERIMENTS
18941895 This experiment aims to evaluate the effectiveness of the dynamic prediction replacement (DPR) strategy in handling
1896 time series anomalies.
18971898 DATA GENERATION
18991900 Two types of synthetic time series with anomalies are generated:
19011902

- 1903 • **Sequential Anomalies Dataset:** Based on a sine wave with added random noise. Several contiguous
1904 anomalies are inserted at random locations, each consisting of 6 to 16 consecutive points.
1905 Anomalies are generated by injecting large random perturbations (standard deviation = 0.8).
- 1906 • **Point Anomalies Dataset:** Also based on a sine wave. Anomalous points are scattered randomly, making
1907 up 5% of the total data. Anomalies are generated by adding large noise perturbations (standard deviation
1908 = 0.9).

19091910 Both datasets contain 1200 time steps, with a sliding window size of 40.
19111912 MODEL ARCHITECTURE
19131914 A simple single-layer fully connected network is used for prediction:
1915

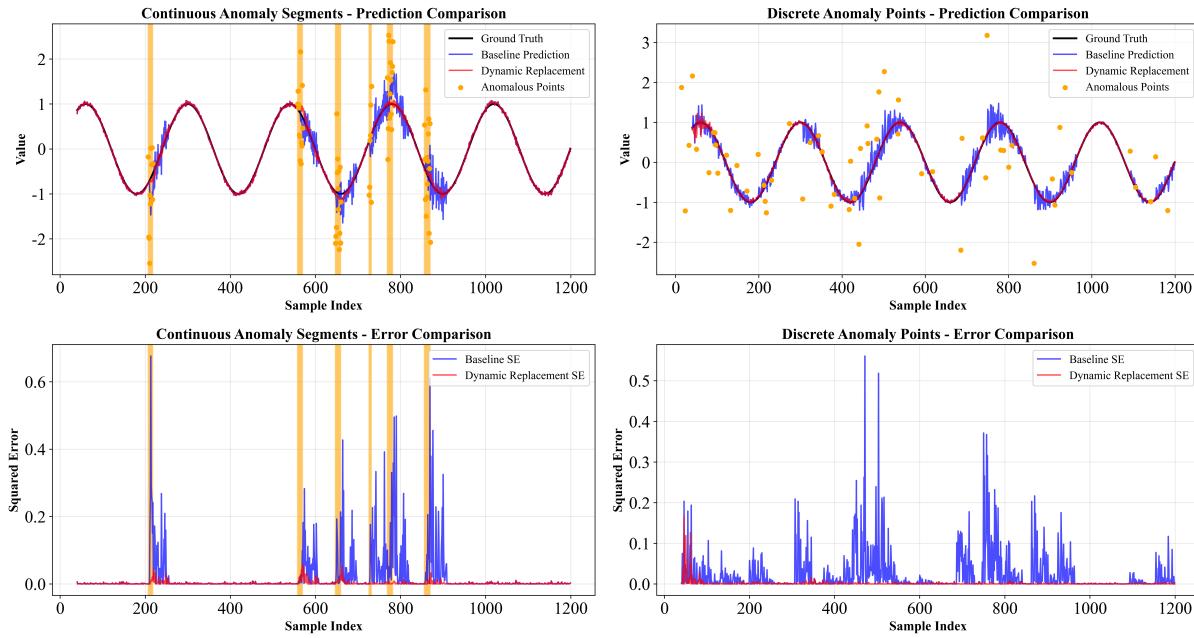
1916
$$f(X) = W \cdot X + b$$

1917

1918 where X is the input window of length 40, and W, b denote the weight matrix and bias term. The model is trained
1919 using Mean Squared Error (MSE) loss and the Adam optimizer for 50 epochs. Training is conducted on noise-added
1920 but anomaly-free data to simulate realistic deployment scenarios.
1921

1914 DYNAMIC PREDICTION REPLACEMENT ALGORITHM
19151916 The DPR algorithm operates as follows:
1917

1. For each time step t , predict the value at t using observations from window $[t - w, t - 1]$.
2. Compute the squared error between the predicted and observed value.
3. If the error exceeds a predefined threshold (set as the 95th percentile of the baseline error distribution), flag it as an anomaly.
4. Replace the detected anomalous value with the prediction for use in subsequent forecasts.

1924 EXPERIMENTAL RESULTS
19251927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
Figure 6: Comparison of prediction and squared error between the baseline and Dynamic Prediction Replacement methods under two scenarios: sequential anomaly segments (left) and scattered anomaly points (right). DPR consistently reduces the influence of anomalies on both prediction and error.

We compare two groups:

- **Baseline Group:** Forecasting directly on data with anomalies, without replacement.
- **DPR Group:** Forecasting after applying the dynamic prediction replacement strategy.

Figure 6 provides a visual comparison of predictions and errors for both scenarios. It highlights how the DPR method effectively reduces anomaly-induced distortion in both the prediction curves and the squared error.

In both sequential and point anomaly scenarios, the DPR method consistently demonstrated substantial error reduction, highlighting its robustness across different anomaly types. As shown in Table 7, DPR reduced forecasting errors by 88.98% in the presence of sequential anomalies, and by an even higher 92.58% when facing scattered point anomalies. The greater improvement in the latter case may stem from the relative ease of identifying and isolating point anomalies, compared to sustained anomalous segments.

Table 7: Forecasting Error (MSE) and Error Reduction of DPR under Different Anomaly Types

Anomaly Type	Method	MSE	Error Reduction
Sequential	Baseline	0.0203	–
	DPR	0.0022	88.98%
Point	Baseline	0.0215	–
	DPR	0.0016	92.58%

1972 The experimental results demonstrate the strong capability of the DPR method in reducing the adverse effects of
 1973 anomalies—both sequential and scattered—in time series data, with approximately 90% error reduction in both
 1974 scenarios.

1975

1976 D.10 PROOF OF THE UNIVERSALITY OF THE DYNAMIC REPLACEMENT STRATEGY IN NONLINEAR MODELS

1977

1978 Although the above theoretical analysis is based on linear models, this section validates the effectiveness of the
 1979 dynamic replacement strategy in nonlinear models, specifically a fully connected neural network with ReLU
 1980 activation. This further demonstrates the universality of the proposed method.

1981 After introducing nonlinear activation functions, the propagation of prediction errors is affected by the nonlinearity.
 1982 Therefore, the derivation must additionally account for the nonlinear transformation’s influence on the prediction
 1983 error. To this end, we consider the ReLU activation function:

$$1984 \quad \phi(z) = \max(z, 0),$$

1985 and analyze the error propagation mechanism in nonlinear models, comparing it with the linear case to explore the
 1986 applicability of the dynamic replacement strategy under more complex model structures.

1987

1988 1. MODEL DEFINITION

1989 Consider a single-layer fully connected network with ReLU activation:

$$1990 \quad \hat{x}_t = \phi \left(\sum_{j=1}^L w_j x_{t-j} + b \right), \quad \phi(z) = \max(z, 0).$$

1991 Assume the model has been trained on clean (normal) data, and the weights $\{w_j\}$ and bias b have converged to
 1992 optimal values such that for normal data:

$$1993 \quad \phi \left(\sum_{j=1}^L w_j \sin(t-j) + b \right) \approx \sin(t).$$

2000

2001 2. EFFECT OF ANOMALIES ON PREDICTION

2002 **Control Group (Without Replacement).** Assume the input window contains an anomalous value at position
 2003 $t-i$, such that:

$$2004 \quad x_{t-i} = \sin(t-i) + \varepsilon_{t-i} + \Delta,$$

2005 where Δ represents the anomaly. Then the predicted output becomes:

$$2006 \quad \hat{x}_t = \phi \left(\sum_{j=1}^L w_j \sin(t-j) + w_i \Delta + \sum_{j=1}^L w_j \varepsilon_{t-j} + b \right).$$

2007 Due to ReLU’s nonlinearity, two cases arise:

- 2008 • **Linear region:** If the expression inside $\phi(\cdot)$ is positive, i.e., normal linear term + $w_i \Delta > 0$, then the
 2009 output is a linear combination, and the anomaly directly affects the output.
- 2010 • **Truncation region:** If the expression is non-positive, i.e., normal linear term + $w_i \Delta \leq 0$, then $\hat{x}_t = 0$,
 2011 and the anomaly is completely suppressed.

2012 **Experimental Group (With Dynamic Replacement).** Replace the anomalous input x_{t-i} with a historical
 2013 prediction \hat{x}_{t-i} :

$$2014 \quad x'_{t-i} = \hat{x}_{t-i} = \phi \left(\sum_{j=1}^L w_j x_{t-i-j} + b \right).$$

2015 Since \hat{x}_{t-i} has already been filtered through ReLU, the influence of the anomaly is suppressed in the input window.

2016

2017 3. ERROR ANALYSIS

2018

2019 **Control Group MSE.**

2030 • **Case 1 (Linear region):** The prediction error is:
 2031

$$2032 \quad e_t = \left(\sum_{j=1}^L w_j \varepsilon_{t-j} + w_i \Delta \right) - \varepsilon_t. \\ 2033$$

2034 The MSE contains a Δ^2 term, similar to the linear model.
 2035

2036 • **Case 2 (Truncation region):** The prediction is zero, so the error becomes:
 2037

$$2038 \quad e_t = 0 - (\sin(t) + \varepsilon_t), \\ 2039$$

2040 and

$$2041 \quad \text{MSE} = \sin^2(t) + \sigma^2, \\ 2042$$

2043 which is significantly higher than in the normal case.
 2044

2045 The overall MSE of the control group is a weighted average of the two cases. However, since large Δ values often
 2046 push the model into the linear region, the MSE remains close to the linear case. If the model enters the truncation
 2047 region, the MSE increases significantly beyond the linear model's prediction.
 2048

2049 **Experimental Group MSE.** Since the replaced value x'_{t-i} has already been filtered by ReLU, and assuming
 2050 historical prediction error is small ($\sigma_e^2 \ll \Delta^2$), we have:
 2051

$$2052 \quad x'_{t-i} \approx \sin(t-i) + \varepsilon_{t-i}, \\ 2053$$

2054 leading to:

$$2055 \quad \hat{x}_t \approx \phi \left(\sum_{j=1}^L w_j \sin(t-j) + \sum_{j=1}^L w_j \varepsilon_{t-j} + b \right), \\ 2056$$

2057 and thus the prediction error is close to that of the experimental group in the linear model:
 2058

$$2059 \quad \text{MSE}_{\text{exp}} = \sigma^2 \left(1 + \sum_{j=1}^L w_j^2 \right) + w_i^2 \sigma_e^2 + 2w_i \sigma^2 \left(\sum_{k=1}^{L-i} w_{i+k} w_k - w_i \right) \quad (17) \\ 2060$$

KEY CONCLUSIONS

2061 1. **ReLU's Suppression Effect.** In nonlinear models with ReLU activation, anomalies may cause the model
 2062 to switch between activation regions, altering the MSE formulation.

- 2063 • *Linear region:* When the anomaly drives the model into ReLU's linear regime, the MSE reduction of
 2064 the experimental group over the control group is consistent with the linear model ($\Delta^2 \gg \sigma_e^2$).
- 2065 • *Truncation region:* When the anomaly pushes the model into the zero-output region of ReLU, the
 2066 control group's prediction collapses to zero, significantly increasing the MSE. In contrast, the dynamic
 2067 replacement strategy in the experimental group avoids this truncation, substantially lowering MSE.
 2068

2069 2. **Comparison Between Nonlinear and Linear Models.**

- 2070 • *When the linear region dominates:* If the model mostly operates in the linear region (e.g., due
 2071 to reasonable weight design), the experimental group still outperforms the control group in MSE,
 2072 consistent with linear models.
- 2073 • *Amplification under extreme anomalies:* Due to ReLU's truncation effect, the control group's MSE in
 2074 nonlinear models increases even more under large anomalies. Meanwhile, the dynamic replacement
 2075 strategy amplifies its advantage, showing even greater MSE reduction than in linear cases.
 2076

2077 **Conclusion:** The nonlinear nature of ReLU does not diminish the effectiveness of the dynamic replacement strategy.
 2078 On the contrary, in specific anomaly patterns, it enhances the advantage of the experimental group. Therefore, the
 2079 strategy is applicable to a broader range of nonlinear model scenarios.
 2080

D.11 PROOF THAT THE PREDICTION ERROR SATISFIES $E[e_t] = 0$ FOR ALL t

PROBLEM RESTATEMENT AND NOTATION

2084 **Objective:** Prove that after dynamically replacing detected anomalies, the prediction error at each time point
 2085

$$2086 \quad e_t = \hat{x}_t - (\sin(t) + \varepsilon_t)$$

2087 satisfies

$$2088 \quad \mathbb{E}[e_t] = 0 \quad \forall t.$$

2088 BASE MODEL AND UNBIASEDNESS
20892090 Assume the model is trained to convergence on clean (anomaly-free) data. When the input window contains no
2091 anomalies, the model prediction satisfies:

2092
$$\hat{x}_t = \sum_{j=1}^L w_j x_{t-j} + b,$$

2093
2094

2095 where all weights w_j and bias b are optimized to be unbiased, such that

2096
$$\mathbb{E}[\hat{x}_t] = \sin(t).$$

2097 In the absence of anomalies, the true target value is:

2098
$$x_t = \sin(t) + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma^2). \quad (18)$$

2099

2100 Thus, the prediction error is:

2101
$$e_t = \hat{x}_t - (\sin(t) + \varepsilon_t),$$

2102 and the expectation is:

2103
$$\mathbb{E}[e_t] = \mathbb{E}[\hat{x}_t] - \sin(t) - \mathbb{E}[\varepsilon_t] = 0.$$

2104

MATHEMATICAL DESCRIPTION OF DYNAMIC REPLACEMENT

2105 Suppose there are m anomalies in the input window, located at positions i_1, i_2, \dots, i_m . When an anomaly is
2106 detected at $x_{t-i^*} = \sin(t - i^*) + \varepsilon_{t-i^*} + \Delta_{i^*}$, it is replaced by:

2107
$$x'_{t-i^*} = \hat{x}_{t-i^*} = \sin(t - i^*) + \varepsilon_{t-i^*} + e_{t-i^*}.$$

2108 Here, $i^* \in \{i_1, i_2, \dots, i_m\}$ indicates the position of an anomaly within the input window. The updated input
2109 sequence becomes:

2110
$$x'_s = \begin{cases} x_s, & s \neq t - i^* \\ \hat{x}_{t-i^*}, & s = t - i^* \end{cases}.$$

2111
2112

MATHEMATICAL INDUCTION PROOF OF RECURSIVE UNBIASEDNESS

2113 **Step 1: Base Case (No Replacement in Window)** When the input window contains no anomalies, we have:

2114
$$\mathbb{E}[e_u] = 0 \quad \forall u.$$

2115 **Step 2: Inductive Hypothesis** Assume that for all times $s \leq k$, the prediction errors satisfy:

2116
$$\mathbb{E}[e_s] = 0 \quad \forall s \leq k.$$

2117 **Step 3: Inductive Step ($t = k + 1$)** At time $t = k + 1$, the model makes a prediction based on the window
2118 $\{x'_{k+1-j}\}_{j=1}^L$:

2119
$$\hat{x}_{k+1} = \sum_{j=1}^L w_j x'_{k+1-j} + b.$$

2120 Each x'_{k+1-j} in the input window may be:

2121 1. A normal (unreplaced) value:

2122
$$x'_{k+1-j} = \sin(k + 1 - j) + \varepsilon_{k+1-j},$$

2123 2. A replaced value:

2124
$$x'_{k+1-j} = \sin(k + 1 - j) + \varepsilon_{k+1-j} + e_{k+1-j}.$$

2125 By the inductive hypothesis:

2126
$$\mathbb{E}[e_{k+1-j}] = 0 \quad \forall j \geq 1.$$

2127 Therefore, for any x'_{k+1-j} , its expectation is:

2128
$$\mathbb{E}[x'_{k+1-j}] = \sin(k + 1 - j),$$

2129 since $\mathbb{E}[\varepsilon_{k+1-j}] = 0$ and $\mathbb{E}[e_{k+1-j}] = 0$.

2130 Thus, the expected prediction is:

2131
$$\mathbb{E}[\hat{x}_{k+1}] = \sum_{j=1}^L w_j \mathbb{E}[x'_{k+1-j}] + b = \sum_{j=1}^L w_j \sin(k + 1 - j) + b = \sin(k + 1).$$

2132
2133

2134 The prediction error is:

2135
$$e_{k+1} = \hat{x}_{k+1} - (\sin(k + 1) + \varepsilon_{k+1}),$$

2136 and its expectation is:

2137
$$\mathbb{E}[e_{k+1}] = \mathbb{E}[\hat{x}_{k+1}] - \sin(k + 1) - \mathbb{E}[\varepsilon_{k+1}] = 0.$$

2146 **Step 4: Inductive Conclusion** By mathematical induction, combining the base case
 2147

$$2148 \quad \mathbb{E}[e_u] = 0 \quad \forall u,$$

2149 with the inductive hypothesis and inductive step, we conclude:
 2150

$$2151 \quad \mathbb{E}[e_t] = 0 \quad \forall t.$$

2153 **D.12 ANALYTICAL DERIVATION OF THE OPTIMAL WEIGHTS \mathbf{w}**

2154 **D.12.1 PROBLEM SETUP AND NOTATION**

2156 We consider a simple single-layer fully connected neural network for predicting a sine function based on past inputs.
 2157 The setup is as follows:
 2158

- 2159 • Input window:

$$2160 \quad \mathbf{x}_t = [\sin(t-1), \sin(t-2), \dots, \sin(t-L)].$$

- 2162 • Output target:

$$2163 \quad x_t = \sin(t).$$

- 2165 • Model (no bias term, since $\mathbb{E}[x_t] = 0$):

$$2166 \quad 2167 \quad 2168 \quad x_{\text{pred}} = \sum_{i=1}^L w_i \sin(t-i).$$

- 2169 • Objective: minimize the expected mean squared error:

$$2170 \quad 2171 \quad 2172 \quad 2173 \quad 2174 \quad \mathcal{L}(\mathbf{w}) = \mathbb{E} \left[\left(\sum_{i=1}^L w_i \sin(t-i) - \sin(t) \right)^2 \right].$$

2175 Assume that $t \sim \mathcal{U}[0, 2\pi]$, i.e., t is uniformly distributed over one period.
 2176

2177 **D.12.2 ORTHOGONALITY CONDITIONS**

2179 Since the model is trained using the gradient descent strategy, the partial derivative of the loss function with respect
 2180 to each weight w_j can be considered zero when the weights reach a local optimum.
 2181

$$2182 \quad 2183 \quad \frac{\partial \mathcal{L}}{\partial w_j} = 0, \quad \forall j = 1, 2, \dots, L.$$

2185 We expand the loss:
 2186

$$2187 \quad 2188 \quad 2189 \quad \mathcal{L}(\mathbf{w}) = \mathbb{E} \left[\left(\sum_{i=1}^L w_i \sin(t-i) \right)^2 \right] - 2\mathbb{E} \left[\sin(t) \sum_{i=1}^L w_i \sin(t-i) \right] + \mathbb{E}[\sin^2(t)].$$

2190 Taking the derivative w.r.t. w_j :
 2191

$$2192 \quad 2193 \quad 2194 \quad 2195 \quad \frac{\partial \mathcal{L}}{\partial w_j} = 2\mathbb{E} \left[\left(\sum_{i=1}^L w_i \sin(t-i) \right) \sin(t-j) \right] - 2\mathbb{E}[\sin(t) \sin(t-j)] = 0.$$

2196 Rewriting:
 2197

$$2198 \quad 2199 \quad 2200 \quad \mathbb{E} \left[\left(\sum_{i=1}^L w_i \sin(t-i) - \sin(t) \right) \sin(t-j) \right] = 0, \quad \forall j.$$

2201 This yields a system of linear equations:
 2202

$$2203 \quad \sum_{i=1}^L w_i \mathbb{E}[\sin(t-i) \sin(t-j)] = \mathbb{E}[\sin(t) \sin(t-j)], \quad \forall j. \quad (19)$$

2204 D.12.3 SIMPLIFYING THE EXPECTATIONS
22052206 We now compute the expectations in Equations equation 19. Since $t \sim \mathcal{U}[0, 2\pi]$, we have:

2207
$$\mathbb{E}[\sin(t - i) \sin(t - j)] = \frac{1}{2\pi} \int_0^{2\pi} \sin(t - i) \sin(t - j) dt.$$

2208

2209 Using the trigonometric identity:

2210
$$\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)].$$

2211

2212 Apply it to $\sin(t - i) \sin(t - j)$:

2213
$$\sin(t - i) \sin(t - j) = \frac{1}{2} [\cos(j - i) - \cos(2t - (i + j))].$$

2214

2215 Then:

2216
$$\begin{aligned} \mathbb{E}[\sin(t - i) \sin(t - j)] &= \frac{1}{4\pi} \left[2\pi \cos(j - i) + \underbrace{\int_0^{2\pi} -\cos(2t - (i + j)) dt}_{=0} \right] \\ 2217 &= \frac{1}{2} \cos(j - i). \end{aligned}$$

2218

2219 Similarly:

2220
$$\mathbb{E}[\sin(t) \sin(t - j)] = \frac{1}{2} \cos(j). \tag{20}$$

2221

2222 Substituting Equations equation 19 and equation 20, we obtain:

2223
$$\sum_{i=1}^L w_i \cos(i - j) = \cos(j), \quad \forall j = 1, 2, \dots, L. \tag{21}$$

2224

2225 D.12.4 SOLVING BY HYPOTHESIS
2226

2227 We hypothesize a solution of the form:

2228
$$w_i = k \cos(i).$$

2229 Substitute into Equation equation 21:

2230
$$\sum_{i=1}^L k \cos(i) \cos(j - i) = k \sum_{i=1}^L \cos(i) \cos(j - i).$$

2231

2232 Using identity:

2233
$$\cos(a - b) \cos(b) = \frac{1}{2} [\cos(a) + \cos(a - 2b)].$$

2234

2235 We obtain:

2236
$$\begin{aligned} k \sum_{i=1}^L \cos(i) \cos(j - i) &= \frac{k}{2} \sum_{i=1}^L [\cos(j) + \cos(j - 2i)] \\ 2237 &= \frac{kL}{2} \cos(j) + \frac{k}{2} \sum_{i=1}^L \cos(j - 2i). \end{aligned}$$

2238

2239 If L is large and $\cos(j - 2i)$ is approximately uniformly distributed, the second term averages to 0:

2240
$$\Rightarrow \frac{kL}{2} \cos(j) \approx \cos(j) \Rightarrow k = \frac{2}{L}.$$

2241

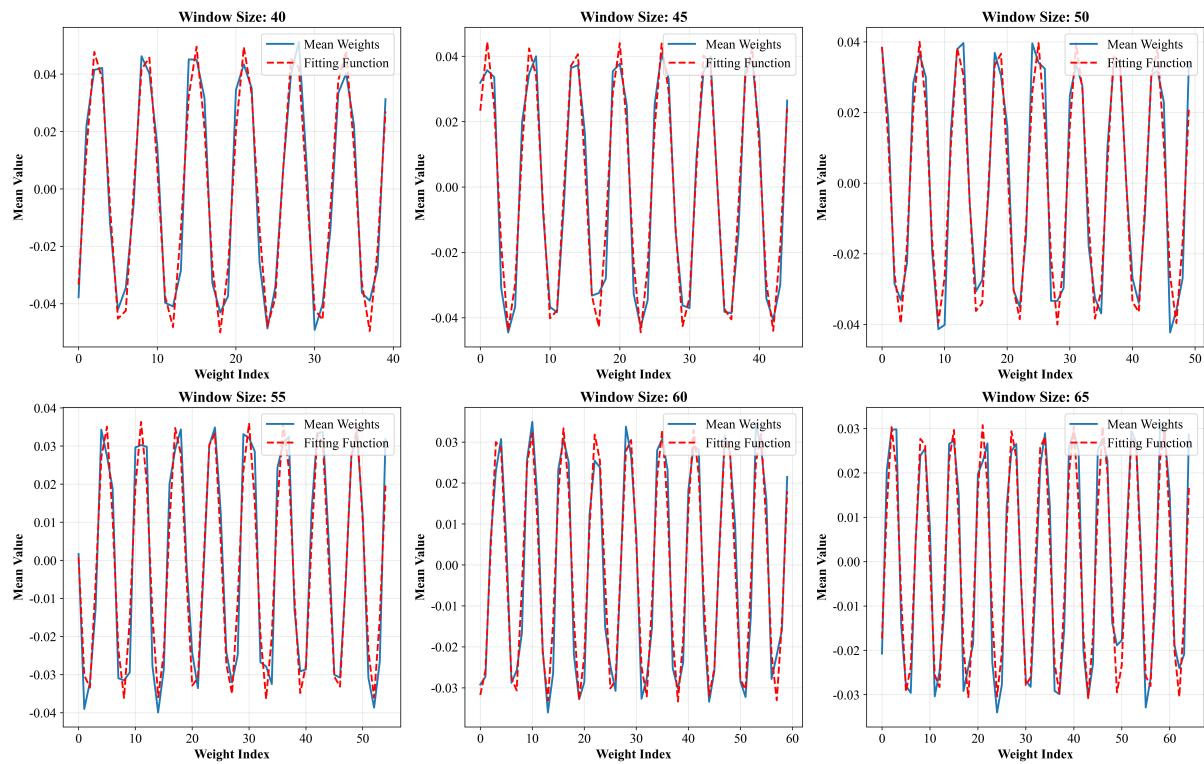
2242 Hence, the optimal weights are:

2243
$$w_i = \frac{2}{L} \cos(i).$$

2244

2245 Note: If the input vector is reindexed as $[\sin(t - L), \dots, \sin(t - 1)]$ corresponding to weights $[w_0, w_1, \dots, w_{L-1}]$,
2246 then:

2247
$$w_x = \frac{2}{L} \cos(x - L).$$

2262 D.12.5 EMPIRICAL VALIDATION
22632264 EXPERIMENTAL SETUP
22652266 This experiment investigates the empirical weight patterns learned by a neural network trained on pure sine signals.
2267 Specifically:2268 • Generate sine function data as time series.
2269 • Use a single fully connected layer (linear layer) neural network.
2270 • Use sliding window input with window sizes $L \in \{40, 45, 50, 55, 60, 65\}$.
2271 • Run 500 independent training trials with random initializations.
2272 • Analyze the mean and distribution of learned weights.
22732274 RESEARCH OBJECTIVES
22752276 • Examine whether the network consistently learns a similar weight pattern.
2277 • Compare the learned weights with the theoretically optimal solution $w_x = \frac{2}{L} \cos(x - L)$.
22782279 EXPERIMENTAL CONCLUSION
22802281 Across multiple training runs, the learned weights converge to a highly consistent pattern. The mean curve of the
2282 weights aligns closely with the theoretically optimal cosine function $w_x = \frac{2}{L} \cos(x - L)$, confirming the analytical
2283 derivation. The following plot 7 illustrates the results: the blue line is the empirical mean, while the red dashed line
2284 is the theoretical cosine shape.2310 Figure 7: Weight distribution patterns across different window sizes ($L = 40, 45, 50, 55, 60, 65$) after training a
2311 linear model on sinusoidal data. Each subplot displays the mean weights (blue solid line) from 500 independent
2312 training runs and a theoretical fitting curve $2/L \cos(x - L)$ (red dashed line). The remarkable alignment between
2313 empirical weight distributions and theoretical predictions demonstrates that the learned representations consistently
2314 converge to optimal sinusoidal predictors regardless of the window size. This supports our hypothesis that linear
2315 predictors implicitly encode trigonometric representations when trained on time-series with cyclic patterns.
23162317 D.13 THEORETICAL LIMITATIONS AND FUTURE DIRECTIONS
23182319 **Theoretical Limitations:** Although this paper provides a comprehensive empirical evaluation of the dynamic
replacement strategy, its theoretical analysis relies on several simplifying assumptions. In particular, the current

proof assumes that the observation noise is independently and identically distributed (i.i.d.) and that each input window contains at most a single outlier. However, in practical scenarios, noise may exhibit autocorrelation or heteroscedasticity, and outliers may appear in clusters. Under such non-ideal conditions, the present error analysis may become biased, thereby affecting the accuracy of performance assessment for the proposed strategy. Consequently, the current theoretical results may not generalize well to situations involving clustered anomalies or non-i.i.d. noise, which limits our understanding of the method’s behavior in more diverse settings.

Future work: We plan to extend our analysis to scenarios where multiple outliers or clustered anomalies appear within the input window. This direction is expected to provide a more comprehensive theoretical foundation for evaluating the robustness and applicability of the strategy in real-world environments. Due to the complexity of modeling non-i.i.d. noise, we leave its exploration to future work depending on application-specific demands.

E PROOF OF COMPLEXITY REDUCTION IN THE SN MODULE

E.1 EMPIRICAL VALIDATION OF PELT COMPLEXITY

To empirically validate the theoretical time complexity of the PELT algorithm, we conducted experiments by varying the input sequence length n and recording the elapsed runtime. The measured data were then fitted against several candidate complexity models, namely $O(n)$, $O(n \log n)$, $O(n^2)$, and $O(\log n)$. The fitting quality was evaluated using the coefficient of determination (R^2).

For each input size n , we executed the standard PELT algorithm and measured the elapsed time in seconds. The sequence length was varied from 100 to 40,000. The observed runtimes are reported in Table 8.

Table 8: Runtime of PELT under different input sizes.

n	Elapsed Time (s)
100	0.0104
500	0.1938
1000	0.6426
2000	1.9772
4000	4.7989
8000	12.775
12000	23.5916
16000	42.1717
20000	63.5235
24000	81.3433
40000	196.9832

Model Fitting. The recorded data were fitted to multiple complexity models. Table 9 reports the R^2 scores for each candidate model. The quadratic model $O(n^2)$ achieves the best fit with $R^2 = 0.9992$, significantly outperforming the alternatives.

Table 9: Goodness-of-fit of different complexity models.

Complexity Model	R^2 Score
$O(n^2)$	0.999206
$O(n \log n)$	0.956115
$O(n)$	0.936277
$O(\log n)$	0.425482

The empirical results strongly corroborate the theoretical analysis: the runtime of the PELT algorithm scales quadratically with input size n . The $O(n^2)$ model yields an almost perfect fit ($R^2 = 0.9992$), confirming that PELT exhibits quadratic time complexity in practice.

E.2 PROBLEM DEFINITION

Given a time series of length n , the task is to detect changepoints within the sequence. We compare the computational complexity of two approaches:

1. **Direct PELT Method:** The standard PELT algorithm with time complexity $O(n^2)$.

2378 **2. Two-Stage Method:**

2379 • *Coarse Detection Stage:* Apply PELT with a jump parameter $\text{jump} = \lfloor 0.001n \rfloor$ to reduce computa-
 2380 tional cost.
 2381 • *Refined Detection Stage:* Around each coarse changepoint, perform local detection on a subsequence
 2382 of size n_{local} using a window-based segmentation method. The time complexity is $O(w \cdot n_{\text{local}})$,
 2383 where w denotes the window size parameter.
 2384

2385 The goal is to derive and compare the time complexities of these two approaches.
 2386

2387 **E.3 DIRECT PELT METHOD**

2388 The PELT algorithm detects changepoints via dynamic programming. Its standard time complexity is
 2389

$$T_{\text{direct}} = O(n^2),$$

2390 which grows quadratically with the sequence length n .
 2391

2392 **E.4 TWO-STAGE METHOD**2393 **COARSE DETECTION STAGE**

2394 Using PELT with a jump parameter $\text{jump} = \epsilon n$, where $\epsilon = 0.001$, reduces computational cost. Specifically, the
 2395 complexity decreases from $O(n^2)$ to $O\left(\frac{n^2}{\text{jump}}\right)$.
 2396

2397 Substituting $\text{jump} = 0.001n$ yields:
 2398

$$T_{\text{coarse}} = O\left(\frac{n^2}{0.001n}\right) = O(1000n) = O(n).$$

2399 Thus, the coarse detection stage achieves linear time complexity.
 2400

2401 **REFINED DETECTION STAGE**

2402 Suppose the coarse stage identifies K changepoints $\tau_1, \tau_2, \dots, \tau_K$. For each τ_i , a local refinement is performed in
 2403 the neighborhood $[\tau_i - S, \tau_i + S]$, where S is the local window radius (chosen as a fixed value much smaller than
 2404 n).
 2405

2406 The number of points in each neighborhood is $n_{\text{local}} = 2S$, leading to a total refined sample size:
 2407

$$W = \sum_{i=1}^K n_{\text{local}} = 2KS.$$

2408 (assuming non-overlapping neighborhoods, or equivalently $K \ll n$ so that $W \approx 2KS$).
 2409

2410 The window-based segmentation method has complexity $O(w \cdot n_{\text{local}})$ per neighborhood. Hence, the total refined
 2411 detection cost is
 2412

$$T_{\text{fine}} = O\left(\sum_{i=1}^K w \cdot n_{\text{local}}\right) = O(w \cdot W).$$

2413 Since $W = 2KS$, and typically $K \ll n$, $S \ll n$, and $w \ll n$, we have
 2414

$$T_{\text{fine}} = O(wKS).$$

2415 If K , S , and w are constants or grow much slower than n , then $T_{\text{fine}} = O(1)$.
 2416

2417 **E.4.1 TOTAL COMPLEXITY OF THE TWO-STAGE METHOD**

2418 The overall cost is
 2419

$$T_{\text{proposed}} = T_{\text{coarse}} + T_{\text{fine}} = O(n) + O(wW).$$

2420 Since $W \ll n$ and $w \ll n$, the second term is dominated by the linear term, leading to
 2421

$$T_{\text{proposed}} = O(n).$$

2422 **E.5 COMPLEXITY COMPARISON**

2423 In summary, the direct PELT method scales quadratically as $O(n^2)$, whereas the proposed two-stage method
 2424 achieves linear complexity $O(n)$. This represents an improvement by a factor of $O(n)$.
 2425

2436 **F RELATED WORKS**
24372439 **F.1 TIME SERIES ANOMALY DETECTION METHODS**
24402442 To tackle the problem of *unsupervised time series anomaly detection*, a variety of techniques have been proposed,
2443 including *forecasting-based methods* Chen et al. (2021); Zhao et al. (2020); Zhang et al. (2022); Deng & Hooi
2444 (2021b), *reconstruction-based methods* Tuli et al. (2022); Zhang et al. (2021b); Xu et al. (2021); Audibert et al.
2445 (2020), *density estimation* approaches Zong et al. (2018); Dai & Chen (2022), and *clustering-based methods* Xu
2446 et al. (2024); Ruff et al. (2018a).2447 **Forecasting-based Methods.** Forecasting-based anomaly detection is one of the most extensively studied directions,
2448 where the core challenge lies in extracting informative features from input sequences. To enhance the modeling
2449 capacity, prior works have incorporated mechanisms such as *contrastive learning* Yue et al. (2022), *2D convolutions*
2450 Wu et al. (2022) to improve the representation of multivariate sequences. In addition to feature extraction, some
2451 approaches introduce auxiliary mechanisms to improve detection performance. For instance, CAT Zhang et al.
2452 (2022) integrates *one-class classification loss* Guo et al. (2021); Wang et al. (2021) into the forecasting objective;
2453 MTAD-GAT Zhao et al. (2020) trains two networks jointly for forecasting and reconstruction; GDN Deng & Hooi
2454 (2021a) transforms prediction errors into normalized graph-structured deviation scores; and LSTM-NDT Hundman
2455 et al. (2018b) proposes a dynamic thresholding method based on exponential smoothing. While these methods
2456 incorporate various enhancements beyond forecasting, their primary focus remains on the design of forecasting
2457 models, with other components playing a supportive role. In contrast, this work aims to propose a *more general*
2458 *forecasting framework*, rather than improving a specific model.2459 **Density Estimation Methods.** These methods assume that anomalies lie in low-probability regions and thus
2460 exhibit low data density. Early methods such as LOF Breunig et al. (2000) and COF Tang et al. (2002) estimate
2461 sample density based on the k -nearest neighbors. DAGMM Zong et al. (2018) combines reconstruction errors
2462 from autoencoders with Gaussian Mixture Models (GMMs) to jointly model low-dimensional embeddings and
2463 reconstruction loss. More recently, GANF Dai & Chen (2022) utilizes Bayesian networks with *normalizing flows*
2464 for density estimation, learning flow parameters to improve estimation accuracy.2465 **Clustering-based Methods.** These methods assume that normal data points cluster densely, while those far from
2466 the center are likely anomalies. Typical approaches include SVDD Ruff et al. (2018b) and its deep variant DEEP
2467 SVDD Ruff et al. (2018a). THOC Shen et al. (2020) extends this idea by introducing multiple latent spaces and
2468 computing weighted distances to all centers as anomaly scores. CPOD Tran et al. (2020) propose enhancements
2469 from the perspectives of efficiency and streaming data processing, respectively. COUTA Xu et al. (2024) generates
2470 pseudo-anomalies via data augmentation to guide the model in learning decision boundaries for anomalies.2471 **Reconstruction-based Methods.** These approaches train models to reconstruct the original time series, under
2472 the assumption that anomalies are harder to reconstruct and thus can be identified. To prevent models from
2473 simply learning identity mappings, various techniques have been introduced to enhance anomaly discriminability.
2474 Most existing methods are based on generative models such as *Variational Autoencoders (VAEs)* Kingma et al.
2475 (2013) and *Generative Adversarial Networks (GANs)* Goodfellow et al. (2014). LSTM-VAE Park et al. (2018)
2476 is a representative method that combines sequential modeling with the VAE framework. Omni-Anomaly Shi
2477 et al. (2023) and InterFusion Li et al. (2021) further integrate techniques such as normalizing flows, hierarchical
2478 structures, and bidirectional temporal modeling to improve detection performance. GAN-based methods often
2479 adopt adversarial training strategies, with implementations ranging from multi-objective min-max optimization
2480 to more complex variants Tuli et al. (2022); Xu et al. (2021); Audibert et al. (2020); Li et al. (2019); Geiger et al.
2481 (2020); Bashar & Nayak (2020).2482
2483 **F.2 TIME SERIES FORECASTING METHODS**
24842485 Time series forecasting models can be broadly categorized based on the neural network architecture they employ,
2486 including: (1) *Transformer-based models* Wu et al. (2022); Wang et al. (2024); Huang & Liu (2024), (2) *Multi-Layer*
2487 *Perceptrons (MLPs)* Zeng et al. (2022); Challu et al. (2023); Zhou et al. (2023c), (3) *Recurrent Neural Networks*
2488 *(RNNs)* Salinas et al. (2020); Lai et al. (2018), (4) *Convolutional Neural Networks (CNNs)* Luo & Wang (2024);
2489 Liu et al. (2022a), and (5) *Graph Neural Networks (GNNs)* Zhou et al. (2023a); Liu et al. (2022b). It is important to
2490 note that this categorization is not exhaustive. As these directions are beyond the scope of this work, we do not
2491 elaborate on them here.2492 In our experiments, we further demonstrate that DRPAD can be seamlessly integrated into all of the above
2493 forecasting models, effectively transforming them into anomaly detection methods.

2494 F.3 CHANGE POINT DETECTION METHODS
24952496 *Change Point Detection (CPD)* aims to identify positions in a time series where statistical properties—such as
2497 mean, variance, or distribution—undergo significant changes. CPD has found wide applications in fields such
2498 as finance, industrial monitoring, and anomaly detection. Existing approaches can be broadly categorized into
2499 *supervised* and *unsupervised* methods.2500 **Supervised methods** typically formulate CPD as a classification task, training classifiers based on labeled data. De-
2501 pending on the problem formulation, these methods can be further divided into multi-class classifiers (e.g., decision
2502 trees Reddy et al. (2010), k -nearest neighbors Wei & Keogh (2006), Hidden Markov Models (HMM) Cleland et al.
2503 (2014)) and binary classifiers (e.g., SVM Desobry et al. (2005); Feuz et al. (2014), Naive Bayes Feuz et al. (2014),
2504 logistic regression Feuz et al. (2014)). Although supervised methods generally perform well when high-quality
2505 labeled data are available, their applicability is limited due to the scarcity of such data in real-world scenarios.2506 In contrast, **unsupervised methods** do not rely on labeled data, making them more generalizable in practice.
2507 Based on different modeling strategies, mainstream unsupervised CPD approaches can be grouped into the
2508 following categories: (1) *Likelihood-ratio-based methods*, which detect change points by computing the difference
2509 or ratio of probability densities before and after a segment (e.g., KLIEP Liu et al. (2013), ULSIF Liu et al.
2510 (2013)); (2) *Subspace modeling methods* (e.g., SI Liu et al. (2013), PELT Killick et al. (2012)), which analyze
2511 structural variations in the embedded space of the time series; (3) *Probabilistic modeling methods* (e.g., Gaussian
2512 Processes Saatçi et al. (2010)), which estimate changes from a generative modeling perspective; (4) Other methods
2513 based on kernel techniques, graph-based structures, or clustering under sliding windows.

2514 These methods exhibit different strengths and are suited for varying data characteristics and application scenarios.

2515 In this study, we adopt a strategy that combines both global and local features: We first perform coarse-grained
2516 detection using the PELT Killick et al. (2012) (Pruned Exact Linear Time) algorithm. PELT is an unsupervised
2517 subspace modeling method that minimizes a weighted cost function, allowing linear-time detection while preserving
2518 optimality. This makes it suitable for large-scale time series. To further improve precision, we introduce a local
2519 refinement strategy based on a sliding window Truong et al. (2020), which scans the candidate change point regions
2520 at a finer granularity. This hybrid mechanism significantly enhances the robustness and accuracy of segmentation,
2521 providing high-quality structural support for subsequent *segment-based normalization*.2522
2523 F.4 COMPARISON WITH RELATED WORK
25242525 The AFMF framework Shen et al. (2024) introduces a technique called *Local Instance Normalization (LIN)* with a
2526 similar goal to our proposed *Segment-wise Normalization (SN)*: both aim to mitigate the effect of varying data scales
2527 during anomaly detection. LIN independently normalizes data within each fixed-length input window, reducing the
2528 influence of amplitude shifts on detection performance.2529 When the data distributions across adjacent windows differ significantly—for instance, if the previous window
2530 contains large-magnitude values while the next has small-scale fluctuations—LIN effectively balances the scale
2531 across windows, thereby improving the overall Mean Squared Error (MSE) performance. This helps prevent
2532 small-amplitude anomalies from being undetected due to diminished MSE values in such regions.2533 However, LIN has limitations in another common scenario. As illustrated in Figure 1, when large-valued points
2534 dominate the early portion of the input window, the normalization scale is skewed, causing subsequent small-scale
2535 anomalies to be masked, with reduced MSE and thus harder to detect.2536 To address this issue, our proposed SN method employs *change point detection* to adaptively segment the sequence.
2537 Normalization is then performed *within each segment*, preserving local scale variations. This segment-aware
2538 normalization effectively alleviates the problem of large values "overshadowing" small anomalies, leading to
2539 improved robustness and precision in anomaly detection.2540 Moreover, the AFMF framework introduces a mechanism called *Progressive Adjacent Masking (PAM)* that works
2541 in conjunction with LIN to further enhance anomaly detection performance. The normalization in LIN adjusts the
2542 data toward a zero-centered distribution, laying the foundation for PAM's zero-masking operation. The core idea of
2543 PAM is to observe how masking affects prediction error, helping distinguish between false positives caused by
2544 nearby anomalies and true anomalies.2545 Specifically, when anomalies are surrounded by adjacent anomalous points, masking these neighboring values
2546 reduces prediction errors significantly. Conversely, masking normal data introduces noise and increases the
2547 prediction error. PAM leverages this behavior by comparing the prediction errors before and after masking to better
2548 separate true anomalies from false positives.2549 Despite its conceptual validity, PAM's rigid zero-masking strategy risks distorting the input, especially in smoothly
2550 varying sequences. Such abrupt changes may disrupt the continuity and introduce unnatural patterns that did not
2551 appear during training, making it harder for models to generalize and potentially causing misclassifications.

To resolve this, we propose a novel *Dynamic Prediction Replacement* mechanism: when an anomaly is detected, it is directly replaced by the model’s predicted value, which is then used as input for subsequent steps. This smooth substitution suppresses the propagation of anomalous information, maintaining continuity and stability in the input sequence. Particularly in scenarios with consecutive anomalies or frequent distribution shifts, the replacement mechanism allows real-time window updates and enhances the adaptability of the detection process.

G DETAILED DESCRIPTION AND SOURCES OF BASELINES AND DATASETS

The following provides a detailed introduction to the nine real-world time series anomaly detection benchmarks, with numerical details summarized in Table 10. The processing methods for all datasets are consistent with AFMF Shen et al. (2024).

SMD (Server Machine Dataset) Su et al. (2019) is a one-minute-level dataset consisting of 38 dimensions, collected from a large Internet company over a period of five weeks.

PSM (Pooled Server Metrics) Abdulaal et al. (2021) contains 25 dimensions and is collected from internal nodes of multiple application servers at eBay.

MSL (Mars Science Laboratory Rover) and **SMAP** (Soil Moisture Active Passive Satellite) Hundman et al. (2018a) are public datasets originating from Incident Surprise Anomalies (ISA) and contain telemetry anomaly data from spacecraft monitoring systems, with 55 and 25 dimensions, respectively.

SWaT (Secure Water Treatment) Mathur & Tippenhauer (2016) is a dataset collected from a water treatment plant, containing 51 dimensions, including 7 days of normal operation and 4 days of artificially induced attack scenarios.

WADI (Water Distribution) Ahmed et al. (2017) is an extended testbed of SWaT, involving 123 sensors and actuators. The dataset includes 14 days of normal operation and 2 days of attack scenarios.

MBA (MIT-BIH Supraventricular Arrhythmia Database) Moody & Mark (2001) is a popular large-scale dataset comprising electrocardiogram (ECG) recordings from four patients, including two types of arrhythmias (supraventricular premature beats and premature ventricular contractions).

NAB (Numenta Anomaly Benchmark) Ahmad et al. (2017) is a dataset containing multiple univariate sub-datasets, such as ambient temperature and CPU usage.

MSDS (Multi-Source Distributed System) Nedelkoski et al. (2020) records CPU, memory, and load metrics from a distributed IT system consisting of one controller and four computing nodes.

We re-conducted all experiments related to other baselines under their default experimental settings. Their source codes origins are given in Table 11. Some changes are made to DAGMM in the project of TranAD according to another code implementation of DAGMM <https://github.com/danieltan07/dagmm> to avoid ‘nan’ losses. The only modification was replacing their threshold selection strategies with ours, namely determining anomaly detection thresholds based on a fixed percentile. Additionally, all window size settings were kept consistent with those used in the AFMF framework.

The LF component employed in DRPAD is adapted from the AFMF framework, and we follow its original configuration when applying it. When integrating Transformer-based models with DRPAD, the values of discrete variates at prediction timestamps are not used as decoder inputs. Transformer-based architectures typically require decoder inputs at prediction timestamps to be initialized, often utilizing representations such as trend features derived from encoder inputs. This initialization strategy conflicts with the design of LF, which provides masked continuous variates and full discrete variates to the decoder. Therefore, following its original configuration, we abandon the use of discrete variates’ values at prediction timestamps as decoder inputs and continue to use the initialization method of Transformer-based models when combining it with DRPAD.

Table 10: Detailed information of the nine benchmarks.

Benchmark	Application	N (Dimensions)	Window Size	Train	Validation	Test	Anomalies (%)	r (%)	δ
SMD	Server	38	720	566,724	141,681	708,420	4.16	0.5	100
PSM	Server	25	48	105,984	26,497	87,841	27.76	1.5	200
MSL	Space	55	24	46,653	11,664	73,729	10.72	1.5	30
SMAP	Space	25	720	108,146	27,037	427,617	13.13	1.5	20
SWaT	Water	51	720	396,000	99,000	449,919	11.98	0.5	100
WADI	Water	123	100	627,656	156,915	172,801	5.99	0.5	100
MBA	ECG	2	100	6,144	1,536	7,680	5.60	1.5	5
NAB	Various	1	360	2,325	807	4,032	0.60	0.5	50
MSDS	Server	2	720	249,168	62,293	14,457	3.24	2.5	50

Table 11: Baseline and Source Code Origin

Baseline	Source Code Origin
DAGMM	https://github.com/imperial-qore/TranAD
MEMTO	https://github.com/gunny97/MEMTO
CAE-M Zhang et al. (2021a)	https://github.com/imperial-qore/TranAD
GDN	https://github.com/d-ailin/GDN
AFMF	https://github.com/OrigamiSL/AFMF?tab=readme-ov-file
FEDformer	https://github.com/MAZiqing/FEDformer
Autoformer	https://github.com/OrigamiSL/AFMF?tab=readme-ov-file
DLinear	https://github.com/OrigamiSL/AFMF?tab=readme-ov-file
RTNet	https://github.com/OrigamiSL/AFMF?tab=readme-ov-file
DeepAR	https://github.com/OrigamiSL/AFMF?tab=readme-ov-file
GTA	https://github.com/ZEKAICHEN/GTA

Table 12: Details of hyper-parameters and experimental settings

Hyper-parameters/Settings	Values/Mechanisms
Dropout	0.1
Loss function	MSE
Batch size	128
Initial learning rate	1×10^{-4}
Optimizer	AdamW
Weight decay	1×10^{-4}
Gradient clipping	Max norm = 0.5
NaN handling	Reduce LR by half and skip current batch
Learning rate scheduler	OneCycleLR (cosine annealing)
Max LR	2×10^{-4}
Warm-up proportion	30% of total steps
Initial LR	2×10^{-5} (<code>max_lr</code> /10)
Final LR	2×10^{-6} (<code>max_lr</code> /100)
Anneal strategy	Cosine
Epsilon (numerical stability)	1×10^{-8}
AMSGrad	False
Fused implementation	False
Training epochs	As specified by <code>args.train_epochs</code>
Repetition strategy	5 independent runs, results averaged
Platform	Python 3.12.7, PyTorch 2.5.0
Device	4 × NVIDIA GeForce RTX 4090 (24GB)