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ABSTRACT

Forecasting-based methods dominate unsupervised time series anomaly detection but primarily
emphasize feature extraction and prediction accuracy. In real-world applications, however, the
distinctiveness of anomalies depends on additional critical factors. We identify three major chal-
lenges: (1) anomaly propagation, (2) distribution shifts, and (3) univariate anomalies—common
phenomena that are often overlooked. To address these issues, we propose DRPAD (Dynamic-
Aware and Robust Paradigm for Time Series Anomaly Detection), introducing three novel
components: Dynamic Prediction Replacement, Segmentation-Based Normalization, and a Mean
& Dimension Dual-Check Strategy. Extensive experiments on nine benchmark datasets demon-
strate that DRPAD can significantly enhance the performance of a wide range of forecasting-
based methods, achieving state-of-the-art results. The source code is publicly available at
https://anonymous.4open.science/r/DRPAD-BEC8/.

1 INTRODUCTION

In the field of time series anomaly detection, prediction-based approaches have been widely adopted due to their
simplicity and effectiveness. Specifically, given a historical window of a time series as x1:t ∈ RN×t and the
observation at time t+ 1 as xt+1 ∈ RN , where N denotes the number of dimensions. a forecasting model f(·) is
employed to predict the next value x̂t+1. An anomaly is subsequently detected by comparing the predicted value
x̂t+1 with the actual observation xt+1, based on the assumption that anomalies induce larger prediction errors and
thus can be identified as outliers.

This paradigm has motivated extensive research into prediction-based anomaly detection methods, which predomi-
nantly focus on extracting features from input sequences and modeling normal patterns with high accuracy Chen
et al. (2021); Zhao et al. (2020); Zhang et al. (2022); Deng & Hooi (2021b). While the core idea is closely aligned
with traditional time series forecasting, we argue that, in the context of anomaly detection, enhancing forecasting
accuracy alone is insufficient to ensure robust detection performance. Instead, the effectiveness of these methods is
influenced by several critical factors, as discussed below.

1. Anomaly Propagation. Historical anomalies within the input window may propagate their influence into future
predictions, thereby degrading detection performance Shen et al. (2024).

2. Distribution Shift. In many real-world time series, changes in environment, machine operating conditions, or
user behavior can lead to rapid shifts in the underlying data distribution. Such distribution shifts induce substantial
variations in statistical properties and sequence patterns across different temporal segments. Consequently, predic-
tion errors are highly sensitive to the statistical scale of the input window (e.g., mean and variance). In low-variance
segments, anomalies become harder to detect, whereas in high-variance segments, normal points may be falsely
flagged as anomalies. This statistical heterogeneity increases both false positives and false negatives, undermining
model Kim et al. (2021); Liu et al. (2022c); Shen et al. (2024).

3. Univariate Anomalies. Another underexplored challenge arises from univariate anomalies—abnormal deviations
that occur in only a single feature dimension while the others remain normal. Such anomalies often exhibit relatively
small magnitudes and can be masked by the overall statistical characteristics of the multivariate sequence, thereby
increasing the risk of missed detections.

Related Work (a) Most existing studies on anomaly contamination have primarily focused on the training phase,
addressing issues such as label noise or corrupted training samples, which can impair model learning. However, in
prediction-based anomaly detection methods, anomalies in the test sequence can also degrade detection performance
by contaminating subsequent predictions. This phenomenon has received little explicit attention in the literature.
To our knowledge, the only work that explicitly attempts to address this issue is the AFMF framework Shen et al.
(2024), which introduces Progressive Adjacent Masking (PAM). PAM alleviates anomaly propagation via mean
substitution, but it rests on strong assumptions—namely, that anomalies always amplify prediction errors and that
mean substitution necessarily improves performance. Furthermore, its masking strategy is restricted to the tail of the
input sequence, rendering it ineffective for anomalies occurring at arbitrary positions or for more complex structural
anomalies. This leaves open the need for a more general and effective solution to the anomaly propagation problem.

1

https://anonymous.4open.science/r/DRPAD-BEC8/


058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

Under review as a conference paper at ICLR 2026

(b) RevIN Kim et al. (2021) is a popular normalization method in time series forecasting community to solve
distribution shift problems. However, if directly introducing it to anomaly detection, the inverse transformation
(denormalization) of it will revive the problem of scale disparity. The AFMF framework Shen et al. (2024)
addresses this issue via Local Instance Normalization (LIN), which performs normalization independently within
each fixed-length window and alleviates scale inconsistency across adjacent windows. However, when a window
simultaneously contains both high-magnitude and low-magnitude segments, the normalization is dominated by the
larger values, thereby suppressing small-scale anomalies and causing detection performance to degrade significantly,
even to the point of failure. The more introduction of related work can see Appendix F.

We propose DRPAD, a Dynamic-aware Robust Paeadigm for Time Series Anomaly Detection, explicitly designed to
address the aforementioned challenges through three dedicated components. (a) Dynamic Prediction Replacement
(DPR): Unlike PAM’s mean substitution strategy, DPR does not rely on the assumption that “anomalies necessarily
amplify errors and mean substitution necessarily improves detection.” PAM often fails in the presence of periodic
or structural anomalies and is further restricted to handling anomalies only at the sequence tail. In contrast,
DPR leverages context-aware predictions to dynamically replace anomalies at arbitrary positions, aligning more
closely with the intrinsic temporal dependencies of the data and thereby suppressing anomaly propagation more
comprehensively and effectively. (b) Segmentation-Based Normalization via Change Point Detection(SN) :
Under LIN’s fixed-window normalization, if a window contains both high- and low-magnitude segments, the
normalization scale is dominated by the larger values, effectively masking small-scale anomalies and severely
compromising detection. SN addresses this limitation by applying change point detection to partition the sequence
into segments with comparable statistical scales and normalizing each segment independently. This design
fundamentally eliminates the “window mixing failure” scenario and ensures stable detection performance under
heterogeneous distributions. (c) Mean & Dimension Dual-Check Strategy(MDDC) : To improve the detection
of univariate anomalies, we develop a hybrid thresholding approach based on multidimensional sensitivity. This
strategy combines global statistical indicators with per-dimension checks to better capture subtle and localized
deviations. Our contributions are threefold:

• We identify and systematically analyze key limitations of prediction-based anomaly detection meth-
ods, including anomaly propagation, distribution shifts, and univariate anomalies, moving beyond the
conventional focus on forecasting accuracy.

• We propose DRPAD, a novel and model-agnostic anomaly detection paradigm, which integrates three inno-
vative components: (a) Dynamic Prediction Replacement (DPR), (b) Segmentation-Based Normalization
via Change Point Detection (SN), and (c) a Mean & Dimension Dual-Check Strategy (MDDC).

• We provide a theoretical analysis of the proposed Dynamic Prediction Replacement mechanism, offering
insights into its effectiveness in mitigating the influence of anomalous inputs and improving prediction
stability.

• We conduct extensive experiments on ten benchmark datasets, demonstrating that DRPAD significantly
improves anomaly detection performance across various backbone predictors, including CNN-, RNN-,
Transformer-, MLP-, and GNN-based architectures.

2 METHOD

The overall framework of DRPAD is illustrated in Figure 1. We first introduce the three key components of DRPAD
and the specific problems each is designed to address. The important notations utilized throughout this paper are
summarized in Table 6 in Appendix C.

2.1 DYNAMIC PREDICTION REPLACEMENT

Algorithm. Traditional time series anomaly detection methods typically rely on historical observations for
prediction. However, when the input window contains anomalous values, these outliers can propagate errors to
subsequent predictions through autoregressive mechanisms. To mitigate this issue, we propose a novel method
called Dynamic Prediction Replacement (DPR). The core procedure is detailed in Algorithm 1. DPR comprises
two main phases:
Threshold Initialization (Lines 1–6): The model first performs global prediction over the entire sequence using
the base predictor. For each time step, the mean squared error (MSE) of the prediction is computed. The global
anomaly threshold α is then determined based on the r − th quantile of the MSE distribution.

Dynamic Replacement Prediction (Lines 7–30): Starting from t = L + 1, DPR dynamically updates the input
window. If the current MSE exceeds α, corresponding observation is considered anomalous. If the number of
consecutive anomalies does not exceed δ, the observed value is replaced by its predicted counterpart to prevent
contamination of subsequent inputs. If the consecutive anomaly count exceeds δ, the input window is reset to the
original observations, and the prediction is recomputed for the current step.

2
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Figure 1: Overview of the DRPAD framework. It consists of three core components: (i) Segmentation-Based
Normalization performs change point detection and piecewise standardization; (ii) Dynamic Prediction Replacement
mitigates anomaly contamination in forecasting inputs; (iii) Mean & Dimension Dual-Check Strategy detects
anomalies by thresholding either mean squared error (MSE) or the standard error of variables.

This replacement strategy effectively prevents the propagation of anomalous values while maintaining a robust
and consistent input history. It ensures that only genuinely deviant observations are substituted, while the reset
condition prevents long-term prediction drift caused by the accumulation of replaced values.

Theoretical Analysis We provide a theoretical analysis of the dynamic replacement strategy, with detailed
mathematical proofs included in the Appendix D. This section presents the main conclusions.

We adopt a fully connected neural network as the base forecasting model. The training set is constructed using a
sine function, while the test set is generated by adding Gaussian noise to the standard time series. The sine wave is
selected due to its representativeness and analytical tractability. Although the analysis is based on a linear model,
the Appendix D.10 demonstrates that the proposed dynamic replacement strategy is also effective in nonlinear
models (e.g., fully connected networks with ReLU activation), validating its generality.

To construct the test set, we add Gaussian noise to the standard time series in order to simulate realistic noise
perturbations. The noisy test sequence is defined as: xt = f(t) + εt, εt ∼ N (0, σ2), where εt is Gaussian noise.
To introduce anomalies, we inject a bias ∆i at a random time i, where ∆i ∼ D with mean µ∆ and variance σ2

∆.
The corresponding anomalous point becomes: xi = f(i) + εi +∆i.

We use a single-layer fully connected network to predict the next value based on the past L observations: x̂t =∑L
j=1 wjxt−j + b. And we compare two settings:

Baseline Group: Standard Forecasting without Correction. The baseline group employs a traditional fore-
casting approach, in which modeling and prediction are directly performed on the entire time series without
any correction for the detected anomalies. Specifically, the model takes raw observations as input, potentially
contaminated by anomalies, and generates predictions for the next time step based on these inputs. Since anomalous
points can cause prediction errors to accumulate, the performance of the baseline group serves as a benchmark to
assess the impact of anomalous data on prediction accuracy.

Suppose at time t, the input window contains an anomalous value at time step t − i (i.e., a randomly occurring
anomaly at time k), modeled as xt−i = f(t− i) + εt−i +∆. The predicted value at time t is:

x̂t =

L∑
j ̸=i

wjf(t− j) + εt−j + b+ wif(t− i) + εt−i +∆,

where wi is the weight associated with the anomalous input. Substituting into the prediction error expression yields:

et = x̂t − (f(t) + εt) =

L∑
j=1

wjεt−j − εt + wi∆.

3
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Algorithm 1 Dynamic Prediction Replacement (DPR)
Input: Observation sequence X = [x1,x2, . . . ,xT ]; Base prediction model fθ(·); Window length L;
Quantile parameter r; Number of features N ; Anomaly reset threshold δ

Output: Corrected predictions X̂, anomaly indicators A
1: Phase 1: Threshold Initialization
2: for t = L+ 1 to T do
3: x̂t ← fθ([xt−L, . . . ,xt−1])

4: et ← 1
N

∑N
j=1(x̂

(j)
t − x

(j)
t )2

5: end for
6: α← Quantile({et}, r)
7: Phase 2: Dynamic Replacement Prediction
8: Initialize sliding window Ht ← [xL, . . . ,xt−1]
9: Initialize anomaly counter c← 0

10: for t = L+ 1 to T do
11: x̂t ← fθ(Ht)
12: At ← I(|x̂t − xt| > α)
13: if At = 1 then
14: c← c+ 1
15: if c ≤ δ then
16: Ht+1 ← [Ht[2 : L], x̂t]
17: else
18: Reset window: Ht ← [xt−L, . . . ,xt−1]
19: x̂t ← fθ(Ht)
20: At ← I(|x̂t − xt| > α)
21: if At = 0 then
22: c← 0
23: end if
24: Ht+1 ← [Ht[2 : L],xt]
25: end if
26: else
27: c← 0
28: Ht+1 ← [Ht[2 : L],xt]
29: end if
30: end for

The mean squared error (MSE) is defined as MSE = E[e2t ]. Expanding e2t gives:

e2t =

 L∑
j=1

wjεt−j − εt

2

+ 2

 L∑
j=1

wjεt−j − εt

 (wi∆) + (wi∆)2.

Taking expectation over noise and anomaly distributions, we obtain:

MSEBaseline = E


 L∑

j=1

wjεt−j − εt

2
+ w2

i σ
2
∆ + w2

i µ
2
∆ = σ2

1 +

L∑
j=1

w2
j

+ w2
i

(
σ2
∆ + µ2

∆

)
,

where σ2 is the variance of noise, and σ2
∆, µ2

∆ denote the variance and mean of the anomaly magnitude ∆.

Experimental Group: Dynamic Prediction Replacement (DPR). The experimental group adopts a dynamic
replacement strategy, in which the detected anomalous value is substituted with the prediction value of the model,
and then the modified sequence is used for future forecasting. The core idea is to mitigate the influence of anomalies
on subsequent predictions, thereby enhancing overall accuracy.

In the case where the input window contains a single anomalous point xt−i, we replace it with the prediction value
of the model at that time step, i.e., x̂t−i. The replaced input becomes:

x′
t−i = x̂t−i = f(t− i) + εt−i + et−i,

where et−i = x̂t−i − (f(t− i) + εt−i) is the historical prediction error. As proven in Appendix D.11, the
expectation satisfies E[et−i] = 0, and we denote its variance by Var(et−i) = σ2

e .

4
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Under this replacement, the predicted value at time t is denoted by x̂′
t, with error:

e′t = x̂′
t − (f(t) + εt) =

L∑
j=1

wjεt−j − εt + wiet−i.

Substituting into the MSE expression:

(e′t)
2
=

 L∑
j=1

wjεt−j − εt

2

︸ ︷︷ ︸
A

+2

 L∑
j=1

wjεt−j − εt

 (wiet−i)︸ ︷︷ ︸
B

+(wiet−i)
2︸ ︷︷ ︸

C

.

Taking expectations, we analyze the three terms separately: Term A and term C follow the same derivation as in the
baseline group. Specifically, term A involves only noise terms and can be treated as independent under standard
assumptions, while term C consists solely of the past error term and is unaffected by noise. Their expectations can
therefore be directly computed in the same manner as before.

In contrast, term B involves the interaction between the noise term εt−j and the past error term et−i, which are
not strictly independent due to overlapping time indices (see Appendix D.3.3). This dependence complicates
the expectation computation and requires a more refined analysis. By carefully expanding and evaluating the
cross-terms, we obtain the following expression for the mean squared error under the DPR strategy:

MSEDPR = σ2

1 +

L∑
j=1

w2
j

+ w2
i σ

2
e + 2wiσ

2

(
L−i∑
k=1

wi+kwk − wi

)
.

The difference in mean squared error between the control and experimental groups is:

MSEBaseline −MSEDPR = w2
i

(
σ2
∆ + µ2

∆ − σ2
e

)
− 2wiσ

2

(
L−i∑
k=1

wi+kwk − wi

)
.

Thus, DPR improves prediction performance when the second-order moment of anomaly deviation satisfies:

E[∆2] = σ2
∆ + µ2

∆ > σ2
e + 2σ2

(∑L−i
k=1 wi+kwk

wi
− 1

)
. (1)

where σ∆2 + µ∆2 denotes the second-order moment of the anomaly signal. To rigorously assess the practical
reliability of the inequality, we conducted a comprehensive numerical simulation study on time series data satisfying
the Lipschitz smoothness condition to provide robust empirical evidence. Specifically, for each sequence of length
n + L, we constructed a lagged feature matrix X ∈ Rn×L and target vector y ∈ Rn, fitting a ridge regression
model to obtain weights w ∈ RL.

To ensure robustness, we performed a grid search over sample sizes n ∈ {200, 500, 1000, 5000} and lag windows
L ∈ {10, 20, 50, 100}, yielding 16 configurations, each evaluated through 100 independent experiments with
distinct random seeds. The heatmap demonstrates that the inequality was satisfied with a probability of 99.98% ±
0.35% across 1600 experiments, thereby substantiating the reliability of the proposed method. Detailed experimental
settings are provided in Appendix D.5.
While these simulations establish strong empirical evidence, the lack of a closed-form characterization limits
deeper theoretical understanding. The presence of the regression weight wi in the denominator, which depends on
data-driven estimates, renders a closed-form analytical guarantee for equation 1 intractable. To complement these
findings with analytical intuition and enable tractable analysis of the upper bound on Z, we consider a simplified
but representative data-generating process. Specifically, we substitute a sine function for the underlying signal, i.e.,
let xt = sin(t), which preserves the structure of the derivation and leads to the same inequality condition while
enabling tractable analysis.

Under this specialization, we use the following assumptions. When the weight reaches the local optimal value,
the partial derivative of the loss function for each weight wj can be considered to be zero, that is ∂L

∂wj
= 0, ∀j =

1, 2, . . . , L, and derive the following equation:
L∑

i=1

wi cos(i− j) = cos(j), ∀j = 1, 2, . . . , L.

Solving this (derivation in Appendix D.12), for a sine time series input, the optimal weights are:wj =
2
L cos(j).

Using this weight formula, we compute an upper bound of σ2
e + 2σ2

(∑L−i
k=1 wi+kwk

wi
− 1
)

at the 95% confidence
level. We thus conclude that, under 95% confidence, DPR reduces prediction error when:

E[∆2] = σ2
∆ + µ2

∆ >

(
4.312

L
+ 1

)
σ2

The detailed mathematical derivations can be found in Appendix D.

5
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Figure 2: Heatmap of Mean Average Effectiveness Across Sample and Window Sizes. Each cell represents the
average effectiveness probability from 100 independent experiments. The color gradient, from light yellow (lower
effectiveness) to dark red (higher effectiveness). Most configurations achieve probabilities near or at 1.0000.

2.2 SEGMENTATION-BASED NORMALIZATION VIA CHANGE POINT DETECTION

Scale variation in time series is fundamentally caused by distributional shift Kim et al. (2021), which reflect
dynamic changes in statistical properties across different local windows. Consequently, the prediction error at a
given time point depends not only on the presence of anomalies but also on the statistical characteristics of the
input window. Without ensuring comparable statistical properties across windows, prediction errors cannot serve as
reliable indicators for anomaly detection.

To mitigate detection bias introduced by global normalization, we propose a segment-wise normalization method
based on change point detection (SN). Specifically, the time series is first segmented into statistically independent
intervals using change point detection, each segment is independently normalized, and the full sequence is then
reconstructed for downstream anomaly detection.

The process begins with the detection of coarse change points using the Pruned Exact Linear Time (PELT)
algorithm Killick et al. (2012). In real-world applications involving large-scale datasets, directly applying PELT
with fine granularity across the entire sequence can incur substantial computational costs—our empirical analysis
shows that its time complexity reaches the order of O(n2). To balance detection accuracy and computational
efficiency, we adopt a sliding window-based refinement strategy. For each preliminary change point detected by
PELT, denoted as C1 = {c1, c2, . . . , cm}, we perform localized discrepancy analysis within the neighborhood
region [ci−R, ci+R] for each ci, using a two-window difference function (see Truong et al. (2020)) to identify the
most significant local change points. As proven in the appendix E, this optimization strategy reduces the complexity
from O(n2) to O(n), making it more suitable for large-scale time series.

By partitioning the sequence at adjacent refined change points, a set of contiguous subsequences {Sj} is obtained,
where each segment Sj ∈ RTj×N (Tj is the time step length of the temporal segment) represents a multivariate
block to be normalized independently. Specifically, each Sj corresponds to a continuous segment of the original
sequence, defined as Sj = [xτ1 , . . . ,xτ1+Tj−1], where xt ∈ RN denotes a multivariate observation at time t. Each
segment Sj is then independently normalized:

S̃j = (Sj − µj)/σj , µj =
1
Tj

∑
k

Sj,k, σj =

√
1
Tj

∑
k

(Sj,k − µj)2, (2)

where µj and σj are the mean and variance of each segment. Finally, segments are concatenated S̃ =

[S̃1, . . . , S̃k] for downstream anomaly scoring. This pipeline—offloading change-point estimation to established
libraries—ensures efficiency while focusing our contribution on the subsequent distribution-adaptive normalization.

Due to space limitations, a detailed visualization of anomaly detection results using segmentation-based normaliza-
tion on real-world sequences is provided in Appendix B.

2.3 MEAN & DIMENSION DUAL-CHECK STRATEGY

To mitigate the limitations of dimension-view evaluations, we introduce Mean & Dimension Dual-Check (MDDC)
strategy, combining global error evaluation with dimension-wise assessment for comprehensive anomaly detection.

6
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Given ground-truth Xt ∈ Rd and prediction x̂t, the global error is defined as

Eglobal
t =

1

d

d∑
i=1

(X
(i)
t − x̂

(i)
t )2,

with threshold τ global = Qp({Eglobal
t }t∈Dval). To capture dimension-specific anomalies, a simple yet effective

Dimension-wise Alarm (DA) module is employed, applying adaptive thresholds to each dimension.

The squared error is defined as E(i)t = (X
(i)
t − x̂

(i)
t )2. For each dimension i, we compute the expected error

µ(i) = E[E(i)] and standard deviation σ(i) =
√

Var[E(i)], both estimated over the validation set. The adaptive
threshold is given by τ

(i)
t = µ(i) + φ · σ(i)).

An anomaly is flagged if at least one dimension satisfies E(i)t > τ
(i)
t . The final decision rule is:

Anomaly(t) = I(Eglobal
t > τ global) ∨ I

(
d∑

i=1

I(E(i)t > τ
(i)
t ) ≥ 1

)
, (3)

where I(·) denotes the indicator function, and the symbol ∨ represents the logical OR, meaning that an anomaly is
flagged if either the global deviation or at least one dimension-wise deviation exceeds its threshold. This dual-check
mechanism ensures sensitivity to both global and localized deviations. In addition, this study incorporates the
Lopsided Forecasting module (LF) proposed in AFMF Shen et al. (2024) as part of the DRPAD implementation. The
module processes discrete and continuous variables separately. Both types are used as input, and only continuous
variables are retained in the output.

3 EXPERIMENT

3.1 DATASET

We evaluate DRPAD on ten real-world time series anomaly detection benchmarks, including SMD Su et al. (2019)
, PSM Abdulaal et al. (2021), MSL Hundman et al. (2018a) , SMAP Hundman et al. (2018a), SWaT Mathur &
Tippenhauer (2016), WADI Ahmed et al. (2017), MBA Moody & Mark (2001), NAB Ahmad et al. (2017), and
MSDS Nedelkoski et al. (2020). Each dataset is divided into training and testing subsets. Within the training subset,
80% of the data is used for training and 20% for validation. Anomalies are annotated exclusively in the testset.
Detailed descriptions of each dataset are provided in the Appendix.

3.2 BASELINES

To comprehensively evaluate the performance of DRPAD, we selected a range of state-of-the-art baselines represent-
ing various technical paradigms. These include a density estimation-based approach (DAGMM Zong et al. (2018)),
reconstruction-based methods (CAE-M Zhang et al. (2021a), MEMTO Song et al. (2023)), and prediction-based
detectors (GDN Deng & Hooi (2021a), GTA Chen et al. (2021)).

For DRPAD, we incorporated six representative time series forecasting models from different architectural families
as base predictors, including RTNet Shen et al. (2022) (CNN-based), DeepAR Zhou et al. (2023b) (RNN-based),
Autoformer Wu et al. (2021) and FEDformer (Transformer-based) Zhou et al. (2022), DLinear Zeng et al. (2023)
(MLP-based), and GTA Chen et al. (2021) (GNN-based). Among them, GTA is a prediction-based anomaly
detection method, while the others are pure forecasting models.

3.3 SETTINGS

Anomaly scores at each timestamp are computed using MSE , defined as MSE = 1
N

∑N
n=1(x̂

n
t − xn

t )
2, and a

point is flagged as anomalous if its score exceeds a threshold δ. Following Xu et al. (2021), δ is set by assuming the
top r% of the test data are anomalies.

Unlike methods that apply post-processing techniques such as anomaly range adjustment strategy Shen et al. (2020);
Xu et al. (2018), we adopt a strict point-wise evaluation protocol for three reasons: (1) Practical relevance —
accurately identifying the onset of failures is crucial in industrial diagnostics, while range adjustment may obscure
early indications; (2) Model fidelity — anomaly range adjustment can inflate performance and obscure the true
detection ability of model; (3) Comparative fairness — evaluation without auxiliary enhancements ensures a fair
comparison across methods.

All methods use the same data preprocessing pipeline as AFMF Shen et al. (2024). Hyperparameters follow the
original settings (see Appendix G). DRPAD is trained using the AdamW optimizer with a OneCycle learning rate
scheduler. Results are averaged over five independent runs. The batch size is set to 128 for all models. The initial
learning rate is 1× 10−4.

To ensure a fair comparison under point-wise evaluation metrics, we unify threshold selection across all methods
by fixing δ at the top r% of test anomaly scores, avoiding biases introduced by range-based tuning. Unless stated
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otherwise, the best results are highlighted in bold and the second-best results are underlined. The sensitivity of the
dimension-wise anomaly detection threshold φ is set with 6. The values of the anomaly detection threshold r and
the maximum allowed consecutive anomalies δ are summarized in Table 10. Full hyperparameters are provided
in Appendix G. Evaluation metrics include Precision (P = TP

TP+FP ), Recall (R = TP
TP+FN ), and F1-score

(F1 = 2×P×R
P+R ).

Table 1: Performance comparison of different methods across various datasets

Categorization Baselines SMD MSL PSM

P R F1 P R F1 P R F1

Density Estimation DAGMM Zong et al. (2018) 12.34% 0.31% 0.60% 26.47% 2.90% 5.23% 67.37% 0.04% 6.91%

Reconstruction
MEMTO Song et al. (2023) 12.21% 1.76% 3.07% 11.00% 1.44% 2.55% 29.64% 1.81% 3.41%
CAE-M Zhang et al. (2021a) 9.46% 0.50% 0.95% 5.88% 0.65% 1.16% 27.76% 1.50% 2.85%

uFedHy-DisMTSADD Hao et al. (2025) 15.63% 1.88% 3.36% 27.82% 3.95% 6.92% 29.78% 3.50% 6.26%

Prediction

GDN Deng & Hooi (2021a) 16.25% 1.04% 1.95% 29.41% 3.23% 5.81% 34.53% 3.06% 5.62%
GTA Chen et al. (2021) 16.90% 2.03% 3.63% 47.83% 6.81% 11.93% 71.66% 3.84% 7.29%

FEDformer Zhou et al. (2022) 32.43% 3.89% 6.95% 32.65% 4.65% 8.14% 55.30% 2.96% 5.62%
FEDformer_w_AFMF Shen et al. (2024) 30.80% 3.60% 6.45% 13.71% 1.34% 2.44% 53.37% 2.27% 4.35%

FEDformer_w_DRPAD(our) 41.39% 12.77% 19.50% 26.71% 14.57% 18.84% 46.83% 22.14% 29.66%

Categorization Baselines SMAP MSDS NAB

P R F1 P R F1 P R F1

Density Estimation DAGMM Zong et al. (2018) 6.32% 0.43% 0.80% 1.93% 1.50% 1.69% 38.10% 33.33% 35.56%

Reconstruction
MEMTO Song et al. (2023) 16.97% 2.64% 4.57% 2.51% 3.85% 3.04% 25.00% 7.06% 11.02%
CAE-M Zhang et al. (2021a) 8.68% 0.91% 1.65% 3.24% 2.50% 2.82% 16.01% 15.21% 15.60%

uFedHy-DisMTSADD Hao et al. (2025) 7.76% 2.90% 4.22% 7.83% 3.64% 4.97% 2.59% 9.52% 4.07%

Prediction

GDN Deng & Hooi (2021a) 8.05% 0.94% 1.69% 1.93% 1.50% 1.69% 38.10% 33.33% 35.56%
GTA Chen et al. (2021) 15.79% 1.85% 3.31% 18.43% 13.55% 15.62% 47.37% 37.50% 41.86%

FEDformer Zhou et al. (2022) 13.21% 1.54% 2.77% 31.74% 23.33% 26.89% 46.31% 36.67% 40.93%
FEDformer_w_AFMF Shen et al. (2024) 15.02% 1.52% 2.76% 51.61% 34.74% 41.42% 25.59% 22.00% 23.65%

FEDformer_w_DRPAD(our) 17.36% 6.87% 8.87% 50.61% 49.06% 49.75% 59.00% 39.17% 46.82%

Categorization Baselines MBA WADI SWaT

P R F1 P R F1 P R F1

Density Estimation DAGMM Zong et al. (2018) 100.00% 5.92% 11.18% 1.97% 2.35% 2.14% 74.04% 3.05% 5.86%

Reconstruction
MEMTO Song et al. (2023) 68.14% 2.99% 5.73% 4.27% 40.54% 7.72% 18.54% 2.46% 4.34%
CAE-M Zhang et al. (2021a) 33.85% 2.00% 3.79% 6.27% 7.55% 6.85% 74.49% 3.07% 5.90%

uFedHy-DisMTSADD Hao et al. (2025) 37.87% 6.21% 10.67% 8.31% 7.41% 7.83% 27.83% 3.95% 6.92%

Prediction

GDN Deng & Hooi (2021a) 93.46% 5.92% 11.13% 4.27% 0.54% 2.72% 27.80% 3.99% 6.98%
GTA Chen et al. (2021) 97.63% 5.80% 10.94% 34.84% 3.02% 5.55% 92.16% 3.79% 7.28%

FEDformer Zhou et al. (2022) 92.23% 5.47% 10.34% 25.97% 2.25% 4.14% 62.88% 5.18% 9.56%
FEDformer_w_AFMF Shen et al. (2024) 98.32% 3.76% 7.24% 8.41% 0.65% 1.21% 28.07% 0.74% 1.44%

FEDformer_w_DRPAD(our) 81.53% 11.46% 20.09% 36.65% 48.31% 12.98% 22.64% 6.48% 10.04%

3.4 MAIN EXPERIMENTAL RESULTS

We conduct a comprehensive evaluation of the proposed DRPAD framework on nine publicly available datasets,
comparing its performance against several representative baseline methods. As shown in Table 1, the FEDformer
model augmented with DRPAD (FEDformer_w_DRPAD) consistently achieves the highest F1-scores across all nine
datasets, indicating substantial improvements over the baselines. On average, our framework yields an F1-score
improvement of approximately 91.32% compared to the best-performing baseline method for each dataset.

Specifically, compared with the anomaly detection framework AFMF, which is also based on prediction methods,
after combining FEDformer (FEDformer_w_AFMF), our method still performs well on all datasets, with an average
F1 score improvement of 393.66%. These results highlight the robustness and effectiveness of DRPAD in diverse
scenarios.

Furthermore, to evaluate the generalizability and performance benefits of the DRPAD framework across different
forecasting architectures, we integrate it into six widely used time series forecasting models. As shown in
Table 2, all models demonstrate performance improvements across the majority of datasets after being augmented
with DRPAD. For instance, in terms of F1-score, the average improvement across all models and datasets is
561.89% . This enhancement is observed in 49 out of 54 model-dataset combinations (approximately 90.7%),
underscoring the broad applicability of DRPAD. Nevertheless, a few exceptions are noted. On the SWaT dataset,
four models—DeepAR, GTA, RTNet, and FEDformer—exhibit slight declines in F1-score. This may be due to the
relatively minor distributional shifts and the lower prevalence of single-dimensional anomalies within the SWaT
dataset. Additionally, DRPAD significantly improves recall across several models, suggesting enhanced sensitivity
to subtle or hard-to-detect anomaly patterns.

Importantly, DRPAD achieves these performance gains without any modification to the underlying model archi-
tectures, affirming its potential as a model-agnostic plug-in module for enhancing anomaly detection in existing
systems.
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In addition, we conduct an ablation study within the FEDformer backbone, as presented in Table 3. PAM and
LIN, originally proposed in the AFMF framework Shen et al. (2024), are functionally replaced in DRPAD by our
DPR (Dynamic Prediction Replacement) and SN (Segment-wise Normalization) modules. The ablation results
demonstrate that they are less useful than DRPAD components. Besides, The full DRPAD configuration achieves
the highest F1 score on 7 of 9 datasets, demonstrating the effectiveness of combining all three components.

To ensure a comprehensive assessment, our framework is further evaluated under the advanced adjustment strategy
proposed in Kim et al. (2022), where a predicted anomalous segment is considered correct if at least 20% of its
timestamps overlap with the ground truth (see Appendix A.2 for details).

Table 2: Performance comparison of models with and without DRPAD framework across multiple datasets

Model MBA MSDS MSL

P R F1 P R F1 P R F1

Autoformer-wo-DRPAD 82.37% 4.89% 9.23% 39.19% 28.80% 33.20% 32.77% 4.67% 8.17%
Autoformer-w-DRPAD 67.33% 9.28% 16.08%↑74.21% 54.13% 41.15% 46.76%↑40.84% 23.11% 5.73% 9.06%↑10.89%
DLinear-wo-DRPAD 99.34% 5.90% 11.14% 59.13% 43.46% 50.10% 39.17% 5.58% 9.77%
DLinear-w-DRPAD 98.45% 7.44% 13.83%↑24.15% 47.75% 50.60% 49.13%↓1.94% 29.22% 14.00% 18.89%↑93.35%
DeepAR-wo-DRPAD 93.29% 5.54% 10.46% 28.72% 21.11% 24.33% 42.98% 6.12% 10.72%
DeepAR-w-DRPAD 58.73% 27.48% 35.80%↑242.26% 49.06% 48.80% 48.88%↑100.90% 32.33% 12.15% 17.60%↑64.18%
GTA-wo-DRPAD 97.63% 5.80% 10.94% 18.43% 13.55% 15.62% 47.83% 6.81% 11.93%
GTA-w-DRPAD 96.28% 6.83% 12.74%↑16.45% 47.85% 38.29% 41.95%↑168.50% 30.11% 13.07% 17.95%↑50.46%
RTNet-wo-DRPAD 96.58% 2.87% 5.57% 43.60% 32.05% 36.95% 37.67% 5.36% 9.39%
RTNet-w-DRPAD 80.36% 12.97% 22.33%↑300.90% 45.64% 59.44% 51.57%↑39.57% 30.97% 16.43% 21.36%↑127.48%
FEDformer-wo-DRPAD 92.24% 5.48% 10.34% 56.86% 41.79% 48.18% 32.66% 4.65% 8.14%
FEDformer-w-DRPAD 81.53% 11.46% 20.09%↑94.29% 50.61% 49.06% 49.75%↑3.26% 26.71% 14.57% 18.84%↑131.45%

Model NAB PSM SMAP

P R F1 P R F1 P R F1

Autoformer-wo-DRPAD 49.47% 39.17% 43.72% 65.11% 3.49% 6.63% 10.28% 1.21% 2.16%
Autoformer-w-DRPAD 52.86% 40.83% 46.02%↑5.26% 42.37% 13.24% 20.17%↑204.22% 8.93% 6.12% 6.62%↑206.48%
DLinear-wo-DRPAD 46.32% 36.67% 40.93% 58.32% 3.13% 5.93% 10.10% 1.18% 2.12%
DLinear-w-DRPAD 52.56% 38.33% 44.27%↑8.16% 42.37% 13.24% 20.17%↑240.14% 8.43% 2.59% 3.97%↑87.26%
DeepAR-wo-DRPAD 48.42% 38.33% 42.79% 71.66% 3.84% 7.29% 11.75% 1.38% 2.47%
DeepAR-w-DRPAD 53.34% 41.67% 46.75%↑9.25% 31.87% 25.43% 28.29%↑288.07% 7.26% 3.38% 4.59%↑85.83%
GTA-wo-DRPAD 47.37% 37.50% 41.86% 67.38% 3.61% 6.86% 15.79% 1.85% 3.31%
GTA-w-DRPAD 48.42% 38.33% 42.78%↑2.20% 50.93% 6.92% 12.16%↑77.26% 9.42% 4.65% 6.22%↑87.92%
RTNet-wo-DRPAD 50.53% 40.00% 44.65% 65.62% 3.52% 6.68% 13.15% 1.54% 2.76%
RTNet-w-DRPAD 68.21% 35.83% 46.97%↑5.20% 42.67% 13.94% 21.02%↑214.67% 8.15% 2.73% 4.08%↑47.83%
FEDformer-wo-DRPAD 46.32% 36.67% 40.93% 55.30% 2.96% 5.63% 13.21% 1.55% 2.77%
FEDformer-w-DRPAD 59.00% 39.17% 46.82%↑14.39% 46.83% 22.14% 29.66%↑426.82% 12.78% 6.87% 8.87%↑220.22%

Model SMD SWaT WADI

P R F1 P R F1 P R F1

Autoformer-wo-DRPAD 37.98% 4.57% 8.15% 70.37% 2.90% 5.56% 2.31% 0.20% 0.37%
Autoformer-w-DRPAD 20.94% 19.81% 13.02%↑59.75% 15.94% 21.52% 13.77%↑147.66% 6.65% 32.76% 10.96%↑2862.16%
DLinear-wo-DRPAD 41.38% 4.97% 8.88% 15.33% 0.63% 1.21% 4.24% 0.37% 0.68%
DLinear-w-DRPAD 39.09% 12.33% 18.75%↑111.15% 16.60% 11.05% 13.27%↑996.69% 7.21% 41.75% 12.30%↑1708.82%
DeepAR-wo-DRPAD 20.81% 2.50% 4.47% 82.60% 3.40% 6.53% 0.47% 0.04% 0.07%
DeepAR-w-DRPAD 40.38% 11.96% 18.44%↑312.53% 22.07% 3.20% 5.58%↓14.55% 7.41% 38.72% 12.30%↑17471.43%
GTA-wo-DRPAD 16.90% 2.03% 3.63% 92.16% 3.79% 7.28% 34.84% 3.02% 5.55%
GTA-w-DRPAD 41.91% 11.62% 18.19%↑401.10% 32.57% 2.63% 4.83%↓33.65% 9.33% 16.54% 11.91%↑114.59%
RTNet-wo-DRPAD 35.37% 4.25% 7.59% 88.47% 3.64% 6.99% 3.77% 0.33% 0.60%
RTNet-w-DRPAD 40.15% 13.24% 19.92%↑162.45% 16.32% 4.12% 6.57%↓6.01% 7.60% 26.07% 11.76%↑1860.00%
FEDformer-wo-DRPAD 31.53% 3.79% 6.77% 64.65% 5.32% 9.83% 25.97% 2.25% 4.14%
FEDformer-w-DRPAD 43.13% 12.56% 19.45%↑187.30% 26.32% 4.65% 7.90%↓19.63% 8.43% 26.40% 12.75%↑207.97%

4 CONCLUSION

In this paper, we propose DRPAD, a dynamic-aware and robust paradigm for time series anomaly detection, specif-
ically designed to address three fundamental challenges: anomaly propagation, distribution shifts, and univariate
anomalies. To this end, DRPAD integrates three complementary components—Dynamic Prediction Replacement
(DPR), Segmentation-Based Normalization (SN), and a Mean & Dimension Dual-Check (MDDC) strat-
egy—into a unified, model-agnostic framework that can be seamlessly combined with a variety of forecasting-based
methods. We provide theoretical analysis showing that DPR reduces prediction errors by suppressing the impact of
anomalous inputs, though this analysis is currently grounded on synthetic sine-based data for analytical tractability.
Extensive experiments on ten real-world benchmarks demonstrate that DRPAD consistently improves performance
across diverse model architectures. We believe DRPAD provides a principled and extensible foundation for
advancing anomaly detection in complex time series scenarios.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study does not involve human subjects, personal data, or
sensitive attributes, and all datasets used are publicly available benchmark datasets that have been widely adopted in
prior research. We followed standard practices for data processing as described in Appendix G, and no proprietary
or confidential data were used. The proposed methodology is intended solely for academic research on anomaly
detection in time series data and does not directly target potentially harmful applications. We are not aware of any
conflicts of interest, funding biases, or legal compliance issues arising from this work.

REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure reproducibility of our work. The detailed algorithmic components of
DRPAD, including Dynamic Prediction Replacement (DPR), Segment-wise Normalization (SN), and the Mean
& Dimension Dual-Check (MDDC), are formally defined in Section 2. Complete mathematical derivations are
provided in Appendix D, and proofs of complexity reduction are given in Appendix E. Experimental settings,
including datasets, preprocessing steps, and baseline configurations, are described in Section 3 and Appendix G.All
datasets employed are publicly available, and the source code is publicly available at https://anonymous.
4open.science/r/DRPAD-BEC8/.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

No large language models (LLMs) were employed in this work.

10

https://anonymous.4open.science/r/DRPAD-BEC8/
https://anonymous.4open.science/r/DRPAD-BEC8/


580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

Under review as a conference paper at ICLR 2026

REFERENCES

Ahmed Abdulaal, Zhuanghua Liu, and Tomer Lancewicki. Practical approach to asynchronous multivariate time
series anomaly detection and localization. In Proceedings of the 27th ACM SIGKDD conference on knowledge
discovery & data mining, pp. 2485–2494, 2021.

Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. Unsupervised real-time anomaly detection for
streaming data. Neurocomputing, 262:134–147, 2017.

Chuadhry Mujeeb Ahmed, Venkata Reddy Palleti, and Aditya P Mathur. Wadi: a water distribution testbed for
research in the design of secure cyber physical systems. In Proceedings of the 3rd international workshop on
cyber-physical systems for smart water networks, pp. 25–28, 2017.

Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A Zuluaga. Usad: Unsupervised
anomaly detection on multivariate time series. In Proceedings of the 26th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 3395–3404, 2020.

Md Abul Bashar and Richi Nayak. Tanogan: Time series anomaly detection with generative adversarial networks.
In 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1778–1785. IEEE, 2020. ISBN
978-1-7281-2547-3.

Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof: identifying density-based local
outliers. In Proceedings of the 2000 ACM SIGMOD international conference on Management of data, pp.
93–104, 2000.

Cristian Challu, Kin G. Olivares, Boris N. Oreshkin, Federico Garza Ramirez, Max Mergenthaler Canseco, and
Artur Dubrawski. Nhits: Neural hierarchical interpolation for time series forecasting. Proceedings of the AAAI
Conference on Artificial Intelligence, 37(6):6989–6997, 2023.

Zekai Chen, Dingshuo Chen, Xiao Zhang, Zixuan Yuan, and Xiuzhen Cheng. Learning graph structures with
transformer for multivariate time-series anomaly detection in iot. IEEE Internet of Things Journal, 9(12):
9179–9189, 2021.

Ian Cleland, Manhyung Han, Chris Nugent, Hosung Lee, Sally McClean, Shuai Zhang, and Sungyoung Lee.
Evaluation of prompted annotation of activity data recorded from a smart phone. Sensors, 14(9):15861–15879,
2014.

Enyan Dai and Jie Chen. Graph-augmented normalizing flows for anomaly detection of multiple time series. arXiv
preprint arXiv:2202.07857, 2022.

Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multivariate time series. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 4027–4035, 2021a.

Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multivariate time series. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 4027–4035, 2021b.

Frédéric Desobry, Manuel Davy, and Christian Doncarli. An online kernel change detection algorithm. IEEE
Transactions on Signal Processing, 53(8):2961–2974, 2005.

Kyle D Feuz, Diane J Cook, Cody Rosasco, Kayela Robertson, and Maureen Schmitter-Edgecombe. Automated
detection of activity transitions for prompting. IEEE transactions on human-machine systems, 45(5):575–585,
2014.

Alexander Geiger, Dongyu Liu, Sarah Alnegheimish, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Tadgan:
Time series anomaly detection using generative adversarial networks. In 2020 Ieee International Conference on
Big Data (Big Data), pp. 33–43. IEEE, 2020. ISBN 1-7281-6251-3.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing systems, 27, 2014.

Haixuan Guo, Shuhan Yuan, and Xintao Wu. Logbert: Log anomaly detection via bert. In 2021 international joint
conference on neural networks (IJCNN), pp. 1–8. IEEE, 2021.

Junfeng Hao, Peng Chen, Juan Chen, and Xi Li. Effectively detecting and diagnosing distributed multivariate
time series anomalies via unsupervised federated hypernetwork. Information Processing & Management, 62(4):
104107, 2025.

Siyuan Huang and Yepeng Liu. Fl-net: A multi-scale cross-decomposition network with frequency external
attention for long-term time series forecasting. Knowledge-Based Systems, 288:111473, 2024.

11



638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

Under review as a conference paper at ICLR 2026

Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soderstrom. Detecting
spacecraft anomalies using lstms and nonparametric dynamic thresholding. In Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 387–395, 2018a.

Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soderstrom. Detecting
spacecraft anomalies using lstms and nonparametric dynamic thresholding. In Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 387–395, 2018b.

Rebecca Killick, Paul Fearnhead, and Idris A Eckley. Optimal detection of changepoints with a linear computational
cost. Journal of the American Statistical Association, 107(500):1590–1598, 2012.

Siwon Kim, Kukjin Choi, Hyun-Soo Choi, Byunghan Lee, and Sungroh Yoon. Towards a rigorous evaluation of
time-series anomaly detection. Proceedings of the AAAI Conference on Artificial Intelligence, 36(7):7194–7201,
2022.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Reversible instance
normalization for accurate time-series forecasting against distribution shift. In International conference on
learning representations, 2021.

Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

Michael P Knapp. Sines and cosines of angles in arithmetic progression. Mathematics magazine, 82(5):371–372,
2009.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-term temporal patterns
with deep neural networks. In The 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval, pp. 95–104. ACM, 2018. ISBN 978-1-4503-5657-2.

Dan Li, Dacheng Chen, Baihong Jin, Lei Shi, Jonathan Goh, and See-Kiong Ng. Mad-gan: Multivariate anomaly
detection for time series data with generative adversarial networks. In Igor V. Tetko, Věra Kůrková, Pavel
Karpov, and Fabian Theis (eds.), Artificial Neural Networks and Machine Learning – ICANN 2019: Text and
Time Series, volume 11730, pp. 703–716. Springer International Publishing, 2019. ISBN 978-3-030-30489-8
978-3-030-30490-4.

Zhihan Li, Youjian Zhao, Jiaqi Han, Ya Su, Rui Jiao, Xidao Wen, and Dan Pei. Multivariate time series anomaly
detection and interpretation using hierarchical inter-metric and temporal embedding. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230. ACM, 2021. ISBN
978-1-4503-8332-5.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet: Time series
modeling and forecasting with sample convolution and interaction. Advances in Neural Information Processing
Systems, 35:5816–5828, 2022a.

Song Liu, Makoto Yamada, Nigel Collier, and Masashi Sugiyama. Change-point detection in time-series data by
relative density-ratio estimation. Neural Networks, 43:72–83, 2013.

Yijing Liu, Qinxian Liu, Jian-Wei Zhang, Haozhe Feng, Zhongwei Wang, Zihan Zhou, and Wei Chen. Multivariate
time-series forecasting with temporal polynomial graph neural networks. Advances in neural information
processing systems, 35:19414–19426, 2022b.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring the stationarity
in time series forecasting. Advances in neural information processing systems, 35:9881–9893, 2022c.

Donghao Luo and Xue Wang. Moderntcn: A modern pure convolution structure for general time series analysis. In
The twelfth international conference on learning representations, pp. 1–43, 2024.

Aditya P Mathur and Nils Ole Tippenhauer. Swat: A water treatment testbed for research and training on ics
security. In 2016 international workshop on cyber-physical systems for smart water networks (CySWater), pp.
31–36. IEEE, 2016.

George B Moody and Roger G Mark. The impact of the mit-bih arrhythmia database. IEEE engineering in medicine
and biology magazine, 20(3):45–50, 2001.

Sasho Nedelkoski, Jasmin Bogatinovski, Ajay Kumar Mandapati, Soeren Becker, Jorge Cardoso, and Odej Kao.
Multi-source distributed system data for ai-powered analytics. In Service-Oriented and Cloud Computing:
8th IFIP WG 2.14 European Conference, ESOCC 2020, Heraklion, Crete, Greece, September 28–30, 2020,
Proceedings 8, pp. 161–176. Springer, 2020.

12



696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753

Under review as a conference paper at ICLR 2026

Daehyung Park, Yuuna Hoshi, and Charles C. Kemp. A multimodal anomaly detector for robot-assisted feeding
using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters, 3(3):1544–1551, 2018.

Sasank Reddy, Min Mun, Jeff Burke, Deborah Estrin, Mark Hansen, and Mani Srivastava. Using mobile phones to
determine transportation modes. ACM Transactions on Sensor Networks (TOSN), 6(2):1–27, 2010.

Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander Binder,
Emmanuel Müller, and Marius Kloft. Deep one-class classification. In International conference on machine
learning, pp. 4393–4402. PMLR, 2018a.

Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander Binder,
Emmanuel Müller, and Marius Kloft. Deep one-class classification. In International Conference on Machine
Learning, pp. 4393–4402. PMLR, 2018b. ISBN 2640-3498.

Yunus Saatçi, Ryan D Turner, and Carl E Rasmussen. Gaussian process change point models. In Proceedings of
the 27th International Conference on Machine Learning (ICML-10), pp. 927–934, 2010.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic forecasting with
autoregressive recurrent networks. International Journal of Forecasting, 36(3):1181–1191, 2020.

Li Shen, Yuning Wei, and Yangzhu Wang. Respecting time series properties makes deep time series forecasting
perfect. arXiv preprint arXiv:2207.10941, 2022.

Li Shen, Yuning Wei, Yangzhu Wang, and Hongguang Li. Afmf: Time series anomaly detection framework with
modified forecasting. Knowledge-Based Systems, 296:111912, 2024.

Lifeng Shen, Zhuocong Li, and James Kwok. Timeseries anomaly detection using temporal hierarchical one-class
network. Advances in neural information processing systems, 33:13016–13026, 2020.

Yunfei Shi, Bin Wang, Yanwei Yu, Xianfeng Tang, Chao Huang, and Junyu Dong. Robust anomaly detection for
multivariate time series through temporal gcns and attention-based vae. Knowledge-Based Systems, 275:110725,
2023.

Junho Song, Keonwoo Kim, Jeonglyul Oh, and Sungzoon Cho. Memto: Memory-guided transformer for multi-
variate time series anomaly detection. Advances in Neural Information Processing Systems, 36:57947–57963,
2023.

Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection for multivariate
time series through stochastic recurrent neural network. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 2828–2837, 2019.

Jian Tang, Zhixiang Chen, Ada Wai-Chee Fu, and David W Cheung. Enhancing effectiveness of outlier detections
for low density patterns. In Advances in knowledge discovery and data mining: 6th Pacific-Asia conference,
PAKDD 2002 Taipei, Taiwan, May 6–8, 2002 proceedings 6, pp. 535–548. Springer, 2002.

Luan Tran, Min Y. Mun, and Cyrus Shahabi. Real-time distance-based outlier detection in data streams. Proceedings
of the VLDB Endowment, 14(2):141–153, 2020.

Charles Truong, Laurent Oudre, and Nicolas Vayatis. Selective review of offline change point detection methods.
Signal Processing, 167:107299, 2020.

Shreshth Tuli, Giuliano Casale, and Nicholas R Jennings. Tranad: Deep transformer networks for anomaly detection
in multivariate time series data. arXiv preprint arXiv:2201.07284, 2022.

Yijie Wang, Hao Long, Linjiang Zheng, and Jiaxing Shang. Graphformer: Adaptive graph correlation transformer
for multivariate long sequence time series forecasting. Knowledge-Based Systems, 285:111321, 2024.

Zhiwei Wang, Zhengzhang Chen, Jingchao Ni, Hui Liu, Haifeng Chen, and Jiliang Tang. Multi-scale one-class
recurrent neural networks for discrete event sequence anomaly detection. In Proceedings of the 27th ACM
SIGKDD conference on knowledge discovery & data mining, pp. 3726–3734, 2021.

Li Wei and Eamonn Keogh. Semi-supervised time series classification. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 748–753, 2006.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers with
auto-correlation for long-term series forecasting. Advances in neural information processing systems, 34:
22419–22430, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Temporal
2d-variation modeling for general time series analysis. arXiv preprint arXiv:2210.02186, 2022.

13



754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

Under review as a conference paper at ICLR 2026

Haowen Xu, Yang Feng, Jie Chen, Zhaogang Wang, Honglin Qiao, Wenxiao Chen, Nengwen Zhao, Zeyan Li,
Jiahao Bu, Zhihan Li, Ying Liu, Youjian Zhao, and Dan Pei. Unsupervised anomaly detection via variational
auto-encoder for seasonal kpis in web applications. In Proceedings of the 2018 World Wide Web Conference on
World Wide Web - WWW ’18, pp. 187–196. ACM Press, 2018. ISBN 978-1-4503-5639-8.

Hongzuo Xu, Yijie Wang, Songlei Jian, Qing Liao, Yongjun Wang, and Guansong Pang. Calibrated one-class
classification for unsupervised time series anomaly detection. IEEE Transactions on Knowledge and Data
Engineering, 2024.

Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time series anomaly detection
with association discrepancy. arXiv preprint arXiv:2110.02642, 2021.

Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and Bixiong Xu.
Ts2vec: Towards universal representation of time series. In Proceedings of the AAAI conference on artificial
intelligence, volume 36, pp. 8980–8987, 2022.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting?, 2022.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting? In
Proceedings of the AAAI conference on artificial intelligence, volume 37, pp. 11121–11128, 2023.

Shengming Zhang, Yanchi Liu, Xuchao Zhang, Wei Cheng, Haifeng Chen, and Hui Xiong. Cat: Beyond efficient
transformer for content-aware anomaly detection in event sequences. In Proceedings of the 28th ACM SIGKDD
conference on knowledge discovery and data mining, pp. 4541–4550, 2022.

Yuxin Zhang, Yiqiang Chen, Jindong Wang, and Zhiwen Pan. Unsupervised deep anomaly detection for multi-sensor
time-series signals. IEEE Transactions on Knowledge and Data Engineering, 35(2):2118–2132, 2021a.

Yuxin Zhang, Yiqiang Chen, Jindong Wang, and Zhiwen Pan. Unsupervised deep anomaly detection for multi-sensor
time-series signals. IEEE Transactions on Knowledge and Data Engineering, 35(2):2118–2132, 2021b.

Hang Zhao, Yujing Wang, Juanyong Duan, Congrui Huang, Defu Cao, Yunhai Tong, Bixiong Xu, Jing Bai, Jie
Tong, and Qi Zhang. Multivariate time-series anomaly detection via graph attention network. In 2020 IEEE
international conference on data mining (ICDM), pp. 841–850. IEEE, 2020.

Binggui Zhou, Yunxuan Dong, Guanghua Yang, Fen Hou, Zheng Hu, Suxiu Xu, and Shaodan Ma. A graph-attention
based spatial-temporal learning framework for tourism demand forecasting. Knowledge-Based Systems, 263:
110275, 2023a.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency enhanced
decomposed transformer for long-term series forecasting. In International conference on machine learning, pp.
27268–27286. PMLR, 2022.

Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis by pretrained
lm. Advances in neural information processing systems, 36:43322–43355, 2023b.

Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis by pretrained
lm. Advances in neural information processing systems, 36:43322–43355, 2023c.

Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng Chen. Deep
autoencoding gaussian mixture model for unsupervised anomaly detection. In International conference on
learning representations, 2018.

14



812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869

Under review as a conference paper at ICLR 2026

APPENDIX OVERVIEW

This appendix provides supplementary materials that support the main text, organized as follows:

- A More Experimental Results Includes additional ablation studies (Table 3) and evaluations under the advanced
adjustment strategy Kim et al. (2022). These results further validate the contributions of each DRPAD component
and provide robustness checks under relaxed evaluation criteria.

- B Visual Evidence of Segment-wise Normalization Presents qualitative visualization (Figure 3) comparing
global normalization and our proposed segment-wise normalization (SN) on real-world datasets, highlighting how
SN effectively mitigates scale disparities.

- C Notation Summary Summarizes the mathematical symbols used throughout the paper for ease of reference.

- D Detailed Mathematical Proof Provides the formal derivation and theoretical analysis underpinning the Dynamic
Prediction Replacement (DPR) mechanism.

- E Proof of Complexity Reduction in the SN Module This section provides a comprehensive complexity analysis
of the SN module, detailing the problem definition, theoretical complexity reduction of the PELT algorithm, and
empirical validation through runtime experiments and model fitting.

- F Related Works We review key literature on time series anomaly detection, forecasting, and change point
detection. Unsupervised methods are categorized into forecasting-based, reconstruction-based, density estimation,
and clustering-based approaches. We also compare forecasting models and change point detection techniques. Our
work builds on the AFMF framework, introducing Segment-wise Normalization (SN) and Dynamic Prediction
Replacement, which overcome limitations of existing normalization strategies like Local Instance Normalization
(LIN) and Progressive Adjacent Masking (PAM) to enhance anomaly detection performance.

- G Baselines and Datasets Describes in detail the benchmark datasets and baseline methods used in this study,
with numerical dataset statistics summarized in Table 10.
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A MORE EXPERIMENTAL RESULTS

A.1 ABLATION STUDY

We conduct an ablation study within the FEDformer backbone in Table 3, where “+X”/“-X” indicates the inclusion
or removal of component X. PAM (Progressive Adjacent Masking) and LIN (Local Instance Normalization) are
components originally proposed in the AFMF framework Shen et al. (2024). In DRPAD, they are functionally
replaced by our DPR (Dynamic Prediction Replacement) and SN (Segment-wise Normalization) components,
while the Mean & Dimension Dual-Check (MDDC) strategy serves as an auxiliary detection module additionally
proposed to further enhance the overall performance.

The full DRPAD configuration achieves the highest F1 score on 7 of 9 datasets, demonstrating the effectiveness
of combining all three components. Adding DPR (e.g., DRPAD vs. DRPAD-DPR) substantially improves recall
by mitigating anomaly contamination and stabilizing normal pattern learning. SN generally enhances precision
(e.g., DRPAD-SN vs. DRPAD), though minor recall drops may occur. DA consistently boosts recall, with small
precision trade-offs in some cases.Compared to LIN and PAM from AFMF, our SN and DPR modules achieve
better performance in their respective roles.

In summary, each DRPAD component contributes independently, and their combination yields a strong synergistic
effect on F1 performance.

Table 3: Ablation results of DRPAD on nine datasets. We report Precision (P), Recall (R), and F1 score for each
configuration

Framework MBA MSDS MSL

P R F1 P R F1 P R F1

DRPAD 80.36 12.30 21.34 51.61 44.44 47.76 32.47 15.55 21.03
DRPAD-SN 85.23 10.82 19.20 18.77 23.50 20.87 32.47 15.55 21.03
DRPAD-SN+LIN 98.03 5.82 10.99 22.19 38.46 28.15 17.37 2.06 3.68
DRPAD-DPR 93.42 5.55 10.47 43.63 32.91 37.52 28.21 4.02 7.03
DRPAD-DPR+PAM 88.00 2.58 5.01 43.47 32.69 37.32 32.57 1.83 3.46
DRPAD-MDDC 80.36 12.30 21.34 51.39 43.38 47.05 32.47 15.55 21.03
DRPAD-DPR-MDDC 93.42 5.55 10.47 42.15 30.98 35.71 28.21 4.02 7.03
DRPAD-SN-MDDC 85.23 10.82 19.20 16.57 23.29 19.36 32.47 15.55 21.03
DRPAD-SN-DPR-MDDC 91.45 5.43 10.25 26.74 19.66 22.66 33.09 4.71 8.25

Framework NAB PSM SMAP

P R F1 P R F1 P R F1

DRPAD 64.29 37.50 47.37 51.06 29.17 37.13 13.47 8.23 10.22
DRPAD-SN 64.29 37.50 47.37 59.47 10.58 17.96 12.96 7.95 9.86
DRPAD-SN+LIN 47.37 37.50 41.86 54.09 2.90 5.51 15.04 1.41 2.57
DRPAD-DPR 47.37 37.50 41.86 53.94 10.53 17.61 13.45 1.58 2.82
DRPAD-DPR+PAM 31.25 25.00 27.78 54.01 10.89 18.13 16.75 1.17 2.19
DRPAD-MDDC 52.94 37.50 43.90 58.86 6.17 11.17 13.47 8.23 10.22
DRPAD-DPR-MDDC 47.37 37.50 41.86 76.36 4.09 7.77 13.45 1.58 2.82
DRPAD-SN-MDDC 64.29 37.50 47.37 69.55 4.45 8.37 12.96 7.95 9.86
DRPAD-SN-DPR-MDDC 42.11 33.33 37.21 57.15 3.06 5.82 13.67 1.60 2.87

Framework SMD SWaT WADI

P R F1 P R F1 P R F1

DRPAD 42.94 12.20 19.00 19.24 5.50 8.55 8.04 47.39 13.74
DRPAD-SN 17.07 35.41 23.03 13.48 7.49 9.63 5.86 37.18 10.13
DRPAD-SN+LIN 7.21 4.37 5.44 11.99 4.11 6.12 5.44 31.48 9.27
DRPAD-DPR 45.39 9.86 16.20 39.35 11.27 17.53 11.90 13.60 12.69
DRPAD-DPR+PAM 45.28 9.74 16.04 39.36 11.27 17.53 9.84 19.29 13.03
DRPAD-MDDC 59.01 8.37 14.66 67.13 2.31 4.46 7.17 8.68 7.85
DRPAD-DPR-MDDC 58.10 6.98 12.47 61.15 5.03 9.30 15.74 1.36 2.51
DRPAD-SN-MDDC 33.54 4.36 7.72 39.98 1.38 2.66 11.63 10.51 11.05
DRPAD-SN-DPR-MDDC 32.66 3.93 7.01 64.65 5.32 9.83 25.81 2.24 4.11
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Table 4: Performance comparison of different methods across various datasets in η = 20%

Categorization Baselines SMD MSL PSM

P R F1 P R F1 P R F1

Density Estimation DAGMM Zong et al. (2018) 14.34% 1.91% 3.37% 29.41% 3.23% 5.81% 68.97% 4.27% 8.04%

Reconstruction MEMTO Song et al. (2023) 16.08% 2.65% 4.54% 11.09% 1.51% 2.65% 31.58% 1.92% 3.62%
CAE-M Zhang et al. (2021a) 19.20% 2.47% 4.38% 35.29% 3.87% 6.98% 33.14% 1.85% 3.50%

Prediction

GDN Deng & Hooi (2021a) 16.45% 2.09% 3.70% 29.41% 3.23% 5.81% 38.35% 4.14% 7.47%
GTA Chen et al. (2021) 27.02% 3.70% 6.50% 57.75% 10.20% 17.34% 74.62% 7.42% 13.02%

FEDformer Zhou et al. (2022) 43.01% 6.13% 10.73% 44.11% 7.57% 12.92% 63.25% 4.12% 7.74%
FEDformer_w_AFMF Shen et al. (2024) 41.74% 5.81% 10.20% 13.71% 1.34% 2.44% 65.90% 3.83% 7.25%

FEDformer_w_DRPAD(our) 56.55% 23.56% 33.23% 44.85% 32.48% 37.66% 60.18% 41.55% 47.40%

Categorization Baselines SMAP MSDS NAB

P R F1 P R F1 P R F1

Density Estimation DAGMM Zong et al. (2018) 9.41% 1.11% 1.98% 4.83% 3.85% 4.28% 56.66% 70.83% 62.96%

Reconstruction MEMTO Song et al. (2023) 17.77% 3.26% 5.51% 2.79% 4.49% 3.44% 33.33% 7.14% 11.76%
CAE-M Zhang et al. (2021a) 9.37% 0.93% 1.69% 4.83% 3.85% 4.28% 56.67% 70.83% 62.96%

Prediction

GDN Deng & Hooi (2021a) 11.02% 1.31% 2.34% 35.61% 32.26% 33.86% 64.86% 100.00% 78.69%
GTA Chen et al. (2021) 22.48% 2.92% 5.16% 25.74% 20.81% 23.02% 62.96% 70.83% 66.67%

FEDformer Zhou et al. (2022) 28.88% 4.13% 7.23% 54.67% 61.03% 57.64% 62.51% 70.83% 66.41%
FEDformer_w_AFMF Shen et al. (2024) 15.02% 1.52% 2.76% 71.58% 81.67% 76.04% 47.04% 59.00% 52.12%

FEDformer_w_DRPAD(our) 27.42% 17.96% 21.50% 59.29% 70.17% 64.07% 74.89% 82.50% 77.76%

Categorization Baselines MBA WADI SWaT

P R F1 P R F1 P R F1

Density Estimation DAGMM Zong et al. (2018) 100.00% 5.92% 11.18% 10.30% 6.84% 8.22% 74.96% 3.20% 6.14%

Reconstruction MEMTO Song et al. (2023) 71.43% 3.11% 5.95% 4.30% 40.84% 7.77% 23.21% 3.04% 5.38%
CAE-M Zhang et al. (2021a) 99.35% 5.88% 11.11% 16.70% 7.80% 10.63% 74.52% 3.18% 6.11%

Prediction

GDN Deng & Hooi (2021a) 100.00% 5.95% 11.23% 25.30% 1.84% 3.43% 29.83% 4.22% 7.39%
GTA Chen et al. (2021) 97.79% 6.05% 11.39% 34.84% 3.02% 5.55% 93.45% 4.59% 8.75%

FEDformer Zhou et al. (2022) 92.24% 5.48% 10.34% 25.97% 2.25% 4.14% 67.30% 6.30% 11.52%
FEDformer_w_AFMF Shen et al. (2024) 98.32% 3.76% 7.24% 8.41% 0.65% 1.21% 55.59% 5.02% 9.21%

FEDformer_w_DRPAD(our) 88.96% 20.91% 33.85% 12.67% 86.45% 22.07% 35.70% 12.19% 18.14%

A.2 ADVANCED ADJUSTMENT STRATEGY

To ensure a comprehensive assessment, our work additionally evaluates our method under the advanced adjustment
strategy proposed in Kim et al. (2022), employing a threshold parameter η = 20%. Under this relaxed criterion, an
anomalous segment is considered detected if at least 20% of its constituent points are identified. This approach
stands in contrast to our primary evaluation protocol, which adopts a stricter point-wise detection framework
without post-processing adjustments. Therefore, this appendix provides the relaxed results of the two experiments
from the main results section, obtained under advanced adjustment strategies, as shown in Tables 4 and 5.

Under the relatively lenient high-level detection adjustment strategy, as shown in Table 4, our framework combined
with FedFormer achieves the best F1 score on 7 out of 9 datasets, with an average improvement of 125.96% over
the best-performing baseline. Meanwhile, as presented in Table 5, when comparing the same model with and
without the DRPAD framework, enabling DRPAD leads to an average relative improvement of 1084.28% in F1
score. These results demonstrate that the DRPAD framework can significantly enhance model performance under
both detection strategies in most cases.
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Table 5: Performance comparison of models with and without DRPAD framework across multiple datasets in
η = 20%

Model MBA MSDS MSL

P R F1 P R F1 P R F1

Autoformer_wo_DRPAD 82.37% 4.89% 9.23% 53.32% 53.42% 53.32% 43.20% 7.28% 12.46%
Autoformer_w_DRPAD 74.60% 14.23% 23.15%↑150.67% 63.59% 60.90% 62.21%↑16.67% 30.37% 8.74% 13.34%↑6.97%
DLinear_wo_DRPAD 99.34% 5.90% 11.14% 75.61% 93.12% 83.45% 39.82% 5.73% 10.02%
DLinear_w_DRPAD 98.45% 7.44% 13.83%↑24.21% 54.06% 65.17% 59.10%↓29.23% 47.95% 31.34% 37.82%↑277.02%
DeepAR_wo_DRPAD 93.56% 5.79% 10.90% 44.96% 42.95% 43.92% 46.55% 7.07% 12.28%
DeepAR_w_DRPAD 76.24% 69.79% 71.73%↑558.12% 57.36% 68.21% 62.24%↑41.79% 48.62% 24.15% 32.15%↑161.90%
FEDformer_wo_DRPAD 92.24% 5.48% 10.34% 54.67% 61.03% 57.64% 44.11% 7.57% 12.92%
FEDformer_w_DRPAD(our) 88.96% 20.91% 33.85%↑227.49% 59.29% 70.17% 64.07%↑11.18% 44.85% 32.48% 37.66%↑191.45%
GTA_wo_DRPAD 97.79% 6.05% 11.39% 25.74% 20.81% 23.02% 57.75% 10.20% 17.34%
GTA_w_DRPAD 96.28% 6.83% 12.74%↑11.91% 59.04% 60.90% 59.47%↑158.49% 42.37% 23.85% 30.03%↑73.22%
RTNet_wo_DRPAD 96.58% 2.87% 5.57% 65.25% 78.55% 71.24% 43.70% 6.89% 11.90%
RTNet_w_DRPAD 88.93% 25.66% 39.71%↑613.15% 56.50% 92.01% 69.95%↓1.83% 44.83% 29.72% 35.60%↑198.99%

Model NAB PSM SMAP

P R F1 P R F1 P R F1

Autoformer_wo_DRPAD 66.87% 82.50% 73.68% 62.72% 4.08% 7.65% 13.97% 1.72% 3.07%
Autoformer_w_DRPAD 71.86% 94.17% 81.28%↑10.30% 50.44% 81.00% 62.17%↑712.82% 17.43% 13.20% 13.64%↑344.35%
DLinear_wo_DRPAD 65.56% 82.50% 72.85% 67.00% 3.80% 7.19% 13.94% 1.71% 3.05%
DLinear_w_DRPAD 68.52% 76.67% 72.14%↓0.96% 55.82% 22.75% 32.33%↑349.55% 12.46% 4.01% 6.06%↑98.55%
DeepAR_wo_DRPAD 64.92% 76.67% 70.18% 61.60% 3.58% 6.77% 17.35% 2.20% 3.91%
DeepAR_w_DRPAD 73.24% 100.00% 84.53%↑20.44% 49.60% 55.49% 52.18%↑671.61% 14.12% 7.13% 9.42%↑141.07%
FEDformer_wo_DRPAD 62.51% 70.83% 66.41% 63.25% 4.12% 7.74% 28.88% 4.13% 7.23%
FEDformer_w_DRPAD(our) 74.89% 82.50% 77.76%↑17.09% 60.18% 41.55% 47.40%↑512.98% 27.42% 17.96% 21.50%↑197.37%
GTA_wo_DRPAD 62.96% 70.83% 66.67% 74.62% 7.42% 13.02% 22.48% 2.92% 5.16%
GTA_w_DRPAD 64.97% 76.67% 70.15%↑5.22% 63.15% 11.49% 19.44%↑49.42% 18.88% 10.40% 13.41%↑159.70%
RTNet_wo_DRPAD 64.42% 70.83% 67.47% 74.31% 5.06% 9.47% 17.09% 2.11% 3.75%
RTNet_w_DRPAD 80.95% 70.83% 75.56%↑12.00% 55.12% 23.03% 32.49%↑242.86% 15.94% 5.93% 8.62%↑129.93%

Model SMD SWaT WADI

P R F1 P R F1 P R F1

Autoformer_wo_DRPAD 47.80% 6.83% 11.95% 80.42% 5.03% 9.47% 2.31% 0.20% 0.37%
Autoformer_w_DRPAD 28.96% 33.21% 21.54%↑80.20% 27.29% 50.01% 30.04%↑217.30% 14.89% 78.18% 24.84%↑6632.57%
DLinear_wo_DRPAD 51.52% 7.49% 13.08% 15.33% 0.63% 1.21% 4.24% 0.37% 0.68%
DLinear_w_DRPAD 55.25% 23.74% 33.20%↑153.92% 21.75% 15.42% 18.05%↑1388.41% 15.70% 100.00% 27.14%↑3914.15%
DeepAR_wo_DRPAD 30.78% 4.23% 7.44% 84.69% 3.80% 7.28% 0.47% 0.04% 0.07%
DeepAR_w_DRPAD 54.43% 21.12% 30.40%↑308.15% 30.64% 5.11% 8.75%↑20.18% 14.62% 79.75% 24.52%↑33118.46%
FEDformer_wo_DRPAD 43.01% 6.13% 10.73% 67.30% 6.30% 11.52% 25.97% 2.25% 4.14%
FEDformer_w_DRPAD(our) 56.55% 23.56% 33.23%↑209.84% 35.70% 12.19% 18.14%↑57.43% 12.67% 86.45% 22.07%↑433.11%
GTA_wo_DRPAD 27.02% 3.70% 6.50% 93.45% 4.59% 8.75% 34.84% 3.02% 5.55%
GTA_w_DRPAD 58.10% 22.35% 32.27%↑395.92% 47.55% 5.05% 9.06%↑3.62% 17.29% 34.22% 22.95%↑313.47%
RTNet_wo_DRPAD 45.65% 6.53% 11.42% 90.13% 4.43% 8.44% 3.77% 0.33% 0.60%
RTNet_w_DRPAD 55.60% 24.73% 34.23%↑199.70% 23.03% 6.33% 9.92%↑17.51% 18.26% 71.06% 29.02%↑4727.82%
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B VISUAL EVIDENCE OF SEGMENT-WISE NORMALIZATION ON REAL-WORLD DATA

Figure 3: Visualization of Anomaly Detection Performance under Global vs. Segment-wise Normalization. This
figure compares the performance of our proposed segment-wise normalization (SN Model) with conventional global
normalization (Original DLinear) in time series anomaly detection. The top panel displays the entire sequence
with ground truth values, highlighting low-amplitude (left) and high-amplitude (right) regions. The bottom panels
illustrate the squared error (SE) for a single dimension in these regions. In the Original DLinear model, the
SE of anomalies in the low-amplitude region (b) is overshadowed by the higher MSE of normal values in the
high-amplitude region (c), resulting in undetected anomalies. However, with segment-wise normalization (DLinear
with SN), the SE in the low-amplitude anomalous region (d) exceeds the MSE in the high-amplitude normal region
(e), enabling effective detection. Metrics shown include SE for anomalies and MSE for the segments.

As shown in Figure 3, under the global normalization scheme, statistical properties such as standard deviation are
dominated by segments with large fluctuations or extreme outliers. As a result, anomalies occurring in segments
with relatively low variance may produce only small standardized errors and thus be overlooked. For instance, in
the low-amplitude region, the anomaly under the Original DLinear yields a low SE of only 0.07, even lower than
the MSE of normal fluctuations in the high-amplitude region, which is 0.10. Consequently, the anomaly in the
low-amplitude region is missed.

By contrast, our SN Model applies change point detection to partition the sequence into statistically consistent seg-
ments and performs normalization within each segment independently. This allows local anomalies to be evaluated
under fairer statistical scales. In the low-amplitude region, the anomaly becomes much more distinguishable under
SN normalization, with SE increasing to 2.95, exceeding the MSE in the high-amplitude region of 0.14, enabling
effective detection.

Note that the error depicted in the left plots represents the squared error (SE) for a single dimension. The MSE
shown on the right side refers to the mean squared error averaged across the entire high-amplitude region for that
single dimension.
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C NOTATION SUMMARY

Table 6: Notation Summary

Symbol Description

xn
t Time series observation of the n-th dimension at time step t

Ht Input window at time t
At Anomaly indicator at time step t
c Continuous anomaly count counter
r Percentile threshold for anomaly detection
N Number of data features
δ Maximum allowed consecutive anomalies
εt Gaussian noise, εt ∼ N (0, σ2)
σ2 Variance of the Gaussian noise
∆ Anomalous deviation, ∆ ∼ D
D Distribution of ∆ with mean µ∆ and variance σ2

∆

µ∆ Mean of the anomalous deviation
σ2
∆ Variance of the anomalous deviation

L Length of the input window for prediction
x̂t Model prediction at time step t
wj Weight corresponding to the j-th lagged input
b Bias term of the prediction model
i Index of the anomaly within the input window
et−i Prediction error at time t− i
σ2
e Variance of historical prediction errors

εmax Upper bound of Gaussian noise
I(·) Indicator function
Sj Temporal segments segmented based on change points
µj Variance of each segment.
σj Mean and variance of each segment.
φ Sensitivity of the dimension-wise anomaly detection threshold
η Threshold parameter for advanced adjustment strategy

D DETAILED MATHEMATICAL PROOF

This paper proposes a dynamic replacement strategy: when an anomaly is detected, the model’s prediction is used
to replace the true value for subsequent forecasting. To verify the effectiveness of this strategy, this section provides
a step-by-step mathematical proof. The essence of the dynamic replacement strategy is to enhance forecasting
robustness by iteratively correcting the reliability of the input sequence. We use a linear model as the theoretical
tool due to its transparency for analyzing anomaly propagation mechanisms. The strategy can be directly extended
to nonlinear models (see Appendix D.10). Specifically, we derive general conclusions by considering the case
where the input window contains only a single anomaly.

We assume a single anomaly in the input window. Suppose the anomaly introduces a fixed deviation ∆ compared
to the true value. We first analyze the case where ∆ is a deterministic value, and then generalize to the case where
∆ follows an arbitrary distribution. Based on this, we prove that under certain conditions, the dynamic replacement
strategy can effectively reduce the impact of anomalies on the prediction results, thereby improving forecasting
accuracy. The detailed proof is as follows:

D.1 DATA GENERATION MODEL

To simulate the normal patterns of time series data in a general manner, we assume an arbitrary underlying function
f(t) that satisfies the Lipschitz continuity condition, ensuring the sequence is sufficiently smooth. Specifically, f(t)
is Lipschitz continuous if there exists a constant K > 0 such that for all t1, t2,

|f(t1)− f(t2)| ≤ K|t1 − t2|.

This condition guarantees bounded variation and prevents abrupt changes in the normal data patterns.

We construct the training set standard time series using this function:

xt = f(t).

The test set standard time series is constructed by superimposing Gaussian noise on the function:

xt = f(t) + εt, εt ∼ N (0, σ2),
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where εt is Gaussian noise with mean 0 and variance σ2. To introduce anomalies, we add a fixed deviation ∆ at a
random time k, generating an anomalous data point as:

xk = f(k) + εk +∆.

Based on this setup, we use a single-layer fully connected neural network as the prediction model, with the input
being the past L time steps and the output being the next time step’s prediction:

x̂t =

L∑
j=1

wjxt−j + b,

where wj denotes the weight corresponding to xt−j , that is, [f(t− 1), f(t− 2), . . . , f(t− L)] correspond to
[w1, w2, . . . , wL]. We assume the model has been trained sufficiently on clean data so that the weights wj and bias
b have converged to optimal values, allowing the model to accurately predict the underlying signal without noise or
anomalies:

L∑
j=1

wjf(t− j) + b ≈ f(t).

This assumption ensures that the network can accurately fit the normal time series in the absence of anomalies, laying
the foundation for the subsequent analysis of anomaly impact and the effectiveness of the dynamic replacement
strategy.

In this study, we design a control group and an experimental group to evaluate the effectiveness of the dynamic
replacement strategy.

The control group uses the traditional forecasting method, i.e., modeling and predicting directly on the entire
time series without correcting the detected anomalies. The input to the model may thus contain anomalies, and
predictions are made based on these inputs. The results of the control group help measure the degradation of
predictive performance due to the presence of anomalies.

The experimental group uses the dynamic replacement strategy, where detected anomalies are replaced by the
model’s predicted values, and the modified sequence is then used for subsequent predictions. The core idea is to
weaken the influence of anomalies on future forecasts and improve overall prediction accuracy. The MSE results of
the experimental group can evaluate the strategy’s effectiveness in mitigating anomaly interference.

By comparing the control and experimental groups, we can quantify the advantages of the dynamic replacement
strategy under different anomaly types and distribution conditions, and further analyze its applicability and
limitations.

D.2 ERROR ANALYSIS OF CONTROL GROUP (WITHOUT REPLACING ANOMALIES)

Control Group (No Replacement):

Suppose at time t, the input window contains an anomaly at time step t− i (random moment k), where

xt−i = f(t− i) + εt−i +∆.

Then the predicted value is:

x̂t =

L∑
j ̸=i

wj (f(t− j) + εt−j) + b︸ ︷︷ ︸
normal prediction terms

+wi (f(t− i) + εt−i +∆) .

Simplifying:

x̂t =

L∑
j=1

wjf(t− j) + b+

L∑
j=1

wjεt−j + wi∆.

Given the model assumption:
L∑

j=1

wjf(t− j) + b ≈ f(t).

the prediction error is:

et = x̂t − (f(t) + εt) =

L∑
j=1

wjεt−j − εt︸ ︷︷ ︸
noise error term

+wi∆.
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The mean squared error (MSE) is defined as:

MSE = E[e2t ].

Substituting et:

e2t =

 L∑
j=1

wjεt−j − εt + wi∆

2

.

Expanding the square:

e2t =

 L∑
j=1

wjεt−j − εt

2

+ 2

 L∑
j=1

wjεt−j − εt

 (wi∆) + (wi∆)2,

where:εt−j and εt are Gaussian noises with εt ∼ N (0, σ2) and are assumed to be independent. wj and wi are
constants (model weights).

Since the expectation operator E[·] is linear: - The second term’s expectation is:

E

2
 L∑

j=1

wjεt−j − εt

 (wi∆)

 = 2wi∆ · E

 L∑
j=1

wjεt−j − εt

 = 0.

- The third term’s expectation is:
E
[
(wi∆)2

]
= w2

i∆
2.

For the first term:

E


 L∑

j=1

wjεt−j − εt

2
 = Var

 L∑
j=1

wjεt−j − εt

 .

For a linear combination X =
∑

k akYk, the variance is:

Var

(∑
k

akYk

)
=
∑
k

a2kVar(Yk) + 2
∑
k<l

akalCov(Yk, Yl).

Since the noises are independent:
Cov(εt−j , εt) = 0.

Thus:

Var

 L∑
j=1

wjεt−j − εt

 =

L∑
j=1

w2
jσ

2 + σ2.

Substituting into the MSE expression:

MSEcontrol = σ2

1 +

L∑
j=1

w2
j

+ w2
i∆

2. (4)

When ∆ follows an arbitrary distribution D:
∆k ∼ D.

with mean µ∆ and variance σ2
∆. In practical time series anomaly detection, the second moment of anomalies often

exceeds that of Gaussian noise:
E[∆2

k] = σ2
∆ + µ2

∆ > σ2.

The computation for MSE remains consistent, except that:

E
[
(wi∆)2

]
= w2

i (σ
2
∆ + µ2

∆).

Thus, the MSE of the control group under an arbitrary distribution is:

MSEcontrol, arbitrary distribution = σ2

1 +

L∑
j=1

w2
j

+ w2
i (σ

2
∆ + µ2

∆). (5)
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D.3 ERROR ANALYSIS FOR EXPERIMENTAL GROUP (DYNAMIC PREDICTION REPLACEMENT)

The experimental group replaces outliers xt−i with historical predictions x̂t−i. The replacement value is defined as:

x′
t−i = x̂t−i = f(t− i) + εt−i + et−i,

where et−i ≜ x̂t−i − [f(t− i) + εt−i] represents the historical prediction error. From Appendix D.11, we have
established that E[et] = 0 for any time t, and let Var(et−i) = σ2

e .

PREDICTION ERROR DERIVATION

Following similar derivation logic as the control group, the prediction becomes:

x̂′
t =

L∑
j=1

wjf(t− j) + b︸ ︷︷ ︸
Normal prediction term

+wiet−i.

The prediction error is then:

e′t = x̂′
t − [f(t) + εt]

=

 L∑
j=1

wjf(t− j) + b+ wiet−i

− [f(t) + εt]

=

L∑
j=1

wjεt−j − εt︸ ︷︷ ︸
Noise error term

+wiet−i. (6)

MSE DECOMPOSITION

The mean squared error (MSE) is given by MSE = E[e′t
2
]. Expanding (e′t)

2:

(e′t)
2
=

 L∑
j=1

wjεt−j − εt

2

︸ ︷︷ ︸
A

+2

 L∑
j=1

wjεt−j − εt

 (wiet−i)︸ ︷︷ ︸
B

+(wiet−i)
2︸ ︷︷ ︸

C

. (7)

D.3.1 TERM A ANALYSIS

E[A] = E


 L∑

j=1

wjεt−j − εt

2


= σ2

1 +

L∑
j=1

w2
j

 .

This matches the control group’s noise error variance derivation.

D.3.2 TERM C ANALYSIS

E[C] = w2
iVar(et−i) = w2

i σ
2
e .

D.3.3 TERM B ANALYSIS

Figure 4 illustrates the temporal structure of the input sequence used for autoregressive prediction, highlighting the
influence of dynamic anomaly replacement on prediction error. The lower two timelines depict how an anomalous
input xt−i (marked in orange) is involved in both the prediction of xt and the historical prediction of xt−i itself.
The top timeline decomposes the weight allocation into two regions: the first i terms (affected by the anomaly
through et−i), and the remaining L − i terms, which may share overlapping noise components due to common
history. This overlap results in cross-terms such as E[et−iεt−j ] in the error expansion, breaking independence and
introducing additional variance. Such dependency explains the emergence of the term 2wiσ

2(
∑L−i

k=1 wi+kwk −wi)
in the MSE derivation.
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Figure 4: Illustration of Temporal Input Structure and Cross-Term Interference in Dynamic Replacement.

So the cross-term expectation in Equation (7) requires careful analysis:

E[B] = 2wiE

 L∑
j=1

wjεt−j − εt

 et−i


= 2wi

 L∑
j=1

wjE[εt−jet−i]− E[εtet−i]︸ ︷︷ ︸
0

 ,

where E[εtet−i] = 0 due to temporal independence.

Following the same decomposition as in Equation (6), the historical prediction error et−i is given by:

et−i =

L∑
k=1

wkεt−i−k − εt−i. (8)

This decomposition comes from the model’s training on normal data where
∑L

k=1 wkf(t− i− k) + b ≈ f(t− i).

As illustrated in Figure 4, by substituting Equation (8) into the expectation, we obtain:
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L∑
j=1

wjE[εt−jet−i] =

L∑
j=1

wjE

[
εt−j

(
L∑

k=1

wkεt−i−k − εt−i

)]
(Substituting the expression for et−i from Equation equation 8)

=

L∑
j=1

L∑
k=1

wjwkE[εt−jεt−i−k]−
L∑

j=1

wjE[εt−jεt−i]

(Distributing the expectation and weights)

=

L∑
k=1

wk

 L∑
j=1

wjE[εt−jεt−i−k]

− L∑
j=1

wjE[εt−jεt−i]

(Reordering summation operations)

=

L∑
k=1

wk

σ2
L∑

j=1

wjδj,i+k

− σ2
L∑

j=1

wjδj,i

(Applying i.i.d. noise property: E[εaεb] = σ2δa,b)

= σ2
L∑

k=1

wkwi+kI(i+ k ≤ L)− σ2wi

(Evaluating Kronecker delta δj,i+k)

= σ2

(
L−i∑
k=1

wkwi+k

)
− σ2wi

(Truncating sum since wi+k = 0 for i+ k > L)

= σ2

(
L−i∑
k=1

wi+kwk − wi

)
, (9)

where we use the following mathematical constructs:

• Kronecker delta: δa,b =
{
1 if a = b

0 otherwise

• Indicator function: I(P ) =

{
1 if proposition P is true
0 otherwise

• Boundary condition: wm = 0 for all m > L

The key insight comes from the temporal alignment condition:

E[εt−jεt−i−k] = σ2δj,i+k =

{
σ2, if t− j = t− i− k (j = i+ k),

0, otherwise.

This derivation explicitly shows how the temporal correlations between:

• Current window’s noise terms (εt−j)

• Historical prediction error components (εt−i−k)

thus, we generate the weight coupling terms in the final expression:

E[B] = 2wiσ
2

(
L−i∑
k=1

wi+kwk − wi

)
.
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D.4 FINAL MSE EXPRESSION

Combining all components:

MSEexp = σ2

1 +

L∑
j=1

w2
j

+ w2
i σ

2
e

+ 2wiσ
2

(
L−i∑
k=1

wi+kwk − wi

)
.

D.4.1 ANALYTICAL EXPRESSION FOR THE MSE DIFFERENCE BETWEEN TWO GROUPS

Summarizing:

MSEctrl = σ2

1 +

L∑
j=1

w2
j

+ w2
i∆

2.

MSEexp = σ2

1 +

L∑
j=1

w2
j

+ w2
i σ

2
e + 2wiσ

2

(
L−i∑
k=1

wi+kwk − wi

)
.

Thus, the difference is:

MSEctrl −MSEexp = w2
i (∆

2 − σ2
e)− 2wiσ

2

(
L−i∑
k=1

wi+kwk − wi

)
.

When ∆ is extended to a random variable with mean µ∆ and variance σ2
∆, the difference becomes:

MSEctrl −MSEexp = w2
i (σ

2
∆ + µ2

∆ − σ2
e)− 2wiσ

2

(
L−i∑
k=1

wi+kwk − wi

)
.

The experimental group outperforms the control group when:

σ2
∆ + µ2

∆ > σ2
e + 2σ2

(∑L−i
k=1 wi+kwk

wi
− 1

)
.

where σ2
e = σ2

(∑L
i=1 w

2
i + 1

)
. Combining terms, the inequality becomes:

σ2
∆ + µ2

∆ > σ2

(
L∑

i=1

w2
i + 1

)
+ 2σ2

[∑L−i
k=1 wi+kwk

wi
− 1

]
, (10)

where σ2
∆ + µ2

∆ represents the second moment of the anomaly signal. The presence of the regression weight wi in
the denominator, which depends on data-driven estimates, renders analytical derivation of a closed-form guarantee
for equation 10 intractable. To address this, we conducted an extensive numerical simulation study to empirically
evaluate the probability that the inequality holds, thereby assessing the practical robustness of the method.

D.5 NUMERICAL SIMULATION

To validate the inequality equation 10, we conducted simulations on time series data satisfying the Lipschitz
smoothness condition, which ensures bounded gradients. We generated sequences using a random walk process
smoothed with a Gaussian filter (sigma = 2.0):

xt =

t∑
s=1

ηs, ηs ∼ N (0, 0.32),

followed by convolution with a Gaussian kernel to enforce smoothness and the Lipschitz condition while capturing
temporal dependencies and stochastic fluctuations. All sequences were normalized to the unit interval [0, 1], with µ
and σ2 representing the mean and variance of the normalized sequence.

For each sequence of length n+ L, we constructed a lagged feature matrix X ∈ Rn×L and target vector y ∈ Rn,
fitting a ridge regression (with L2 regularization) to obtain weights w ∈ RL. The regularization parameter λ
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was adaptively selected based on the condition number of X⊤X , ranging from 10−6 to 10−3 times the average
eigenvalue to ensure numerical stability. The noise variance σ2 was estimated from the residuals. The anomaly
second moment µ2

∆ + σ2
∆ was approximated using the derived form µ2 + 8.575µσ+ 20.014σ2, and the right-hand

side threshold was computed as σ2
(∑L

i=1 w
2
i + 1

)
+ 2σ2 (Qi − 1), where Qi =

∑L−i
k=1 wi+kwk

wi
. The inequality

was evaluated for each valid Qi (where |wi| > 10−30 to avoid division-by-zero errors), yielding the effectiveness
probability as the proportion of indices i for which the inequality holds.

To ensure robustness, we performed a grid search over sample sizes n ∈ {200, 500, 1000, 5000} and lag windows
L ∈ {10, 20, 50, 100}, resulting in 16 configurations. Each configuration was tested with 100 independent
experiments using distinct random seeds. As shown in the figure, across all 1600 experiments, the overall mean
effectiveness probability was 0.9998 ± 0.0035, indicating that the inequality holds with approximately 99.98%
probability and low variability. These results provide strong empirical support for the method’s reliability on
Lipschitz-smooth time series in finite-sample settings.

Figure 5: Heatmap of Mean Average Effectiveness Across Sample and Window Sizes. Each cell represents
the average effectiveness probability from 100 independent experiments, with values ranging from 0.9990 to
1.0000. The color gradient, from light yellow (lower effectiveness) to dark red (higher effectiveness), highlights
the robustness of the inequality, with most configurations achieving probabilities near or at 1.0000, indicating
near-certain satisfaction across the tested parameter space. This visual representation complements the numerical
findings, reinforcing the method’s reliability for Lipschitz-smooth time series under varying data conditions.

D.5.1 SUPPLEMENT: ANALYTICAL DERIVATION OF THE ANOMALY SECOND MOMENT

In the context of anomaly detection, let the original time series random variable X have mean E[X] = µ and
variance Var[X] = σ2. Anomalies are introduced by injecting a bias δ at random positions, ensuring detectability
under the 3-sigma rule. Specifically, the value at an anomaly point is A = X + δ, where δ follows a truncated
normal distribution N(µδ = 4σ, τ2 = σ2) with δ ≥ 3σ, and X and δ are assumed independent. Our goal is to
compute the second moment E[A2] = Var[A] + [E[A]]2.

MEAN OF THE ANOMALY: E[A]

Since A = X + δ and X and δ are independent, the mean is:
E[A] = E[X] + E[δ] = µ+ E[δ].

For δ ∼ N(µδ = 4σ, τ2 = σ2) truncated at δ ≥ 3σ, the conditional expectation of a truncated normal distribution
is:

E[δ | δ ≥ 3σ] = µδ + τ ·
ϕ
(
a−µδ

τ

)
1− Φ

(
a−µδ

τ

) ,
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where ϕ(z) = 1√
2π

e−
z2

2 is the standard normal probability density function, Φ(z) = P (Z ≤ z) is the cumulative
distribution function, and the truncation point is a = 3σ. Let the standardized variable be:

z =
a− µδ

τ
=

3σ − 4σ

σ
= −1.

Using standard normal tables, ϕ(−1) ≈ 0.2419707 and Φ(−1) ≈ 0.1586553, so 1− Φ(−1) ≈ 0.8413447. Thus:

E[δ | δ ≥ 3σ] = 4σ + σ · 0.2419707
0.8413447

≈ 4.2877σ.

Hence:
E[A] = µ+ 4.2877σ.

VARIANCE OF THE ANOMALY: Var[A]

Since X and δ are independent, the variance is:
Var[A] = Var[X] + Var[δ] = σ2 +Var[δ].

The variance of the truncated normal distribution is:

Var[δ | δ ≥ 3σ] = τ2

1 + a−µδ

τ ϕ
(
a−µδ

τ

)
1− Φ

(
a−µδ

τ

) −( ϕ
(
a−µδ

τ

)
1− Φ

(
a−µδ

τ

))2
 .

Substituting τ = σ, a = 3σ, µδ = 4σ, and a−µδ

τ = −1, with ϕ(−1) ≈ 0.2419707 and 1− Φ(−1) ≈ 0.8413447,
we compute:

ϕ(−1)
1− Φ(−1)

≈ 0.2419707

0.8413447
≈ 0.2876821,

a− µδ

τ
·

ϕ
(
a−µδ

τ

)
1− Φ

(
a−µδ

τ

) = (−1) · 0.2876821 ≈ −0.2876821,(
ϕ(−1)

1− Φ(−1)

)2

≈ (0.2876821)2 ≈ 0.0827608.

Thus:
Var[δ] = σ2 [1− 0.2876821− 0.0827608] ≈ 0.6296σ2.

Therefore:
Var[A] = σ2 + 0.6296σ2 ≈ 1.6296σ2.

SECOND MOMENT: E[A2]

The second moment is given by:
E[A2] = Var[A] + [E[A]]2.

Substituting E[A] = µ+ 4.2877σ and Var[A] ≈ 1.6296σ2, we obtain:
E[A2] = 1.6296σ2 + (µ+ 4.2877σ)2 = µ2 + 8.5754µσ + 20.0142σ2.

In simulations, we used the approximated coefficients (8.575 and 20.014), which are consistent with the analytical
result within numerical rounding.

D.6 UPPER BOUND ANALYSIS OF Z UNDER THE SINUSOIDAL MODEL

We aim to derive an upper bound for the right-hand side of the key inequality:

σ2
∆ + µ2

∆ > σ2

(
L∑

i=1

w2
i + 1

)
+ 2σ2

[∑L−i
k=1 wi+kwk

wi
− 1

]
,

We define:

Z = σ2
e + 2σ2

(∑L−i
k=1 wi+kwk

wi
− 1

)
.

While the numerical simulations provide robust empirical evidence that the inequality holds with high probability
across a range of practical settings, offering confidence in the method’s applicability to general Lipschitz-smooth
time series, deriving a closed-form analytical guarantee remains challenging due to the data-dependent nature of
the regression weights. To gain deeper theoretical insights and enable further tractable analysis of the upper bound
on Z, we now consider a simplified yet representative data generation model. Specifically, we adopt a sinusoidal
function to model the underlying time series, which captures periodic behaviors commonly observed in real-world
signals while allowing explicit computation of the weights and bounds. This specialization facilitates the derivation
of analytical expressions without loss of generality for the core principles, bridging the empirical findings to precise
theoretical results.
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DATA GENERATION MODEL

To simulate normal time series patterns, we substitute a sine function for the arbitrary underlying function f(t)
when constructing the standard training time series, defined as:

xt = sin(t),

which preserves the structure of the derivation and leads to the same inequality condition, while enabling tractable
analysis.

The test set standard time series is constructed by superimposing Gaussian noise on the sine function:

xt = sin(t) + εt, εt ∼ N (0, σ2).

where εt is Gaussian noise with mean 0 and variance σ2. To introduce anomalies, we add a fixed deviation ∆ at a
random time k, generating an anomalous data point as:

xk = sin(k) + εk +∆.

We begin by analyzing the upper bound of the variance term Z defined as:

Z = σ2
e + 2σ2


∑L−i

k=1 wi+kwk

wi︸ ︷︷ ︸
Q

−1

 . (11)

where σ2
e represents the error variance and Q is a correlation term between weight vectors.

D.6.1 UPPER BOUND OF σ2
e

From Appendix D.12, we have the expression for the error variance in Equation (11):

σ2
e = σ2

 L∑
j=1

w2
j + 1

 .

The weight coefficients wj are given by the cosine weighting function:

wj =
2

L
cos(j).

The squared weights therefore satisfy:

w2
j =

4

L2
cos2(j).

Since cos2(j) ≤ 1 for all j, we can bound the sum of squared weights:

L∑
j=1

w2
j ≤ L · 4

L2
=

4

L
.

Substituting this into the error variance expression yields:

σ2
e ≤ σ2

(
4

L
+ 1

)
.

This establishes σ2
(
4
L + 1

)
as an upper bound for σ2

e .
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D.6.2 UPPER BOUND OF D

To proceed, we analyze the term D in Equation (11) more carefully,

D =

∑L−i
k=1 wi+kwk

wi
=

2

L

∑L−i
k=1 cos(i+ k) cos(k)

cos(i)
.

Our goal is to find the maximum possible value Dmax at a given confidence level p (e.g., 95%), such that
P (D ≤ Dmax) ≥ p.

STEP 1: SIMPLIFICATION USING TRIGONOMETRIC IDENTITIES

Let S denote the summation in the numerator:

S =

L−i∑
k=1

cos(i+ k) cos(k).

Using the product-to-sum identity:

cosA cosB =
1

2
[cos(A+B) + cos(A−B)].

We set A = i+ k and B = k to obtain:

cos(i+ k) cos(k) =
1

2
[cos(i+ 2k) + cos(i)].

The summation then decomposes into two parts:

S =
1

2

L−i∑
k=1

cos(i+ 2k) +
1

2
cos(i)(L− i).

Substituting back into D:

D =
2

L
· S

cos(i)
=

1

L

[∑L−i
k=1 cos(i+ 2k)

cos(i)
+ (L− i)

]
.

The remaining summation can be evaluated using the trigonometric sum formulaKnapp (2009):

N∑
k=1

cos(θ + αk) =
sin
(
Nα
2

)
cos
(
θ + (N+1)α

2

)
sin
(
α
2

) .

With θ = i and α = 2, we get:

L−i∑
k=1

cos(i+ 2k) =
sin(L− i) cos(L+ 1)

sin(1)
.

Thus, D simplifies to:

D =
sin(L− i) cos(L+ 1)

L sin(1) cos(i)
+

L− i

L
.
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STEP 2: ANALYSIS OF THE DISTRIBUTION OF cos i

Since i is an integer, the values of cos i are distributed within the interval [−1, 1]. To compute the statistical
properties of A, we need to characterize the distribution pattern of cos i.

By the Equidistribution Theorem, when i is uniformly distributed across the integers, the expression cos i = cos(i
mod 2π) implies that i mod 2π becomes asymptotically uniformly distributed in [0, 2π) as i ranges over large
integer values. This allows us to approximate the distribution of i mod 2π as uniform over [0, 2π). Consequently,
the cumulative distribution function (CDF) of cos i can be derived as:

P (cos i ≤ c) = 1− 1

π
arccos c, c ∈ [−1, 1]. (12)

The derivation of Equation (12) follows from the symmetry of the cosine function. For any c ∈ [−1, 1], the
inequality cos θ ≤ c holds when θ lies in the union of intervals [arccos c, 2π − arccos c]. The probability measure
of this set is given by the ratio of its length to 2π:

P (cos θ ≤ c) =
(2π − arccos c)− arccos c

2π
= 1− 1

π
arccos c.

In our problem formulation, the condition D requires cos(i) > 0 (as negative values would be meaningless in
this context). This restriction allows us to focus on the positive half of the cosine distribution. By exploiting the
symmetry of the cosine function about zero, we can equivalently analyze the distribution of | cos i|, which simplifies
our calculations. The probability that | cos i| exceeds a threshold c is:

P (| cos i| ≥ c) = 2 · P (cos i ≥ c) =
2

π
arccos c.

To establish a lower bound with confidence level p, we require:

P (| cos i| ≥ c) ≥ p ⇒ 2

π
arccos c ≥ p.

Solving for c and noting that the arccosine function is monotonically decreasing, we obtain:

arccos c ≥ π

2
p ⇒ c ≤ cos

(π
2
p
)
.

Thus, the lower bound for | cos i| at confidence level p is:

cp = cos
(π
2
p
)
.

For a 95% confidence level (p = 0.95), we compute:

c0.95 = cos
(π
2
× 0.95

)
≈ 0.0785.

This result indicates that with 95% confidence, | cos i| will be greater than or equal to approximately 0.0785. Only
5% of cases may fall outside this range, which we consider exceptional.

STEP 3: ESTIMATING THE UPPER BOUND OF D

We begin with the following approximation of the term D:

D ≈ sin(L− i) cos(L+ 1)

sin(1) · L · cos(i)
+

L− i

L
. (13)

To estimate the upper bound of D, we leverage the well-known trigonometric inequalities:

| cos(θ)| ≤ 1, | sin(θ)| ≤ 1.

Thus, the numerator in the first term is bounded as:

|sin(L− i) cos(L+ 1)| ≤ 1. (14)
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Next, consider the valid range of i, which satisfies:

1 ≤ i ≤ L− 1 ⇒ L− i

L
< 1.

Combining this with inequalities equation 13 and equation 14, we obtain:

D ≲
1

sin(1) · L · cos(i)
+ 1.

To find the worst-case (i.e., maximal) upper bound for D, we consider the scenario where cos(i) attains its minimum
value in absolute magnitude. For a given confidence level p, we assume:

| cos(i)| ≥ cp,

for some constant cp, leading to the refined upper bound:

D ≤ 1

sin(1) · L · cp
+ 1.

Assuming that the cosine bound cp is derived from quantiles of the standard normal distribution such that:

cp = cos
(π
2
p
)
,

we arrive at:
D ≤ 1

sin(1) · L · cos
(
π
2 p
) + 1.

In the case where the confidence level p = 0.95, we substitute sin(1) ≈ 0.841, cos
(
π
2 · 0.95

)
≈ 0.0785, yielding:

D ≤ 1

0.841 · 0.0785 · L
+ 1 ≈ 1

15.14 · L
+ 1. (15)

FINAL UPPER BOUND OF Z

Recall the expression of the error term Z, which involves the estimated error variance σ2
e , the noise variance σ2,

and a weighted cross-correlation component:

Z = σ2
e + 2σ2[

∑L−i
k=1 wi+kwk

wi︸ ︷︷ ︸
D

−1].

We substitute the upper bounds of σ2
e and D derived previously. If the upper bound of σ2

e is given by:

σ2
e ≤ σ2

(
4

L
+ 1

)
,

and from Eq. equation 15, the upper bound of D − 1 is:

D − 1 ≤ 1

15.14 · L
,

then the upper bound of Z becomes:

Z ≤ σ2

(
4

L
+ 1

)
+ 2σ2 ·

(
1

15.14 · L

)
.

Combining the terms yields:

Z ≤ σ2

(
4 + 2

15.14

L
+ 1

)
≈ σ2

(
4.132

L
+ 1

)
.

D.7 CONCLUSION

At 95% confidence level, the dynamic replacement strategy will effectively reduce prediction error and improve
detection performance when the second moment of anomaly deviation satisfies:

E[∆2] = σ2
∆ + µ2

∆ >

(
4.312

L
+ 1

)
σ2. (16)

This establishes a quantitative threshold for anomaly detection effectiveness based on window length L and noise
variance σ2.
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D.8 SPECIAL CASE: NO GAUSSIAN NOISE IN THE TEST SET

Control Group (No Replacement of Anomalous Value) Assume the input window contains an anomaly
xt−i = sin(t− i) + ∆, then the predicted value is:

x̂t =

L∑
j=1

wj sin(t− j) + b = sin(t) + wi∆

where
∑L

j=1 wj sin(t− j) + b = sin(t) is the normal prediction term and wi∆ is the contribution of the anomaly.

The prediction error is:
et = x̂t − sin(t) = wi∆

The mean squared error (MSE) is:
MSEControl = (wi∆)2

Experimental Group (Dynamic Replacement of Anomalous Value) Replace the anomalous input xt−i =
sin(t− i) + ∆ with the predicted value x̂t−i = sin(t− i), so that the input window is free of anomalies. Then the
predicted value becomes:

x̂′
t =

L∑
j=1

wj sin(t− j) + b = sin(t)

The prediction error is:
e′t = x̂′

t − sin(t) = 0

The MSE is:
MSEExperimental = 0

Since the test set contains no noise, the experimental group’s MSE is strictly zero, while the control group’s MSE is
(wi∆)2. Therefore:

MSEExperimental = 0 < MSEControl = (wi∆)2

This inequality strictly holds, indicating that the dynamic replacement strategy is effective in this special case.

D.9 DYNAMIC PREDICTION REPLACEMENT EXPERIMENTS

This experiment aims to evaluate the effectiveness of the dynamic prediction replacement (DPR) strategy in handling
time series anomalies.

DATA GENERATION

Two types of synthetic time series with anomalies are generated:

• Sequential Anomalies Dataset: Based on a sine wave with added random noise. Several contiguous
anomaly segments are inserted at random locations, each consisting of 6 to 16 consecutive points.
Anomalies are generated by injecting large random perturbations (standard deviation = 0.8).

• Point Anomalies Dataset: Also based on a sine wave. Anomalous points are scattered randomly, making
up 5% of the total data. Anomalies are generated by adding large noise perturbations (standard deviation
= 0.9).

Both datasets contain 1200 time steps, with a sliding window size of 40.

MODEL ARCHITECTURE

A simple single-layer fully connected network is used for prediction:

f(X) = W ·X + b

where X is the input window of length 40, and W , b denote the weight matrix and bias term. The model is trained
using Mean Squared Error (MSE) loss and the Adam optimizer for 50 epochs. Training is conducted on noise-added
but anomaly-free data to simulate realistic deployment scenarios.
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DYNAMIC PREDICTION REPLACEMENT ALGORITHM

The DPR algorithm operates as follows:

1. For each time step t, predict the value at t using observations from window [t− w, t− 1].

2. Compute the squared error between the predicted and observed value.

3. If the error exceeds a predefined threshold (set as the 95th percentile of the baseline error distribution),
flag it as an anomaly.

4. Replace the detected anomalous value with the prediction for use in subsequent forecasts.

EXPERIMENTAL RESULTS

Figure 6: Comparison of prediction and squared error between the baseline and Dynamic Prediction Replacement
methods under two scenarios: sequential anomaly segments (left) and scattered anomaly points (right). DPR
consistently reduces the influence of anomalies on both prediction and error.

We compare two groups:

• Baseline Group: Forecasting directly on data with anomalies, without replacement.

• DPR Group: Forecasting after applying the dynamic prediction replacement strategy.

Figure 6 provides a visual comparison of predictions and errors for both scenarios. It highlights how the DPR
method effectively reduces anomaly-induced distortion in both the prediction curves and the squared error.

In both sequential and point anomaly scenarios, the DPR method consistently demonstrated substantial error
reduction, highlighting its robustness across different anomaly types. As shown in Table 7, DPR reduced forecasting
errors by 88.98% in the presence of sequential anomalies, and by an even higher 92.58% when facing scattered
point anomalies. The greater improvement in the latter case may stem from the relative ease of identifying and
isolating point anomalies, compared to sustained anomalous segments.

Table 7: Forecasting Error (MSE) and Error Reduction of DPR under Different Anomaly Types

Anomaly Type Method MSE Error Reduction

Sequential Baseline 0.0203 –
DPR 0.0022 88.98%

Point Baseline 0.0215 –
DPR 0.0016 92.58%
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The experimental results demonstrate the strong capability of the DPR method in reducing the adverse effects of
anomalies—both sequential and scattered—in time series data, with approximately 90% error reduction in both
scenarios.

D.10 PROOF OF THE UNIVERSALITY OF THE DYNAMIC REPLACEMENT STRATEGY IN NONLINEAR MODELS

Although the above theoretical analysis is based on linear models, this section validates the effectiveness of the
dynamic replacement strategy in nonlinear models, specifically a fully connected neural network with ReLU
activation. This further demonstrates the universality of the proposed method.

After introducing nonlinear activation functions, the propagation of prediction errors is affected by the nonlinearity.
Therefore, the derivation must additionally account for the nonlinear transformation’s influence on the prediction
error. To this end, we consider the ReLU activation function:

ϕ(z) = max(z, 0),

and analyze the error propagation mechanism in nonlinear models, comparing it with the linear case to explore the
applicability of the dynamic replacement strategy under more complex model structures.

1. MODEL DEFINITION

Consider a single-layer fully connected network with ReLU activation:

x̂t = ϕ

 L∑
j=1

wjxt−j + b

 , ϕ(z) = max(z, 0).

Assume the model has been trained on clean (normal) data, and the weights {wj} and bias b have converged to
optimal values such that for normal data:

ϕ

 L∑
j=1

wj sin(t− j) + b

 ≈ sin(t).

2. EFFECT OF ANOMALIES ON PREDICTION

Control Group (Without Replacement). Assume the input window contains an anomalous value at position
t− i, such that:

xt−i = sin(t− i) + εt−i +∆,

where ∆ represents the anomaly. Then the predicted output becomes:

x̂t = ϕ

 L∑
j=1

wj sin(t− j) + wi∆+

L∑
j=1

wjεt−j + b

 .

Due to ReLU’s nonlinearity, two cases arise:

• Linear region: If the expression inside ϕ(·) is positive, i.e., normal linear term + wk∆ > 0, then the
output is a linear combination, and the anomaly directly affects the output.

• Truncation region: If the expression is non-positive, i.e., normal linear term + wk∆ ≤ 0, then x̂t = 0,
and the anomaly is completely suppressed.

Experimental Group (With Dynamic Replacement). Replace the anomalous input xt−i with a historical
prediction x̂t−i:

x′
t−i = x̂t−i = ϕ

 L∑
j=1

wjxt−i−j + b

 .

Since x̂t−i has already been filtered through ReLU, the influence of the anomaly is suppressed in the input window.

3. ERROR ANALYSIS

Control Group MSE.
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• Case 1 (Linear region): The prediction error is:

et =

 L∑
j=1

wjεt−j + wi∆

− εt.

The MSE contains a ∆2 term, similar to the linear model.
• Case 2 (Truncation region): The prediction is zero, so the error becomes:

et = 0− (sin(t) + εt),

and
MSE = sin2(t) + σ2,

which is significantly higher than in the normal case.

The overall MSE of the control group is a weighted average of the two cases. However, since large ∆ values often
push the model into the linear region, the MSE remains close to the linear case. If the model enters the truncation
region, the MSE increases significantly beyond the linear model’s prediction.

Experimental Group MSE. Since the replaced value x′
t−i has already been filtered by ReLU, and assuming

historical prediction error is small (σ2
e ≪ ∆2), we have:

x′
t−i ≈ sin(t− i) + εt−i,

leading to:

x̂t ≈ ϕ

 L∑
j=1

wj sin(t− j) +

L∑
j=1

wjεt−j + b

 ,

and thus the prediction error is close to that of the experimental group in the linear model:

MSEexp = σ2

1 +

L∑
j=1

w2
j

+ w2
i σ

2
e + 2wiσ

2

(
L−i∑
k=1

wi+kwk − wi

)
(17)

KEY CONCLUSIONS

1. ReLU’s Suppression Effect. In nonlinear models with ReLU activation, anomalies may cause the model
to switch between activation regions, altering the MSE formulation.

• Linear region: When the anomaly drives the model into ReLU’s linear regime, the MSE reduction of
the experimental group over the control group is consistent with the linear model (∆2 ≫ σ2

e ).
• Truncation region: When the anomaly pushes the model into the zero-output region of ReLU, the

control group’s prediction collapses to zero, significantly increasing the MSE. In contrast, the dynamic
replacement strategy in the experimental group avoids this truncation, substantially lowering MSE.

2. Comparison Between Nonlinear and Linear Models.
• When the linear region dominates: If the model mostly operates in the linear region (e.g., due

to reasonable weight design), the experimental group still outperforms the control group in MSE,
consistent with linear models.

• Amplification under extreme anomalies: Due to ReLU’s truncation effect, the control group’s MSE in
nonlinear models increases even more under large anomalies. Meanwhile, the dynamic replacement
strategy amplifies its advantage, showing even greater MSE reduction than in linear cases.

Conclusion: The nonlinear nature of ReLU does not diminish the effectiveness of the dynamic replacement strategy.
On the contrary, in specific anomaly patterns, it enhances the advantage of the experimental group. Therefore, the
strategy is applicable to a broader range of nonlinear model scenarios.

D.11 PROOF THAT THE PREDICTION ERROR SATISFIES E[et] = 0 FOR ALL t

PROBLEM RESTATEMENT AND NOTATION

Objective: Prove that after dynamically replacing detected anomalies, the prediction error at each time point

et = x̂t − (sin(t) + εt)

satisfies
E[et] = 0 ∀t.
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BASE MODEL AND UNBIASEDNESS

Assume the model is trained to convergence on clean (anomaly-free) data. When the input window contains no
anomalies, the model prediction satisfies:

x̂t =

L∑
j=1

wjxt−j + b,

where all weights wj and bias b are optimized to be unbiased, such that
E[x̂t] = sin(t).

In the absence of anomalies, the true target value is:
xt = sin(t) + εt, εt ∼ N (0, σ2). (18)

Thus, the prediction error is:
et = x̂t − (sin(t) + εt),

and the expectation is:
E[et] = E[x̂t]− sin(t)− E[εt] = 0.

MATHEMATICAL DESCRIPTION OF DYNAMIC REPLACEMENT

Suppose there are m anomalies in the input window, located at positions i1, i2, . . . , im. When an anomaly is
detected at xt−i∗ = sin(t− i∗) + εt−i∗ +∆i∗ , it is replaced by:

x′
t−i∗ = x̂t−i∗ = sin(t− i∗) + εt−i∗ + et−i∗ .

Here, i∗ ∈ {i1, i2, . . . , im} indicates the position of an anomaly within the input window. The updated input
sequence becomes:

x′
s =

{
xs, s ̸= t− i∗

x̂t−i∗ , s = t− i∗
.

MATHEMATICAL INDUCTION PROOF OF RECURSIVE UNBIASEDNESS

Step 1: Base Case (No Replacement in Window) When the input window contains no anomalies, we have:
E[eu] = 0 ∀u.

Step 2: Inductive Hypothesis Assume that for all times s ≤ k, the prediction errors satisfy:
E[es] = 0 ∀s ≤ k.

Step 3: Inductive Step (t = k + 1) At time t = k + 1, the model makes a prediction based on the window
{x′

k+1−j}Lj=1:

x̂k+1 =

L∑
j=1

wjx
′
k+1−j + b.

Each x′
k+1−j in the input window may be:

1. A normal (unreplaced) value:
x′
k+1−j = sin(k + 1− j) + εk+1−j ,

2. A replaced value:
x′
k+1−j = sin(k + 1− j) + εk+1−j + ek+1−j .

By the inductive hypothesis:
E[ek+1−j ] = 0 ∀j ≥ 1.

Therefore, for any x′
k+1−j , its expectation is:

E[x′
k+1−j ] = sin(k + 1− j),

since E[εk+1−j ] = 0 and E[ek+1−j ] = 0.

Thus, the expected prediction is:

E[x̂k+1] =

L∑
j=1

wjE[x′
k+1−j ] + b =

L∑
j=1

wj sin(k + 1− j) + b = sin(k + 1).

The prediction error is:
ek+1 = x̂k+1 − (sin(k + 1) + εk+1) ,

and its expectation is:
E[ek+1] = E[x̂k+1]− sin(k + 1)− E[εk+1] = 0.
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Step 4: Inductive Conclusion By mathematical induction, combining the base case

E[eu] = 0 ∀u,

with the inductive hypothesis and inductive step, we conclude:

E[et] = 0 ∀t.

D.12 ANALYTICAL DERIVATION OF THE OPTIMAL WEIGHTS w

D.12.1 PROBLEM SETUP AND NOTATION

We consider a simple single-layer fully connected neural network for predicting a sine function based on past inputs.
The setup is as follows:

• Input window:
xt = [sin(t− 1), sin(t− 2), . . . , sin(t− L)] .

• Output target:
xt = sin(t).

• Model (no bias term, since E[xt] = 0):

xpred =

L∑
i=1

wi sin(t− i).

• Objective: minimize the expected mean squared error:

L(w) = E

( L∑
i=1

wi sin(t− i)− sin(t)

)2
 .

Assume that t ∼ U [0, 2π), i.e., t is uniformly distributed over one period.

D.12.2 ORTHOGONALITY CONDITIONS

Since the model is trained using the gradient descent strategy, the partial derivative of the loss function with respect
to each weight wj can be considered zero when the weights reach a local optimum.

∂L
∂wj

= 0, ∀j = 1, 2, . . . , L.

We expand the loss:

L(w) = E

( L∑
i=1

wi sin(t− i)

)2
− 2E

[
sin(t)

L∑
i=1

wi sin(t− i)

]
+ E[sin2(t)].

Taking the derivative w.r.t. wj :

∂L
∂wj

= 2E

[(
L∑

i=1

wi sin(t− i)

)
sin(t− j)

]
− 2E[sin(t) sin(t− j)] = 0.

Rewriting:

E

[(
L∑

i=1

wi sin(t− i)− sin(t)

)
sin(t− j)

]
= 0, ∀j.

This yields a system of linear equations:

L∑
i=1

wiE[sin(t− i) sin(t− j)] = E[sin(t) sin(t− j)], ∀j. (19)
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D.12.3 SIMPLIFYING THE EXPECTATIONS

We now compute the expectations in Equations equation 19. Since t ∼ U [0, 2π), we have:

E[sin(t− i) sin(t− j)] =
1

2π

∫ 2π

0

sin(t− i) sin(t− j) dt.

Using the trigonometric identity:

sinA sinB =
1

2
[cos(A−B)− cos(A+B)] .

Apply it to sin(t− i) sin(t− j):

sin(t− i) sin(t− j) =
1

2
[cos(j − i)− cos(2t− (i+ j))] .

Then:

E[sin(t− i) sin(t− j)] =
1

4π

2π cos(j − i) +

∫ 2π

0

− cos(2t− (i+ j)) dt︸ ︷︷ ︸
=0


=

1

2
cos(j − i).

Similarly:

E[sin(t) sin(t− j)] =
1

2
cos(j). (20)

Substituting Equations equation 19 and equation 20, we obtain:
L∑

i=1

wi cos(i− j) = cos(j), ∀j = 1, 2, . . . , L. (21)

D.12.4 SOLVING BY HYPOTHESIS

We hypothesize a solution of the form:
wi = k cos(i).

Substitute into Equation equation 21:
L∑

i=1

k cos(i) cos(j − i) = k

L∑
i=1

cos(i) cos(j − i).

Using identity:

cos(a− b) cos(b) =
1

2
[cos(a) + cos(a− 2b)].

We obtain:

k

L∑
i=1

cos(i) cos(j − i) =
k

2

L∑
i=1

[cos(j) + cos(j − 2i)]

=
kL

2
cos(j) +

k

2

L∑
i=1

cos(j − 2i).

If L is large and cos(j − 2i) is approximately uniformly distributed, the second term averages to 0:

⇒ kL

2
cos(j) ≈ cos(j) ⇒ k =

2

L
.

Hence, the optimal weights are:

wi =
2

L
cos(i).

Note: If the input vector is reindexed as [sin(t− L), . . . , sin(t− 1)] corresponding to weights [w0, w1, . . . , wL−1],
then:

wx =
2

L
cos(x− L).
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D.12.5 EMPIRICAL VALIDATION

EXPERIMENTAL SETUP

This experiment investigates the empirical weight patterns learned by a neural network trained on pure sine signals.
Specifically:

• Generate sine function data as time series.
• Use a single fully connected layer (linear layer) neural network.
• Use sliding window input with window sizes L ∈ {40, 45, 50, 55, 60, 65}.
• Run 500 independent training trials with random initializations.
• Analyze the mean and distribution of learned weights.

RESEARCH OBJECTIVES

• Examine whether the network consistently learns a similar weight pattern.
• Compare the learned weights with the theoretically optimal solution wx = 2

L cos(x− L).

EXPERIMENTAL CONCLUSION

Across multiple training runs, the learned weights converge to a highly consistent pattern. The mean curve of the
weights aligns closely with the theoretically optimal cosine function wx = 2

L cos(x− L), confirming the analytical
derivation. The following plot 7 illustrates the results: the blue line is the empirical mean, while the red dashed line
is the theoretical cosine shape.

Figure 7: Weight distribution patterns across different window sizes (L = 40, 45, 50, 55, 60, 65) after training a
linear model on sinusoidal data. Each subplot displays the mean weights (blue solid line) from 500 independent
training runs and a theoretical fitting curve 2/L·cos(x-L) (red dashed line). The remarkable alignment between
empirical weight distributions and theoretical predictions demonstrates that the learned representations consistently
converge to optimal sinusoidal predictors regardless of the window size. This supports our hypothesis that linear
predictors implicitly encode trigonometric representations when trained on time-series with cyclic patterns.

D.13 THEORETICAL LIMITATIONS AND FUTURE DIRECTIONS

Theoretical Limitations: Although this paper provides a comprehensive empirical evaluation of the dynamic
replacement strategy, its theoretical analysis relies on several simplifying assumptions. In particular, the current
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proof assumes that the observation noise is independently and identically distributed (i.i.d.) and that each input
window contains at most a single outlier. However, in practical scenarios, noise may exhibit autocorrelation
or heteroscedasticity, and outliers may appear in clusters. Under such non-ideal conditions, the present error
analysis may become biased, thereby affecting the accuracy of performance assessment for the proposed strategy.
Consequently, the current theoretical results may not generalize well to situations involving clustered anomalies or
non-i.i.d. noise, which limits our understanding of the method’s behavior in more diverse settings.

Future work: We plan to extend our analysis to scenarios where multiple outliers or clustered anomalies appear
within the input window. This direction is expected to provide a more comprehensive theoretical foundation for
evaluating the robustness and applicability of the strategy in real-world environments. Due to the complexity of
modeling non-i.i.d. noise, we leave its exploration to future work depending on application-specific demands.

E PROOF OF COMPLEXITY REDUCTION IN THE SN MODULE

E.1 EMPIRICAL VALIDATION OF PELT COMPLEXITY

To empirically validate the theoretical time complexity of the PELT algorithm, we conducted experiments by
varying the input sequence length n and recording the elapsed runtime. The measured data were then fitted against
several candidate complexity models, namely O(n), O(n log n), O(n2), and O(logn). The fitting quality was
evaluated using the coefficient of determination (R2).

For each input size n, we executed the standard PELT algorithm and measured the elapsed time in seconds. The
sequence length was varied from 100 to 40,000. The observed runtimes are reported in Table 8.

Table 8: Runtime of PELT under different input sizes.

n Elapsed Time (s)

100 0.0104
500 0.1938

1000 0.6426
2000 1.9772
4000 4.7989
8000 12.775

12000 23.5916
16000 42.1717
20000 63.5235
24000 81.3433
40000 196.9832

Model Fitting. The recorded data were fitted to multiple complexity models. Table 9 reports the R2 scores for each
candidate model. The quadratic model O(n2) achieves the best fit with R2 = 0.9992, significantly outperforming
the alternatives.

Table 9: Goodness-of-fit of different complexity models.

Complexity Model R2 Score

O(n2) 0.999206
O(n log n) 0.956115

O(n) 0.936277
O(logn) 0.425482

The empirical results strongly corroborate the theoretical analysis: the runtime of the PELT algorithm scales
quadratically with input size n. The O(n2) model yields an almost perfect fit (R2 = 0.9992), confirming that PELT
exhibits quadratic time complexity in practice.

E.2 PROBLEM DEFINITION

Given a time series of length n, the task is to detect changepoints within the sequence. We compare the computa-
tional complexity of two approaches:

1. Direct PELT Method: The standard PELT algorithm with time complexity O
(
n2
)
.
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2. Two-Stage Method:
• Coarse Detection Stage: Apply PELT with a jump parameter jump = ⌊0.001n⌋ to reduce computa-

tional cost.
• Refined Detection Stage: Around each coarse changepoint, perform local detection on a subsequence

of size nlocal using a window-based segmentation method. The time complexity is O(w · nlocal),
where w denotes the window size parameter.

The goal is to derive and compare the time complexities of these two approaches.

E.3 DIRECT PELT METHOD

The PELT algorithm detects changepoints via dynamic programming. Its standard time complexity is

Tdirect = O
(
n2
)
,

which grows quadratically with the sequence length n.

E.4 TWO-STAGE METHOD

COARSE DETECTION STAGE

Using PELT with a jump parameter jump = ϵn, where ϵ = 0.001, reduces computational cost. Specifically, the
complexity decreases from O

(
n2
)

to O
(

n2

jump

)
.

Substituting jump = 0.001n yields:

Tcoarse = O
(

n2

0.001n

)
= O(1000n) = O(n) .

Thus, the coarse detection stage achieves linear time complexity.

REFINED DETECTION STAGE

Suppose the coarse stage identifies K changepoints τ1, τ2, . . . , τK . For each τi, a local refinement is performed in
the neighborhood [τi − S, τi + S], where S is the local window radius (chosen as a fixed value much smaller than
n).

The number of points in each neighborhood is nlocal = 2S, leading to a total refined sample size:

W =

K∑
i=1

nlocal = 2KS.

(assuming non-overlapping neighborhoods, or equivalently K ≪ n so that W ≈ 2KS).

The window-based segmentation method has complexity O(w · nlocal) per neighborhood. Hence, the total refined
detection cost is

Tfine = O

(
K∑
i=1

w · nlocal

)
= O(w ·W ) .

Since W = 2KS, and typically K ≪ n, S ≪ n, and w ≪ n, we have

Tfine = O(wKS) .

If K, S, and w are constants or grow much slower than n, then Tfine = O(1).

E.4.1 TOTAL COMPLEXITY OF THE TWO-STAGE METHOD

The overall cost is
Tproposed = Tcoarse + Tfine = O(n) +O(wW ) .

Since W ≪ n and w ≪ n, the second term is dominated by the linear term, leading to

Tproposed = O(n) .

E.5 COMPLEXITY COMPARISON

In summary, the direct PELT method scales quadratically as O
(
n2
)
, whereas the proposed two-stage method

achieves linear complexity O(n). This represents an improvement by a factor of O(n).
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F RELATED WORKS

F.1 TIME SERIES ANOMALY DETECTION METHODS

To tackle the problem of unsupervised time series anomaly detection, a variety of techniques have been proposed,
including forecasting-based methods Chen et al. (2021); Zhao et al. (2020); Zhang et al. (2022); Deng & Hooi
(2021b), reconstruction-based methods Tuli et al. (2022); Zhang et al. (2021b); Xu et al. (2021); Audibert et al.
(2020), density estimation approaches Zong et al. (2018); Dai & Chen (2022), and clustering-based methods Xu
et al. (2024); Ruff et al. (2018a).

Forecasting-based Methods. Forecasting-based anomaly detection is one of the most extensively studied directions,
where the core challenge lies in extracting informative features from input sequences. To enhance the modeling
capacity, prior works have incorporated mechanisms such as contrastive learning Yue et al. (2022), 2D convolutions
Wu et al. (2022) to improve the representation of multivariate sequences. In addition to feature extraction, some
approaches introduce auxiliary mechanisms to improve detection performance. For instance, CAT Zhang et al.
(2022) integrates one-class classification loss Guo et al. (2021); Wang et al. (2021) into the forecasting objective;
MTAD-GAT Zhao et al. (2020) trains two networks jointly for forecasting and reconstruction; GDN Deng & Hooi
(2021a) transforms prediction errors into normalized graph-structured deviation scores; and LSTM-NDT Hundman
et al. (2018b) proposes a dynamic thresholding method based on exponential smoothing. While these methods
incorporate various enhancements beyond forecasting, their primary focus remains on the design of forecasting
models, with other components playing a supportive role. In contrast, this work aims to propose a more general
forecasting framework, rather than improving a specific model.

Density Estimation Methods. These methods assume that anomalies lie in low-probability regions and thus
exhibit low data density. Early methods such as LOF Breunig et al. (2000) and COF Tang et al. (2002) estimate
sample density based on the k-nearest neighbors. DAGMM Zong et al. (2018) combines reconstruction errors
from autoencoders with Gaussian Mixture Models (GMMs) to jointly model low-dimensional embeddings and
reconstruction loss. More recently, GANF Dai & Chen (2022) utilizes Bayesian networks with normalizing flows
for density estimation, learning flow parameters to improve estimation accuracy.

Clustering-based Methods. These methods assume that normal data points cluster densely, while those far from
the center are likely anomalies. Typical approaches include SVDD Ruff et al. (2018b) and its deep variant DEEP
SVDD Ruff et al. (2018a). THOC Shen et al. (2020) extends this idea by introducing multiple latent spaces and
computing weighted distances to all centers as anomaly scores. CPOD Tran et al. (2020) propose enhancements
from the perspectives of efficiency and streaming data processing, respectively. COUTA Xu et al. (2024) generates
pseudo-anomalies via data augmentation to guide the model in learning decision boundaries for anomalies.

Reconstruction-based Methods. These approaches train models to reconstruct the original time series, under
the assumption that anomalies are harder to reconstruct and thus can be identified. To prevent models from
simply learning identity mappings, various techniques have been introduced to enhance anomaly discriminability.
Most existing methods are based on generative models such as Variational Autoencoders (VAEs) Kingma et al.
(2013) and Generative Adversarial Networks (GANs) Goodfellow et al. (2014). LSTM-VAE Park et al. (2018)
is a representative method that combines sequential modeling with the VAE framework. Omni-Anomaly Shi
et al. (2023) and InterFusion Li et al. (2021) further integrate techniques such as normalizing flows, hierarchical
structures, and bidirectional temporal modeling to improve detection performance. GAN-based methods often
adopt adversarial training strategies, with implementations ranging from multi-objective min-max optimization
to more complex variants Tuli et al. (2022); Xu et al. (2021); Audibert et al. (2020); Li et al. (2019); Geiger et al.
(2020); Bashar & Nayak (2020).

F.2 TIME SERIES FORECASTING METHODS

Time series forecasting models can be broadly categorized based on the neural network architecture they employ,
including: (1) Transformer-based models Wu et al. (2022); Wang et al. (2024); Huang & Liu (2024), (2) Multi-Layer
Perceptrons (MLPs) Zeng et al. (2022); Challu et al. (2023); Zhou et al. (2023c) , (3) Recurrent Neural Networks
(RNNs) Salinas et al. (2020); Lai et al. (2018), (4) Convolutional Neural Networks (CNNs) Luo & Wang (2024);
Liu et al. (2022a), and (5) Graph Neural Networks (GNNs) Zhou et al. (2023a); Liu et al. (2022b).It is important to
note that this categorization is not exhaustive. As these directions are beyond the scope of this work, we do not
elaborate on them here.

In our experiments, we further demonstrate that DRPAD can be seamlessly integrated into all of the above
forecasting models, effectively transforming them into anomaly detection methods.
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F.3 CHANGE POINT DETECTION METHODS

Change Point Detection (CPD) aims to identify positions in a time series where statistical properties—such as
mean, variance, or distribution—undergo significant changes. CPD has found wide applications in fields such
as finance, industrial monitoring, and anomaly detection. Existing approaches can be broadly categorized into
supervised and unsupervised methods.

Supervised methods typically formulate CPD as a classification task, training classifiers based on labeled data. De-
pending on the problem formulation, these methods can be further divided into multi-class classifiers (e.g., decision
trees Reddy et al. (2010), k-nearest neighbors Wei & Keogh (2006), Hidden Markov Models (HMM) Cleland et al.
(2014)) and binary classifiers (e.g., SVM Desobry et al. (2005); Feuz et al. (2014), Naïve Bayes Feuz et al. (2014),
logistic regression Feuz et al. (2014)). Although supervised methods generally perform well when high-quality
labeled data are available, their applicability is limited due to the scarcity of such data in real-world scenarios.

In contrast, unsupervised methods do not rely on labeled data, making them more generalizable in practice.
Based on different modeling strategies, mainstream unsupervised CPD approaches can be grouped into the
following categories: (1) Likelihood-ratio-based methods, which detect change points by computing the difference
or ratio of probability densities before and after a segment (e.g., KLIEP Liu et al. (2013), ULSIF Liu et al.
(2013)); (2) Subspace modeling methods (e.g., SI Liu et al. (2013), PELT Killick et al. (2012)), which analyze
structural variations in the embedded space of the time series; (3) Probabilistic modeling methods (e.g., Gaussian
Processes Saatçi et al. (2010)), which estimate changes from a generative modeling perspective; (4) Other methods
based on kernel techniques, graph-based structures, or clustering under sliding windows.

These methods exhibit different strengths and are suited for varying data characteristics and application scenarios.

In this study, we adopt a strategy that combines both global and local features: We first perform coarse-grained
detection using the PELT Killick et al. (2012) (Pruned Exact Linear Time) algorithm. PELT is an unsupervised
subspace modeling method that minimizes a weighted cost function, allowing linear-time detection while preserving
optimality. This makes it suitable for large-scale time series. To further improve precision, we introduce a local
refinement strategy based on a sliding window Truong et al. (2020), which scans the candidate change point regions
at a finer granularity. This hybrid mechanism significantly enhances the robustness and accuracy of segmentation,
providing high-quality structural support for subsequent segment-based normalization.

F.4 COMPARISON WITH RELATED WORK

The AFMF framework Shen et al. (2024) introduces a technique called Local Instance Normalization (LIN) with a
similar goal to our proposed Segment-wise Normalization (SN): both aim to mitigate the effect of varying data scales
during anomaly detection. LIN independently normalizes data within each fixed-length input window, reducing the
influence of amplitude shifts on detection performance.

When the data distributions across adjacent windows differ significantly—for instance, if the previous window
contains large-magnitude values while the next has small-scale fluctuations—LIN effectively balances the scale
across windows, thereby improving the overall Mean Squared Error (MSE) performance. This helps prevent
small-amplitude anomalies from being undetected due to diminished MSE values in such regions.

However, LIN has limitations in another common scenario. As illustrated in Figure 1, when large-valued points
dominate the early portion of the input window, the normalization scale is skewed, causing subsequent small-scale
anomalies to be masked, with reduced MSE and thus harder to detect.

To address this issue, our proposed SN method employs change point detection to adaptively segment the sequence.
Normalization is then performed within each segment, preserving local scale variations. This segment-aware
normalization effectively alleviates the problem of large values "overshadowing" small anomalies, leading to
improved robustness and precision in anomaly detection.

Moreover, the AFMF framework introduces a mechanism called Progressive Adjacent Masking (PAM) that works
in conjunction with LIN to further enhance anomaly detection performance. The normalization in LIN adjusts the
data toward a zero-centered distribution, laying the foundation for PAM’s zero-masking operation. The core idea of
PAM is to observe how masking affects prediction error, helping distinguish between false positives caused by
nearby anomalies and true anomalies.

Specifically, when anomalies are surrounded by adjacent anomalous points, masking these neighboring values
reduces prediction errors significantly. Conversely, masking normal data introduces noise and increases the
prediction error. PAM leverages this behavior by comparing the prediction errors before and after masking to better
separate true anomalies from false positives.

Despite its conceptual validity, PAM’s rigid zero-masking strategy risks distorting the input, especially in smoothly
varying sequences. Such abrupt changes may disrupt the continuity and introduce unnatural patterns that did not
appear during training, making it harder for models to generalize and potentially causing misclassifications.
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To resolve this, we propose a novel Dynamic Prediction Replacement mechanism: when an anomaly is detected, it
is directly replaced by the model’s predicted value, which is then used as input for subsequent steps. This smooth
substitution suppresses the propagation of anomalous information, maintaining continuity and stability in the input
sequence. Particularly in scenarios with consecutive anomalies or frequent distribution shifts, the replacement
mechanism allows real-time window updates and enhances the adaptability of the detection process.

G DETAILED DESCRIPTION AND SOURCES OF BASELINES AND DATASETS

The following provides a detailed introduction to the nine real-world time series anomaly detection benchmarks,
with numerical details summarized in Table 10. The processing methods for all datasets are consistent with
AFMF Shen et al. (2024).

SMD (Server Machine Dataset) Su et al. (2019) is a one-minute-level dataset consisting of 38 dimensions, collected
from a large Internet company over a period of five weeks.

PSM (Pooled Server Metrics) Abdulaal et al. (2021) contains 25 dimensions and is collected from internal nodes of
multiple application servers at eBay.

MSL (Mars Science Laboratory Rover) and SMAP (Soil Moisture Active Passive Satellite) Hundman et al. (2018a)
are public datasets originating from Incident Surprise Anomalies (ISA) and contain telemetry anomaly data from
spacecraft monitoring systems, with 55 and 25 dimensions, respectively.

SWaT (Secure Water Treatment) Mathur & Tippenhauer (2016) is a dataset collected from a water treatment plant,
containing 51 dimensions, including 7 days of normal operation and 4 days of artificially induced attack scenarios.

WADI (Water Distribution) Ahmed et al. (2017) is an extended testbed of SWaT, involving 123 sensors and
actuators. The dataset includes 14 days of normal operation and 2 days of attack scenarios.

MBA (MIT-BIH Supraventricular Arrhythmia Database) Moody & Mark (2001) is a popular large-scale dataset
comprising electrocardiogram (ECG) recordings from four patients, including two types of arrhythmias (supraven-
tricular premature beats and premature ventricular contractions).

NAB (Numenta Anomaly Benchmark) Ahmad et al. (2017) is a dataset containing multiple univariate sub-datasets,
such as ambient temperature and CPU usage.

MSDS (Multi-Source Distributed System) Nedelkoski et al. (2020) records CPU, memory, and load metrics from a
distributed IT system consisting of one controller and four computing nodes.

We re-conducted all experiments related to other baselines under their default experimental settings. Their source
codes origins are given in Table 11. Some changes are made to DAGMM in the project of TranAD according
to another code implementation of DAGMM https://github.com/danieltan07/dagmm to avoid ‘nan’
losses. The only modification was replacing their threshold selection strategies with ours, namely determining
anomaly detection thresholds based on a fixed percentile. Additionally, all window size settings were kept consistent
with those used in the AFMF framework.

The LF component employed in DRPAD is adapted from the AFMF framework, and we follow its original
configuration when applying it. When integrating Transformer-based models with DRPAD, the values of discrete
variates at prediction timestamps are not used as decoder inputs. Transformer-based architectures typically require
decoder inputs at prediction timestamps to be initialized, often utilizing representations such as trend features
derived from encoder inputs. This initialization strategy conflicts with the design of LF, which provides masked
continuous variates and full discrete variates to the decoder. Therefore, following its original configuration, we
abandon the use of discrete variates’ values at prediction timestamps as decoder inputs and continue to use the
initialization method of Transformer-based models when combining it with DRPAD.

Table 10: Detailed information of the nine benchmarks.

Benchmark Application N (Dimensions) Window Size Train Validation Test Anomalies (%) r (%) δ

SMD Server 38 720 566,724 141,681 708,420 4.16 0.5 100
PSM Server 25 48 105,984 26,497 87,841 27.76 1.5 200
MSL Space 55 24 46,653 11,664 73,729 10.72 1.5 30
SMAP Space 25 720 108,146 27,037 427,617 13.13 1.5 20
SWaT Water 51 720 396,000 99,000 449,919 11.98 0.5 100
WADI Water 123 100 627,656 156,915 172,801 5.99 0.5 100
MBA ECG 2 100 6,144 1,536 7,680 5.60 1.5 5
NAB Various 1 360 2,325 807 4,032 0.60 0.5 50
MSDS Server 2 720 249,168 62,293 14,457 3.24 2.5 50
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Table 11: Baseline and Source Code Origin

Baseline Source Code Origin
DAGMM https://github.com/imperial-qore/TranAD
MEMTO https://github.com/gunny97/MEMTO
CAE-M Zhang et al. (2021a) https://github.com/imperial-qore/TranAD
GDN https://github.com/d-ailin/GDN
AFMF https://github.com/OrigamiSL/AFMF?tab=readme-ov-file
FEDformer https://github.com/MAZiqing/FEDformer
Autoformer https://github.com/OrigamiSL/AFMF?tab=readme-ov-file
DLinear https://github.com/OrigamiSL/AFMF?tab=readme-ov-file
RTNet https://github.com/OrigamiSL/AFMF?tab=readme-ov-file
DeepAR https://github.com/OrigamiSL/AFMF?tab=readme-ov-file
GTA https://github.com/ZEKAICHEN/GTA

Table 12: Details of hyper-parameters and experimental settings

Hyper-parameters/Settings Values/Mechanisms
Dropout 0.1
Loss function MSE
Batch size 128
Initial learning rate 1× 10−4

Optimizer AdamW
Weight decay 1× 10−4

Gradient clipping Max norm = 0.5
NaN handling Reduce LR by half and skip current batch
Learning rate scheduler OneCycleLR (cosine annealing)

Max LR 2× 10−4

Warm-up proportion 30% of total steps
Initial LR 2× 10−5 (max_lr/10)
Final LR 2× 10−6 (max_lr/100)
Anneal strategy Cosine

Epsilon (numerical stability) 1× 10−8

AMSGrad False
Fused implementation False
Training epochs As specified by args.train_epochs
Repetition strategy 5 independent runs, results averaged
Platform Python 3.12.7, PyTorch 2.5.0
Device 4 × NVIDIA GeForce RTX 4090 (24GB)
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