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Abstract

Humans learn to capture causality everywhere and everytime. As humans, some-
times we learn to model causality by concrete observations of scenes and states,
and others we capture causality by learning abstract concepts. Inspired by this,
we propose a possible way of designing a computational model that can capture
the causal relation and structure, with a combination of concrete representation
and abstract learning. We will further introduce four aspects of capture learning
with detailed examples. Through these examples, we will have an insight of the
necessity of these different aspects.

1 Introduction

Causality [14] is widely used to depict the relation of cause and effects, and has been developed as a
scientific research topic. Ever since infancy, humans have learned to capture causality [6]. Suppose it
was 6 p.m. and our parents were walking out of the kitchen with dishes of food, then we would know
that there would be a delicious meal and could hardly wait to have dinner. In this example, 6 p.m.
indicates the time (at dusk), which helps us to infer the next thing that would happen. The two events
"parents walking out of the kitchen with dishes" and "dinner starting" usually happen in succession,
indicating that they have some certain relationship to some extent. This can be an simplest form of
causality, which contains two events as well as the relation in between.

In the classical area of causality, one of the most widely circulated theories is the counterfactual
theory [9]. In this theory, causality are explained on the basis of counterfactual conditionals, and can
be traced back to David Hume’s definition of the causal relation [4]:

Where, if the first object had not been, the second never had existed.

Ever since then, much more theories have been developed and have taken effect in a great many fields,
including psychology, statistics, etc.

How do we as humans recognize causality? In this essay, we will discuss four fundamental aspects
and methods that humans usually use, on the basis of which we will further propose the correspond-
ing ways to design a computational model to capture causality. Both concrete representation of
observations and the learned abstract concepts will be included.

2 Capture Causality from Concrete Representation

2.1 Representation of Vision

In the following, we will focus on a static image as vision observation. What we see through the
image can construct our understanding of causality to some extent. Since causality is more about the
relationship between cause and effect rather than themselves, we should pay attention to the relation
among objects as a whole, instead of simply detecting the objects themselves.
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One possible way of representing an image with complex relations is to use parse graph [3]. Parse
graphs use a view of tree-like representation, which is suitable to handle relations with hierarchy. In
the example figure 1, the man was sitting at the table near a food stand. By parsing this combination
into "man at the table" and "table near the food stand", we can indicate that the man was sitting there
for eating. From the perspective of causality, the man might be going to the food stand and sitting
because he wanted to eat something. Similarly, we have "wanting to buy some food led to the boy
walking towards the food stand".

Figure 1: An example of parse graph [17]. A scene of image may be parsed hierarchically in terms of relations,
intents, beliefs, etc.

Using representations such as parse graph is an effective way to combine the information on the
surface with deeper semantic relations. Therefore, such concrete representations of static observations
can serve as resources for the computational model to analyze and reason. In a word, causality lies in
the parse graph!

It is worth noting that such static representations also include multiple methods, including And-Or
Graph [2] for logic, etc. Diverse methods of representing diverse contents provide multiple choices
for our designed model.

2.2 Representation of Temporal Process

Empirically, we model causality of multiple events based on the sequential order most of the time,
which is a dynamic way. Studies on voting among a large population [11] have shown that temporal
order can have great significance to people’s decisions due to causality. Researches on infants [8]
indicate that 5-year-old children can already form a habit to infer causality according to the time order
of events. Reuter et al. [15] investigated the role of moral and temporal factors in causal selection,
and connected their findings with probabilistic models of temporal location.

Temporal order plays an important part in modeling the causality. Take Michotte’s study on perception
causality [10] as an example (figure 2). In sub-figure (a), (b) and (f), people tend to consider that it is
ball A’s striking that leads to ball B’s moving forward. However, when it comes to sub-figure (c), (d)
and (e), the result can be less explicit. This phenomenon indicates that when the temporal condition
is disrupted, people’s judgement of causality will change accordingly.

Consequently, it is easier for a computational model to capture causality if representations of temporal
processes are given. With these sequential meanings of information, the model can make possible
(but not determined) interpretations and predictions of cause and effect, and combine both to learn
causality.
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Figure 2: Examples of Michotte’s study on perception causality. In the following we will denote the red ball as
ball A, and the green one as ball B. (a) A strike B and B move forward; (b) A strike B and carry along B to move
together; (c) Launching with a temporal gap, where B leaves apart from A after a while when A struck B; (d)
B seems to leave farther as soon as A strikes it, as if B had consciousness and would move automatically; (e)
Launching with a spatial gap, where B move forward even before A strikes it; (f) The tool effect, in which a
chain reaction happens and the grey ball can be referred as a tool.

3 Capture Causality from Abstract Learning

3.1 Learning from Common Sense

Common sense has been considered as one of the unique human abilities for quite long, while many
of existing AI techniques show little in it. Common sense provides the fundamental knowledge for
humans’ physically survival and socially living.

On the one hand, physical common sense can help the designed model to interpret the physical
causality. For example, knowing the basic theories of collision will make the model instantly realize
that the former ball is the reason of the latter’s moving where there is a collision. Understanding why
a cup drops from the edge of the table requires the common knowledge of gravity. Such physical
sense may be enhanced through databases [16] or knowledge graphs [13], collecting a great deal of
relevant information onto a single understanding of causality.

On the other hand, social common sense is of great significance as well. Gestures are one kind of the
most commonly used social knowledge [7]. Knowing the basic gestures let us understand why a man
pointing at his mouth is usually interpreted that he feels hungry. Other examples include conventional
customs and habits, sympathy and empathy, laws and regulations, etc. These can be much useful for
us to behave properly and connect with other individuals, which can help us live a better life. It is
the same with respect to intelligent agents. Modern AI techniques ought to be equipped with social
common sense, with which they can make causal interpretations and reasoning when encountering
the similar circumstances.

On the whole, the present situation is that many existing AI techniques, such as Large Language
Models (LLMs), are relatively (but not absolutely) better in physical common sense, and are terribly
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short in social knowledge [1]. Hence, we attach great significance to equipping intelligent agents with
broader physical and social common sense. Only with enough knowledge can our designed model
learn to capture causality properly.

3.2 Learning to Reason

Compared to learning from common sense which is a static process, learning to reason [5] can be a
dynamic one. Reasoning is always a successor of common sense or graph representation of an image,
and can bring out more predicted information. Note that the reasoning part might not be necessarily
consistent with the ground truth, but it can actually help with capturing the causality.

We have seen examples of reasoning. When the young man was walking towards the food stand
in figure 1, we can infer that he might want to buy something to eat. Seeing a man pointing at his
mouth, we may conjecture that he was hungry. In addition, we should pay extra attention to a kind of
reasoning called induction [12], which plays an important part in capturing causality. For instance,
if it seems that a certain event is on a regular basis, then the next time of the event can be inferred,
where the regularity comes from induction. Based on induction, more relationships between causes
and effects can be established, which will form new causalities.

To conclude, reasoning is an effective way of modeling causality between abstract concepts. Therefore,
learning to reason will be an essential part in building a computational model that can capture the
causality.

4 Conclusion

Constructing computational models that can capture causality well fits the need of next-generation
modern AI systems and the ever-increasing demand of Artificial General Intelligence (AGI). In this
essay, we propose four different aspects of making a model understand, analyze and reason from
causality, and discuss the feasibility based on concrete representations as well as abstract learning.
We hope that our discussion will inspire the subsequent researches in this field, and can be a small
step towards advanced intelligence in causality.
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